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Area theorem for surface plasmons interacting with resonant atoms
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We show how the area theorem is applicable to the analytical description of the nonlinear interaction of
surface plasmon modes with resonant two-level atoms. A closed analytical solution is obtained and analyzed for
a dielectric-negative index metamaterial interface, which shows that surface plasmons can form long-propagating
2π pulses when interacting with an optically dense two-level atomic ensemble. The possible applications of the
surface pulse area theorem and the conditions for the detection of 2π surface plasmon pulses are discussed.
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I. INTRODUCTION

The resonant interaction of light pulses with coherent
atomic ensembles plays an important role in quantum optics,
laser physics, and quantum technologies [1–3]. Considerable
advances have been achieved over the past years in cavity
systems and photonic structures and, more recently, in the
field of plasmonics. The surface plasmon (SP) modes prop-
agate at the interface connecting a dielectric and metal with
highly confined electric field amplitude and thus large energy
concentration at nanoscale distances near the interface [4–7].
The nano-optics nature of these SP modes enables them to
circumvent the diffraction limit that other techniques suffer,
making plasmonics viable candidates to generate strong cou-
pling with atoms and thus providing a potential platform to
explore coherent light-atom interactions and possible device
applications that require strong coupling with atoms. These
properties of SP fields are of great interest for the coherent
interaction of light with resonant atomic ensembles [8–14].

The highly inhomogeneous spatial structure of the elec-
tromagnetic field of SP greatly complicates the theoretical
description of the nonlinear effects of their interaction with
atoms. These difficulties are currently being overcome by the
use of perturbation theory [10,11,13], which has a limited
scope of applicability and does not allow a more complete
understanding of the nonlinear patterns of the interaction of
SP pulses with resonant atoms. In this paper, we want to draw
attention to the usefulness of using the area theorem for the
theoretical description of the nonlinear coherent interaction of
SP pulses with resonant atoms.

The area theorem provides researchers with a powerful
tool for obtaining exact analytical solutions of nonlinear equa-
tions [15] that allow the description of general patterns of
interaction and propagation of light pulses in a coherent
resonant medium. The area theorem was derived in the well-
known work of McCall and Hahn [15] for the propagation of
a light pulse through a resonant medium of two-level atoms,
which led to the prediction of self-induced transparency for
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light pulses having a pulse area equal to 2π , and then led to
the discovery of optical solitons [16]. The pioneering theo-
retical and experimental work on area theorem [15] for the
interaction of a single light pulse with resonant atoms has
induced much work devoted to its application to solving var-
ious problems of the interaction of light pulses with resonant
atomic ensembles. As an example, we note the application of
the area theorem [15–18] to the photon echo in an optically
dense medium [19–24], self-induced transparency [25] and
photon echo [26] in resonators, and cavity-assisted Dicke
superradiance [27], and to the description of the interaction
of light pulses with three-level [28,29] and four-level atoms
[30], optical quantum memory protocols [31,32], and the de-
scription of various modes of laser generation [33,34].

In this work, we develop the pulse area approach for SP
modes interacting with an inhomogeneously broadened two-
level atomic ensemble. For a more general analysis, we take
the interface to contain a dielectric doped by the two-level
atoms and a negative index metamaterial (NIMM) [35–37],
since a NIMM interface supports both transverse electric (TE)
and transverse magnetic (TM) polarized SP modes. The inter-
est in these artificially fabricated materials has also expanded
due to the fabrication of NIMMs at optical and desirable
frequencies, and more recently on crystals with rare-earth
ions at telecommunication wavelength [38], the emergence
of quantum plasmonics, and the possibilities of implementing
optical quantum processing (see reviews [39–43]).

The strong coupling of the SP modes with two-level atomic
ensemble leads to nonlinear dynamics of SP modes propaga-
tion that we like to explore. Here, we are interested in the
possibility of modifying the McCall-Hahn theorem and the
formation of long-propagating 2π pulses in this case.

II. PLASMONIC MODES

In Fig. 1 we show the hybrid structure under considera-
tion, containing a dielectric-metamaterial interface with an
ensemble of two-level atoms. The upper half-space of the
interface (z > 0) can be any dielectric material characterized
by constant dielectric function or permittivity ε1 and constant
magnetic permeability μ1. In the analysis below we shall
take the upper half to be a rare-earth dielectric crystal. The
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FIG. 1. An interface containing a dielectric in the upper half-
space (z > 0) with constant permittivity ε1 and permeability μ1 and
a NIMM in the lower half-space (z < 0) characterized by a dielectric
function ε2(ω) and permeability μ2(ω). The two media are joined at
interface z = 0. The electric field of the SP mode decreases exponen-
tially with the distance z from the interface. The SP pulses propagate
along the x direction, interacting with a two-level inhomogeneously
broadened atomic ensemble (atomic states |1〉 and |2〉) located above
the interface, where ω0 is a central frequency of atomic transition and
a carrier frequency of SP pulse.

two-level atoms are embodied in the dielectric crystal part
of this structure with a given atomic density ρ(x, y, z) and
inhomogeneous broadening function G(�/�in ) of resonant
transition (�in - linewidth) and detuning �. The lower
half-space of the interface (z < 0) is a NIMM medium char-
acterized by frequency-dependent complex dielectric function
or permittivity ε2(ω) and complex magnetic permeability
μ2(ω). For a certain frequency range, the real parts of ε2(ω)
and μ2(ω) are negative. When both real parts of ε2(ω) and
μ2(ω) are negative, both TE- and TM-polarized plasmonic
modes can exist with low losses, and this is the main advan-
tage of using NIMM in this work.

These SP modes are confined to interface and propagate in
the x direction with complex wave vector K ||. We shall assume
that the propagation along the x direction is facilitated by a
channel or groove [44] of width Ly in the y direction so as
to direct the SP propagation along the x direction. We shall
shortly estimate the width of this channel. The SP electric
field amplitudes decay away in both sides with distance from
the interface at z = 0 with high energy concentration close to
interface. So, the SP electric field E of a transverse mode of
frequency ω satisfying the wave equation

∇2Em + ω2ε0μ0 εm(ω)μm(ω)Em = 0 (1)

is in the form (m = 1,2 for the two media)

Ek(r) = eiK||x
[

u(z)

(
x̂ + ẑ

iK||
k1

)
e−k1zA1 + u(−z)

×
(

x̂ − ẑ
iK||
k2

)
ek2zA2

]
. (2)

Here, u(z) is the Heaviside step function, and the constants
A1,2 are to be determined from boundary conditions and SP
field quantization shortly. Where ε0 is the vacuum dielectric
constant (or permittivity) and μ0 is the vacuum permeabil-
ity, c = 1/

√
ε0μ0 is the speed of light in vacuum, εm(ω)

is the dielectric function of the medium, and μm(ω) is
magnetic permeability. The wave numbers km ≡ km(ω) =√

K2
|| − (ω/c)2εm(ω)μm(ω) are the wave vector components

along the z direction normal to the interface characterized
by positive real parts Re[km] > 0 so that the SP field am-
plitudes decay away from the interface. These SP modes
are thus bound to interface and propagate at wave vector
K|| parallel to the interface. Applications of electromagnetic
boundary conditions at interface z = 0, namely, continuity of
tangential electric fields, leads to A1 = A2 = N , an overall
normalization factor to be determined shortly. The continu-
ity of displacement vector normal to interface results in the
following condition for TM-polarized SP modes [5,6]:

k1ε2(ω) + k2ε1(ω) = 0,

K|| = k|| + iκ = ω

c

√
ε1ε2

μ1ε2 − μ2ε1

ε2
2 − ε2

1

. (3)

The case of TE modes can be analyzed along the same line
with the exchange ε ↔ μ. In this work we focus on analysis
for the TM modes, and shall drop reference to the mode index.

In these equations, the real part k|| of the complex wave
vector K|| gives the dispersion relations for (TM-polarized)
SP modes, while the imaginary part κ gives SP loss that
determines the SP propagation distance Lx = 1/|κ| along the
interface. The positive real parts of the wave numbers km

normal to interface give the skin or penetration depth of the
fields into both media, which we take as our definition of field
confinement and denote as ζm = 1/Re[km]. Smaller values of
ζm indicate better confinement, which means the field can be
confined to a dielectric interface, and vice versa; large ζm leads
to poor confinement or possibly deconfinement. The SP prop-
agation distance Lx and confinement ζm are interrelated, as
we see shortly. Since real k1,2 are positive, Eq. (3) is fulfilled
when the electric permittivity of one of the two media has a
negative real part.

To illustrate the basic dispersion and losses of these modes,
we take the case where the first medium is described by the
pair (μ1 = 1 and ε1 = 1.5) corresponding to a crystal doped
by rare-earth ions, while NIMM is modeled in the Drude
model by the frequency-dependent electric permittivity ε2(ω)
and magnetic permeability μ2(ω) as

ε2(ω) = 1 − ω2
e

ω(ω + iγe)
, μ2(ω) = 1 − ω2

h

ω(ω + iγh)
,

(4)

where ωe is the electron plasma frequency usually in the
ultraviolet region, γe is the electric damping rate due to ma-
terial losses, ωh is the magnetic plasma frequency, and γh

is the magnetic damping rate. The plasma frequency ωe is
a natural scale for frequency and the corresponding plasma
wave number ke = ωe/c is the scale for all wave numbers.

The dispersions are shown in Fig. 2, where we display the
mode frequency ω/ωe as a function of real part k|| scaled to ke,
and in Fig. 3 we show losses as given by κ (ω) = Im[K||(ω)] of
Eq. (3) scaled to ke. The parameters are ωe = 1.4 × 1016s−1,
γe = 2.73 × 1015s−1 (for silver). Since the medium response
to the magnetic component of the field is weaker than the
electric component, we assume ωh = ωe/2 and γh = γe/500.
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FIG. 2. Dispersion curves showing TM mode frequency ω/ωe as
a function of wave number k||/ke, ωe = 1.4 × 1016s−1, ke = 4.5 ×
107m−1. The point (k||0, ω0) scans the linear part of dispersion where
ω0 is the atomic ensemble central frequency and k||0 = k||(ω0). The
linear segment in the lower branch of the curve is the part of interest
to us.

From Fig. 2, the dispersion relation is approximately linear in
the frequency range below ω/ωe < 0.35, and losses measured
in ke are also highly reduced in this frequency range (Fig. 3).
We note here that the frequency ω/ωe = 0.4 is enticing to
work with since it corresponds to highly reduced losses, which
are, however, accompanied by very poor confinement and may
even complete deconfinement. This trade-off between losses
and confinement means we need to maintain a reasonable
level of losses and SP field confinement in the chosen fre-
quency range. So, for the rest of this work, we will focus on
the frequency range 0.05 < ω/ωe < 0.35, where dispersion
is linear, losses are reduced, and SP fields are confined, as our
operating working frequency range.

We now estimate the required channel width Ly needed
to direct SP propagation along the x direction by estimating
the minimum uncertainty or deviation in the SP frequency
(�ω) inside and outside the channel. The uncertainty in the
SP energy is �E�t � h̄, where �t ≈ Ly/vg is the time to
traverse the channel width Ly at the surface plasmon group
velocity vg calculated from the dispersion relation. Then, the
SP energy deviation is �E � h̄vg/Ly. Taking the channel
width of order 400 nm and vg ≈ 0.8c, the frequency deviation

FIG. 3. SP losses κ (ω) scaled to plasma wave number ke as given
by the imaginary part of the SP wave vector are shown as a function
of scaled mode frequency ω/ωe. Parameters as in Fig. 2, and see also
text.

corresponding to this energy deviation is �ω = 0.5 eV/h̄. For
SP modes (without the channel) the frequency is usually of the
order of the plasma frequency ωe = 1.4 × 1016 s−1 (for silver,
for example), and thus the SP energy is E = h̄ω = 9.2 eV.
Then, for the channel width Ly ≈ 400 nm, the frequency devi-
ation is reduced by an amount (0.5 eV/h̄)/(9.2 eV/h̄) ≈ 5%).
The frequency deviation is the difference between the SP
frequency inside and outside the channel, so by taking the
channel width of the order 400 nm, this frequency deviation
can be reduced and made as small as 5%, which means that
the width 400 nm is large enough to neglect the frequency
deviation and assume the SP frequency inside and outside the
channel are practically the same and ignore the channel edge
effects.

III. QUANTIZED SP FIELDS

We adopt a quantum approach to substantiate the initial
equations and for more general analysis of the interaction
of SP fields with atomic ensemble. We are concerned here
with SP transport along the x direction in optically dense
atomic medium. In the low loss range (0.05 < ω/ωe < 0.35)
K|| ≈ k|| ≡ k, and the SP quantization will determine the field
amplitudes needed to couple to the two-level atoms that we
need to consider in the next section. The quantized SP field is
constructed as the sum of SP modes of the type in Eq. (2) and
is written as

Ê(r, t ) =
∫

E(k, z)â(k, t )eikxdk + H.c., (5)

where we use shorthand notation k = k||. The mode field
operators â(k, t ) and â†(k, t ) of the plasmonic modes obey the
bosonic equal time commutation relation [â(k, t ), â†(k′, t )] =
δ(k − k′).

The quantization procedure [7–9] culminates in the follow-
ing expression for the SP field amplitude (see Appendix for
details):

E(k, z) =N
[

u(z)

(
x̂ + ẑ

ik

k1

)
e−k1z

+ u(−z)

(
x̂ − ẑ

ik

k2

)
ek2z

]
, (6)

where

N (ω) =
√

h̄ω

2πε0LyLz(ω)
, (7)

Lz(ω) = D(ω) + ω2

c2
S(ω), (8)

D(ω) = 1

2
ζ1Re

(
∂ (ωε1)

∂ω

)
[1 + (ζ1k)2]

+ 1

2
ζ2Re

(
∂ (ωε2)

∂ω

)
[1 + (ζ2k)2], (9)

S(ω) = 1

2
ζ 3

1 Re

(
∂ (ωμ1)

∂ω

)
|ε1|2 + 1

2
ζ 3

2 Re

(
∂ (ωμ2

∂ω

)
|ε2|2.

(10)

In the above equations, the normalization factor N (ω)
determines the field amplitude and is given in terms of various
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plasmonic parameters. To avoid cumbersome notations and
for convenience, we suppress the frequency dependence and
write ζ1,2 = ζ1,2(ω), ε2 = ε2(ω), μ2 = μ2(ω), k1,2 = k1,2(ω),
k = k||(ω), etc., with ζm = 1/Re[km]. We shall retain the fre-
quency dependence when appropriate. Furthermore, we write
quantities above as functions of ω only since k|| is also a
function of ω. The normalization length Lz(ω) is given in
terms of confinement ζm and is determined by the physical
properties of the NIMM medium, such as by its permittivity’s
ε and permeability’s μ, given above.

An important point to note in Eqs.(7)–(10) is that larger
values of the wave numbers Re[km] lead to smaller values
for ζm and thus highly confined modes. Likewise, suppressed
values of Re[km] mean large values of ζm, indicating poor
confinement and thus large value of Lz. In the frequency
range where confinement is high, we see that losses are also
high, leading to short SP propagation distances Lx = 1/|κ|,
while for poor confinement losses are low and hence longer
propagation distance. This trade-off between confinement and
losses needs to be considered carefully so that we can find
the optimal confinement with optimal losses that suit practical
needs. Appropriate choice of materials, i.e., adjusting the pairs
(ε1, μ1) and (ε2, μ2), can lead to a decrease in Lz(ω). The
reduction of the interaction volume [LxLyLz(ω)] considerably
enhances the field amplitude, thus leading to strong atom-field
coupling [45].

IV. SP PULSE INTERACTION WITH TWO-LEVEL
ATOMIC ENSEMBLE

We here explore the resonant interaction of the SP pulse
modes with an ensemble of two level atoms near a NIMM
interface as shown in Fig. 1. Recent work has shown [46] that
an atomic ensemble can emit energy into SP modes at least
two orders of magnitude stronger than into free space modes.
Therefore, only the SP modes are included in the Hamiltonian
used in studies of coherent interaction of an atomic ensemble.
The total Hamiltonian is given as

Ĥ = Ĥa + Ĥf + Ĥint, (11)

with

Ĥa = 1

2

∑
j

h̄(ω0 + � j )σ
j

z , (12)

Ĥf = 1

2

∫
dkh̄ω(k)[â†(k)â(k) + H.c.], (13)

Ĥint = − 1

2

∑
j

∫
dkh̄R(z j )σ

j
+â(k)eikx j + H.c., (14)

where Ĥa is the atomic ensemble Hamiltonian with central
transition frequency ω0 and detuning � j for the jth atom that
is inhomogeneously broadened by function G( �

�in
) with spec-

tral width �in, the two-level atom operators are raising σ
j

+ =
|2 j〉 〈1 j |, lowering σ

j
− = |1 j〉 〈2 j | operators, and the inversion

σ
j

z = 1
2 (|2 j〉 〈2 j | − |1 j〉 〈1 j |), Ĥf is the SP field part with

mode frequency ω(k) (where k = kex), and Ĥint is the dipole
interaction Hamiltonian of the SP field with atoms in slowly
varying envelope approximation, r j = (x j, y j, z j ) is position
of the jth atom, and h̄ is the reduced Planck constant. The

atom-SP field coupling strength R(z j ) = 2d j
21 · E(z j, ω0)/h̄ is

a function of atomic location along the z direction normal to
the interface and atomic central frequency ω0. The SP field
amplitude is given by Eqs. (6)–(10), and d j

21 is the dipole
moment of the atomic transition. The Hamiltonian Ĥint de-
scribes the interaction of atoms with SP pulses in so-called
rotating wave approximation, which is valid for pulses with
sufficiently long duration δts 
 λ/c and weak coupling con-
stant of the SP field with atoms.

The effect of inhomogeneous broadening of the atomic
transition of atoms located near a metal interface (dielectric-
metamaterial) was considered in the experimental work [47],
where the influence of inhomogeneous broadening on the de-
cay of atomic coherence excited by short pulses in interaction
with surface plasmons was demonstrated. In addition, the
presence of inhomogeneous broadening makes it possible to
realize strong interaction of atoms (molecules) with SP modes
[45] and implementation of photon echo on surface plasmons
[48,49].

As a resonant two-level atomic ensemble we take an en-
semble of rare-earth ions (REIs) in a crystal (like Eu3+ and
Pr3+ ions in Y2SiO5 crystal). We assume, as it is the case,
that the experiment is carried out at low (helium) tempera-
tures (T < 4.2 K), when the inhomogeneous broadening of
the resonant optical transition of REIs is due to the presence
of the static local inhomogeneities of electric fields. A very
characteristic property of the REIs at such temperatures is
the relatively large value of the inhomogeneous broadening of
optical transitions, which significantly exceeds the homoge-
neous linewidth γ (�in 
 γ ) determined by the dipole-dipole
interaction and the dynamic fluctuations of local fields [50].
In this case, the inhomogeneous broadening �in usually lies
in the range from 30 MHz to 10 GHz, while the homogeneous
linewidth can be γ ∼ 50 KHz and less [50]. More detailed in-
formation about coherent interactions of the light pulses with
REIs in crystals at such temperatures can be found in recent
reviews [51,52]. Furthermore, for the interaction of light and
SP fields with REIs, the authors of the work [47,53] have
shown that at small atomic concentration, the dipole-dipole
interaction of REIs turns out to be so weak that it can be
assumed that the electromagnetic field interacts individually
with each atom. These properties correspond to the physical
conditions of the system under consideration, which provide
the possibility of applying the system of Maxwell-Bloch equa-
tions with the Hamiltonian (11), accordingly. It is also worth
noting that a Hamiltonian similar to the one we use (11)
has been recently applied in the studies of two-pulse photon
echo on quantum emitters interacting with surface plasmons
[48,49].

In the following we consider the interaction of a single
short SP pulse with a system of resonant two-level atoms,
which has a duration much shorter than the phase relaxation
lifetime of atoms (δts � γ −1 ∼ T2). Regarding the atomic
ensemble model we use, it should also be added that the
optically excited atoms located very close to the interface
of metal (metamaterial)-dielectric (�10 nm) rapidly transmit
their excitation to metal electrons in a nonradiative manner
[53], so this small fraction of atoms will not participate in
longer-term coherent interactions or may be removed during
the interface fabrication process.
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To explore the transport of SP fields in space, it is more
appropriate to work in the Heisenberg picture with the SP field
operator written in the space formalism. We define the space
representation of SP field operators â(x, t ) and its Hermitian
conjugate â†(x, t ) in terms of their Fourier transform operators
â(k, t ) and (â†(k, t ) = [â(k, t )]†) by the relations

â(x, t ) = 1√
2π

∫ ∞

−∞
dkâ(k, t )eikx,

â(k, t ) = 1√
2π

∫ ∞

−∞
dxâ(x, t )e−ikx. (15)

Furthermore, for the operators â(x, t ) and σ
j

±(t ) we introduce
the slowly varying operators ã(x, t ), σ̃

j
±(t ),

â(x, t ) = ã(x, t )e−i(ω0t−k0x),

σ
j

±(t ) = σ̃
j

±(t )e±i(ω0t−k0x), (16)

where [ã(x, t ), ã†(x′, t )] = δ(x − x′), while σ
j

z (t ) = σ̃
j

z (t ),
and k0 ≡ k||0 = k||(ω0) (see caption to Fig. 2). Then, the
Heisenberg equation of motion for the operator Q̂(t ),

ih̄
∂Q̂(t )

∂t
= [Q̂(t ), Ĥ ], (17)

gives Heisenberg-Langevin equations of motion for the slowly
varying field and atomic operators(

∂

∂t
+ γw

2
+ vg

∂

∂x

)
ã(x, t )

= i
√

π/2
∑

j

R∗(z j )σ̃
j

−(t )δ(x − x j ) + √
γwb̂in(x, t ),

(18)

∂σ̃
j

−(t )

∂t
= −i� j σ̃

j
−(t ) − i

2
R(z j )σ

j
z (t )ã(x j, t ),

∂σ̃
j

z (t )

∂t
= i[R(z j )σ̃

j
+(t )ã(x j, t ) − R∗(z j )σ̃

j
−(t )ã†(x j, t )].

(19)

The SP group velocity vg = ∂ω/∂k results from the ex-
pansion of ω(k) = ω0 + (k − k0)∂ω/∂k, (with k = k||). In this
expansion (see Fig. 2), ω0 = ωk|k=k0 corresponding to the
two-level transition frequency center as in Fig. 1, and k0 is
the corresponding wave number on the dispersion relation;
γw is a decay rate of the SP field, which will be discussed
in connection with SP absorption coefficient; and b̂in(x, t )
is related to the local input Langevin force with the usual
bosonic commutation rules ([b̂in(x′, t ), b̂†

in(x, t )] = δ(x − x′))
and zero quantum average value 〈b̂in(x, t )〉 = 0 [2].

V. SP AREA THEOREM

To proceed with the equations of motion in Eq. (19), we
shall assume that the SP coherent field is represented by a
coherent state whose eigenvalues are complex numbers so that
we can replace the SP field operator by a complex quantity
of some amplitude and phase. Furthermore, we consider only
the situation of the large average number of quanta in the SP
pulse, where the quantum correlations between SP field and
atom operators can be ignored, and the average of product of

operators can be replaced by the product of averages [1], i.e.,〈
σ j

z (t )ã†(x j, t )
〉 ∼= 〈

σ j
z (t )

〉〈ã†(x j, t )〉 = S j
z (t )b(x j, t )e−iϕ(x j ),〈

σ j
z (t )ã(x j, t )

〉 ∼= S j
z (t )b(x j, t )eiϕ(x j ),

where 〈σ j
±,z(t )〉 = S j

±,z(t ), and b(x, t ) and ϕ(x) are the SP (real
value) field amplitude and phase.

Now, to calculate the macroscopic response in (18) for
ã(x, t ) we replace summation with integration as follows:∑

j

R∗(z j )S
j
−(t )δ(x − x j )

=
∫ ∞

0
dz

∫ Ly

0
dyρ(r)

∫ ∞

−∞
d�G

(
�

�in

)
R∗(z)S−(�, r, t ),

(20)

where instead of the discrete variables j,� j, r j , we in-
troduced continuous variables in the atomic coherence
S j

−(t, r j ) → S−(�, r, t ). We consider only the symmetrical
smooth shape of the inhomogeneous broadening G( �

�in
). This

simplification is valid for a fairly narrow spectrum of the sig-
nal pulse δωs < �in, the central frequency of which coincides
with the center of resonance line ωs = ω0 [1]. The presence
of any narrow resonant lines and branch cuts located at a great
distance from the center of atomic transition will only affect
the magnitude of the phase and group velocity of the SP field,
which can be taken into account in the developed theoretical
approach without leading to a qualitative change in the final
result. In (20) ρ(r) is the atomic density, which is assumed
to be constant [ρ(r) = ρ0 = N/V ], N is the total number of
atoms, and V is the volume of the dielectric medium. In
the above integration, we show explicitly the dependence of
atomic coherence S−(�, r, t ) on frequency detuning �, spa-
tial position (x, z), and time t . Equation (20) means that there
is a sufficiently large number of REIs δN 
 1 in the volume
δV ≈ λ3, the frequency distribution usually described by the
spectrally broadened function G( �

�in
) at helium temperatures

[50]. The dipole moments of optical transitions in REIs are
two to three orders of magnitude weaker than in atoms with
allowed optical transitions, which makes it possible to use a
larger concentration of such ions and facilitate the feasibility
of the model used (20).

It is clear from Eqs. (19) and (20) that the pulse transport
properties are determined from the spatial shape of atomic
density ρ(r) and z dependence of the coupling strength R(z)
at y = 0, which has position and mode frequency depen-
dence (suppressed so far). To describe the atomic response
to the action of a SP pulse, we take into account a neg-
ligibly small value of the homogeneous linewidth � j →
� j − iγ where �in, δt−1

s 
 γ → 0 in the calculation of the
envelope area η(x, t ) = ∫ t

−∞ b(x, t )dt . Integrating the first
equation in (19) for SP pulse 〈ã(x, t )〉 = b(x, t )eiϕ(x) in time∫ ∞
−∞ dt · · · and assuming all atoms initially in their ground

states, S−(�, x, z,−∞) = 0, so we get(
∂

∂x
+ γw

2vg

)
η(x)eiϕ(x)

= π

√
π/2

vg
LyG(0)

∫ ∞

0
dzρ0|R(z)|2

∫ ∞

−∞
dtb(x, t )

× eiϕ(x)Sz(� = 0, x, z, t ), (21)
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where we put the atomic coherence equal to its value in
the center of the system (y = 0) Sz(� = 0, r, t ) = Sz(� =
0, x, y = 0, z, t ) ≡ Sz(� = 0, x, z, t ), η(x) = ∫ ∞

−∞ b(x, t )dt .
When calculating the last integral on � in (20), we
take into account that G( �

�in
) = G(− �

�in
), Sz(�, r, t ) =

Sz(−�, r, t ), and the following property of Langevin forces∫ ∞
−∞〈b̂in(x, t )〉dt = 0 [2].

From the solution of (19) for Sz(� = 0, x, z, t ) =
− cos[|R(z)|η(x, t )] [where Sz(0, x, z,−∞) = −1 at initial
conditions] we obtain for Eq. (21)(

∂

∂x
+ γw

2vg

)
η(x)eiϕ(x) = π

√
π

2

G(0)Ly

vg
eiϕ(x)F [η(x)], (22)

where

F [η(x)] = −
∫ ∞

0
dzρ0|R(z)| sin [|R(z)|η(x)]. (23)

We see that ϕ(x) = Const is a solution of (22). The integra-
tion in Eq. (23) is evaluated over the cross section (y-z plane)
normal to the field propagation direction x. The integral over
z is evaluated by substituting the position-dependent coupling
strength given from the SP field relations (6)

R(z) = R(z, ω0) = R0e−k1(ω0 )z,

R0 = 2
N (ω0)

h̄

(
dx + idz

k(ω0)

k1(ω0)

)
, (24)

where for short we write R0 = R(z = 0, ω0), and on res-
onance ω = ω0. The dipole moment of atomic transition
is d21 = x̂dx + ŷdy + ẑdz, and the atom SP-field interaction
takes place above the interface in medium 1. The coupling
strength is composed of components parallel dx and normal dz

to interface with modulus |R0|.
Now, taking into account the constant atomic density

ρ(r) = ρ0, and substituting from (24) for the coupling
strength R(z) into (23) and evaluating the integration over z,
Eq. (22) reduces to(

∂

∂x
+ γw

2vg

)
�(x) = −α

sin2[�(x)/2]

�(x)
, (25)

where the pulse area �(x) = |R0|η(x) and absorption coeffi-
cient α

α = 1

2

√
π

2

ω0ρ0G(0)
[
d2

x + d2
z (ζ1k)2

]
ε0h̄

ζ1

Lzvg
. (26)

The strong interaction of SP pulse with resonant atoms
(α 
 γw/vg) allows a closed analytical solution of (25),
which gives finally the closed expression for the surface plas-
monic pulse area theorem:

x = x0 − 1

α

(
T

[
�(x)

2

]
− T

[
�(x0)

2

])
, (27)

where

T [y] = ln[sin (y)] − y cot (y). (28)

The “surface plasmonic area theorem” (SP area theorem)
as given by Eq. (25) and its solution in Eqs. (27) and (28) are
the main results here. Equation (25) is nonlinear like all other
area theorems, and in NIMM it has a very rich spectrum of

FIG. 4. The absorption coefficient as given by Eq. (26) as a
function of atomic central frequency ω0/ωe, for REIs with the fol-
lowing parameters: atomic density ρ0 = 1025 m−3, dipole moment of
resonant transition d = 5 × 10−32 C m, inhomogeneous broadening
�in = 0.5 × 108 s−1.

structure parameters that can be utilized to explore its differ-
ent facets; the modified pulse area �(x) = |R0|η(x) depends,
among many parameters, on the SP modes confinement ζ1, the
SP group velocity vg, the normalization length Lz(ω0), and
the modulus of the coupling strength |R0|. In the limit of a
small pulse area [�(x0) � π ], Eqs. (25) and (27) reduce to
the well-known Beer-Lambert law [�(x) = �(x0)e− α

2 (x−x0 )].
It is worth noting that due to the linearity of the quantum
equations (19) when interacting with weak SP fields, this
law (exponential decay of the fields) is obtained theoretically
with a strict quantum approach to the SP field. In the case
of a large pulse area, when nonlinear patterns of interaction
between the SP field and atoms begin to appear, the influence
of the quantum properties of the SP field remain an unsolved
problem requiring special consideration.

VI. DYNAMICS OF 2π SP PULSES

The SP pulse dynamics is influenced by atomic and struc-
ture parameters. Equation (26) shows that the specific features
of the absorption coefficient α, which are related to the in-
terface properties, are determined by the multiplier β(ω0) =
ω0ζ1[1 + (ζ1k)2]/[Lz(vg/c)], indicating that the maximum ab-
sorption gain occurs at a higher ratio of parameters ζ1

Lz
and

lower group velocity vg. At the same time, it is desirable to
ensure this condition for a sufficiently high SP confinement
(i.e., for a small value ζ1). Using conservative spectroscopic
parameters for the system of rare-earth ions, in Fig. 4 we plot
the absorption coefficient α(ω0) as in Eq. (26) as a function
of scaled central frequency ω0/ωe. The absorption coefficient
obviously depends on the atomic part, namely, atomic density
ρ0, magnitude of dipole moment d , and the inhomogeneous
broadening function G(0), and on the NIMM part as given by
the combined effects of the quantity β(ω0). The qualitative
behavior of the absorption is well represented by the com-
bined effects of these parameters. However, its magnitude is
influenced most by the atomic density, magnitude of dipole
moment, and function G(0).

The experimental data [50] for rare-earth ions give atomic
concentration of ρ0 ≈ 1025 m−3, dipole moment d ≈ 5 ×
10−32 C m, and linewidth of optical transition G(0) ≈ 1

�in
=
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FIG. 5. The McCall-Hahn area theorem [Eq. (29)] [15] is shown
for initial conditions �(x0 ) = 0.9π, 2.9π, 4.9π (solid line) and
�(x0) = 1.1π, 3.1π, 5.1π (dotted line).

2 × 10−8 s. For this set of parameters we get α ≈ 40 000
cm−1 for the frequency range of interest. It is possible to
achieve a higher optical depth α by choosing crystals with
less inhomogeneous broadening and a higher concentration
of rare-earth ions [38]. With such a value for the resonance
absorption coefficient α, we can see from Eq. (25) that the
SP decay rate γw is negligibly small compared with α when
γw/vg < 4000 cm−1, which is often implemented experimen-
tally [5]. It is worth noting that the absorption coefficient of
surface plasmons can be significantly lower in a number of
materials, for example, in graphene [54], which will signif-
icantly simplify the feasibility of the condition α 
 γw/vg

for the implementation of the considered interaction of SP
fields with resonant atoms. In the studied frequency range, the
spatial localization of surface plasmons near the interface is
about ζ1,max

∼= 500 nm. For the validity of using the SP area
theorem, the resonant atoms must be also located in a layer
(see Fig. 1) approximately no less than ∼3ζ1,max.

The possibility of increasing resonant absorption by using
a higher atomic concentration requires special consideration
in order to take into account the influence of interatomic
interactions on the growth of the atomic phase relaxation in
the hybrid system under consideration. It is worth noting that
the pulse area �(x) in the SP area theorem is determined by
the maximum of SP amplitude, which takes place near the
interface surface. Accordingly, the enhanced interaction of
the SP field with resonant atoms is directly affected by the
increase in the optical density of the resonant transition.

It is interesting to compare the properties of the SP area
theorem and the McCall-Hahn area theorem [15,17,18] de-
rived for the case of the interaction of a light pulse with
two-level atoms in a free space, which has the general solution

x = x0 − 1

α
ln

(
tan[�(x)/2]

tan[�(x0)/2]

)
. (29)

In Figs. 5 and 6 we compare the two area theorems as given
by Eqs. (27) and (29) for the same initial pulse areas. As can
be seen in both cases, the evolution of the pulse areas of the
input signals leads to the formation of 2nπ pulses propagating
over long distances in an optically dense medium. At the
same time, there are significant differences in the dynamics
of the formation of these 2π pulses in these two cases. In

FIG. 6. The SP area theorem [Eq.(27)] for the initial conditions
(L1) �(x0 ) = 0.9π , (L2) 2.9π , (L3) 4.9π , (R1) 1.98π , (R2) 3.98π ,
and (R3) 5.98π .

contrast to the solution of the McCall-Hahn area theorem
[15], the SP area theorem does not have the bifurcation points
�(x0) = (2n + 1)π . In addition, the arising 2π SP pulses are
unstable: even with a slight decrease in the pulse area relative
to 2nπ [�(x0) = 2nπ − ε, ε � 1], its subsequent evolution
leads to the state �(x → ∞) → 2(n − 1)π , as seen in Fig. 6.
Taking into account the irreversible losses in accordance with
(25), the attenuation rate of �(x) near ∼2nπ is equal to
∂
∂x �(x) ≈ −nπγw/vg and is enhanced with increasing the
losses parameter γw/vg and number of 2π pulses.

Moreover, in contrast to the formation of 2π pulses (soli-
tons) in free space, an increase in the total pulse area of
the input SP pulse �(0) > 2nπ (n > 2, 3, . . .) lengthens the
formation time of independent 2π SP pulses. It seems unlikely
that the 2π SP pulse propagates in an optically dense medium
while maintaining its temporal shape. The SP area theorem
does not provide information about the temporal shape of
2π SP pulses and the dynamics of their creation from the
input intense SP pulse in the medium. The analysis of this
issue is beyond the scope of this work. Elucidation of the
space-time structure of such 2π SP pulses and the features of
their interaction with a resonant atomic ensemble will allow us
to understand the characteristic properties of their occurrence
and propagation over long distances.

VII. DISCUSSION AND CONCLUSION

In this work we derived the pulse area theorem for
the resonant interaction of SP pulse with a two-level
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inhomogeneously broadened atomic ensemble and obtained
its closed analytical solution. The SP area theorem pre-
dicts long propagating 2π SP pulses. The analysis has been
performed for TM-polarized SP modes on the interface of
a dielectric crystal doped by rare-earth ions with NIMM
medium, and it is valid also for TE-polarized SP modes due
to the same spatial properties (exponential shape) of the elec-
tromagnetic field of SP field magnitude in the dielectric part.
Moreover, due to the same spatial property, the SP area theo-
rem can be applied to the SP modes interacting with resonant
atoms on the dielectric-metal interface.

We have analyzed the physical conditions necessary to
create 2π SP pulses propagating over long distances. We
also note that in spite of significant differences in physical
properties, Eq. (25) of the SP area theorem resembles the
pulse area theorem in a single-mode optical waveguide [32].
The qualitative behaviors of the two cases may be traced back
to the fact that both pulses have decaying field amplitudes that
enter into the pulse areas. However, for the single waveguide
pulses [32] the decay has the form of a Gaussian or Bessel
function of the first kind, whereas for SP pulses decays are
exponential, and the nature of these decays demonstrates the
significance differences between the two cases. However, this
resemblance in the theoretical description makes it possible to
uniformly describe various effects of nonstationary nonlinear
coherent interaction of structured light pulses and SP fields
with resonant atomic ensembles. Herein, due to the strong
interaction of the SP mode with resonant atoms, the formation
of 2π SP pulses will be detected experimentally at an atomic
concentration lower than in the case of the formation of optical
solitons in a resonant medium [1,15,16,18].

It is worth noting that, unlike the very different behavior of
the electromagnetic field of light modes in the cross section of
various optical waveguides, the electromagnetic field of SP
fields usually decreases exponentially with distance from the
interface. This circumstance makes the SP area theorem im-
portant for describing the resonant interaction of atoms with
SP fields not only on NIMMs, but also on the noble metals and
other materials. Graphene may be particularly interesting due
to the very low attenuation of SP fields and the large compact-
ness of the devices being created. We believe the 2π SP pulses
with their interesting properties outlined above are useful for
further theoretical studies and experimental investigations.

We anticipate the SP area theorem can be helpful for stud-
ies of resonant interaction of SP pulse with resonant two- and
multilevel atoms, and various effects such as Dicke superra-
diance of SP fields [55,56], SP lasing [57,58], description of
SP echo effect [48,49] in optically dense media and SP echo
spectroscopy of atoms on the surface, and microscopic trans-
port of information via SP fields [47], all of which deserve
independent research. In a recent paper [59], the authors also
showed the possibility of implementing optical devices using
a variety of atoms interacting with a surface plasmon polari-
ton. In this regard, considering the possibility of implementing
photon echo on surface plasmons [48,49], integrated circuits
of quantum memory using photon echo on surface plasmons
may be of interest [60].

The quantum approach developed here for the resonant
interaction of SP fields with atoms made it possible to clar-
ify the transition to solvable semiclassical equations and to

relate the resulting solutions to limiting quantum cases. This
approach can also be used to study other problems of quantum
plasmonics related to the interaction of quantum and clas-
sical SP fields with two- and three-level atomic ensembles.
In particular, it is for the quantum memory protocols where
we usually need to describe the interaction of weak quantum
and intensive light pulses with resonant atoms [32]. Although
a complete quantum description of the area theorem does
not yet exist, the proposed approach will be a useful guide
for searching for further development of this theorem when
studying the weak manifestation of the quantum nature of
SP fields. Alongside this, the work of Hughes [61] shows
that the area theorem for the interaction of light pulses with
resonant atoms in free space becomes of limited validity when
the temporal duration of classical light pulses becomes close
to the period of the light wave, leading to deviation from the
rotating wave approximation. However, a similar analysis of
how the transition to a short SP pulse could impose restrictions
on the applicability of the SP area theorem deserves special
study elsewhere.
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APPENDIX: SP FIELD QUANTIZATION

Quantization of SP modes on dielectric-metal interface
is discussed in Ref. [7], where the authors use quantization
of a discrete set of SP modes. In our case, to describe the
interaction of a SP pulse with an atomic ensemble, it is more
convenient to use a continuous set of SP modes. We start
from the electromagnetic field energy in a dispersive medium
[62] as

Hfield = 1

2

∫
d3r[ε̃|Ê(r)|2 + μ̃|Ĥ(r)|2], (A1)

ε̃ = Re

[
∂

∂ω
(ωε0ε(ω))

]
, μ̃ = Re

[
∂

∂ω
(ωμ0μ(ω))

]
.

(A2)

The SP modes propagate along the x direction with a wave
number k||. The electric field operator is constructed as a sum
of modes, which we write as

Ê(r, t ) =
∫

dk||E(k||, z)â(k||)ei(k||x−ωt ) + H.c., (A3)

The corresponding magnetic field operator H(r, t ) is de-
termined from Maxwell curl equation iωμ0H = curlE, and
given as

Ĥ(r, t ) =
∫

dk||H(k||, z)â(k||)ei(k||x−ωt ) + H.c. (A4)

The plasmonic modes annihilation and creation opera-
tors â(k||) and â†(k||) of the (TM polarized) mode and
wave vector k|| obey the usual equal time commutation re-
lation [â(k||), â†(k′

||)] = δ(k|| − k′
||). The (TM) mode structure
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functions satisfying the wave equation are

E(k||, z) = N
[

u(z)

(
x̂ + iẑ

k||
k1

)
e−k1z + u(−z)

(
x̂ − iẑ

k||
k2

)
ek2z

]
, (A5)

H(k||, z) = ŷN
[

u(z)
ε0ε1ω

ik1
e−k1z − u(−z)

ε0ε2ω

ik2
ek2z

]
, (A6)

where u(z) is the step function. The SP field normalization factor N is determined by the requirement that the field Hamiltonian
in dispersive medium (A1) reduces to the canonical form Hamiltonian

Hfield = 1

2

∫
dk||h̄ω(k||)[â(k||)â†(k||) + H.c.]. (A7)

Now we use the fields in Eqs. (A3)–(A6) into the Hamiltonian (A1) to evaluate the space integrals,

Hfield = 1

2

∫∫
dxdy

∫ ∞

0
dz(ε̃1|Ê (z > 0)|2 + μ̃1|Ĥ (z > 0)|2) + 1

2

∫∫
dxdy

∫ 0

−∞
dz(ε̃2|Ê (z < 0)|2 + μ̃2|Ĥ (z < 0)|2), (A8)

where integration over the upper half-plane of Eq. (A8) gives

IE1 = 1

2

∫∫
dxdy

∫ ∞

0
dzε̃1|Ê (z > 0)|2

= 1

2

∫
dk||dk′

||ε̃1|N |2â(k||)â†(k′
||)

(
1 + k||k′

||
k1k′

1

) ∫ Ly

0
dy

∫ ∞

0
dze−2Re(k1 )z

∫ ∞

−∞
dxei[(k||−k′

|| )x−(ω−ω′ )t] + H.c. (A9)

The z integral gives confinement ζ1 = 1/Re[k1] and the integral over x gives 2πδ(k|| − k′
||), which we use to evaluate the k||

integration that leads finally to the expression

IE1 = 1

2
ε0

∫
dk||[â(k||)â†(k||) + â†(k||)â(k||)](2πLy)

1

2
ζ1|N |2Re

(
∂[ωε1(ω)]

∂ω

)
[1 + (ζ1k||)2]. (A10)

The term IE2 = (1/2)
∫

dxdy
∫

dzε̃2|Ê (z < 0)|2 in Eq. (A8) gives a similar expression with exchange 1 and 2, namely, IE2 =
IE1(1 ↔ 2). Adding these two terms gives the electric part of energy,

IE = 1

2
ε0

∫
dk||[â(k||)â†(k||) + â†(k||)â(k||)](2πLy)|N |2D(ω), (A11)

D(ω) = 1

2
ζ1 Re

∂[ωε1(ω)]

∂ω]
[1 + (ζ1k||)2] + 1

2
ζ2Re

∂[ωε2(ω)]

∂ω
[1 + (ζ2k||)2]. (A12)

The magnetic parts of energy given by the second and fourth terms in Eq. (A8) can be calculated in the same way, leading to

IH = 1

2
ε0

∫
dk||[â(k||)â†(k||) + â†(k||)â(k||)](2πLy)|N |2 ω2

c2
S(ω), (A13)

S(ω) = 1

2
ζ 3

1 Re
∂[ωμ1(ω)]

∂ω
|ε1|2 + 1

2
ζ 3

2 Re
∂[ωμ2(ω)]

∂ω
|ε2|2. (A14)

The total field Hamiltonian in dispersive medium Eq. (A8) is then obtained as

Hfield = 1

2

∫
dk||[â(k||)â†(k||) + â†(k||)â(k||)]2πε0LyLz|N |2, (A15)

Lz(ω) =
[

D(ω) + ω2

c2
S(ω)

]
. (A16)

This Hamiltonian reduces to the canonical Hamiltonian equation (A7) when

2πε0LyLz(ω)|N (ω)|2 = h̄ω, (A17)

which is Eq. (7), and we write all quantities as functions of mode frequency ω only since k|| is also a function of ω.
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Güney, T. Yamamoto, Ş. K. Özdemir, M. Wegener, and M. S.
Tame, Active control of a plasmonic metamaterial for quantum
state engineering, Phys. Rev. A 97, 053810 (2018).

[40] C. Li, P. Yu, Y. Huang, Q. Zhou, J. Wu, Z. Li, X. Tong, Q. Wen,
H.-C. Kuo, and Z. M. Wang, Dielectric metasurfaces: From
wavefront shaping to quantum platforms, Prog. Surf. Sci. 95,
100584 (2020).

[41] N. Rivera and I. Kaminer, Light-matter interactions with pho-
tonic quasiparticles, Nat. Rev. Phys. 2, 538 (2020).

033502-10

https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1038/nature01937
https://doi.org/10.1038/nphys2615
https://doi.org/10.1103/PhysRevLett.101.263601
https://doi.org/10.1103/PhysRevA.81.033839
https://doi.org/10.1103/PhysRevA.89.033860
https://doi.org/10.1103/PhysRevA.98.013825
https://doi.org/10.1038/s41598-021-82909-7
https://doi.org/10.1140/epjd/e2020-100606-8
https://doi.org/10.3390/photonics9100697
https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1063/1.1666551
https://doi.org/10.1364/OE.2.000173
https://doi.org/10.1016/0375-9601(71)90493-2
https://doi.org/10.1016/0375-9601(71)90672-4
https://doi.org/10.1364/OE.27.028983
https://doi.org/10.1103/PhysRevResearch.2.012026
https://doi.org/10.1103/PhysRevApplied.18.014069
https://doi.org/10.1364/OE.22.004423
https://doi.org/10.1364/OL.465434
https://doi.org/10.1103/PhysRevLett.87.253602
https://doi.org/10.1103/PhysRevLett.88.243604
https://doi.org/10.1103/PhysRevA.92.063815
https://doi.org/10.1103/PhysRevA.94.013820
https://doi.org/10.1103/PhysRevA.107.043708
https://doi.org/10.1364/OL.41.000737
https://doi.org/10.1103/PhysRevA.108.023506
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1103/PhysRevLett.76.4773
https://doi.org/10.1038/nphoton.2006.49
https://doi.org/10.1002/adom.202301167
https://doi.org/10.1103/PhysRevA.97.053810
https://doi.org/10.1016/j.progsurf.2020.100584
https://doi.org/10.1038/s42254-020-0224-2


AREA THEOREM FOR SURFACE PLASMONS INTERACTING … PHYSICAL REVIEW A 110, 033502 (2024)

[42] A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, Metasurfaces
for quantum photonics, Nat. Photon. 15, 327 (2021).

[43] J. Liu, M. Shi, Z. Chen, S. Wang, Z. Wang, and S. Zhu,
Quantum photonics based on metasurfaces, Opto-Electronic 4,
200092 (2021).

[44] X. Zhang, Surface polaritons and their coupling with emitters
in periodic structures, Ph.D. thesis, University of York, 2014.

[45] P. Törmä and W. L. Barnes, Strong coupling between surface
plasmon polaritons and emitters: A review, Rep. Prog. Phys.
78, 013901 (2014).

[46] J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, Superradi-
ance, subradiance, and suppressed superradiance of dipoles near
a metal interface, Phys. Rev. A 82, 023827 (2010).

[47] M. Gomez-Castano, A. Redondo-Cubero, L. Buisson, J. L.
Pau, A. Mihi, S. Ravaine, R. A. L. Vallee, A. Nitzan, and
M. Sukharev, Energy transfer and interference by collective
electromagnetic coupling, Nano Lett. 19, 5790 (2019).

[48] A. Blake and M. Sukharev, Photon echo in exciton-plasmon
nanomaterials: A time-dependent signature of strong coupling,
J. Chem. Phys. 146, 084704 (2017).

[49] T. A. R. Purcell, M. Sukharev, and T. Seideman, Modeling
optical coupling of plasmons and inhomogeneously broadened
emitters, J. Chem. Phys. 150, 124112 (2019).

[50] P. Goldner, A. Ferrier, and O. Guillot-Noël, Handbook on the
Physics and Chemistry of Rare Earths (Elsevier, New York,
2015), Chap. 267, pp. 1–78.

[51] Z. Zhou, C. Liu, C. Li, G. Guo, D. Oblak, M. Lei, A. Faraon, M.
Mazzera, and H. de Riedmatten, Photonic integrated quantum
memory in rare-earth doped solids, Laser Photonics Rev. 17,
2300257 (2023).

[52] M. Guo, S. Liu, W. Sun, M. Ren, F. Wang, and M. Zhong, Rare-
earth quantum memories: The experimental status quo, Front.
Phys. 18, 21303 (2023).

[53] A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M.
Sukharev, Strong coupling between molecular excited states
and surface plasmon modes of a slit array in a thin metal film,
Phys. Rev. Lett. 109, 073002 (2012).

[54] S. Huang, C. Song, G. Zhang, and H. Yan, Graphene plasmon-
ics: Physics and potential applications, Nanophotonics 6, 1191
(2017).

[55] V. N. Pustovit and T. V. Shahbazyan, Cooperative emission
of light by an ensemble of dipoles near a metal nanoparti-
cle: The plasmonic Dicke effect, Phys. Rev. Lett. 102, 077401
(2009).

[56] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C.
Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers
at deep subwavelength scale, Nature (London) 461, 629
(2009).

[57] V. G. Bordo, Dicke superradiance from a plasmonic nanocom-
posite slab, J. Opt. Soc. Am. B 38, 2104 (2021).

[58] D.-G. Seo, S.-Y. Le, C.-W. Jung, D. Ahn, J.-H. Kim, W.-S.
Han, and K.-J. Yee, Dynamics of surface-plasmon lasing in
planar metal gratings on semiconductor, Opt. Express 31, 16205
(2023).

[59] Rituraj, M. Orenstein, and S. Fan, Scattering of a single plas-
mon polariton by multiple atoms for in-plane control of light,
Nanophotonics 10, 579 (2021).

[60] S. A. Moiseev and E. S. Moiseev, in Multi Mode Nano Scale
Raman Echo Quantum Memory, edited by J. Kowalik, R.
Horodecki, and S. Y. Kilin (IOS Press, Amsterdam, 2010), Vol.
26, pp. 212–223.

[61] S. Hughes, Breakdown of the area theorem: Carrier-wave Rabi
flopping of femtosecond optical pulses, Phys. Rev. Lett. 81,
3363 (1998).

[62] L. Novotny and B. Hecht, Nano-Optics (Cambridge University,
Cambridge, 2012).

033502-11

https://doi.org/10.1038/s41566-021-00793-z
https://doi.org/10.29026/oea.2021.200092
https://doi.org/10.1088/0034-4885/78/1/013901
https://doi.org/10.1103/PhysRevA.82.023827
https://doi.org/10.1021/acs.nanolett.9b02521
https://doi.org/10.1063/1.4977079
https://doi.org/10.1063/1.5053601
https://doi.org/10.1002/lpor.202300257
https://doi.org/10.1007/s11467-022-1240-8
https://doi.org/10.1103/PhysRevLett.109.073002
https://doi.org/10.1515/nanoph-2016-0126
https://doi.org/10.1103/PhysRevLett.102.077401
https://doi.org/10.1038/nature08364
https://doi.org/10.1364/JOSAB.422977
https://doi.org/10.1364/OE.488568
https://doi.org/10.1515/nanoph-2020-0340
https://doi.org/10.1103/PhysRevLett.81.3363

