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Learning arbitrary complex matrices by interlacing amplitude and phase masks
with fixed unitary operations
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Programmable photonic integrated circuits are an emerging technology that amalgamates photonics and
electronics, paving the way for light-based information processing at high speeds and low power consumption.
Considering its wide range of applications as one of the most fundamental mathematical operations, there has
been considerable interest in developing reliably implementable programmable circuit architectures that perform
matrix-vector multiplication. Recently, it was shown that discrete unitary operations can be parameterized by
interlacing fixed operators with diagonal phase parameters realized with phase shifter arrays. We show that these
decompositions are a special case of a broader class of factorizations that enable parametrization of arbitrary
complex matrices. The proposed representation of an N×N matrix is given by N + 1 amplitude-and-phase-
modulation layers interlaced with a fixed unitary layer that can be implemented, for example, via a coupled
waveguide array. Thus, we introduce an architecture for physically implementing discrete linear operations,
enabling the development of novel families of programmable photonic circuits for on-chip analog information
processing.
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I. INTRODUCTION

The prospect of realizing reconfigurable photonic circuits
that perform arbitrary discrete linear operations on light has
gained significant interest in the past decade [1,2]. This
interest is driven by the wide range of tasks that can be charac-
terized by matrix operations, subsequently leading to the de-
velopment of a chip-scale platform to deploy general-purpose
light-based applications in classical and quantum informa-
tion processing [3–5]. An efficient programmable photonic
matrix-vector multiplier opens numerous opportunities such
as enabling on-chip photonic neural networks [6–8], novel
photonic interconnects [9,10], and multistate quantum proces-
sors [11–13]. In the context of integrated photonics, previous
efforts have focused on realizing circuits that perform linear
unitary operations, which enforce power conservation. This
field has been driven by the interesting properties of unitary
groups, such as the rigorous mathematical parametrization
and factorization of unitary matrices in terms of simpler
unitary elements, and decompositions of general matrices.
Notably, it has been shown that all unitaries can be realized
with meshes of Mach-Zehnder interferometers incorporating
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phase shifters in different circuit configurations [14–20]. Ar-
chitectures based on mode divisor multiplexing have also
proven to be another valuable resource [21,22]. On the other
hand, an alternative factorization of unitaries consisting of in-
terlaced diagonal phase modulations with a fixed intervening
unitary operator was recently suggested [23–30]. In particular,
we showed that arbitrary unitary operations can be represented
by interlacing nonuniform waveguide couplers emulating the
discrete fractional Fourier transform (DFrFT) with N + 1
layers of phase shifters [28]. This architecture is robust to
imperfections and defects [29], and its fixed intervening op-
erator can be extended to a wide range of operations that
subsequently allow for different physical realizations [30].

Despite numerous efforts to realize unitary operators, to
the best of our knowledge, no prior work has discussed direct
photonic implementation of general nonunitary matrices. A
standard approach that has been utilized is the singular-value
decomposition (SVD) [6], which enables the creation of gen-
eral matrices by sandwiching a positive semidefinite diagonal
matrix between two unitaries. This method, however, results
in devices with a large optical path length and requires in its
construction programmable unitaries as intermediary building
blocks. On the other hand, there is a lack of direct compact
factorization of arbitrary complex nonunitary matrices. Most
relevant prior works showed that every complex 2n×2n matrix
can be factored as the finite product of circulant and diagonal
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FIG. 1. (a) A block diagram sketching the proposed factorization in (1), with D(m) being the complex diagonal matrices and F being the
DFrFT matrix acting as the unitary interlacing matrix. Furthermore, D(m) is decomposed as the product of a layer of phase shifters �(m) (orange
rectangles) and a layer of amplitude modulators A(m) (red triangles). (b) A schematic of a photonic-device architecture with waveguide couplers
representing the intervening operator F and with amplitude (red) and phase (yellow) modulators representing the programmable diagonal
matrices.

matrices [31,32]. Furthermore, Huhtanen and Perämäki [33]
demonstrated that any N×N complex-valued matrix can be
decomposed as the product of no more than 2N − 1 inter-
laced circulant and diagonal matrices. This result has been
particularly useful in deep-learning models for video classifi-
cation [34], optical networking [35], and frequency encoding
in quantum information processing [36].

In this work, we introduce a layer-efficient factorization to
represent arbitrary complex-valued matrices. This is achieved
after modifying the factorization presented in [33] by limit-
ing the maximum number of interlaced layers and replacing
the interlaced discrete-Fourier-transform (DFT) layer with a
passive layer performing the DFrFT operation. The latter is
inspired by photonic applications, where platforms to deploy
on-chip DFrFT based on waveguide arrays are known in the
literature [37], as well as other optical elements to represent
the factorization discussed here. Numerical experiments based
on optimization algorithms reveal that such a truncation leads
to numerical error as low as that obtained using the exact
factorization. The case of unitary matrices is discussed as a
particular limit, where the number of parameters to be op-
timized reduces to one half of the number required for the
general problem. Remarkably, the architecture is shown to be
robust against random perturbations on the passive interlacing
layer, provided that the latter are within acceptable tolerance
errors. Rigorous electromagnetic simulations further corrob-
orate the realization of the proposed programmable photonic
device.

II. RESULTS

A. Model

It is known that an arbitrary complex-valued N×N
matrix A can be parameterized in terms of at most

2N − 1 interlaced circulant and diagonal matrices [33]. In
turn, a circulant matrix C(m) can be diagonalized through
the DFT and inverse-discrete-Fourier-transform (IDFT) ma-
trices, F and F−1, according to the relation C(m) =
FD(m)F−1 [38]. Therefore, an arbitrary complex matrix A
can be parameterized through complex diagonal matrices
interlacing with the DFT matrix and its inverse as A =
D(2N−1)FD(2N−2)F−1D(2N−3) · · · D(3)FD(2)F−1D(1). Since an
N×N diagonal matrix contains N complex elements, the lat-
ter factorization involves 4N2 − 2N real parameters in total.
This relation defines a vastly overparameterized problem with
redundant factoring layers given that 2N2 real parameters are
required to characterize any N×N complex-valued matrix.

Here, we investigate the modified factorization

A = D(M )FD(M−1)FD(M−2) · · · D(3)FD(2)FD(1), (1)

where F is a unitary matrix to be defined and D(m) are
diagonal matrices with components D(m)

p,q = d (m)
p eiφ(m)

p δp,q for
m ∈ {1, . . . , M}. In the latter, φ(m)

p ∈ (−π, π ] and d (m)
p � 0

represent the pth phase and amplitude parameters of the
mth complex-valued diagonal layer, respectively. Figure 1
illustrates the block diagram of the proposed matrix decom-
position, along with the corresponding photonic architecture.
The unitary matrix F is realized using an array of coupled
waveguides, while each diagonal matrix is composed of two
contiguous layers, one containing exclusively N phase modu-
lators (�(m)) and the other containing exclusively N amplitude
modulators (A(m)).

In the proposed factorization, the M complex-valued di-
agonal matrices D(m) require 2MN real parameters. We
numerically explore this ansatz and analyze its universality,
i.e., the capability of the factorization (1) to reconstruct arbi-
trary N×N complex-valued matrices, for different numbers
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of complex diagonals M. We take the fixed operator F to
be among the class of DFrFTs. In this regard, it is worth
noting that several valid definitions for the DFrFT exist in the
literature [39,40].

We adapt the definition from Ref. [37], based on the wave
evolution of guided modes through a nonuniformly spaced
optical lattice, referred to as the Jx lattice. This construction is
useful as its physical realization is straightforward [37,41,42].
In this fashion, the DFrFT matrix of fractional order α = π/2
is given as the propagator operator F = exp(iHπ/2) for the
normalized length π/2, where H is the Jx lattice Hamilto-
nian with matrix components Hp,q = κpδp+1,q + κp−1δp−1,q.
The hopping rates κp = κ̃

2

√
(N − p)p for p ∈ {1, . . . , N − 1}

are given in terms of an experimental scaling factor κ̃ (see
the Appendix for more details). The coupling is physically
achieved by using identical single-mode photonic waveguides
with nonuniform spacing [37,41]. In the microwave domain,
such coupling has been shown to be possible using parallel
microstrip lines coupled to interdigital capacitors [42]. It is
straightforward to show that F satisfies all properties of the
discrete fractional Fourier transform; e.g., F is unitary, F 2 is
the parity operator, and F 4 is the identity matrix. Furthermore,
the DFrFT defined by F converges to the DFT in the limit of
large N .

B. Optimization and universality

To demonstrate the universality of this device, we optimize
the respective phases φ(m)

p and amplitudes d (m)
p , where p ∈

{1, . . . , N} and m ∈ {1, . . . , M}, for an ensemble of randomly
chosen target complex-valued matrices At . The latter are gen-
erated using SVD [43] so that each target matrix decomposes
as At = U�V †, where U and V † are unitary matrices ran-
domly generated in accordance with the Haar measure [44].
In turn, the diagonal matrix � = diag(σ1, . . . , σN ) contains
the singular values of At , with σi � 0 randomly taken from
the interval [0.25,1]. The goodness of approximation of the
target matrices is explored against the number M of complex
diagonal matrices, which can, in turn, be understood as being
composed of M phase layers and M amplitude layers. The loss
function, which we call the error norm, is defined as the mean
square error

L = 1

N2
‖A − At‖2, (2)

where ‖A‖ =
√

Tr(A†A) is the Frobenius norm, At is the
complex-valued target matrix under consideration, and A
is the reconstructed matrix using (1). The error norm is
a multivariate function defined on the parameter space
{φ(m)

p , d (m)
p }N,M

p=1,m=1. In such problems, the space is typically
highly nonconvex, and obtained minima, no matter how low
the error norm is, might not be unique. To find an acceptable
solution, we define the error norm tolerance value Lc so that a
local minimum is accepted as a solution whenever L < Lc.

The optimization is performed using the gradient-based
Levenberg-Marquardt algorithm (LMA), which is well suited
to sum-of-squares objective functions and can be used in both
under- and overdetermined cases [45]. The universality of the
factorization (1) is tested via 100 (500) randomly generated
target matrices in the underdetermined (overdetermined) cases

for N = 4 and N = 6 according to the SVD decomposition
previously discussed. The parameter space is randomly initial-
ized by assigning the values φ(m)

p ∈ (−π, π ] and d (m)
p ∈ [0, 
]

for p ∈ {1, . . . , N} and m ∈ {1, . . . , M}, where 
 sets the up-
per bound for the search region of the optimized amplitudes
d (m)

p . In the actual implementation, an unconstrained auxiliary
variable d ′(m)

p is used to encode d (m)
p through a sigmoid func-

tion with the appropriate bounds. This is found to produce
results faster and superior to those obtained using traditional
constraints. Up to 100 runs of LMA are performed, which
are terminated prematurely when an error norm below the
prefixed tolerance Lc = 10−10 is obtained. For practicality, the
amplitude parameters are bounded by a small value, chosen to
be ł = 1.5 in most cases, which typically yields satisfactory
results. In some instances this value may be increased slightly
for increased reliability or optimization performance.

To establish a reference point by which to compare our
findings, we also consider the motivating factorization based
on interlaced layers of DFT and IDFT when truncated to
M � 2N − 1 layers. The exact factorization of this architec-
ture for M = 2N − 1 allows for appropriate analysis of the
error norms for fewer layers and for comparison to DFrFT
with the same total number of layers. This establishes a
benchmark scenario in which performance increases can be
monitored as a function of M for different N . The resulting er-
ror norms associated with the optimization process are shown
in Figs. 2(a) and 2(b) for N = 4 and N = 6, respectively. The
exact factorization at M = 2N − 1 with interlaced DFT and
IDFT reveals error norms on the order of 10−20 to 10−30,
establishing the expected numerical precision for the opti-
mization process. Importantly, The DFrFT and the DFT-IDFT
structures are shown to provide similar results for all possible
stage numbers M, providing evidence for the non-necessity
of using alternating operators and their inverse. At the lower
end, from M = N − 3 to M = N , the error norm shows mild
improvements at each stage, but with rather high values that
never drop below the error threshold Lc. Between M = N
and M = N + 1 layers, a drastic drop of over 20 orders of
magnitude on average occurs, with only a handful of out-
liers that meet the threshold. Furthermore, the threshold at
M = N + 1 is surpassed the vast majority of the time within
the first few runs. This transition is analogous to that found
in the unitary case with no gain or loss elements, which also
occurs at the same stage number. The sharp decay between
M = N and M = N + 1 layers is corroborated for a larger
number of ports up to N = 14 in Fig. 2(c). As M is increased
up to M = 2N − 1, there is no significant change in the mean
or variance of the error norm. This verifies that (1) produces
results numerically equivalent to the exact case discussed in
Ref. [33]. We thus fix

M = N + 1

as the effective number of layers required for the factorization
(1) throughout the paper.

We illustrate the nature of the optimized parameters by
considering an example with N = 4 and M = N + 1 = 5.
A set of 500 random matrices is generated with singular
values uniformly distributed so that σ j ∈ [0.25, 1], with j ∈
{1, 2, 3, 4}, for each target matrix, whereas U and V † are
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FIG. 2. Error norms L for (a) N = 4 and (b) N = 6 while varying
the total number of layers M. One hundred targets were used for
M �N , and 500 were used for M � N + 1, with LMA stopping
when error tolerance Lc = 10−10 was achieved for the latter. Opti-
mizations were performed using two different choices of the mixing
operator F interlaced with diagonal layers. The circles correspond
to alternating DFT and IDFT layers, whereas triangles correspond
to using DFrFT. The upper bound on the diagonal amplitudes d (m)

i

was set to 1.5. (c) Numerical architecture performance for N > 6
using the DFrFT layers and for M = N, N + 1 to illustrate the norm
transition at M = N + 1.

Haar random matrices as customary. In this form, we generate
random complex-valued matrices with specific eigenvalues,
and we can study the maximum bound 
 for the amplitude
parameters d (m)

p to be optimized. To provide more insight
into the previous choice 
 = 1.5, we extend the optimization
bound to 
 = 3. Furthermore, the encoded parameters d (m)

p are
initialized to 1, which is remarkably found to produce results
and performance similar to choosing random values. This is
done to find solutions with d (m)

p that deviate less frequently
from 1.

Figure 3(a) displays one example from the set of target
matrices, with the corresponding optimized magnitudes and
phases illustrated in Figs. 3(b) and 3(c), respectively. In turn,
Fig. 3(d) shows the occurrence distribution frequency of the
optimized amplitude parameters d (m)

p for all 500 target matri-
ces. The latter reveals that the values of d (m)

p are more likely
to fall within the range (0,2) when the singular values of
the target matrix are less than 1. Although there may exist
some d (m)

p > 2, their probability of occurrence is relatively

low. Thus, one can focus mainly on the previous interval
during optimization and increase the interval upper bound 


for tuning purposes when required. This is particularly useful
since the number of parameters increases quadratically with
N , and the optimization becomes computationally demanding.
On the other hand, amplitude parameters in the interval (1,2)
appear with considerable frequency, implying that active gain
elements are required in the physical realization unless the
desired matrix is rescaled through a global amplitude fac-
tor, as discussed below. The latter behavior is not present
for the optimization of the phase parameters φ(m)

p , as they
are constrained to the compact domain (−π, π ]. Figure 3(d)
shows, indeed, that the optimized phases do not follow any
particular pattern during the optimization of random targets,
and their occurrence frequency distributes almost uniformly
across (−π, π ].

C. Unitary limit

Unitary target matrices Au
t ∈ U (N ) are a subset contained

in the set of complex-valued N×N matrices, and their fac-
torization and photonic implementation have been widely
explored in the literature [23–25,28,46]. It is a natural ques-
tion to explore whether our architecture reproduces the results
for unitaries as a special case. To address this, one can factor
the diagonal matrices of (1) as D(m) = �(m)A(m), with �(m)

and A(m) being diagonal matrices with components �(m)
p,q =

eiφ(m)
p δp,q and A(m)

p,q = d (m)
p δp,q, where, in particular, �(m) is

unitary. In general, the product of unitary matrices renders
a unitary matrix. Following the factorization (1) and D(m) =
�(m)A(m), it is thus straightforward that a unitary target matrix
is obtained from the factorization if A(m) = I for all m ∈
{1, . . . , N}, with I being the N×N identity matrix. In turn,
the singular values of Au

t are σp = 1 for all p ∈ {1, . . . , N}.
The latter is a sufficient condition, but not necessary,

as there might be cases in which the optimized amplitudes
d (m)

p �= 1 render unitary matrices. We thus numerically ex-
plore this possibility. The behavior around the vicinity of
unitary matrices can be studied by first randomly constructing
complex-valued matrices whose singular values σp � 1. By
using the convention σp � σp+1 for all p ∈ {1, . . . , N − 1},
it is then enough to make σmin := min({σp}N

p=1) = σN ≈ 1
to ensure that At approximates to a unitary matrix Au

t . The
unitary limit of At = U�V † is independent of the random
unitary Haar matrices U and V † and depends exclusively on
the choice of the singular values. This is illustrated by con-
sidering N = 4 and randomly generating 100 target matrices
so that σmin = σ4 uniformly spans the interval [0.2,1] for each
target. The remaining singular values σ j=1,2,3 are randomly
distributed in the interval [σmin, 1] for each selection of σmin.
The eigenvalues λ for each of the resulting target matrices
are shown in Fig. 4(a) and distribute from the inner part
of the complex unit circle |λ| < 1 (σmin < 1) and converge
to the unit circle in the unitary-case limit (σmin → 1). The
corresponding optimization is performed for each of the ran-
dom target matrices, from which the set r = {d (m)

p }N,N+1
p,m=1 is

constructed for each target so that it contains the optimized
amplitude parameters exclusively.

Indeed, during the optimization process, the phases are
automatically determined, but we are particularly interested in
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FIG. 3. (a) Example of a random target matrix for N = 4 and M = 5 generated using the SVD with two-Haar random unitary matrices and
singular values uniformly chosen in the range [0.25,1]. Optimized (b) amplitude and (c) phase parameters for the target matrix shown in (a).
Distribution of (d) the magnitudes and (e) phases across all target matrices for N = 4 and M = 5.

the amplitudes, as they provide the relevant information about
the unitary limit. The mean μr and standard deviation Sr of
r for each target are illustrated in Fig. 4(b). The latter shows
how the optimized amplitudes distribute when σmin increases
from 0.2 to unity for two optimization scenarios. In the first
case shown in Fig. 4(b) (left panel), the optimization region
where the values of d (m)

p are searched is bound from above
to 
 = 1. Here, no particular pattern is observed for small
σmin ≈ 0.2, which is expected as the random complex-valued
targets have no particular structure. In turn, a quite character-
istic tendency is observed for σmin → 1, where the standard
deviation tends to vanish, implying that the optimized ampli-
tude parameters start to pile up around the vicinity of μr = 1.
Although this numerical evidence suggests that unitaries are
recovered when all the optimized amplitudes approach 1, the
parameter search was performed in the interval 0 � d (m)

p �

 = 1. Thus, the possibility of finding unitaries for d (m)

p > 


will not be ruled out. This is, indeed, the second case depicted
in Fig. 4(b) (right panel), where the search region has been
expanded, 0 � d (m)

p � 
 = 1.5. The transition to the unitary
case is fuzzier, and although μr → 1, the standard deviation
Sr does not vanish; e.g., the amplitude parameters d (m)

p are
strictly different from unity. To explain this, suppose that
N − 1 amplitude layers are equal to the identity and one is
proportional to the identity, namely, A(m1 ) = dm1I for λ1 < 1
and some m1 ∈ {1, . . . , N + 1}. Thus, a second diagonal am-
plitude layer A(m2 ) could exist so that A(m2 ) = d−1

m1
I, leading

to a unitary matrix A. Although both cases render the required
unitary matrix, the former is preferable because it is less
computationally expensive.

D. Defects and error mitigation

So far, the universality of the architecture described by
Eq. (1) has been verified. Nevertheless, one can consider

a less idealistic scenario in which the interlaced DFrFT
unitary matrix F contains imperfections due to fabrication
errors. Previous unitary factorizations [29] have been shown
to be resilient to perturbation on the interlacing matrix F
when the perturbation is considered to be unitary as well.
This was achieved by perturbing the Hamiltonian defining
the unitary evolution F = exp(iHπ/2). Here, we account
for error in a general manner by considering the pertur-
bations F̃ i(ε) = F i + εRi, i ∈ 1, . . . , N , where ε 	 1 is a
perturbation strength parameter and Ri are complex-valued
random matrices with components constrained as |Ri

p,q| < 1.
This ensures that each new, nonunitary, interlacing matrix
F̃ i does not significantly deviate from the DFrFT for small
enough ε. The value of ε by itself does not provide insight
into the error introduced to the system. We thus estimate
deviations from the ideal model through the average rela-
tive percentage error E (ε) := (‖F̃ (ε) − F‖/‖F‖)×100% ≡
ε(‖R‖/‖F‖)×100%, which grows linearly with ε. To visu-
alize the error induced in the matrix F̃ , we consider 100
random matrices R for each value of ε and evaluate the cor-
responding percentage error E (ε). Figure 5(a) displays the
mean (solid line) and standard deviation (shaded area) for
the set of points generated for each ε. Particularly, one can
see that perturbations induce errors of about 3.3%, 9.77%,
and 16.11% for ε = 0.02, ε = 0.06, and ε = 0.1, respectively.
This reveals that, although ε = 0.1 may be considered a small
perturbation, it accounts for a considerable error in F̃ (ε).

From the previous considerations, we test the effects of F̃ i

in the interlaced architecture. To this end, a set of 500 Haar
random and complex-valued target matrices are constructed
for each parameter strength ε = 0.02, 0.06, 0.10. Likewise,
a set of complex-valued random matrices Ri is generated
for each target matrix. First, the set of phase and ampli-
tude parameters {φ(n)

p , d (n)
p }N,N+1

p=1,n=1 is optimized when ε = 0
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FIG. 4. (a) Eigenvalues λ of 100 randomly generated 4×4 target
matrices with singular values σ1,2,3,4 ∈ [σmin, 1] for increasing values
of σmin. (b) Mean μr and standard deviation Sr of the set of opti-
mized amplitude parameters r = {d (m)

p }N,M
p,m=1 for N = 4, M = 5, and

the optimization search region limited by 
 as a function of σmin.
Black-edged markers correspond to the unitary case (σmin = 1).

(unperturbed) and is then used to evaluate the interlaced ar-
chitecture with F̃ i(ε). The resulting error norms (blue bars)
are presented in Fig. 5(b), where it is clear that in all in-
stances, the error norm is always higher than 10−5 and above
the fixed tolerance Lc, even for relatively small deviations of
3.3% (ε = 0.02). Despite this issue, it is possible to perform a
second optimization on the interlaced architecture using the
perturbed matrices F̃ i(ε). This leads to the new optimized
parameters {φ̃(n)

p , d̃ (n)
p }N,N+1

p=1,n=1. The updated error norm shown
in Fig. 5(b) (orange bars) reveals that, once the second opti-
mization is performed, the error norm drops back under the
tolerance value Lc. Therefore, the architecture (1) is resilient
to random defects on the DFrFT layer, which can be amended
by properly tuning the phase parameters. Indeed, this holds
whenever defects lie within reasonable perturbation strengths;
otherwise, the resulting interlaced matrices F̃ i(ε) become
mostly random matrices (see insets in Fig. 5).

FIG. 5. (a) Mean and standard deviations of the percentage error
E (ε) of the perturbed matrix F̃ (ε) with respect to the DFrFT matrix
F for N = 4. The latter was computed using 500 random target
matrices per value of ε. (b) Calibration replacing the mixing layers
by the perturbed layers F̃ i = F i + εRi, where Ri are matrices with
elements chosen randomly within the complex unit circle. Shown
are log norms when the original amplitude and phase parameters
are used (blue) and when recalibrating the amplitude and phase
parameters (orange).

E. Photonic-device design and simulation

To further verify the proposed architecture, we perform rig-
orous wave-propagation simulations using the finite-element
method for a four-channel device (N = 4) designed to operate
at the telecommunication wavelength (1550 nm). Here, we
consider silicon-on-insulator ridge waveguides with a width
of 500 nm and a height of 200 nm, while we consider re-
fractive indices of nc = 3.47 and ns = 1.4711 for the core
and substrate regions, respectively. Using the effective index
method, one can effectively approximate the problem as a
highly accurate two-dimensional model, where the core is
replaced by an effective core index neff = 2.7241 for the
propagation of the fundamental TE mode. In this case, we
consider wave propagating along the x direction and spatially
varying along the y direction, leading to an electric field of
the form �E = E (x, y)ẑ. The Jx lattice in this example com-
prises four waveguides with a separation of 1.5 µm in the
innermost channels and 1.56132 µm in the outermost chan-
nels. This ensures that a DFrFT of order π/2 is achieved
for a total propagation length of 158 µm. The phase shifters
are simulated by changing the refractive index of the waveg-
uide to achieve the desired change. These are 20×20 µm2

components [yellow bow ties in Fig. 6(a)], based on the spec-
ifications of phase-change materials (PCMs) [47,48]. In turn,
the amplitude modulators [red rectangles in Fig. 6(a)] are sim-
ulated through optical media with varying imaginary parts, a
property available using PCMs such as Ge2Sb2Te [49], which
allow for a compact and relatively robust extinction rate due to
strong deviations on the imaginary part of the refractive index.

An illustration of the propagation of the electric-field am-
plitude related to the equivalent two-dimensional structure
when the architecture is independently excited at each input
is presented in Fig. 6(b). For testing purposes, the phase
shifters and amplitude parameters are loaded with the values
shown in Figs. 3(b) and 3(c), respectively. Note that some
amplitude parameters d (m)

p are larger than 1, and one thus
requires an intensity gain in the proposed architecture, which
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FIG. 6. (a) A sketch of the proposed architecture for N = 4 based on coupled waveguide arrays and amplitude (red) and phase (yellow)
modulation using phase-change materials. (b) The electric field | �E (x, y)| intensity plot for the complex-matrix factorization (1) obtained from
wave simulations when the phase and amplitude parameters are those depicted in Figs. 3(b) and 3(c). The simulations are performed for
the transverse-electric-field polarization. (c) Theoretical and simulated amplitudes of the field-transmission-matrix elements |tpq|, where the
transmission-matrix elements are defined as tpq = bp/aq, i.e., the ratio of the electric-field complex modal amplitude measured at the output
channel p over the electric-field complex modal amplitude at the input channel q. The rescaled version of the parameters in Figs. 3(b) and
3(c) was used in both theory and simulation.

is not being considered here. It is thus more convenient to
reconstruct the rescaled target matrix Ãt = D−1At , with D =∏N

m=1 max({d (m)
q }N

q=1), which requires the amplitude parame-

ters d̃ (m)
p = d (m)

p /max({d (m)
q }N

q=1) for its reconstruction. In the
latter, we have factored out the largest d (m)

p for each layer m.
By considering Ãt , we can eliminate the need for amplitude-
gain elements in the architecture, simplifying the design and
reducing the manipulation of amplitude parameters. Specif-
ically, one limits the manipulation of amplitude parameters
to N − 1 per layer instead of scaling every parameter, as the
initially largest parameters per layer is now fixed to 1 while
the rest are rescaled accordingly.

For comparison, the theoretical and simulated amplitudes
of the field transmission matrix tp,q = bp/aq are shown in
Fig. 6(c). In this notation, bp represents the complex modal
amplitude of the electric field in the output channel p, and
aq represents the complex modal amplitude of the electric
field in the input channel q. Here, the excitation is swept
across all p input channels, while the output is measured at
the qth channel. These results show some mild deviations
of the simulation from the theory, possibly due to several
factors, such as imperfect coupling in the waveguide array,
amplitude modulators, and phase shifters. Despite this, the
mean square error L of the simulated output with respect to
the theoretical rescaled target At leads to L = 6.62918×10−3.
The latter error can be improved by first identifying the defects
on the lattice and accordingly modifying the interlacing layer
F ; then, the parameters will be optimized a second time so that
the defects of F are taken into account. This is, indeed, the
procedure discussed in [29] for unitary architectures, which
can be adapted for the present device.

III. DISCUSSION AND CONCLUSION

In summary, we proposed an architecture for imple-
menting arbitrary discrete linear operators with photonic

integrated circuits. The proposed architecture is built on inter-
lacing fixed discrete-fractional-Fourier-transform layers with
programmable amplitude-and-phase-modulator layers. Our
results indicate that this architecture can universally represent
N×N complex-valued operations with at most N + 1 control-
lable layers. The proposed architecture offers a fairly simple
physical realization by utilizing photonic waveguide arrays in
conjunction with arrays of amplitude and phase modulators.
It should be noted that even if the singular values of the target
matrix are less than 1, in general, optimizing the amplitude
modulators requires both gains (d (m)

p > 1) and losses (d (m)
p <

1). To overcome this challenge and to bypass the demand-
ing requirement for gain, the target matrix At was properly
rescaled and then reconstructed. Although modulators based
on Mach-Zehnder interferometers or optical ring resonators
[50] are known optical implementations for amplitude modu-
lators, such elements substantially increase the overall length
and complexity of the final device, leading to potentially ad-
ditional errors due to the presence of the coupling elements.
Alternatively, phase-change materials based on Ge2Sb2Te and
related structures [48,49] are emerging candidates to replace
and implement the required amplitude modulation. In the
microwave domain, integrated active elements that produce
both amplitude gains and losses are relatively simple to im-
plement in the architecture. Further microwave realizations
of the DFrFT using microstrip and interdigital capacitors was
demonstrated and experimentally verified [42].

Potential manufacturing errors on the waveguide array
characterizing the DFrFT were taken into account and showed
the overall resilience of the universality performance of the
architecture, provided that such errors lie within allowed tol-
erance values, such as perturbations on F with a percentage
error of up 18%. Although the optimized parameters obtained
from the unperturbed lattice produce a significant error norm
L when defects are taken into account, a second optimization
brings the error back to the imposed tolerance error. There-
fore, defects can be mitigated overall by adequately tuning
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the available active elements in the architecture. The latter
brings evidence that the passive layer F could be replaced by
another suitable waveguide array. Indeed, for unitary architec-
tures, it was numerically found that interlacing layers could be
replaced by matrices with an adequate density property across
their matrix elements [30], and some random unitary matrices
have been shown to be suitable for such a task [25].

Alternatively, the architecture can be configured to operate
as a unitary matrix by fixing all the amplitude modulators
to unity, d (m)

p = 1, leaving only the phase elements φ(m)
p as

the tunable parameters. That is, the effective number of pa-
rameters reduces from 2N (N + 1) to N (N + 1), rendering
a functionality equivalent to that of other unitary photonic
solutions reported in the literature [23,28–30,51]. The latter
is by no means the only setting in which the device becomes
unitary. Indeed, Fig. 4 shows numerical optimizations where
amplitude parameters d (m)

p �= 1 also render unitary targets.
This follows from the overparametrization of the architecture,
which opens the possibility for more solutions.

The universal nature of the proposed architecture per-
mits its deployment in optical processing applications such
as convolutional network accelerators [52,53]. Since the de-
vice represents a general complex-valued matrix, it can be
used as a linear layer in optical neural networks, a solution
explored using alternative optical elements such as Mach-
Zehnder interferometers [6] and microring resonators [54].
Furthermore, given the versatility of the proposed solution,
further applications can be explored by changing the material
platform to those suitable for individual photon manipulation
and photon entanglement generated through nonlinear effects.
The latter includes silicon nitride (Si3N4) and lithium niobate
solutions. Applications in this regard include boson sampling
in quantum computing tasks [55,56], production of NOON
states [57], and on-chip production of entangled photon states
[58,59].
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APPENDIX: COUPLED-MODE THEORY
AND PHOTONIC DFRFT

This Appendix briefly summarizes the mathematical
derivation of the DFrFT. Here, we consider a dielectric
waveguide composed of a main core and buried in a transpar-
ent media with refractive indexes nco and ncla, respectively.
The waveguide has rectangular transversal geometry on the
y-z plane and extends longitudinally through the x axis.
For design and analysis, it is convenient to approximate
the waveguide system as a simpler representation using the
effective index theory [60], where the three-dimensional
structure collapses into an approximated two-dimensional pla-
nar model, in which the refractive index of the core is replaced
by the effective index neff. Under these considerations, the
electric field of the propagating wave is written as E(x, y) =

E (y)ei(wt−βx)ez, with β being the propagation constant, ez

being a Euclidean unit vector, and E (y) being the electric-field
amplitude determined by imposing the proper boundary con-
ditions. For guided quasi-TE and quasi-TM modes, the modal
field E (y) has finite power, and the corresponding propaga-
tion constants form a discrete set {βm}K

m=1, with K ∈ Z+. For
details see [61].

Waveguide arrays are composed of parallel, not neces-
sarily equidistant, neighboring waveguides, each designed to
allow the propagation of guided modes. In most cases, it
is desired to allow only one guided mode, the fundamen-
tal mode, so that light coupling between neighbors always
excites only one mode. In this scenario, light “hops” from
one waveguide to its neighbor due to the overlap of the
evanescent wave solutions of the guided modes. For a set
of N single-mode coupled waveguides, the wave evolution
across the array is ruled by coupled-mode theory [61,62],
which is characterized by the discrete Schrödinger-like equa-
tion −idE/dt = HE, with E := (a1, . . . , aN )T E (y) being the
corresponding supermodes and ap ∈ C being the modal co-
efficient of the pth waveguide, for p ∈ {1, . . . , N}. Here, in
general, H ∈ CN×N is a tridiagonal Hermitian matrix with
respect to the Euclidean inner product in CN with compo-
nents Hp,q = κpδp+1,q + κ∗

p−1δp−1,q + νpδp,q. Here, κp and νp

are the neighbor and on-site interactions, respectively, and
κ0 = κN+1 = 0. Particularly, when all waveguides have the
same dimensions, the on-site term vanishes (νp = 0).

The Jx operator is well known in the context of angu-
lar momentum in quantum mechanics and free-space optics
[39,63], with an integrated photonic analog through the cou-
pling parameters [37] κp = κ̃

2

√
(N − p)p, with κ̃ being a

scaling coupling factor and νp = 0. Since the couplings κp

do not depend on x, the wave evolution can be written in
terms of the unitary operator F (α) := e−iHα as E(x = α) =
F (α)E(x = 0), where E(0) ≡ E is the initial state at the array
input. This renders the eigenvalue problem HE(n) = λnE(n),
with E(n) := (a(n)

1 , . . . , a(n)
N )T E (y) and λn being the array su-

permodes and eigenvalues, respectively, given by

a(n)
q = 2

2q−N−1
2

√
(N − q)!(q − 1)!

(N − n)!(n − 1)!
P(n−q,−n−q+N+1)

q−1 (0),

λn = 2n − N − 1

2
, ∀ n, q ∈ {1, . . . , N}. (A1)

The upper index n denotes the supermode number, q is the
waveguide (channel) number, and P(a,b)

n (z) are the Jacobi
polynomials. The unitary matrix is written explicitly as [37]

Fp,q(α) =
∑

k

e−iαku(p)
k u(q)

k ≡ ip−q

[
sin

(
α

2

)]q−p

×
[

cos

(
α

2

)]−q−p+N+1
√

(p − 1)!(N − p)!

(q − 1)!(N − q)!

× P(q−p,−q−p+N+1)
p−1 [cos(α)]. (A2)

The unitary operator F (α) meets all the required properties
for the DFrFT, that is, unitarity, the additivity rule, and the
existence of a cyclic order (see [52]). Thus, F (α) is deemed a
photonic candidate for DFrFT of order α.
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