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Experimental observation of coherent-perfect-absorber and laser points
in anti-PT symmetry

Minye Yang ,1,2,* Qi Zhong,3,* Zhilu Ye ,1,2 Şahin K. Özdemir ,3,4 Mohamed Farhat,5
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The coexistence of coherent perfect absorber and laser or amplifier (CPAL) point is a peculiar spectral singu-
larity associated with the scattering matrices of non-Hermitian systems. While the potential of CPAL systems
for sensing application has been highlighted recently, the extreme sensitivity of parity-time (PT)-symmetric
CPAL devices to the input signal deviations has so far impeded their practical utilization. Here we explore
a strategy for implementing CPAL circuits by exploiting another type of non-Hermitian symmetry, namely
anti-PT (APT) symmetry. We demonstrate that the condition for building CPAL in our proposed APT-symmetric
electronic circuits additionally requires parity symmetry, which simplifies the circuit design and implementation.
Additionally, we show that this newly proposed structure is 1.85 times more robust compared to previous CPAL
devices studied in the literature.
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I. INTRODUCTION

The notion of symmetry is fundamental to modern physics.
In Hermitian systems, which include standard quantum me-
chanical problems and optical structures without gain or
loss, various symmetry transformations—such as translation,
rotational, and parity symmetries—play a crucial role in
understanding and classifying the solutions of underlying
equations of motion, such as the Schrödinger equation or
Maxwell’s equations. Meanwhile, in recent decades, it was
observed how symmetries have significant implications in
non-Hermitian systems, especially with the discovery of
parity-time (PT) symmetry [1,2]. Among them, an important
and counterintuitive outcome of PT symmetry is that the non-
Hermitian Hamiltonian can have real eigenvalues [1], like its
Hermitian counterpart.

While non-Hermitian notations are useful for describing
any open systems, optical platforms particularly attracted
considerable attention, mainly due to their versatility and
potential applications [3–5]. The unique features of non-
Hermitian photonic systems are enabled by the peculiar
spectral characteristics associated with their underlying non-
Hermitian Hamiltonians H and scattering matrices S. The first
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describes the evolution of optical fields within the optical
system while the second establishes the relationship between
the input and output fields. Both non-Hermitian Hamiltonians
and scattering matrices feature non-Hermitian singularities
known as exceptional points (EPs), at which both the eigenval-
ues and the corresponding eigenmodes coalesce, signaling the
breakdown of typical perturbation analysis and giving rise to
eigenvalue bifurcation and an enhanced response to perturba-
tions [5–7]. Other important spectral points include the zeros
and poles of the scattering matrix [8], defined by its eigen-
values. When a zero of S occurs on the real axis at ω in the
complex frequency plane, the response of all output channels
vanishes under a particular superposition of inputs (oscillat-
ing as e−iωt ) specified by the associated eigenmodes, thereby
acting as a coherent perfect absorber (CPA) [9–16]. However,
the poles of scattering matrices act as self-oscillating devices,
typically functioning as lasers in optical systems. A special
scenario involving the coexistence of CPA and laser can occur
when a pair of zero and pole coincide at the real frequency,
which was theoretically introduced in PT-symmetric optical
systems [17] and later verified experimentally [18].

Soon after introducing the notion of PT symmetry in opti-
cal systems, where the above works were mainly developed, it
was realized that the concept could be extended to other plat-
forms such as electronics [19,20] and acoustics [21]. The first
is of particular interest given the abundance of electronic de-
vices and technologies that infiltrate every aspect of our daily
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FIG. 1. (a) A diagram of a standard PT-symmetric system com-
prising a pair of gain and loss components, and a lossless energy
interaction between them. The lower panel of (a) depicts two typical
realizations in electronics. (b) A schematic illustration of an APT-
symmetric system consisting of two gain components with lossy
energy interaction. The lower panel of (b) illustrates two types of
electronic APT circuits. The gray part illustrates the ports for mea-
suring the scattering properties.

lives. In this regard, recent works on PT-symmetric electronic
sensors [22–25] and encryption schemes [26] demonstrated
the great potential of non-Hermitian electronic systems in real
life applications. A particular class of phenomenon in non-
Hermitian electronic circuits that can be of utility in several
applications is that associated with the aforementioned CPA
and CPAL points, which was demonstrated in PT-symmetric
circuits [19] and shown to have promising potential for sens-
ing [27,28] and encryption [29] applications. Unfortunately,
standard implementations of CPAL based on PT symmetry
suffered from several drawbacks. First, achieving PT sym-
metry requires the coupling of two oscillators with a delicate
balance between the net gain or loss values and their coupling
coefficients [Fig. 1(a)], which in turn imposed stringent condi-
tions on the fabrication tolerance. Second, the system was also
sensitive to imperfections and deviations in the input signal.
It was demonstrated that a small perturbation of the input
signal will result in nonzero output, which, for practical values
of noise, was still relatively large compared to the optimal
situation. It is thus beneficial to engineer new systems that
exhibit CPAL points with high feasibility and better robust-
ness against input variations when tuned to the CPA operation
regime.

Here we propose and demonstrate an alternative im-
plementation of CPAL in electronic circuits that rely on
anti-parity-time (APT) symmetry [30–34]. A pair of coupled
RLC circuits respecting APT symmetry by implementing the
dissipative (imaginary) coupling with a resistor was demon-
strated in Ref. [32] and illustrated as type II in Fig. 1(b).
In this paper, we propose a configuration of APT-symmetric
coupled RLC circuits as shown as type I in Fig. 1(b). Based
on the temporal coupled-mode theory [35] analysis, the APT
symmetry (in terms of the Hamiltonian) requires that the
RLC tanks on the left and right sides in these two types of
circuits should have identical resistances and capacitances,
but can have different values of inductances, which causes
frequency detuning. However, the analysis of eigenvalues of
scattering matrices shows that CPAL can occur in both under

specific conditions, one of which is that the inductors of both
oscillators should be identical. This additional condition for
CPAL makes two configurations adhere to parity symmetry,
in addition to APT symmetry. This, in turn, facilitates the sys-
tem design and fabrication and demonstrates the more robust
operation of the input signal.

II. CPA-LASER IN ANTI-PARITY-TIME SYMMETRY

We consider the non-Hermitian circuit designs, types I and
II, as illustrated in Fig. 1(b). The dynamics of these circuits,
in terms of the voltage V1,2 on left and right tanks, can be ex-
pressed in the Liouvillian formalism by applying Kirchhoff’s
laws, see Appendix A for details. The APT symmetry condi-
tion of the type-II circuit is provided in Ref. [32], within the
framework of temporal coupled-mode theory [35], and that is
C1 = C2 = C, R1 = R2 = R (the negative resistance −R1,2 in
Fig. 1 represent gain). Here we adopt the same approach and
derive the effective Hamiltonian for the type-I circuit

HI =
[
�ω + ig1 ik1

ik2 −�ω + ig2

]
, (1)

where �ω = ω1 − ω2 with ω1,2 = √
L1,2C1,2. Here the gain

(or loss) g1,2 and the coupling k1,2 rely on the values of Rn,
Ln, and Cn in Fig. 1(b), and are given in Appendix A. The
APT symmetry requires H anticommutes with parity operator
(P) and time-revesal operator (T ), i.e., {H, PT } ≡ HPT +
PT H = 0, leading to k1 = k2 and g1 = g2, and therefore,
C1 = C2 = C, R1 = R2 = R, and R3 = R4 (see Appendix A
for details). In both configurations, the values of L1,2 do not
need to be equal. Their ratio is denoted by s ≡ L1/L2 and
can be utilized to tune the frequency detuning �ω, thereby
adjusting the system to an EP or causing the eigenvalues to
split into the real or imaginary parts. In the following, we
will show that to achieve the CPAL in both APT-symmetric
circuits, s must equal unity.

To investigate the possibility of CPAL points in these APT
circuits, we connect the isolated circuits into an input-output
channel as shown in Fig. 1(b) and their corresponding scatter-
ing matrices S connect the output and input fields, i.e., |Vout〉 =
SI,II |Vin〉 where |Vin〉 = (V +

1 ,V +
2 )T and |Vout〉 = (V −

1 ,V −
2 )T.

The closed-form solution for S can be obtained either from
the corresponding Hamiltonian matrices or by analyzing their
admittance matrices, as detailed in Appendix B. The CPAL
condition necessitates that one eigenvalue of S equals 0 and
another equals infinity at a real input frequency ω, leading
to the important result s = 1, see Appendix B for explicit
derivation. An immediate consequence of this condition is
that the frequency detuning �ω = 0 in Eq. (1), and the
entire structure is symmetric around the center line, repre-
senting parity symmetry. This parity symmetry is also evident
from the Hamiltonian of both circuits in the form of H =
i[g k

k g], satisfying [P, H] ≡ PH − HP = 0. This additional
parity symmetry, in turn, facilitates the system design and
fabrication which will be discussed later. Note here that the
H for �ω = 0 has no EP but a Weyl (diabolic) point at k = 0
as its eigenvectors are still independent while the eigenvalues
degenerate.
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FIG. 2. (a) Color map of the eigenvalues λ± of the scattering matrix of type I APT-symmetric system as functions of η and κ at operating
frequency ω = 1. The eigenmode associated with λ− can be a CPA mode when η = 1/(2κ − 1) or a lasing mode when η = 1/(1 − 2κ ). The
eigenmode associated with λ+ is a lasing mode when η = 1 (λ+ is plotted around this value). The intersection of λ− = 0 and λ+ = ∞ is the
CPAL condition. Spectral behavior of eigenvalues of scattering matrices as functions of η in (b) and κ in (c) for type-I APT-symmetric system.
(d)–(f) are similar to (a)–(c), but for the type-II APT-symmetric system. The condition for λ− = 0 is η = 2/κ − 1. Here, for all plots, γ = 0.2
is selected to comply with our experiments. Data points and solid lines are experimental results.

To verify the CPAL phenomenon by two APT systems,
the eigenvalues associated with the scattering matrices cor-
responding to two types of APT circuits, λI,II, are exploited
under s = 1, which can be expressed as

λI+ = 1 − 2γ ηω

γω(η − 1) + i(ω2 − 1)
,

λI− = 1 + 2γω − 2i(ω2 − 1)

γω(η − 1 − 2ηκ ) + i(1 + 2ηκ )(ω2 − 1)
,

λII+ = −1 + 2γ ηω

γω(η − 1) + i(ω2 − 1)
,

λII− = 1 − 2γ ηω

γω(η − 1 + 2κ−1) + i(ω2 − 1)
, (2)

where γ = √
L/C/R is the quality factor of circuits and κ =

Rc/R is the resistive coupling rate between two oscillators.
In addition, η = R/Z0 is the gain level of this non-Hermitian
system where Z0 is the port impedance. In the type-I circuit,
Z0 is in parallel to R3,4 and therefore we can equivalently
make R3 = R4 = Z0. Here the input frequency ω is normal-
ized with respect to resonance frequency ω0 = 1/

√
LC. The

CPAL condition requires that λ+ = ∞ and λ− = 0 in Eq. (2),
or vice versa, leading to κ , η, and ω being equal to 1 while
γ is arbitrary. Figures 2(a) and 2(d) present contour plots for
the eigenvalues demonstrating the various operating regimes.
The intersection between the CPA and lasing lines represents
the CPAL point. Figures 2(b), 2(c), 2(e), and 2(f) numerically
present the spectral behavior of eigenvalues of both APT sys-
tems as functions of η and κ , validating our analytical results
of the occurrence of CPAL effect.

At the exact CPAL point, all four elements in SI,II are
infinity. To analyze the properties of scattering matrices, we
let the systems operating just below the lasing threshold as
an amplifier, i.e., η approaches 1. Then, the CPA and lasing

(actually amplifying point just below the lasing threshold) can
be probed experimentally by using input signals that coincide
with the eigenvectors corresponding to the CPA and lasing
eigenvalues. At ω = κ = 1, SI,II can be expressed as

SI = −1

η2 − 1

[
η2 + 1 −2η

−2η η2 + 1

]
η→1−−→ −A

[
1 −1

−1 1

]
,

SII = 1

η2 − 1

[
η2 + 1 2η

2η η2 + 1

]
η→1−−→ A

[
1 1
1 1

]
, (3)

where A = 2(η − 1)−1 and approaches infinity as η → 1. The
absolute values of eigenvalues are 2A (amplifier) and (2A)−1

(CPA) for both SI,II, corresponding to the magnitudes of the
peaks and dips in the spectrum (as in Fig. 3). The eigenvectors
of SI,II for amplifier are |VI+〉 = (1,−1)T and |VII+〉 = (1, 1)T,
while for CPA are |VI−〉 = (1, 1)T and |VII−〉 = (1,−1)T. As a
side note, we remark that these eigenvectors remain the same
even when ω �= 1.

FIG. 3. Measured (dotted lines) and simulation (solid lines) of
output coefficients of the (a) type I and (b) type II APT structures.
Red and blue colors represent the lasing and CPA operation of the
system.
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The above analysis can also be understood by inspecting
the expression for the total output energy associated with
the system when normalized by the total input energy, i.e.,

� = |V −
1 |2+|V −

2 |2
|V +

1 |2+|V +
2 |2 (full expressions of � for APT systems are

in Appendix C). If we now define α = V +
2 /V +

1 , we find
that, for the system to function as a CPA, α = ±1 for the
APT-symmetric circuits I and II consequently which is con-
sistent with the above eigenvalue analysis. This means that to
achieve CPA, the input at the two ports should have identical
intensity and the same (or opposite) relative phase. How-
ever, the inductive-coupled PT case requires infinity γ , while
the TL-coupled PT systems require α = −i(

√
2 + 1) (see

Appendix B). These results clearly demonstrate that it is easier
to implement CPA input conditions using APT rather than
using PT systems.

To verify these results, we have practically built proto-
types of two APT-CPAL systems. The gain contribution is
realized by an active oscillator that has negative resistance
established by a negative impedance converter (NIC). By deli-
cately designing the values of all lumped elements of the NIC
module, we are able to practically realize η ≈ 1.02 for two
configurations. The experimentally measured eigenvalues are
embedded in Fig. 2, and � is also measured under different
input conditions corresponding to the CPA and laser operation
in Figs. 3(a) and 3(b), where the experimentally measured
data are superimposed on simulation results. The blue and red
lines are obtained for input conditions matching CPA and laser
operation which is indeed confirmed by the small or large
values of � at ω = 1.

III. SENSITIVITY AND ROBUSTNESS OF APT-CPAL

Next, we analyze the impact of experimental imperfec-
tions, such as fabrication errors or experimental uncertainties,
and the deviations of the system from its designed parameters.
We expect deviations in the input condition for CPA due to its
dependence on amplitude and phase relations between input
ports, which are hard to maintain in the presence of uncer-
tainties and imperfections. Below the lasing threshold, the
scattering matrices for two types of APT-symmetric circuits
and the TL-coupled PT-symmetric circuit are given by

SI = −2

η2 − 1

[
η2+1

2 −η

−η
η2+1

2

]
,

SII = 2

η2 − 1

[
η2+1

2 η

η
η2+1

2

]
,

STL = 1

η2 − 1

[
1 − √

2η −iη2

−iη2 1 + √
2η

]
. (4)

Here we scale η to
√

2η in STL such that in all cases the
lasing threshold is η = 1. In the following, we will analyze
the situation for the APT-symmetric type-I circuit, noting
that the analysis for APT-symmetric type-II and TL-coupled
PT-symmetric circuits is similar.

The eigenvalues of SI and eigenvectors are

λI± =
(

η + 1

η − 1

)±1

, |VI±〉 = (1,∓1)T. (5)

As η approaches 1, SI and its eigenvalues can be
approximated as

SI = A

[
1 −1

−1 1

]
, λI± = (2A)±1, (6)

where A = 2(η − 1)−1 → ∞. When the CPA input condition
|VI−〉 = (1, 1)T experiences both amplitude deviation (v1, v2)
and phase deviation �φ, the input can be written as

|Vin〉 = (1 + v1, (1 + v2)ei�φ )T

≈ |VI−〉 + (v1, v2)T + (0, i�φ)T. (7)

The output is |Vout〉 = SI |Vin〉 and its intensity is

〈Vout|Vout〉 = 〈Vin|S†
I SI|Vin〉

= 8A2
I

(
v2

1 − 2v1v2 + v2
2 + �φ2). (8)

To simplify the dependence of output with the amplitude devi-
ation strength, we assume v1,2 is in the range of [−�V,�V ],
then the average output is

〈Vout|Vout〉 = 2A2
I

(
v2

1 − 2v1v2 + v2
2 + �φ2

)
= 8A2

I

(
2
3�V 2 + �φ2

)
. (9)

By normalizing with the input 〈Vin|Vin〉 and replacing AI with
λI+, the value of � is

�I = |λI+|2
(

�V 2

6
+ �φ2

4

)
. (10)

Similarly, for APT-symmetric type-II and TL-coupled PT-
symmetric circuits, we derive

�II = |λII+|2
(

�V 2

6
+ �φ2

4

)
, (11)

and

�TL = |λTL+|2
(

�V 2

6 − 3
√

2
+ �φ2

4

)
. (12)

To compare these three systems, we need to make the
minimum (CPA) and the maximum (amplifier,�max) of the
� identical to all systems, which requires all |λ+| values be
identical in Eqs. (10) to (12) since �max = |λ+|2. This result
shows that to make �APT = �PT when subject to the same
phase deviation, the intensity deviation that APT systems can
tolerate is 1.85 times larger than that of the PT system, indicat-
ing a better robustness. The above theoretical analysis is well
verified by our numerical calculations shown in Figs. 4(a) and
4(b).

The device parameters’ deviations can also shift the sys-
tem away from the CPAL condition. Inspired by the sharp
lineshape around the CPAL point and the better feasibility,
we further explore the use of the APT-symmetric CPAL
systems for sensing purposes. In two APT configurations,
the positive feedback resistors of the NICs (R1 = R in Ap-
pendix D) can be made from different transducers, such as
pressure-sensitive and humidity-sensitive resistors illustrated
in the inset of Fig. 4(c), to translate the variations of phys-
ical or chemical signals to resistive perturbations (�R). In
this regard, let us assume that a subtle resistive perturbation
ε = �R/R � 1 is applied to two configurations. Such a tiny
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FIG. 4. (a), (b) demonstrate the contours of � of two APT and
transmission line (TL)-coupled PT systems, initially locked at their
CPA, with respect to the tiny perturbations applied to excitation
modes �V and �φ. We note that two APT systems have the same
robustness against such deviations, both stronger than the PT one.
(c), (d) plot the sensitivity of two APT-CPAL sensors with respect to
the resistive perturbations.

perturbation will shift the system away from the CPA op-
eration state, demonstrating great sensitivity. To present the
comparison in terms of sensitivity among two APT-CPAL and
the PT-CPAL systems, we assume that each system initially
operates at its CPA mode and has zero input deviation. Addi-
tionally, to avoid the infinite sensitivity when systems operate
exactly at the CPAL point, we consider the practical scenario
by introducing a fabrication error, δ, into each structure. In
two APT systems where ideally ηCPAL = 1, the fabrication
error is introduced as η′ = 1 + δ. Similarly, in the TL-coupled
PT system where ideal ηCPAL = 1/

√
2, the fabrication error

makes η′ = (1 + δ)/
√

2. Then, a perturbation is applied to
the feedback resistors of the NICs (assuming the gain element
of PT systems is established by the NIC in the same form
of APT), ε = �R/R � 1. Starting from the TL-coupled PT
structure, we consider the most commonly employed structure
in Appendix A, where a negative conductance and a positive
conductance are separated by a quarter-wavelength transmis-
sion line that has an electrical length of θ = π/2. The output
factor as a function of the perturbation can be theoretically
approximated as [27]

�TL(ε) ≈ 1

4

(
δ2 + ε2

δ2

)
+ O(ε3). (13)

In the same vein, the output factor of both APT-CPAL
sensors as functions of the same perturbation and fabrication
error can be written as

�I (ε) = δ4 + ε2(1 + δ)2

[ε(1 + δ) − δ(2 + δ)]2

≈ 1

4

(
δ2 + ε2

δ2

)
+ O(ε3),

�II(ε) = δ4 − 2δ4ε + ε2[1 + δ(2 + δ + δ3)]

[ε − δ(2 + δ) + δ(3 + δ)ε]2

≈ 1

4

(
δ2 + ε2

δ2

)
+ O(ε3). (14)

The first term of these three approximations indicates the
detection limit of the sensor while the second term denotes
the sensitivity. Hence, we can make a conclusion that two
types of APT-CPAL sensors can ideally have the same level of
sensitivity as the PT-CPAL sensors when subject to the same
amount of fabrication error, demonstrating that the robustness
enhancement brought by our APT-CPAL systems do not sac-
rifice the response enhancement.

This is better demonstrated by plotting � as a function of
the perturbation as shown in Figs. 4(c) and 4(d), where the
experimentally measured data points are embedded. As we
can see, the response function experiences a change of over
40 dB over the perturbation range with strong sensitivity even
for ε ∼ 10−4. Further, we would like to highlight that due to
the simplified circuit structures, two types of APT systems are
more readily realizable in practice and the fabrication errors
can be more precisely controlled which may help approach
the maximum sensitivity of ∼2500ε2 predicted by theory and
numerical simulations. This is a significant improvement over
the sensitivity of ∼4.5ε2 reported in Ref. [28] for the TL-
coupled PT sensor.

IV. CONCLUSION

In summary, we demonstrated a configuration of electronic
APT systems, which, together with another one reported in
Ref. [32], can have CPAL points when combined with an ad-
ditional parity symmetry. These APT-symmetric circuits with
parity symmetry can facilitate the implementation of a CPAL
operation point with enhanced robustness regarding design,
fabrication, and excitation compared to its PT counterparts,
therefore exhibiting better practical sensitivity.
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APPENDIX A: HAMILTONIANS OF APT SYSTEMS

To make the circuit dynamics of the type I APT system
more straightforward, we here introduce two resistors R3 and
R4 as depicted in Fig. 5(a), which do not modify the scattering
properties of the system. By applying Kirchhoff’s laws to type
I APT schematic, we can simply write the circuit dynamics as

V1

L1
+ 1

R3
V̇10 + 1

R1
V̇1 + C1V̈1 = 0,

V2

L2
+ 1

R4
V̇20 + 1

R2
V̇2 + C2V̈2 = 0, (A1)

V10

R3
+ V20

R4
+ V0

Rc
= 0,
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FIG. 5. (a), (b) are circuit diagrams of two APT systems. (c)–(e) present the circuit diagrams of inductive-, capacitive-, and transmission
line (TL)-coupled PT systems.

where the dot denotes the time derivative, V1 = V10 − V0,
V2 = V20 − V0, and here V10, V20, and V0 are the node voltages
marked out by red dots in Fig. 5. By eliminating V10, V20, and
V0, Eq. (A1) can be written as

V̈1 + ω2
1V1 − 1

R3R4C1G
V̇2 +

(
1

R1C1
− R−1

4 + R−1
c

R3C1G

)
V̇1 = 0,

V̈2 + ω2
2V2 − 1

R3R4C2G
V̇1 +

(
1

R2C2
− R−1

3 + R−1
c

R4C2G

)
V̇2 = 0,

(A2)

where G = R−1
3 + R−1

4 + R−1
c .

This circuit dynamics can be recast to the Liouvillian for-
malism as

dψ

dt
= LIψ, LI =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−ω2
1 0 g1 k1

0 −ω2
2 k2 g2

⎤
⎥⎥⎦,

g1 = R−1
4 + R−1

c

R3C1G
− 1

R1C1
, g2 = R−1

3 + R−1
c

R4C2G
− 1

R2C2
,

k1 = 1

R3R4C1G
, k2 = 1

R3R4C2G
, (A3)

where ψ ≡ (V1,V2, V̇1, V̇2). Alternatively, a 2 × 2 Hamilto-
nian matrix of the type-I APT circuit can be obtained from
the coupled-mode theory by adopting the slowly varying
complex-envelope function as

Vn(t ) = vn(t )exp(−iω0t ) + v∗
n (t )exp(iω0t ), (A4)

here n = 1, 2 denotes the nodes 1 and 2. Combined with an
uncoupled resonance frequency ω0 = (ω1 + ω2)/2, the circuit
dynamics can be approximated into a coupled-mode equation,

which yields the 2 × 2 Hamiltonian to be

HI =
[
�ω + ig1 k1

k2 −�ω + ig2

]
, (A5)

where �ω = ω1 − ω2. Equation (A5) is the full expression of
Eq. (1) in the main context. The APT symmetry condition, i.e.,
{PT , H} = 0 leads to C1 = C2 = C and R−1

1 − R−1
2 = (R−1

3 +
R−1

c )/(R4G) − (R−1
4 + R−1

c )/(R3G).
Similarly, the circuit dynamics of the type-II APT system

shown in Fig. 5(b) can be expressed as

V̈1 + 1

C1

(
1

Rc
− 1

R1

)
V̇1 + ω2

1V1 − 1

RcC1
V̇2 = 0,

V̈2 + 1

C2

(
1

Rc
− 1

R2

)
V̇2 + ω2

2V2 − 1

RcC2
V̇1 = 0. (A6)

The Liouvillian matrix can be expressed as

LII =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−ω2
1 0 g3 k3

0 −ω2
2 k4 g4

⎤
⎥⎥⎦, g3 = R1 − Rc

R1C1Rc
,

g4 = R2 − Rc

R2C2Rc
, k3 = 1

RcC1
, k4 = 1

RcC2
. (A7)

However, the 2 × 2 coupled-mode Hamiltonian matrix reads

HII =
[
�ω + ig3 ik3

ik4 −�ω + ig4

]
. (A8)

The APT condition requires R1 = R2 and C1 = C2 while the
inductances are not necessarily the same. In Appendix B,
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we theoretically prove that the CPAL condition additionally
requires that L1 = L2 for both types of APT circuits, which
simplifies the two APT Hamiltonian matrices to

HI = i

[
g1 k1

k1 g1

]
, HII = i

[
g3 k3

k3 g3

]
. (A9)

We can then easily verify that [P, HI,II] = 0, satisfying the
parity symmetry.

APPENDIX B: SCATTERING MATRICES

1. S matrix of two kinds of APT-symmetric circuits

In this section, we provide the explicit expression of scat-
tering matrices of two APT and three PT systems shown
in Fig. 5 starting from the APT cases. For APT cases,
we first assume that two systems have parity symmetry
(−R1 = −R2,C1 = C2, and L1 = L2, which will be proven to
be necessary later). To derive the corresponding scattering ma-
trices, we can analyze the systems using the transmission-line
network (TLN) equivalence and write the admittance matrices
of them by cascading the ABCD matrices of each electronic

component [36], which have the following form:

YI =
[

y1 y2

y2 y1

]
,

y1 = − [i + (γ − iω)ω]{−γω + κ[i + (γ − iω)ω]}
γ ηω{−γω + 2κ[i + (γ − iω)ω]} ,

y2 = κ[i + (γ − iω)ω]2

γ ηω{−γω + 2κ[i + (γ − iω)ω]} ,

YII =
[

γω−γ κω+iκ (ω2−1)
γ ηκω

− 1
ηκ

− 1
ηκ

γω−γ κω+iκ (ω2−1)
γ ηκω

]
, (B1)

where γ = R−1(L/C)1/2 is the systems’ quality factor, κ =
M/L denotes the inductive coupling strength between two
inductors where M (L) is the mutual (self) inductance of the
coil inductor, and η = R/Z0 and Z0 is the characteristic port
impedance of the vector network analyzer (VNA). We should
point out here that when measuring the scattering property, R3

and R4 are actually the port impedance. These two admittance
matrices, being linearly transformed, can yield the scattering
matrices accordingly, which can be written as

S j =
[

r j t j

t j r j

]
, j = I or II;

tI = 2ηκ[γω + i(1 − ω2)]2

[γω(η − 1 − 2ηκ ) + i(1 + 2ηκ )(ω2 − 1)][γω(η − 1) + i(ω2 − 1)]
,

rI = 1

1 + 2ηκ

[
−1 + γ ηω

γω(η − 1 − 2ηκ ) + i(1 + 2ηκ )(ω2 − 1)
+ γ ηω(1 + 2ηκ )

γω(η − 1) + i(ω2 − 1)

]
,

tII = 2ηγ 2ω2κ−1

[γω(η − 1) + i(ω2 − 1)][γω(η − 1 + 2κ−1) + i(ω2 − 1)]
,

rII = −1 + γ ηω

[
1

γω(η − 1) + i(ω2 − 1)
+ 1

γω(η − 1 + 2κ−1) + i(ω2 − 1)

]
. (B2)

The CPAL effect of both APT configurations occurs at κ =
η = ω = 1. At ω = 1 and close to the CPAL point (η → 1),
the scattering matrices of both systems can be simplified to

SI = −A

[
1 −1

−1 1

]
, SII = A

[
1 1
1 1

]
, (B3)

where A = 2(η − 1)−1 approaches infinity.
Additionally, here we also theoretically demonstrate that

the system must obey the parity symmetry to have the CPAL
phenomenon (−R1 = −R2, C1 = C2, and L1 = L2). First, for

the type-I APT circuit shown in Fig. 5(a), R3 = R4 is equiv-
alent to the port impedance when measuring the scattering
properties, which makes −R1 = −R2 and C1 = C2 already to
satisfy the APT condition (see Appendix A). Therefore, we
introduce a scaling factor L1 = sL2 to the system to validate
whether s = 1 (parity symmetry) is mandatory for the type-I
APT system to exhibit the CPAL effect. Following the same
procedure, we can have a new and more complicated scatter-
ing matrix whose eigenvalues at ω = 1 yield

λI± =
2[s(i − γ ) − i]ηκ ±

√√√√{sγ [1 + η2(2κ − 1)] − i(s − 1)[1 + η(ηκ − 1)]}
× {i(1 + η + η2κ ) + s[γ + γ η2(2κ − 1) − i(1 + η + η2κ )]}

−s[i + γ (η − 1)](η − 1) + s[2γ (η − 1) − i(η − 2)]ηκ + i[η − 1 + (η − 2)ηκ]
.

(B4)

By solving λI− = 0 and λI+ = ∞ (CPAL condition), we have the scaling factor, sI, for the type-I APT circuit expressed as

sI = (1 − η + 2η2κ )2 − iγ (1 − η + 2η2κ )(η − 1)[1 + η(2κ − 1)]

γ 2(1 − η)2(1 − η + 2ηκ )2 − [1 − η − (η − 2)ηκ]2
. (B5)
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FIG. 6. (a), (b) are the detailed circuit schematic of the type I APT structure and the measured input impedance, respectively. (c), (d) are
similar to (a), (b) but for the type-II APT structure. At the resonance frequency where Im(Zin ) = 0, Re(Zin ) ≈ −51 �, yielding η ≈ 1.02.

Since the scaling factor must be positive and purely real, we
need to make the imaginary part of Eq. (B5) zero, leading
to η = 1, which coincidentally is the lasing threshold of the
CPAL point. This, in turn, makes sI = 1, strongly validates
that the type-I APT system must additionally satisfy the parity
symmetry to exhibit the CPAL phenomenon.

Similarly, the scaling factor sII, for type-II APT circuit
when the CPAL point is ensured reads

sII = i[1 + (η − 1)κ]

i[1 + (η − 1)κ] + γ (η − 1)[2 + (η − 1)κ]
. (B6)

Equation (B6), although different from Eq. (B5), provides
the same result that when its imaginary part becomes zero,
sII = 1. Therefore, we can conclude that for both types of APT
systems, L1 = L2 is mandatory to have the CPAL point, which
makes the Hamiltonian in Eqs. (A5) and (A8) additionally
satisfy the parity symmetry.

2. S matrix of PT-symmetric circuits coupled
through an inductor

By applying the same method used before, the complete
scattering matrix for the PT-symmetric circuits based on mu-
tual inductive coupling (SL) [Fig. 5(c)] is

SL = 1

T

[
X+ − 1 + 2ω2 2iγ ημω

2iγ ημω X− − 1 + 2ω2

]
, (B7)

where T = 1 + ω{γ 2(η2 − 1)(κ2 − 1)ω + 2iγ η[1 + (μ2 −
1)ω2] − (μ2 − 1)ω3 − 2ω}, X± = γ 2[1 + γ 2(η ± 1)2(μ2 −
1)ω2 + (μ2 − 1)ω4] to simplify Eq. (B7), μ = M/L is the
inductive coupling strength. For the scattering matrix in
Eq. (B7), the CPAL condition is η = 1 and γ = ∞. In
addition, the CPAL effect occurs at ω = (1 − μ2)−1/2. When
the system is close to CPAL condition, the SL can be written

as

SL = B1

[
iμ

ω2+(μ2−1)ω4 1
1 −( μ

ω2+(μ2−1)ω4 )−1

]
,

B1 = iμω[2ω2 + (μ2 − 1)ω4 − 1]

ω + (μ2 − 1)ω3
→ ∞. (B8)

It is worth noting that the CPA excitation mode of
this inductive-coupled PT schematic, α = V +

1 /V +
2 =

−i
2γμ

√
1+μ2

μ2+4γ 2(μ2−1) is purely imaginary and will approach zero
for CPA condition since γ → ∞, which corresponds to a
single excitation. Since this inductive-coupled PT system
requires an infinity γ to exhibit the CPAL effect which is
physically impossible in reality, we do not put this case into
our robustness and sensitivity comparisons.

3. S matrix of PT-symmetric circuits coupled
through a capacitor

The situation for the PT-symmetric circuits coupled
through a capacitor [Fig. 5(d)] is quite similar to the inductive
coupling case. The complete scattering matrix (SC) reads

SC = 1

Y− + 2iγ ηωZ − (2 + c)ω2

×
[

(2 + c)ω2 + Y+ 2iγ ηω

2iγ ηω (2 + c)ω2 + Y−

]
, (B9)

where Y± = γ 2(η ± 1)2(ω − 1)2[(2 + c)ω2 − κ] and Z =
1 + c − (2 + c)ω2 to simplify Eq. (B9); here, c = Cc/C is the
capacitive coupling strength. The CPAL effect occurs only at
η = 1 and γ = ∞. Close to the CPAL point, Eq. (B9) can
be simplified to SC = B2[Z−1 1

1 Z], where B2 = (2+c)ω2

1+c−(2+c)ω2 →
∞. Thus, we find interestingly that the CPAL point similarly
does not occur at ω = 1 in this scenario, but ω =

√
c+1
c+2 in-

stead, which agrees with the observation in Ref. [19]. It is
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also worth noting that achieving an infinite γ with finite η and
κ in this electronic system is practically impossible. Hence,
one can only approach but never exactly be at the CPAL in
this capacitive-coupled PT system. At the same time, the CPA

excitation mode is α = −i
√

6γ

3−2γ 2 , which goes to zero when
approaching the CPAL condition (γ → ∞). This result also
indicates a single-port excitation.

4. S matrix of PT-symmetric circuits coupled via a TL

The scattering matrix for the PT-symmetric circuits cou-
pled via a TL (STL) [Fig. 5(e)] is

STL = 1

i(2η2 − 1) + 2η2 cot(θ )

×
[

i(1 − 2η) 2η2 csc(θ )
2η2 csc(θ ) i(1 + 2η)

]
, (B10)

where θ = βl , β, and l are the wave number and the phys-
ical length of the TL [27]. The CPAL condition occurs
only at θ = π/2 and η = 1/

√
2. In the vicinity of CPAL

point η → 1/
√

2, the scattering matrix can be simplified

as STL = B3[i(1 − √
2) 1

1 i(1 + √
2)

], where B3 = i(2η2 − 1)−1 →
∞, which corresponds to the CPA excitation mode of this
TL-coupled PT schematic, i.e., α = −i(

√
2 + 1).

Now, we can make a simple conclusion that from the obser-
vation of all five scattering matrices, we find that the excitation
modes of two APT systems are the simplest, i.e., α = ±1.
Compared to their PT counterparts with purely imaginary
values of α, it is natural to say that achieving the APT-enabled
CPAL effect is much more feasible in practice.

APPENDIX C: NORMALIZED OUTPUT ENERGIES
OF APT-CPAL

The normalized output energy of a two-port network is

defined in the main context as � = |V −
1 |2+|V −

2 |2
|V +

1 |2+|V +
2 |2 , which corre-

sponds to the ratio between total output power to total input
power of the system. When the systems are excited by the CPA
mode, i.e., |VI−〉 = 1√

2
(1, 1)T and |VII−〉 = 1√

2
(1,−1)T, their

output factors may approach zero (� ≈ 0). The expressions
of both APT systems operating at CPA mode simply read

�I,CPA = (1 − 2ηκ )2 + {−2(1 − 2ηκ )2 + γ 2[(1 − 2ηκ ) + η]2}ω2 + (1 − 2ηκ )2ω4

(1 + 2ηκ )2 + [γ 2(η − 1 + 2ηκ )2 − 2(1 + 2ηκ]2ω2 + (1 + 2ηκ )2ω4
,

�II,CPA = [−2γω + γ (1 + η)κω]2 + κ (−1 + ω2)2

[2γω + γ (−1 + η)κω]2 + κ (−1 + ω2)2
. (C1)

However, when input signals correspond to the lasing
eigenvectors of the system where |VI+〉 = 1√

2
(1,−1)T and

|VII+〉 = 1√
2
(1, 1)T, the output factors of both system may

become infinitely large (� ≈ ∞), in the ideal scenario. The
output factors of both systems under lasing modes have the
same form as

�I,Lasing = �II,Lasing = 1 + 4γ 2η

1 + γ 2(η − 1)2 − (2 − ω2)ω2
.

(C2)

These four equations govern the CPA-lasing behaviors of two
APT structures in Fig. 3 in the main text.

APPENDIX D: EXPERIMENTAL SETUPS

To experimentally realize the APT symmetry in electron-
ics, the gain contribution to the system is realized by an
active oscillator that has negative resistance established by a
negative impedance converter (NIC). The NIC exploited in
this work is made from an operational amplifier (OPAMP;
THS3201, Texas Instruments Inc.) with a positive feedback
circuit topology. Specifically, for type-I APT structure, the

floating negative resistance is realized by a cross-coupled pair
of two NICs, shown in Fig. 6(a). The resistors of each NIC
are delicately selected to be R2 = R3 = 360 �, and a potential
trimmer in the range of R1 = 0–100 � to realize the desired
value of negative resistance; here, the resistors in each NIC
section are kept the same to balance the negative resistances in
both oscillators. Combined with the voltage-controlled varac-
tors and planar coil inductors, two oscillators can be precisely
controlled to be identical, satisfying the parity symmetry,
which we plot in Fig. 6(b). In particular, the measured neg-
ative resistance is sufficiently precise in the very vicinity of
the designed frequency to support the APT-CPAL effect since
it is monochromatic.

Similar to the floating scenario, the type-II APT-symmetric
circuit can be more readily constructed by a single grounded
NIC with fewer parasitics, as depicted in Fig. 6(c). The
measured input impedance of this active oscillation tank is
shown in Fig. 6(d). For both APT configurations, the input
impedance is tailored to be Zin ≈ −51 � close to the CPAL
frequency, yielding η ≈ 1.02.

It is worth noting that the measured output coefficients
have slight discrepancies from the simulation results in Fig. 3
in the main context. To better explain this, we take the type II
circuit as an example, which we plot a more practical circuit
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FIG. 7. (a) The type-II APT circuit schematic in a more practical
consideration where Zp represents the summarized parasitics of the
system and each lumped element in two oscillators is slightly differ-
ent. (b) The simulated � when there exist parasitics and asymmetry
between two oscillators, which shows a small frequency detuning
between CPA and lasing points and a sharp peak on the CPA line.
(c) The simulated � when the parasitics are removed, where the fre-
quency detuning disappears with only the sharp peak remaining the
same. (d) The simulated � when the simulation setup perfectly satis-
fies the APT symmetry (Zp = 0 and all lumped elements are identical
in two oscillators) where the lineshape also becomes perfect.

structure in Fig. 7(a). The values of lumped elements of two
−RLC oscillators are denoted by −R1(2),C1(2), and L1(2), and
the parasitic effect of the entire circuit (e.g., the nonlinear
effect from the NIC module) is summarized as an impedance
Zp. By setting Zp �= 0, −R1 ≈ −R2, C1 ≈ C2, and L1 ≈ L2

in the circuit simulator (Advanced Design System) to mimic
the realistic scenarios, the simulation results of output coef-
ficients for CPA operation, as shown in Fig. 7(b), exhibit a
significant frequency detuning compared to the lasing oper-
ation with an additional sharp peak. Then, when we remove
the parasitics by setting Zp = 0, the frequency mismatch be-
tween the CPA and lasing points disappears, as plotted in
Fig. 7(c). Finally, under the perfect scenario that all the values
of lumped elements in two oscillators are identical, the sharp
peak that occurred to the CPA line is eliminated, rendering
a perfect CPAL point of the system. In our experiment, we
use a high-performance OPAMP, a voltage-controlled varac-
tor, and a planar coil to precisely control the parasitic effect
and balance the operation of two oscillators, which, although
not extremely perfect, leads to a very slight difference be-
tween the measurements and simulations in Fig. 3 in the
main text.

Additionally, to evaluate the sensing performances of both
APT-CPAL configurations, the perturbations (�R) are ap-
plied to the feedback resistors of only one oscillation tank
by paralleling a large resistor, as exemplified in Fig. 6(c). By
doing so, the equivalent negative resistance of the NIC will
become −RNIC = −(R1//Rs) (the symbol“//” denotes the
parallel connection). For example, −RNIC = −R1 = −51 �

without paralleling the large resistor to make the system
operate at the CPAL point. When Rs = 5 M �, −RNIC =
−(51//5 × 106 �) = −50.984 �, leading to �R = 0.052 �

and ε = �R/R1 = 0.001.
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