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Quantum theory of loss-induced transparency in coupled waveguides
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Several years ago, Guo et al. [Phys. Rev. Lett. 103, 093902 (2009)] demonstrated a counterintuitive phe-
nomenon wherein the transmission of classical light through a coupled pair of waveguides is enhanced as the
level of loss in one waveguide surpasses a critical threshold. In this paper, we employ the Heisenberg-Langevin
formalism to explore a quantum perspective of this phenomenon. In the case where light is incident in both
waveguides, a generally nonzero interference term in the presence of loss appears. Our analysis reveals that
loss-induced transparency can manifest at the single-photon level for both separable and entangled photonic
states.
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I. INTRODUCTION

The seminal work of Bender and Boettcher suggesting
that non-Hermitian Hamiltonians having parity-time (PT )
symmetry could have real-valued spectra has initiated an in-
tense debate regarding possible descriptions of open quantum
systems [1–4]. The main characteristics of PT -symmetric
physical models is that they possess an equilibrium between
loss and gain and they highlight in a very clear way the role
of exceptional points [5]. In general, for a Hamiltonian that
depends on some parameter, say ε, there is a critical value εc

such that for ε > εc all eigenvalues are real valued and for
ε < εc they become complex conjugate of each other [6,7].
By introducing a new definition for the inner product between
PT -symmetric states, it has been demonstrated that it is possi-
ble to retain all the essential characteristics of quantum theory
in a consistent framework [8,9].

The concept of open systems achieving equilibrium be-
tween gain and loss has found applications in several contexts
such as in acoustics [10], optomechanics [11], phase transi-
tions [12], and sensors [13], to cite a few. Notably, in the
realm of classical photonic systems, intriguing effects have
been reported [14–16]. Optics serves as a convenient platform
for exploring PT symmetry largely due to the relative ease of
creating dielectric materials with desired dissipative optical
properties [17,18]. The pioneering experimental demonstra-
tion of a non-Hermitian optical system involved a coupled
pair of single-mode waveguides, with a dissipative element
(chromium atoms) introduced into one of the waveguides to
account for losses [19]. By measuring the transmitted in-
tensities in both waveguides, the authors noted an increase
in transmission as the width of the chromium layer passed
through a critical value. This counterintuitive phenomenon is
commonly referred to as loss-induced transparency.

In the realm of integrated optics, the utilization of
arrays of coupled waveguides represents the most promis-
ing platform for both classical and quantum photonics
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applications [20,21]. These arrays are relatively easy to fab-
ricate and enable a description of light propagation (both
classical and quantum) analogous to the dynamics of elec-
trons in discrete lattices [22,23]. This analogy has prompted
a plethora of classical analog effects that manifest in quantum
systems [17]. In fact, the very first experimental demonstra-
tion of a truly PT -symmetric optical system was achieved
using a pair of coupled waveguides and a two-wave mixing
process to attain gain [24].

Recent studies have delved into quantum effects within
non-Hermitian optical systems. Utilizing single-photon states,
researchers have measured coincidence counts in a pair of
coupled waveguides, thereby observing the non-Hermitian
version of the Hong-Ou-Mandel dip [25]. The role of loss has
been explored in a pair of quantum qubits [26], in arrays of
coupled waveguides [23,27–29], in systems displaying high-
order exceptional points [30], in anti-parity-time symmetric
coupled waveguides [31], and disordered lattices [32].

Drawing inspiration from the counterintuitive phenomenon
of loss-induced transparency and the quantum model ex-
plaining light propagation in interconnected waveguides, we
address the potential for enhancing transmission through the
utilization of quantum light states. Specifically, we compute
the transmission coefficient for a pair of coupled waveguides
incorporating a lossy element. Our analysis reveals that the
overall transmission is influenced not solely by the initial
number of photons entering each waveguide but also by the
nonseparability characteristics of the incoming quantum state.
We would like to point out that the formalism developed
here is based entirely on conventional quantum mechanics
with Hermitian Hamiltonians. The introduction of a dissipa-
tive system, consisting of one large waveguide (or several
waveguides) generates the effective loss that simulates the
PT -symmetric system under consideration [33].

Section II is devoted to a discussion of the Heisenberg-
Langevin formalism applied to the coupled waveguide system
and Sec. III defines the transmission coefficient and highlights
the presence of a loss-induced interference term. Several ex-
amples involving entangled and separable states are given in
Sec. IV and in Sec. V we present our conclusions.
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FIG. 1. Two coupled waveguides are represented by creation op-
erators a†

1 and a†
2, featuring a coupling constant κ . The waveguide

a†
2 interacts with a reservoir b†(γ ), characterized by frequencies γ ,

through the coupling constant α(γ ) at each frequency.

II. HEISENBERG-LANGEVIN EQUATIONS

The coupled waveguide system is described by the total
Hamiltonian H = H0 + H ′, where

H0 = h̄β

2∑
j=1

a†
j a j + h̄

∞∑
γ

γ b†(γ )b(γ ) (1)

and

H ′ = h̄κ (a†
1a2 + a†

2a1) + h̄
∞∑
γ

α(γ )[a†
2b(γ ) + a2b†(γ )].

(2)
The Hamiltonian H describes two coupled waveguides, rep-
resented by the operators a1 and a2, where the second
waveguide is coupled to a reservoir [it could be another large
waveguide, whose annihilation operator is b(γ ), having sev-
eral frequencies γ ]. The parameter α(γ ) characterizes the
interaction between waveguide 2 and the mode γ of the reser-
voir, and the parameter κ describes the interaction between
the two waveguides (see Fig. 1) with frequency β.

In the Heisenberg picture, the operators a†
j (z) and b†(γ , z)

satisfy the following set of coupled differential equations:

da†
1

dz
= iβa†

1 + iκa†
2, (3)

da†
2

dz
= iβa†

2 + iκa†
1 + i

∑
γ

α(γ )b†(γ ), (4)

db†(γ )

dz
= iγ b†(γ ) + iα(γ )a†

2. (5)

After transforming Eq. (5) to an integral relation and sub-
stituting the result into Eq. (4), we obtain

da†
2

dz
= iβa†

2 + iκa†
1 + i

∑
γ

α(γ )b†(γ , 0)eiγ z

−
∑

γ

[α(γ )]2
∫ z

0
eiγ (z−s)a†

2(s) ds. (6)

The last term in the above expression can be written as

∑
γ

[α(γ )]2
∫ z

0
eiγ (z−s)a†

2(s)ds

=
∫ ∞

−∞
ρ(γ )[α(γ )]2dγ

∫ z

0
eiγ (z−s)a†

2(s)ds

=
∫ ∞

−∞

∫ z

0
ρ(β + γ ′)[α(β + γ ′)]2

× ei(β+γ ′ )τ a†
2(z − τ )dτ dγ ′

=
∫ z

0

[∫ ∞

−∞
S(β + γ ′)eiγ ′τ dγ ′

]
eiβkτ a†

2(z − τ )dτ

= 2π

∫ z

0

(τ )eiβkτ a†

2(z − τ )dτ, (7)

where ρ(γ ) is the density of states of the reser-
voir, S(γ ) = ρ(γ )[α(γ )]2 is the spectral density, 
(τ ) =
(1/2π )

∫ ∞
−∞ S(β + γ ′)eiγ ′τ dγ ′ is obtained from S(γ ) by us-

ing the Wiener-Khinchin theorem, and the substitutions γ =
β + γ ′ and τ = z − s were used. Assuming that the spectral
density S(γ ) of the reservoir has a large distribution consist-
ing of many oscillator modes, it is natural to approximate
S(βk + γ ′) ≈ S(βk ) such that 
(τ ) = S(βk )δ(τ ) (Markov ap-
proximation) and write for z > 0

∑
γ

[α(γ )]2
∫ z

0
eiγ (z−s)a†

2(s)ds ≈ σa†
2(z), (8)

where σ = 2πS(βk ) is a positive constant describing the loss
rate.

We finally obtain the system of coupled equations for the
dynamics of propagating photons in two coupled waveguides
with dissipation,

da†
1

dz
= iβa†

1 + iκa†
2, (9)

da†
2

dz
= iβa†

2 − σa†
2 + iκa†

1 + f †(z), (10)

where f †(z) = i
∑

γ α(γ )b†(γ , 0)eiγ z is the noise operator
describing the reservoir fluctuations. The fact that it appears
together with the dissipation parameter σ is a manifestation
of the fluctuation-dissipation theorem.

Assuming that both waveguides are identical and have the
same propagation constant β, it is possible to simplify the
equations by using the transformation a†

1,2 = A†
1,2eiβz, where

A†
1,2 are slowly varying operators compared to a†

1,2. They
satisfy

dA†
1

dz
= iκA†

2, (11)

dA†
2

dz
= −σA†

2 + iκA†
1 + F †(z), (12)

where F †(z) = e−iβz f †(z) = i
∑

γ α(γ )b†(γ , 0)ei(γ−β )z. This
system can be written as a matrix equation of the form
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dA†/dz = M · A† + F†, where A† = (A†
1 A†

2)
T

and F† =
(0 F †)

T
are one column matrices and

M =
(

0 iκ
iκ −σ

)
. (13)

The solution A†(z) to this nonhomogeneous system of equa-
tions is given by

A†(z) = ezM · A†(0) +
∫ z

0
e(z−s)M · F†(s) ds. (14)

The exponential of the matrix M is easily evaluated,

ezM = e−σ z/2

⎡
⎢⎣cos(z
) + σ

2

sin(z
)

iκ



sin(z
)

iκ



sin(z
) cos(z
) − σ

2

sin(z
)

⎤
⎥⎦, (15)

where 
 =
√

κ2 − σ 2/4. Finally, the solutions for A†
1(z) and

A†
2(z) are given by

A†
1(z) = �+(z)A†

1(0) + �(z)A†
2(0) +

∑
γ

�1(γ , z)b†(γ , 0),

(16)

A†
2(z) = �(z)A†

1(0) + �−(z)A†
2(0) +

∑
γ

�2(γ , z)b†(γ , 0),

(17)

where

�±(z) = e−σ z/2
[
cos(z
) ± σ

2

sin(z
)

]
, (18)

�(z) = iκe−σ z/2



sin(z
), (19)

�1(γ , z) = κα(γ )




∫ z

0
e−σ (z−s)/2ei(γ−β )s sin[(s − z)
]ds,

(20)

and

�2(γ , z) = iα(γ )
∫ z

0
e−σ (z−s)/2ei(γ−β )s

×
{

cos [(z−s)
]− σ

2

sin [(z−s)
]

}
ds. (21)

Given our primary interest lies in the averaged number of
photons departing from both waveguides, namely the trans-
mission coefficient, the noise operator F † will not be relevant
for the analysis, as noted in Ref. [29]. Hence, the integrals
represented by Eqs. (20) and (21) need not be explicitly
computed. All the pertinent information regarding the to-
tal transmission through the waveguides is encapsulated in
Eqs. (18) and (19) along with the initial state ket.

III. TRANSMISSION COEFFICIENT FOR QUANTUM
AND CLASSICAL LIGHT

To connect the formalism developed in the previous
section to the loss-induced transparency effect verified in clas-
sical settings, we define the transmission coefficient as

T = n1(z) + n2(z)

n1(0) + n2(0)
, (22)

where n j (z) = 〈�0| A†
j (z)Aj (z) |�0〉 is the average number of

photons in waveguide j at propagation distance z. They are
given explicitly by

n1(z) = |�+(z)|2n1(0) + |�(z)|2n2(0)

+ 2 Re[�+(z)�∗(z)〈A†
1(0)A2(0)〉], (23)

n2(z) = |�(z)|2n1(0) + |�−(z)|2n2(0)

+ 2 Re[�∗
−(z)�(z)〈A†

1(0)A2(0)〉]. (24)

Substitution of Eqs. (23) and (24) into Eq. (22) gives

T = P(z)n1(0) + Q(z)n2(0) + I (z)

n1(0) + n2(0)
, (25)

where P(z) = |�+(z)|2 + |�(z)|2, Q(z) = |�−(z)|2 +
|�(z)|2, and

I (z) = 2 Re[(�+�∗ + �∗
−�)〈A†

1(0)A2(0)〉]

= σκe−σ z


2
[1 − cos(2z
)]Re

[
〈A†

1(0)A2(0)〉
i

]
. (26)

The transmission T evidently depends on the type of input
state |�0〉 provided to the waveguide system. The presence of
an “interference term” I (z) suggests that loss can introduce a
more intricate dynamic, where the transmission is influenced
not only by the averaged number of incident photons nj (0) but
also by the nonseparability properties of the initial state |�0〉,
as depicted in Eq. (26). It is noteworthy that in the absence of
loss (σ = 0), I (z) = 0 as well, and consequently, the overall
transmission would solely rely on the initial averaged number
of photons. For an input state expanded in terms of the Fock
basis,

|ψ (0)〉 =
∑
N1,N2

cN1,N2 |N1〉1 |N2〉2 |0〉R ,

where A†
jA j |Nj〉 j = Nj |Nj〉 j and

∑
N1,N2

|cN1,N2 |2 = 1, it is
straightforward to demonstrate that

〈A†
1(0)A2(0)〉 =

∑
N1,N2

c∗
N1+1,N2−1cN1,N2

√
N2(N1 + 1). (27)

Thus, the interference term also vanishes if the expansion
coefficients cN1,N2 are real valued.

It is valuable to conduct a comparative analysis between
quantum and classical descriptions. Let E1(z) and E2(z) rep-
resent the single-mode classical electric fields in waveguides
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1 and 2, respectively. They satisfy the following system of
equations:

i
dE1

dz
+ κE2 = 0, (28)

i
dE2

dz
+ iσE2 + κE1 = 0. (29)

The general solution is expressed as E1(z) = �+(z)E1(0) +
�(z)E2(0) and E2(z) = �(z)E1(0) + �−(z)E2(0), where �±
and � are defined by Eqs. (18) and (19). The transmission for
this classical system can be defined analogously to Eq. (25),
except that n j (0) → I j (0), with I j (0) = |Ej (0)|2 representing
the initial intensities, and the interference term is now given
by

Icl(z) = σκe−σ z


2
[1 − cos(2z
)]Re

[
E∗

1 (0)E2(0)

i

]

=
√

I1(0)I2(0)σκe−σ z


2
[1 − cos(2z
)] sin φ, (30)

where the last line is written assuming the general represen-
tations E1(0) = E1 and E2(0) = E2eiφ with E1 and E2 real and
positive numbers. The interference term is thus proportional
to the sine of the phase difference between the incident field
components.

In classical experiments, it is typically assumed that light
initially couples only to one of the waveguides (usually the
lossless one). Consequently, the absence of the interference
term Icl(z) in these analyses becomes evident.

IV. EXAMPLES

This section is dedicated to applying the formalism de-
veloped in the preceding sections to clarify the enhancement
of transmission of quantum light through lossy structures.
We examine the loss-induced transparency effect for coherent
states, separable Fock states, and entangled Fock states.

A. Coherent states

It should be expected that for an initial input state given
in terms of coherent states, the overall behavior of the sys-
tem must be quasiclassical. To see that this is indeed the
case, consider the initial state |�C〉 = |η〉1 |ζ 〉2 |0〉R, where
A1(0) |η〉1 = η |η〉1, A2(0) |ζ 〉2 = ζ |ζ 〉2, and |0〉R is the initial
state of the reservoir. In this case, the interference term has
exactly the same form as Eq. (30) by making the identifica-
tions I1(0) → |η|2 = n1(0), I2(0) → |ζ |2 = n2(0), and φ →
arg(ζ ). The quantum and classical versions thus coincide re-
garding the behavior of the transmission coefficient.

Notice that the interference term vanishes in the classical
and quasiclassical cases if the phase difference between E1(0)
and E2(0) (or η and ζ ) is a multiple of π . In this case, the
transmission only depends on the initial intensities (or the ini-
tial average number of photons) present in both waveguides.

B. Separable Fock states

Before delving into the implications of a genuinely quan-
tum input state, it is worth noting that if no photons are
initially coupled in the lossy waveguide, resulting in I2(0) = 0

FIG. 2. Loss-induced transparency comparison between clas-
sical and separable Fock states. The initial classical state is
characterized by I1(0) = 10, I2(0) = 5, and θ = π/2. The input
quantum state is given by |ψNM〉 = |10〉1 |5〉2 |0〉R, where N = 10
(M = 5) photons are coupled to the lossless (lossy) waveguide.

or |�0〉 = |· · ·〉1,R |0〉2, both the classical and quantum inter-
ference terms disappear. In either scenario, the transmission
coefficient remains determined solely by T = P(z), regardless
of the nature of the field input in the lossless waveguide.

Consider now an input quantum state where N photons
are coupled to the lossless waveguide and M photons are
coupled to the lossy one, the reservoir being in the vacuum
state |0〉R. The state ket is given by the separable prod-
uct of number states |�0〉 = |ψNM〉 = |N〉1 |M〉2 |0〉R, where
A†

1(0)A1(0) |N〉1 = N |N〉1 and A†
2(0)A2(0) |M〉2 = M |M〉2.

In this case, the interference term vanishes I (z) = 0, regard-
less of the initial presence of photons in the waveguides, and
the transmission coefficient is given by

TNM = NP(z) + MQ(z)

N + M
. (31)

Hence, the transmission coefficient for separable number
states solely relies on the input number of photons at each
waveguide and is independent of the interference term I (z).
This stands in stark contrast to the classical scenario, where
the interference term Icl(z) can be made nonzero. Naturally,
both transmission profiles coincide in scenarios where φ (the
phase of the classical field components) is a multiple of π .
However, in cases where an experiment is designed such that
φ 
= π , the quantum and classical versions produce different
results. Figure 2 displays an example of this situation.

C. Entangled states

The preceding example addressed an input state in which
the location and the number of photons is precisely known
at z = 0. If this condition is relaxed, implying a state of
uncertainty regarding the initial photons’ localization, we can
then consider the entangled initial state

|ψNM,e〉 = 1√
2

(|N〉1 |M〉2 + eiθ |M〉1 |N〉2) |0〉R , (32)
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where θ is the phase angle. The initial averaged number of
photons in the waveguides is given by n1(0) = n2(0) = (N +
M )/2 and it can be demonstrated that the interference term is
nonzero if M = N − 1, where it is given by

I (z) = Nσκe−σ z

2
2
[1 − cos(2z
)] sin θ. (33)

Hence, states of the form (|N〉1 |N − 1〉2 +
eiθ |N − 1〉1 |N〉2)/

√
2 interfere (in the sense of the

transmission coefficient) if θ 
= nπ for integer n.
To show that this produces different experimental

outcomes even when a single photon is present in
the waveguides, consider three input states of the
form |�a〉 = |1〉1 |0〉2 |0〉R, |�b〉 = |0〉1 |1〉2 |0〉R, and
|�c〉 = (1/

√
2)(|1〉1 |0〉2 + eiθ |0〉1 |1〉2) |0〉R, the difference

being that the initial photon localization is known with unit
probability in |�a〉 and |�b〉 but not in the state ket |�c〉. Even
though in all cases there is one photon propagating in the
system, Fig. 3 reveals that (1) the transmittance is enhanced
for the case where the photon is initially coupled to the
lossless waveguide and (2) there is a critical value of θ = π/2
for which the transmission is enhanced in comparison with
|�b〉 = |0〉1 |1〉2 |0〉R and other values of θ .

We conclude this section by noting that the propagation
of photons through dissipative waveguides has already been
demonstrated under laboratory conditions [25]. The authors
observed the non-Hermitian HOM dip effect using coincident
measurements of arriving photons. Therefore, in principle, the
theoretical predictions presented here can be verified in the
near future with existing technologies.

V. CONCLUSIONS

Our findings show that using the quantum formalism, it
is also possible to observe the phenomenon of loss-induced
transparency. We have demonstrated that incorporating a dis-
sipative element into a pair of coupled waveguides yields an
interference term, denoted as I (z), within the transmission
coefficient. This coefficient’s behavior hinges upon the in-
separable attributes of the initial quantum state, presenting
an avenue to probe the phase characteristics of entangled
states. Through our investigation, we have illustrated that
loss-induced transparency phenomena manifest particularly

FIG. 3. Loss-induced transparency with single-photon states is
demonstrated here. The continuous black curve illustrates the en-
hancement of transmission when a single photon is coupled to the
lossless waveguide, represented by the ket |�a〉. The dashed blue
curve depicts the initial coupling in the lossy waveguide, represented
by |�b〉, while the dotted-dashed red curve represents the transmis-
sion for the entangled state |�c〉 for three values of the phase θ .

under the circumstances where dissipation adheres to the
Markov approximation. Furthermore, in scenarios where
strong dissipative propagation dominates (σ/κ � 1), distinct
single-photon states emerge with heightened transmittance,
indicating a preferential state transmission. Given the indis-
pensable role of loss in large-scale quantum computational
tasks, our findings hold promise for tailoring waveguide ap-
plications in quantum information and computation. In real
life situations, dissipation is always present. Thus, the present
theory could be used to devise optimal incident photonic states
that give more transmitted energy and, therefore, information.
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