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Phase separation and metastability in a mixture of spin-1 and spin-2 Bose-Einstein condensates
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We investigate the ground state and dynamics of a mixture of spin-1 and spin-2 Bose-Einstein condensates of
87Rb atoms. For the experimentally measured interaction coefficients, the ground state exhibits phase separation
between the spin-1 ferromagnetic state and the spin-2 nematic state. At the interface between them, a partially
polarized spin state emerges. The uniformly mixed state of the spin-1 polar state and spin-2 biaxial nematic state
is metastable, and the phase separation via nucleation can be triggered by a local disturbance.
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I. INTRODUCTION

Macroscopic coherent matter waves with internal degrees
of freedom, such as superfluid 3He [1], p-wave and d-wave
superconductors [2], and spinor Bose-Einstein condensates
(BECs) of atomic gases [3–7], have attracted great inter-
est because of their rich variety of quantum features. In
particular, the experimental systems of ultracold atoms are
highly controllable, and various studies on the spinor BECs,
including studies on their spin-mixing dynamics [7–10], topo-
logical excitation [11–16], and spin textures [17,18], have
been reported.

The ground-state phases of the spinor BECs depend on
the spin-dependent interactions between atoms. For the spin-1
BEC, there are two types of ground states: the polar and ferro-
magnetic states [3–5]. The phase diagram is more complicated
for the spin-2 BEC, which includes the cyclic phase [19–24].
The spin-3 BEC exhibits eleven ground-state phases [25–27].
An external magnetic field modifies the phase diagrams [7].

Mixtures of two or more spinor BECs can enrich the
physics further. The phase diagrams and many-body prop-
erties of a binary mixture of spin-1 BECs have been
theoretically studied [28–42] and experimentally realized for
spin-1 87Rb and 23Na atoms [43]. Recently, the research
was extended to a three-component mixture of spin-1 BECs
[44–46]. The ground-state phase diagrams of a mixture of
spin-1 and spin-2 BECs, including their broken-axisymmetry
phases [47], have also been reported. The dynamics of a spin-1
BEC interacting with a spin-2 BEC have been observed for
87Rb atoms [48].

Most of the previous studies on mixtures of spinor
BECs have been restricted to the single-mode approxima-
tion (SMA), where the spatial degrees of freedom are frozen
[29–31,33–39,42]. For a mixture of spin-1 and spin-2 BECs,
Ref. [47] also relied on the SMA, which showed that the
ground state of a 1:1 mixture for 87Rb atoms is the polar state
for spin 1 and the biaxial nematic state for spin 2. However,
there is a possibility that phase separation occurs in a system
much larger than the spin healing length which cannot be
captured by the SMA. The purpose of the present paper is
to explore the possibility of phase separation in the spin-1 and
spin-2 BECs of 87Rb atoms.

In this paper, using mean-field theory, we show two main
results. First, the ground state of the mixture of spin-1 and
spin-2 BECs of 87Rb atoms exhibits phase separation into the
two phases: the ferromagnetic state for spin-1 and the nematic
state for spin-2. In the interface layer between these two
phases, a distinct phase emerges in which both components
have partial magnetizations into the opposite directions.
Second, the uniformly mixed state of the spin-1 polar state
and spin-2 biaxial nematic state can be metastable. If a local
disturbance is imparted to this mixture, the phase separation
is triggered, which extends over the whole space. We will
show that the phase separation via nucleation can be observed
even in the presence of the inelastic collisional decay of
spin-2 87Rb atoms.

This paper is organized as follows. Section II provides a
formulation of the problem. Section III reveals that the ground
state exhibits phase separation. Section IV shows that there
exists a uniformly mixed metastable state and demonstrates
the dynamics of phase separation via nucleation. Section V
proposes an experiment to observe the phase separation via
nucleation, and Sec. VI summarizes the results.

II. FORMULATION OF THE PROBLEM

In the mean-field approximation at zero temperature, the
spin-1 and spin-2 BECs can be described by the macroscopic
wave function ψ

( f )
m (r), where f = 1, 2 is the hyperfine spin

and m = − f ,− f + 1, ..., f is the magnetic sublevel. The
wave function is normalized as

∫
dr

∑
m |ψ ( f )

m (r)|2 = Nf ,
where Nf is the number of spin- f atoms. The total energy of
the mixture of spin-1 and spin-2 BECs is written as

E = E (1) + E (2) + E (12). (1)

Here and henceforth, superscripts (1), (2), and (12) refer to
the hyperfine spins. The energy of each spin component is
given by

E (1) =
∫

dr
1∑

m=−1

ψ (1)∗
m (r)

[
− h̄2

2M
∇2 + V1(r)

]
ψ (1)

m (r)

+ 1

2

∫
dr

[
g(1)

0 + g(1)
1 F (1)(r) · F (1)(r)

]
[ρ (1)(r)]2, (2)
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E (2) =
∫

dr
2∑

m=−2

ψ (2)∗
m (r)

[
− h̄2

2M
∇2 + V2(r)

]
ψ (2)

m (r)

+ 1

2

∫
dr

[
g(2)

0 + g(2)
1 F (2)(r) · F (2)(r)

+ g(2)
2

∣∣A(2)
0 (r)

∣∣2]
[ρ (2)(r)]2, (3)

where M is the mass of an atom and V1(r) and V2(r) are the
external potentials. The interaction coefficients in Eqs. (2)
and (3) are defined as [3,4,19,20]

g(1)
0 = 4π h̄2

M

a(1)
0 + 2a(1)

2

3
, (4a)

g(1)
1 = 4π h̄2

M

a(1)
2 − a(1)

0

3
, (4b)

g(2)
0 = 4π h̄2

M

4a(2)
2 + 3a(2)

4

7
, (4c)

g(2)
1 = 4π h̄2

M

a(2)
4 − a(2)

2

7
, (4d)

g(2)
2 = 4π h̄2

M

7a(2)
0 − 10a(2)

2 + 3a(2)
4

7
, (4e)

where a( f )
F is the s-wave scattering length of a collision chan-

nel with the total spin F . In general, the macroscopic wave
function can be decomposed into ψ

( f )
m (r) =

√
ρ ( f )(r)ζ ( f )

m (r),
where ρ ( f )(r) is the density of spin- f atoms and ζ

( f )
m (r) is

the spin wave function satisfying
∑

m |ζ ( f )
m (r)|2 = 1. Using

the spin wave function ζ
( f )
m (r), we define the magnetization

vector fields in Eqs. (2) and (3) as

F ( f )(r) =
∑
mm′

ζ ( f )∗
m (r) f ( f )

mm′ζ
( f )
m′ (r), (5)

where f ( f ) is the vector of spin- f matrices. The spin-singlet
scalar for spin 2 in Eq. (3) is defined as

A(2)
0 = 1√

5

(
2ζ

(2)
2 ζ

(2)
−2 − 2ζ

(2)
1 ζ

(2)
−1 + ζ

(2)
0 ζ

(2)
0

)
. (6)

The interaction energy between spin-1 and spin-2 components
is given by [47]

E (12) =
∫

dr
[
g(12)

0 + g(12)
1 F (1)(r) · F (2)(r)

+ g(12)
2 P(12)

1 (r)
]
ρ (1)(r)ρ (2)(r), (7)

where the interaction coefficients have the forms

g(12)
0 = 4π h̄2

M

2a(12)
2 + a(12)

3

3
, (8a)

g(12)
1 = 4π h̄2

M

a(12)
3 − a(12)

2

3
, (8b)

g(12)
2 = 4π h̄2

M

3a(12)
1 − 5a(12)

2 + 2a(12)
3

3
, (8c)

with a(12)
F being the s-wave scattering length between spin-1

and spin-2 atoms with colliding channel of total spin F . In

2π0

(a) F (1,0,0) (b) P (0,1,0) (c) P (-1,0,1)/

(d) B (1,0,0,0,1)/ (e) U (0,0,1,0,0)

phase

FIG. 1. Spherical harmonic representations of the spin-1 and
spin-2 states. The surface and its color represent the isosurface
and phase of the complex function S(θ, φ). (a) Ferromagnetic state
(abbreviated by F) and (b, c) polar state (P) of spin 1. (d) Biax-
ial nematic state (B) and (e) uniaxial nematic state (U) of spin
2. Spin vectors are denoted by ζ(1) = (ζ (1)

1 , ζ
(1)
0 , ζ

(1)
−1 ) and ζ(2) =

(ζ (2)
2 , ζ

(2)
1 , ζ

(2)
0 , ζ

(2)
−1 , ζ

(2)
−2 ).

Eq. (7) we defined

P(12)
1 = |A1,1|2 + |A1,0|2 + |A1,−1|2, (9)

where

A1,1 = 1√
10

ζ
(1)
1 ζ

(2)
0 −

√
3

10
ζ

(1)
0 ζ

(2)
1 +

√
3

5
ζ

(1)
−1 ζ

(2)
2 , (10a)

A1,0 =
√

3

10
ζ

(1)
1 ζ

(2)
−1 −

√
2

5
ζ

(1)
0 ζ

(2)
0 +

√
3

10
ζ

(1)
−1 ζ

(2)
1 , (10b)

A1,−1 =
√

3

5
ζ

(1)
1 ζ

(2)
−2 −

√
3

10
ζ

(1)
0 ζ

(2)
−1 + 1√

10
ζ

(1)
−1 ζ

(2)
0 . (10c)

In the present study, we neglect the effects of the external
magnetic field and the magnetic dipole-dipole interaction.

The coupled Gross-Pitaevskii (GP) equations are obtained
by the functional derivative of the total energy as

ih̄
∂ψ

( f )
m

∂t
= δE

δψ
( f )∗
m

. (11)

To obtain the ground state, we propagate the GP equation in
imaginary time, where i on the left-hand side of Eq. (11)
is replaced by −1. The real- and imaginary-time evolutions
are numerically integrated using the fourth-order Runge-Kutta
method with the pseudospectral scheme [49].

For visualizing the symmetry of spin states, it is convenient
to use the spherical-harmonic representation

S(θ, φ, r) =
f∑

m=− f

ζ ( f )
m (r)Y m

f (θ, φ), (12)

where Y m
f (θ, φ) is the spherical harmonics. Figure 1 shows

several examples of the spherical-harmonic representations of
spin states. Henceforth, we use the abbreviations F, P, B, and
U for the spin states (Fig. 1).
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In the present paper, we restrict ourselves to the BECs
of 87Rb atoms. The s-wave scattering lengths for spin-1
87Rb atoms are known to be a(1)

0 = 101.8aB, a(1)
2 = 100.4aB

[50], where aB is the Bohr radius. For these values, the
ground state of the spin-1 BEC is the F state [Fig. 1(a)].
The scattering lengths for spin-2 atoms were measured to be
a(2)

2 − a(2)
0 = 3.51aB, a(2)

4 − a(2)
2 = 6.95aB [51], and (4a(2)

4 +
3a(2)

2 )/7 = 95.44aB [52], which give a(2)
0 = 87.96aB, a(2)

2 =
91.47aB, and a(2)

4 = 98.42aB. For these values, the ground
state of the spin-2 BEC is a linear combination of the B and
U states [Figs. 1(d) and 1(e)]. In Ref. [48], the scattering
lengths between spin 1 and spin 2 were measured to be a(12)

3 −
a(12)

2 = 2.5aB and a(12)
1 − a(12)

2 = 3.1aB. Combining these val-
ues with (3a(12)

1 + 5a(12)
2 + 2a(12)

3 )/10 = 98.006aB reported in
Ref. [52], we can determine all the interspin scattering lengths
as a(12)

1 = 99.68aB, a(12)
2 = 96.58aB, and a(12)

3 = 99.08aB. On
the other hand, the experiment in Ref. [53] gave a(12)

3 −
a(12)

2 = 1.36aB and a(12)
1 − a(12)

2 = 1.40aB. The correspond-
ing interspin scattering lengths are a(12)

1 = 98.71aB, a(12)
2 =

97.31aB, and a(12)
3 = 98.67aB. We refer to these two sets of

scattering lengths based on Refs. [48] and [53] as “set I” and
“set II,” respectively.

III. GROUND STATES

In this section we present the ground states of a mixture
of spin-1 and spin-2 87Rb BECs. To obtain the ground state,
the imaginary-time evolution is started from initial states with
random complex numbers. We repeat this procedure numer-
ous times to ensure that the obtained state is the true ground
state. The global phase rotation and spin rotation are applied to
the obtained state appropriately, since the system has the U(1)
symmetry and spin-rotation symmetry. In Sec. III A, ignoring
the spatial degree of freedom within the SMA, we focus on
the dependence of the spin ground state on the mixing ratio of
spin 1 and spin 2. In Sec. III B we include the spatial degree
of freedom (one dimension) to examine the phase separation.

A. Single-mode approximation

First, we consider the ground state under the single-mode
approximation, which is valid if the size of the atomic cloud
is much smaller than the spin healing lengths. We assume
that the spatial density distribution is fixed to the ground
state of the tight trapping potential and that ζ( f ) does not
depend on the position. We define the atomic number ratio as
R = N1/(N1 + N2). In Ref. [47] only the case of R = 0.5 was
studied, and the ground state for 87Rb was shown to be the P
state for spin 1 and B state for spin 2 (we hereafter refer to this
state as “PB”). Here we extend this result to other values of R.

Figure 2 shows the R dependence of the ground state.
For 0 < R � 0.6, the ground state is the PB state, consistent
with the results in Ref. [47]. For 0.6 � R � 0.77, both spin-1
and spin-2 components acquire magnetization with opposite
directions. This state corresponds to the a− state defined
in Ref. [47]. For R � 0.77, the ground state becomes the F
state for spin 1 and U state for spin 2. In the limit of R → 0
and R → 1, this result is consistent with the well-known
ground state of an individual spin-1 or spin-2 BEC. In Fig. 2,

FIG. 2. Ground state under the single-mode approximation. The
lines represent F (1)

z , F (2)
z , and |A(2)

0 |2 as functions of the atomic
number ratio R = N1/(N1 + N2), where the state is rotated so that
the magnetizations in the x-y direction, F (1)

⊥ and F (2)
⊥ , vanish. The

spherical-harmonic representations of spin 1 and spin 2 are shown for
R = 0.2, 0.7, and 0.9. The insets show magnifications of the dashed
rectangle regions.

parameter set I of the scattering lengths is used; we have
confirmed that set II also gives qualitatively the same result.

B. Phase separation

To study the miscibility of the spin-1 and spin-2 BECs,
we consider a one-dimensional system without external po-
tentials, V1 = V2 = 0. We normalize the length and density by
L = 1/

√
4πaBn0 and n0, respectively, where n0 is the average

density of both components.
Figure 3 shows the density and spin distributions of the

ground state, which is the main result in the former part of
the paper. The ground state exhibits phase separation between
spin 1 and spin 2. In the limits of x → +∞ and x → −∞ (i.e.,
deep in the spin-1 and spin-2 sides), the spin state approaches
the F state of spin 1 and the nematic state of spin 2 (a linear
combination of the U and B states), respectively, consistent
with the results in Fig. 2. The behavior near the interface is
also similar to that in the intermediate region of R in Fig. 2:
spin 1 transforms between the P and F states, whereas spin-2
exhibits magnetization opposite to that of spin 1. It is interest-
ing to note that the spin-2 magnetization only emerges near
the interface, which is attributed to the interaction with the
spin-1 component. We have confirmed that both parameter
sets I and II give qualitatively the same result.

IV. UNIFORMLY MIXED METASTABLE STATE

In this section we show that the uniformly mixed PB state
can be a metastable state depending on the scattering lengths,
which is the main result in the latter part of this paper.
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2a

1d

1a

2b

2c

2d

2e

1e

2e

1b 1c 1d 1e1a

2a 2d2b 2c

FIG. 3. Ground state of the one-dimensional system. (a) ρ (1)(x),
ρ (2)(x) (upper panel), F (1)

z (x), F (2)
z (x), and |A(2)

0 (x)|2 (lower panel).
The magnetizations in the x-y direction are zero. The insets show
magnifications of |A(2)

0 (x)|2 and F (2)
z (x) in the dashed rectangle

regions. (b) Spherical-harmonic representations of the spin-1 and
spin-2 states at the positions marked in (a). Parameter set I is used.

A. Metastability analysis

Before showing the metastability, we first confirm that the
energy of the uniformly mixed PB state is larger than the
separated ground state shown in Fig. 3. The total energy of
the uniformly mixed PB state in a volume V containing N1

and N2 atoms of spin 1 and spin 2 is given by

EPB
mix = N2

1

2V
g(1)

0 + N2
2

2V

(
g(2)

0 + 1

5
g(2)

2

)
+ N1N2

V
g(12)

0 . (13)

As shown in Fig. 3, the ground state exhibits phase separation
between the F state of spin 1 and the nematic state of spin 2
(we refer to this state as “FN”). For a sufficiently large system,
the bulk energy of each separated region is dominant and the
energy of the interface layer can be neglected. In this case, the

energy is evaluated to be

EFN
separate = N2

1

2V1

(
g(1)

0 + g(1)
1

) + N2
2

2V2

(
g(2)

0 + 1

5
g(2)

2

)
, (14)

where V1 and V2 are the volume of each separated region, sat-
isfying V1 + V2 = V . The values of V1 and V2 are determined
such that the pressures of two regions are balanced as

N2
1

2V 2
1

(
g(1)

0 + g(1)
1

) = N2
2

2V 2
2

(
g(2)

0 + 1

5
g(2)

2

)
. (15)

Using Eqs. (13)–(15), we obtain the difference between the
two energies

EPB
mix − EFN

separate

= − N2
1

2V
g(1)

1 + N1N2

V

×
{

g(12)
0 −

[(
g(1)

0 + g(1)
1

)(
g(2)

0 + 1

5
g(2)

2

)]1/2
}

, (16)

which is always positive for both parameter sets I and II.
We next examine the stability of the uniformly mixed PB

state using the Bogoliubov analysis. We divide the wave func-
tion into the uniformly mixed state �

( f )
PB and a small deviation

�( f )(r, t ) as

�( f )(r, t ) = e−iμ( f )t/h̄
[
�

( f )
PB + �( f )(r, t )

]
, (17)

where the chemical potential of the P state of spin 1 is μ(1) =
g(1)

0 ρ (1) + g(12)
0 ρ (2) and that of the B state of spin 2 is μ(2) =

(g(2)
0 + g(2)

2 /5)ρ (2) + g(12)
0 ρ (1). The small deviation �( f )(r, t )

is expanded as

�( f )(r, t ) =
∑

k

[u( f )(k)ei(k·r−ωkt ) + v( f )∗(k)e−i(k·r−ω∗
k t )].

(18)

Substituting Eqs. (17) and (18) into the GP equations in
Eq. (11) and neglecting the second- and third-order terms
of u( f )(k) and v( f )(k), we obtain the Bogoliubov–de Gennes
equation. The eigenenergies h̄ωk of the Bogoliubov–de
Gennes equation are given in the Appendix. For the stable
system, all the eigenenergies must be real and positive. If
eigenenergies for some wave number k are complex, the cor-
responding eigenmodes grow exponentially in time and the
uniformly mixed PB state is dynamically unstable. For the
interaction coefficients in set I, all the eigenenergies are found
to be real and positive for R = N1/(N1 + N2) � 0.6, which
indicates that the uniformly mixed PB state is metastable
for R � 0.6. However, applying the interaction coefficients
in set II, we find that complex eigenenergies appear for any
R; therefore, the uniformly mixed PB state is dynamically
unstable against phase separation for set II.

B. Phase separation dynamics via nucleation

To confirm the metastability of the uniformly mixed PB
state, we numerically solve the real-time evolution of the one-
dimensional GP equation for parameter set I, starting from the
uniformly mixed PB state. To trigger the phase separation, we
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t = 0 t = 2 t = 5

t = 10 t = 15 t = 20
-25.6 0 25.6 -25.6 0 25.6 -25.6 0 25.6

-25.6 0 25.6 -25.6 0 25.6 -25.6 0 25.6
0

1

0

1 ρ(2)ρ(1)

ρ
ρ

FIG. 4. Dynamics of the one-dimensional system starting from
the uniformly mixed PB state with the mixing ratio R = 0.5, where
the local magnetic field in Eq. (19) is applied with a = 0.1 and
B0 = 2. Red (light-gray) and blue (dark-gray) lines show spin-1
and spin-2 density distributions, respectively. Length and time are
normalized by L = 1/

√
4πaBn0 and ML2/h̄, respectively, where n0

is the average density. The parameter set I is used. See the Supple-
mental Material for a movie of the dynamics [57].

add the term

B0e−x2/a2
g f

∑
m′

( fx )( f )
mm′ψm′ (x, t ) (19)

to the right-hand side of the GP equation, where g1 = −1/2
and g2 = 1/2. Such a synthetic local magnetic field can be
generated by a laser beam [54–56].

Figure 4 shows the time evolution of the density distri-
butions of spin-1 and spin-2 components for a = 0.1 and
B0 = 2. The local disturbance at x 	 0 triggers the phase
separation, which extends over the whole space [58]. We
confirmed that the phase separation does not occur for B0 �
0.1, which indicates that the uniformly mixed PB state is
metastable. Such phase separation dynamics is different from
the usual one in a system with dynamical instability, in which
any infinitesimal seeds can trigger the phase separation.

C. Simple explanation of the metastability

Here, we provide a simple explanation for why the uni-
formly mixed PB state is metastable, i.e., why there is an
energy barrier against phase separation. Let us consider the
uniformly mixed PB state with a ratio R, say R = 0.5. Suppose
that the phase separation begins as R(r) = ρ (1)(r)/[ρ (1)(r) +
ρ (2)(r)] = 0.5 + ε(r), where ε(r) 
 1. According to Fig. 2
under the SMA, the lowest-energy spin state is the PB state
around R = 0.5; therefore, the local spin state is fixed to the
PB state even when the modulation ε(r) is present. In this case
the interaction energy is given by∫

dr
[

1

2
g(1)

0 (ρ (1) )2 + 1

2

(
g(2)

0 + 1

5
g(2)

2

)
(ρ (2) )2 + g(12)

0 ρ (1)ρ (2)

]
.

(20)

Hence, spin 1 and spin 2 are miscible (immiscible)
for g(1)

0 (g(2)
0 + g(2)

2 /5) − (g(12)
0 )2 > 0 (<0). The miscible

(immiscible) condition is satisfied for the parameter set I (set
II). Thus, for the parameter set I, the energy is increased by
a small modulation ε(r), which makes the uniformly mixed
PB state metastable. When R(r) deviates substantially from
0.5, the local spin state no longer remains in the PB state
and Eq. (20) cannot be used. As a result, the phase sepa-
ration can reduce the energy, which results in the dynamics
shown in Fig. 4.

V. EXPERIMENTAL PROPOSAL

We consider a realistic three-dimensional system confined
in a radially harmonic and axially boxlike potential as

V1 = V2 = Mω2
⊥

2
(y2 + z2) + V0θ (x − x0)θ (−x − x0), (21)

where ω⊥ = 2π × 250 Hz, x0 = 38 µm, θ is the Heaviside
step function, and V0 is taken to be much larger than the
chemical potential. The boxlike potential in the x direction
avoids complexity arising from inhomogeneous density dis-
tribution for, e.g., a weak harmonic potential. The number of
87Rb atoms is N1 = N2 = 2 × 105.

We prepare the initial state as follows. First, the ground
state ψg(r) of the | f = 1, m = −1〉 state for N1 = 4 ×
105 is prepared using the imaginary-time evolution of the
GP equation. This wave function is then transferred to
the PB state as ψ(1)(r) = ψg(r)(0, 1, 0)/

√
2 and ψ(2)(r) =

ψg(r)(1, 0, 0, 0, 1)/2, which is experimentally possible using
microwave and radio-frequency fields. The obtained PB state
has a cigar shape of length 	 76µm, as shown in Fig. 5(a)
(t = 0 ms).

In the real-time evolution, the local magnetic field in
Eq. (19) is added, where B0 = 4h̄ω⊥ and a = 1 µm. Fig-
ure 5(a) shows the dynamics of the density distributions. The
local disturbance around x = 0 triggers the spin modulation,
and the phase separation spreads over the whole space, as
shown in Figs. 5(a) and 5(b). The typical time and length
scales for this dynamics are determined by the energy differ-
ence �E given in Eq. (16). Substituting the typical density
	 4 × 1020 m−3 into Eq. (16), we obtain �E/h̄ ∼ 60 ms and
h̄/

√
2M�E ∼ 5 µm, which are consistent with the time and

length scales in Fig. 5.
The spin-2 atom has a higher energy (	 6.8 GHz) than

the spin-1 atom as a result of the hyperfine splitting. If the
transition from spin 2 to spin 1 occurs in collisional processes,
the relevant atoms escape from the system. This effect can be
taken into account in the GP equation by adding imaginary
parts to the interaction coefficients, which makes the time
evolution nonunitary to simulate the atomic loss [59]. For
the inelastic two-body collisions between spin-2 atoms, we
replace the interaction coefficients as

ḡ(2)
0 = g(2)

0 − 2
7 ih̄b2 (22a)

ḡ(2)
1 = g(2)

1 + 1
14 ih̄b2 (22b)

ḡ(2)
2 = g(2)

2 + 5
7 ih̄b2 − 1

2 ih̄b0, (22c)

where b0 = 9.9 × 10−14 cm3/s and b2 = 24.3 × 10−14 cm3/s
are the loss coefficients for collision channels with total spins
0 and 2, respectively [59,60]. We ignore the two-body inelas-
tic loss due to collisions between spin-1 and spin-2 atoms,

033328-5



LE, LE, AND SAITO PHYSICAL REVIEW A 110, 033328 (2024)

FIG. 5. Time evolution of the three-dimensional system confined in a trap given in Eq. (21) with and without the atomic loss due to inelastic
collisions. (a), (c) Time evolution of the one-dimensional density distributions ρ ( f )(x) = ∫

ρ ( f )(r, t )dydz and (b), (d) isodensity surfaces at
t 	 65 ms for the system trapped in the potential given in Eq. (21). The initial state is the metastable PB state, and the local magnetic field in
Eq. (19) is added at t = 0 ms. The atomic loss is not included in (a) and (b), and is included in (c) and (d). The parameter set I is used. See the
Supplemental Material for movies of the dynamics [57].

since the relevant loss coefficients are much smaller than b0

and b2 [61,62]. Figures 5(c) and 5(d) show the results with
the atomic loss. Although the spin-2 atoms decrease in time,
the patterns of the density distributions are similar to those of
the system without atomic loss. Thus, the phase separation via
nucleation can be observed in a realistic experimental system.

VI. CONCLUSIONS

We investigated the mixture of spin-1 and spin-2 87Rb
BECs, including the spatial degree of freedom within the
mean-field approximation. We showed that the ground state
exhibits phase separation between the spin-1 ferromagnetic
state and the spin-2 nematic state. In the interface region
between them, another phase appears in which both spin-1
and spin-2 components have magnetizations with opposite
directions. We also found that the uniformly mixed state of
the spin-1 polar state and the spin-2 biaxial nematic state

is metastable for the s-wave scattering lengths measured in
Ref. [48]. If we impart a local disturbance to this state, phase
separation via nucleation occurs. This phenomenon can be
observed in a realistic experiment even when the atomic loss
due to inelastic collisions occurs.
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APPENDIX: BOGOLIUBOV ANALYSIS
OF THE UNIFORMLY MIXED PB STATE

Diagonalizing the Bogoliubov–de Gennes equation derived
from Eqs. (11), (17), and (18), we obtain eight eigenvalues:

√
εk

[
εk + (1 − R)

(
8c(2)

1 − 2c(2)
2 /5

)]
,

√(
εk + 2Rc(12)

2 /5
){

εk + 2
5

[
Rc(12)

2 − (1 − R)c(2)
2

]}
,√

εk
(
εk + Rc(1)

0 + (1 − R)
(
c(2)

0 + c(2)
2 /5

) ± M1/2
)
,

√
A ±

√
B, (A1)

where the two eigenvalues
√
A ± √

B in Eq. (A1) are doubly repeated eigenvalues, and εk = (h̄k)2/(2M ), c( f )
n = n0g( f )

n with the
total density n0, and

M = 4R(1 − R)
(
c(12)

0

)2 + [
Rc(1)

0 − (1 − R)
(
c(2)

0 + c(2)
2

/
5
)]2

,

A = εk
2 + εk

[
Rc(1)

1 + (1 − R)
(
c(2)

1 − c(2)
2

/
5
) + 3c(12)

2

/
10

]
+ 3c(12)

2

40

[
4R(1 − R)

(
c(1)

1 + c(2)
1 − c(2)

2

/
5 − 2c(12)

1

) + 3c(12)
2

/
5
]
,

B = αεk
2 + βεk + γ ,
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with

α = 1

4

[
2Rc(1)

1 − 2(1 − R)
(
c(2)

1 − c(2)
2

/
5
) − 3(2R − 1)c(12)

2

/
5
]2 + R(1 − R)

(
2c(12)

1 − 3c(12)
2

/
5
)2

,

β = 3c(12)
2

40

{
9
(
c(12)

2

)2/
25 + 6c(12)

2

5

[
R(3 − 4R)c(1)

1 − (1 − R)
(
(1 − 4R)

(
c(2)

1 − c(2)
2

/
5
) + 8Rc(12)

1

)]

+ 8R(1 − R)
[
2
(
c(12)

1

)2 + Rc(1)
1

(
c(1)

1 − 2c(12)
1

) + (1 − R)
(
c(2)

1 − c(2)
2

/
5
)(

c(2)
1 − c(2)

2

/
5 − 2c(12)

1

) − (
c(2)

1 − c(2)
2

/
5
)
c(1)

1

]}
,

γ = 9
(
c(12)

2

)2

1600

[
4R(1 − R)

(
c(1)

1 + c(2)
1 − c(2)

2

/
5 − 2c(12)

1

) + 3c(12)
2

/
5
]2

.
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