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In systems with periodic potential fields, building relatively local Wannier functions can significantly simplify
the Hamiltonian and enhance our understanding of the system’s ground state and dynamic properties. In this
work, we improve the current method of building the Wannier functions of ultracold atomic systems, including
the case in the presence or absence of interactions. In noninteracting systems, we propose a method to directly
obtain the real-valued maximally localized Wannier functions (MLWFs) by using real-valued eigenstates, and
verify the effectiveness of this method in a two-dimensional (2D) degenerate system. In interacting systems, we
obtain the effect of high-energy bands on the lowest-energy band by using the accurate calculation results of the
two-particle system. In the two-particle system, we consider the effect of the entanglement between the particles
and obtain the optimal two-particle Wannier functions. These Wannier functions are then further utilized to
obtain the parameters of the extended Bose-Hubbard model. The effectiveness of the method is verified by taking
a one-dimensional (1D) system with contact interaction as an example. In the three-particle and four-particle
systems, compared calculation results with the original system and the unmodified two-band Bose-Hubbard
model, we find that the effective Hamiltonian is more accurate than the unmodified two-band model. This verifies
the effectiveness of our method, and the parameters obtained can reflect the original system well, which provides
an effective method for accurate modeling of interacting systems.
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I. INTRODUCTION

With the development of laser technology and atom cool-
ing technology, ultracold atoms can be loaded into various
types of optical lattices, such as double-well lattice [1], hon-
eycomb lattice [2], triangular lattice [3,4], Kagome lattice
[5–7], artificial graphene [8,9], and more. The interaction be-
tween atoms can be adjusted by Feshbach resonance [10,11].
These ultracold atomic optical lattice systems are widely used
in quantum simulations [12–14], quantum phase transitions
[15–17], many-body interactions, quantum information pro-
cessing [18,19], and quantum computation [20,21].

Theoretically, cold atoms in optical lattices are generally
described by the Bose-Hubbard model [17,22,23]. The key
parameters are the nearest-neighbor hopping and on-site inter-
action between particles, and these parameters are determined
by the single-particle Wannier functions. Therefore, the first
step to accurately model these systems is building appro-
priate local Wannier functions. Due to the U (1) symmetry
of Bloch functions, the Wannier functions are not unique.
A well-known criterion is the maximum localization crite-
rion introduced by Marzari and Vanderbilt [24] in solid-state
physics, requiring that the built Wannier function has a mini-
mum spatial extension. This method has been widely used in
ultracold atomic systems [25–29]. Brouder et al. [30] proved
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that MLWFs should be real if the system is topologically
trivial, but the above methods rely on Bloch functions, so
the variational space is complex and may fall into the local
minimum of the complex number. Paul et al. [31] proposed
to obtain the real-valued eigenstates by using discrete variable
representation (DVR) and then obtain the real-valued Wanneir
functions by using the method proposed by Kivelson et al.
[32]. Since the maximum localization criterion is not adopted,
the resulting Wannier function has room for optimization.

Due to the interaction, Bloch functions are not the eigen-
states of the system, so a set of Wannier functions is no longer
an invariant subspace of the Hamiltonian. When the interac-
tion is weak, the standard Bose-Hubbard model can accurately
describe the properties of the system. When the interaction
increases or long-range interactions (such as dipole interac-
tions) are considered, this model will inevitably fail [33–38].
To describe the system accurately, it is necessary to modify
the Bose-Habbard model reasonably. Therefore, more Hamil-
tonian terms are introduced, such as next-nearest-neighbor
hopping [39], density-induced tunneling [40,41], and pair tun-
neling [42–44], and the effects of higher-energy bands are
considered, such as modifications of on-site interactions [45],
multiband model [46,47], and three-body interaction [48–50].
Considering the effects of high-energy bands is a relatively
complex process, and it is difficult to get accurate results.
Many efforts have been made in this respect, such as mod-
ifying the Wannier functions [51,52], parameter comparison
[53], and second-order perturbation theory [54]. Currently,
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the methods of modifying the Wannier functions reflect the
contribution of high orbits, but do not fully reflect the effect
of multi-particle entanglement in interacting system.

In this article, we primarily focus on the above two points
and propose potential methods for improvement. When in-
teraction is not considered, we still use DVR to obtain
real-valued eigenstates instead of Bloch functions, and then
we adopt the maximum localization criterion to obtain the
MLWFs. When interaction is considered, we use the idea
of modifying the single-particle Wannier functions from the
two-particle system in Ref. [52], and fully consider the effects
of the entanglement of two-particle to obtain the two-particle
Wannier functions, and then obtain the corresponding param-
eters for the extended Bose-Hubbard model.

Our article is organized as follows. In Sec. II, we first
introduce some consensus on the Wannier functions in the
non-interacting case. Then we introduce how to get the ML-
WFs in real space, including selecting the initial Wannier
functions and optimizing the Wannier functions. Finally, the
validity of this method is verified in a two-dimensional (2D)
degenerate system. In Sec. III, we first introduce how to find
the optimal two-particle Wannier functions in the interacting
two-particle system, including the initialization and optimiza-
tion of the two-particle Wannier functions, and how to use
the two-particle Wannier functions to obtain the parameters of
the extended Bose-Hubbard model. Then the above method
is applied to one-dimensional (1D) system with contact in-
teraction, and obtain the corresponding parameters of the
extended Bose-Hubbard model. The calculations of energy
spectrum and dynamics are carried out in three-particle and
four-particle systems, and the results are compared with the
original system and the unmodified two-band Bose-Hubbard
model to verify the accuracy of the obtained parameters. Fi-
nally, we provide a summary and outlook in Sec. IV.

II. PERIODIC SYSTEMS WITHOUT INTERACTIONS

A. Wannier functions

For simplicity, we consider 1D periodic systems, the

Hamiltonian can be written as H = p2
x

2m + V (x), where V (x) is
a potential field with period a. According to Bloch’s theorem,
the eigenstates are Bloch functions |ϕn,k〉, where n is the
indication of the energy band and k is the quasimomentum

ϕn,k (x) = e−ikxun,k (x), un,k (x) = un,k (x + a). (1)

Assuming that the first l bands overlap, the relatively lo-
cal generalized Wannier functions |wn,R〉 can be obtained by
Fourier transforming the Bloch functions of these bands

|wn,R〉 = 1√
N

∑
k,n′

e−ikRU (k)
n′,n|ϕn′,k〉, (2)

where R represents the different unit cell, U (k) is a unitary
matrix associated with the quasimomentum k, N is the total
unit cell, and 1 � n, n′ � l . Because of the arbitrariness of
U (k)

n′,n, the Wannier functions are not unique. From the above
equation, we can also deduce that |wn,R+1〉 = T̂a|wn,R〉, in
which the operator T̂a represents the translation distance a
along the x direction. if we make a unitary transformation of

the Wannier function

|w′
n,R〉 =

i=l, j=l,m=N∑
i=1, j=1,m=1

αi, j,mÂi, j ⊗ T̂ m
a |wn,R〉, (3)

and Âi, j |wn,R〉 = δ j,n|wi,R〉, where δ is the Dirichlet function.
It can be verified that |w′

n,R〉 is still the Wannier function
of these bands. Therefore, we can attribute the arbitrariness
of the Wannier functions to the arbitrariness of {αi, j,m}. In
other words, we need to find the most suitable {αi, j,m} to get
the MLWFs.

B. Maximally localized Wannier functions

To obtain the most appropriate {αi,n,m}, we adopt the
method in Ref. [24], which is to minimize the spread of the
Wannier functions, and the corresponding local functional is
defined as

� =
∑

n

〈wn,0|x̂2|wn,0〉 − 〈wn,0|x̂|wn,0〉2. (4)

In prior work, they rewrote the above functional in k space and
searched for the minimum by changing U (k)

n′,n of Eq. (2). We
know that MLWFs are real-valued when the system is topo-
logically trivial. However, the prior methods rely on the Bloch
functions, so the variational space will be complex and may
fall into the local minimum of the complex number. In addi-
tion, in the optical lattice systems, we often obtain eigenstates
by the DVR method, so they are always real-valued rather than
Bloch functions. If we take these real-valued eigenstates as
our starting point and restrict the variational space, that is,
{αi, j,m}, to be real, then we not only reduce the variational
space but also guarantee that the resulting Wannier functions
are real. We can achieve this in the following two steps.

1. Step 1: Find an arbitrary set of real Wannier functions

We assume that there are l Bloch band energy spectrum
overlapping together, and label these eigenstates of position
representation as �ϕ. Our goal is to find a set of real Wannier
functions �wtar such that they represent the same Hilbert space
as �ϕ. We can start from an initial set of Wannier functions
�wini and gradually iterate to approximate the target Wannier
functions �wtar. In the �ϕ, the eigenstates with k = 0 are the
easiest to identify, they are real and the distribution of wave
function in each unit cell is the same. Therefore, we can
intercept the wave function of the eigenstate with k = 0 in
each unit cell. After normalization, each wave function that is
intercepted is an element of the initial Wannier functions �wini.

Next, we use �ϕ to modify �wini. We first calculate the degree
of coincidence of the Hilbert space of �ϕ and �wini,

Mi, j = 〈ϕi|w j〉, (5)

where |ϕi〉 represents the ith element in �ϕ, and |w j〉 represent
the jth element in �wini. If the matrix M is not unitary, it
indicates that the Hilbert spaces represented by �ϕ and �wini

are inconsistent, then, we should adjust �ϕ and �wini according
to matrix M. To keep the Hilbert space described by the
modified �ϕ unchanged, the matrix M must be modified to be
unitary. Commonly used methods include the Löwdin orthog-
onalization [55] and the Schmidt orthogonalization [56]. The
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calculation efficiency of Löwdin orthogonalization is high, but
the error of numerical calculation will increase rapidly when
the eigenvalue of the matrix approaches zero. For the stability
of the calculation, we adopt the Schmidt orthogonalization.

When the matrix M is unitary, we update �ϕ and �wini,

�ϕnew = M �ϕold, (6)

�wini = �ϕnew. (7)

�wini obtained from Eq. (7) generally does not satisfy transla-
tional symmetry and needs to be modified appropriately. An
efficient method is to translate all Wannier functions in �wini

to the first unit cell and add these states to obtain new Wan-
nier functions |wn,new〉, and then translate these new Wannier
functions |wn,new〉 to each unit cell to obtain �wini satisfying
translation symmetry. The specific operation is as follows:

|wn,new〉 =
R=N∑
R=1

T̂ 1−R
a |wn,R〉, |wn,R〉 = T̂ R−1

a |wn,new〉√〈wn,new|wn,new〉 .

(8)

This also applies to two-dimensional and higher-dimensional
systems, because translation operators in different directions
are commutative. We can perform the similar operation as
Eq. (8) in each direction to make each Wannier function to
the first unit cell and get |wn,new〉, and finally perform the
inverse procedure to obtain �wini with translation symmetry.
Next, we use the �wini obtained from the above equation as a
new starting point and repeat the above process from Eq. (5)
until the matrix M obtained from Eq. (5) becomes the identity
matrix. The resulting �wini is our target Wannier functions �wtar.

The specific process of the above method can be simply
summarized as follows: In the first step, we use the numerical
calculation to obtain the eigenstates �ϕ and give the initial
Wannier functions �wini. In the second step, Eq. (5) is used
to calculate the degree of coincidence of the Hilbert space
represented by �ϕ and �wini. When they do not coincide exactly,
�ϕ and �wini are modified using Eqs. (6), (7), and (8). In the third
step, the above two steps are repeated until the Hilbert space
represented by �ϕ and �wini coincide. It should be noted that
in the first few iterations, we do not need to update �wini with
Eqs. (7) and (8), which can ensure that the Wannier functions
�wtar are relatively local at the end.

2. Step 2: Obtain the MLWFs

Now, we combine Eqs. (3) and (4) to update the Wannier
functions �wtar. Because we require the transformation matrix
to be unitary, the αi, j,m in Eq. (3) needs to satisfy additional re-
strictions. To avoid additional constraint equations, we adopt
the equivalent exponential form

|w′
n,R〉 = e

∑i=l, j=l,m=N
i=1, j=1,m=1 αi, j.m (Â j,i⊗T̂ m

a −Âi, j⊗T̂ −m
a )|wn,R〉

= T̂g|wn,R〉. (9)

The operator Âi, j , written in matrix form, is a l × l zero matrix
with value of 1 only in the (i, j)th element. It is not difficult
to find that the operators T̂g are unitary operators. Because it
is calculated in position space, to avoid boundary effects, we
choose the Wannier function located in the middle unit cell R

as the starting point. Substituting Eq. (9) into Eq. (4), we have

� =
n=l∑
n=1

〈wn,R|T̂ †
g x̂2T̂g|wn,R〉 − 〈wn,R|T̂ †

g x̂T̂g|wn,R〉2. (10)

Since Â j,i ⊗ T̂ m
a and T̂g are not commutative, we cannot obtain

the derivative of � concerning αi, j,m for any {αi, j,m}. However,
obviously, it’s easy to get the derivative for {αi, j,m} = 0. Let

XX i, j = w†(i)x̂2 �w( j), Xi, j = �w†(i)x̂ �w( j), (11)

where �w(i) = |wint[1+(i−1)/N],i−N×int[(i−1)/N]〉 and the function
int() represents to get the integer part of a real number. Then,
we have

∂�

∂αi, j,m

∣∣∣∣
α=0

=
n=l∑
n=1

〈n, R|[Ai, j ⊗ T −m
a − Aj,i ⊗ T m

a , XX
]|n, R〉

− 2〈n, R|X |n, R〉〈n, R|[Ai, j ⊗ T −m
a − Aj,i ⊗ T m

a , X
]

× |n, R〉. (12)

|n, R〉 represents the Rth basis vector in the nth band and it is
a Nl zero vector with value of 1 only in the [N (n − 1) + R]th
element. To obtain the MLWFs, we must ensure that the above
equation is equal to 0 for all αi, j,m. When the above equation is
not equal to 0, we need to use the gradient descent method to
gradually decrease �. For the pth iteration, we set

α
p
i, j,m = −λ

∂�

∂αi, j,m

∣∣∣∣
α=0

, (13)

Tp = e
∑i=l, j=l,m=N

i=1, j=1,m=1 α
p
i, j,m (Aj,i⊗T m

a −Ai, j⊗T −m
a ), (14)

where λ is a real number from 0 to 1. After each iteration, we
update XX and X ,

XX new = Tp
†XX oldTp, Xnew = Tp

†XoldTp. (15)

Assume that the derivative of � is 0 after P iterations, we have

�wfinal =
p=P∏
p=1

Tp �wtar, (16)

the corresponding effective Hamiltonian Heff can be
written as

Heff,i, j = �w†
final(i)Ĥ �wfinal( j). (17)

Inevitably, if the target Wannier functions �wtar are not selected
properly, the convergent � may not be the global minimum.
We need to repeat the above steps starting with step 1. The
initial Wannier functions �wini in step 1 is set to the �wfinal

obtained from Eq. (16), but only the wave function of the
unit cell with the highest probability is retained, and the wave
function of other unit cells is set to 0. If the two optimization
results are equal, then this is the optimal basis vector that can
be obtained by this method.
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FIG. 1. (a) The checkerboard potential field when V1 = 32.8Er .
Each unit cell consists of a deep and a shallow well. The color indi-
cates strength, and the unit is the recoil kinetic energy Er . (b) Contour
plot for one of the MLWFs of py orbital. The color in the figure stands
for the logarithm of the absolute value of this Wannier function, with
the corresponding parameter values V1 = 32.8Er and β = 0.4375π .

C. Example

Here, we use a 2D optical lattice system to illustrate the
validity of our method, and the Hamiltonian is

H0 = − h̄2

2m

(
∂2

x + ∂2
y

) + V (x, y), (18)

V (x, y) = − V1| cos(kx) + eiβ cos(ky)|2. (19)

This kind of potential field has been studied experimentally
and theoretically [57,58]. V1 and β are adjustable parameters.
When β = π

2 , the system can be decomposed into two inde-
pendent 1D systems. To couple the potential fields in x and
y directions, we set the parameter β to deviate from π

2 . Due
to the limitation of computing resources, we consider four
periods in the x and y directions, respectively.

Figure 1(a) shows the potential field of the calculated
system, which contains 32 unit cells. Under appropriate pa-
rameters, the first energy band consists of the s orbital of the
deep well, and the second energy band consists of three Bloch
bands corresponding to the s orbital of the shallow well and
the px and py orbitals of the deep well. Our goal is to get the
MLWFs for the second energy band and write the effective
Hamiltonian of this energy band under these localized basis
vectors. In Fig. 1(b), we show one of the MLWFs of py

orbital obtained by the above method. The color represents the
logarithm of the absolute value of the wave function, and it can
be seen that it decays exponentially with distance. Using the
obtained MLWFs, we get the corresponding effective Hamil-
tonian by numerical calculation. As the distance between the
two unit cells increases, the hopping decays exponentially, so
we only keep partly significant values. We label three different
MLWFs by {s, x, y}, and this energy band can be accurately
described by the following Hamiltonian:

Heff = Jsp

∑
μ,�r

[
â†

μ,�r âs,�r+�eμ
+ H.c.

]

+ J||
∑
μ,�r

[
â†

μ,�r âμ,�r+�ex+�ey + â†
μ,�r âμ,�r+�ex−�ey + H.c.

]

+ J⊥
∑
μ,�r

[
â†

μ,�r âμ′,�r+�ex+�ey + â†
μ,�r âμ′,�r+�ex−�ey + H.c.

]
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FIG. 2. (a) Plot of the tunneling coefficients in Eq. (20) as
a function of vs − vp for V1 = 34.6Er , the corresponding β is
(0.4625, 0.4500, 0.4375, 0.4250, 0.4125)π . (b) The energy spec-
trum of the effective Hamiltonian Heff and the original Hamiltonian,
where V1 = 34.6Er and β = 0.4375π . The inset on the right shows
the Brillouin zone of the system and the points shown in (b) fall on
the red line. The inset on the left shows the difference between the
eigenvalues of Heff and the original Hamiltonian in (b).

+ Jp

∑
μ,�r

[
â†

μ,�r âμ,�r+2�eμ
+ H.c.

]

+ Js

∑
μ,�r

[
â†

s,�r âs,�r+2�eμ
+ H.c.

]

+ (vs − vp)
∑

�r
â†

s,�r âs,�r, (20)

where â(†)
μ,�r and â(†)

s,�r are bosonic annihilation (creation) op-
erators for pμ(μ = {x, y}, μ′ = {y, x}) and s orbitals at unit
cell position �r. �ex and �ey are unit vectors, shown in Fig. 1(a).
Because vs − vp changes too fast with β, Fig. 2(a) illustrates
the variation of the other parameters with vs − vp. The en-

ergy unit is the recoil energy Er = h̄2k2

2m . Figure 2(b) shows
the energy spectrum of the effective Hamiltonian Heff and
the original Hamiltonian. The inset on the right shows the
difference between the eigenvalues of these two Hamiltonian
calculations, which is very small, indicating that the effective
Hamiltonian describes the original Hamiltonian well.

III. PERIODIC SYSTEMS WITH INTERACTIONS

A. Two-particle Wannier functions

When the system has interaction, the system is usually
written as a Bose-Hubbard model by using the Wannier
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functions of the lowest-energy band. This method ignores the
coupling of the lowest-energy band and higher-energy bands,
and with the increase of the interaction, it will introduce
a larger error. To solve this problem, based on Ref. [52]
and fully considering the effect of two-particle entangle-
ment, we propose a method to modify the parameters of the
Bose-Hubbard model by using the calculation results of the
two-particle system.

For simplicity, we study 1D boson systems with interac-
tions, and potential field V (x) satisfies V (x) = V (x + a). The
Hamiltonian of the two-particle system is

H = − h̄2

2m

(
∂2

x1
+ ∂2

x2

) + V (x1) + V (x2) + I (|x1 − x2|). (21)

First, we need to get the eigenstates of the lowest-energy band.
We use the MLWFs of the system at zero interactions, which
are assumed to be known, as the basis vectors for the Hamil-
tonian, which needs to be written in a quadratic quantized
form due to the boson system. We only care about getting
the information of the lowest-energy band accurately, so we
do not need to use all Wannier functions to save computating
resources.

Next, we describe the method of obtaining the effective
parameters of the lowest-energy band in detail, and label the
lowest-energy band as s. In this two-particle system, there
is still the translational symmetry T̂2,a [59], that is, when
two particles are translated by a distance of a simultane-
ously, the Hamiltonian remains unchanged. This symmetry
will play a key role in the subsequent search for the effective
Hamiltonian.

Our goal is to obtain the optimal basis vector |wi, j〉 (in the
noninteracting limit, |wi, j〉 ∝ a†

i a†
j |0〉, where a†

i is the creation
operator for the ith MLWFs of the s band), and we have reason
to believe that it should be dominated by the corresponding
Fock state a†

i a†
j |0〉. We will take advantage of this by requiring

|wi, j〉 to have the maximum projection on the corresponding
Fock state a†

i a†
j |0〉.

Our method consists of two steps. The first step is to
find a set of the target two-particle Wannier functions �wtar

that satisfies the symmetry T̂2,a, and the method for this step
is similar to the noninteracting method. First, we use exact
diagonalization to obtain the eigenstates of the system, and
select the eigenstates we need. In our case, we need to select
the eigenstates |ϕ〉 with the probability of s orbital greater
than 50%, that is, 〈ϕ|∑i a†

i ai|ϕ〉 > 1, and label these states as
�ϕ. Next, we choose the initial two-particle Wannier functions
�wini, which could be |wi, j〉 ∝ a†

i a†
j |0〉. For the convenience of

calculation, we need to rearrange the elements of vectors �wini

according to the invariant subspace of operator T̂2,a,

�wini =

⎛
⎜⎜⎝

�w1

�w2

. . .

�wk

⎞
⎟⎟⎠, T̂2,a|w j,l〉 = |w j,l+1〉, (22)

where j and l denote the lth element in vector �w j , and k is
the number of invariant subspaces of operator T̂2,a in the �wini.
Then, calculate the coincidence degree of the Hilbert space
represented by �wini and �ϕ,

Mi, j = 〈ϕi|w j〉, (23)

where |ϕi〉 represents the ith element in �ϕ, and |w j〉 represent
the jth element in �wini. If the matrix M is not unitary, we
will use Schmidt orthogonalization to change it into a unitary
matrix. Then, we update �ϕ and �wini,

�ϕnew = M �ϕold, (24)

�wini = �ϕnew. (25)

The �wini obtained from the above equation does not nec-
essarily satisfy T̂2,a symmetry. We can follow Eq. (8) and
perform the following operation for each invariant subspace of
T̂2,a in �wini:

|w j,new〉 =
∑

l

T̂ 1−l
2,a |w j,l〉, |w j,l〉 = T̂ l−1

2,a |w j,new〉√〈w j,new|w j,new〉 ,

(26)

and the definition of j and l refers to Eq. (22). We use the
�wini obtained from the above equation as a new starting point
and repeat the above process from Eq. (23) until the matrix
M obtained from Eq. (23) becomes the identity matrix. The
resulting �wini is our target Wannier functions �wtar. It should be
noted that we do not perform Eqs. (25) and (26) in the process
of the first few iterations.

In the second step, we require that the two-particle Wan-
nier function [52,59] in the �wtar is as similar as possible to
the corresponding Fock state |w′

i, j〉 ∝ a†
i a†

j |0〉. We label these
Fock states as �w′, and refer to Eq. (22) to reorder the Fock
states in �w′ according to the invariant subspace of symmetry
T̂2,a. According to the previous work [60], the corresponding
variational function can be defined as

� =
k∑

j=1

|〈w j,1|w′
j,1〉|2, (27)

where k is the number of invariant subspaces of operator T̂2,a

in the �w′. Then, we can define unitary operators

T̂ = e
∑i=k, j=k,m=N

i=1, j=1,m=1 αi, j,m (Â j,i⊗T̂ m
2,a−Âi, j⊗T̂ −m

2,a ), (28)

where Â j,i represents the mapping from the ith invariant sub-
space to the jth invariant subspace, Â j,i|wn,l〉 = δi,n|w j,l〉, and
N is the total unit cells. Every subspace has N basis vectors,
except when N is even, there is a subspace with N/2 basis
vectors. Any two possible two-particle Wannier functions can
be connected by the above unitary operator T̂ , so we can find
the optimal αi, j,m that maximizes the value of � by variation.
We define the coupling matrix O,

Oi, j = 〈wi|w′
j〉, (29)

where i represents the ith element in �wtar and j represents the
jth element in �w′. We describe the each element in �wtar or �w′
in two ways, for example, the (N + 1)th element |wN+1〉 in
�wtar can also be written as |w2,1〉 to represent the first element
in �w2. Then, we have

� =
n=k∑
n=1

|〈n, 1|T †O|n, 1〉|2, (30)

where |n, 1〉 is a N (N − 1)/2 zero vector with a value of 1
only in the [N (n − 1) + 1]th element. Because the operators
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Â j,i ⊗ T̂ m
2,a and T̂ are not commutative, we can only take the

derivative at α = 0,

∂�

∂αi, j,m

∣∣∣∣
α=0

=
k∑

n=1

〈n, 1|O|n, 1〉

× 〈n, 1|(Ai, j ⊗ T −m
2,a − Aj,i ⊗ T m

2,a

)
O|n, 1〉

+ H.c. (31)

When the above equation is not equal to 0, we need to use the
gradient ascent method to gradually increase �. For the pth
iteration, we set

α
p
i, j,m = λ

∂�

∂αi, j,m

∣∣∣∣
α=0

, (32)

Tp = e
∑i=k, j=k,m=N

i=1, j=1,m=1 α
p
i, j,m (Aj,i⊗T m

2,a−Ai, j⊗T −m
2,a ), (33)

where λ is a real number from 0 to 1. After each iteration, we
update O,

Onew = Tp
†Oold, (34)

and assume that the derivative of � is 0 after P iterations, we
have

�wfinal =
p=P∏
p=1

Tp �wtar. (35)

The corresponding effective Hamiltonian Hs can be written as

Hs,i, j = 〈wfinal,i|Ĥ |wfinal, j〉. (36)

Finally, we use the obtained Hamiltonian Hs to get the param-
eters of the effective two-body Hamiltonian terms. We assume
that the single-body Hamiltonian terms H0 are invariant and
known and calculate Hremain = Hs − H0. The equivalent two-
body interaction terms and corresponding parameters can be
obtained by rewriting the matrix Hremain in the form of the
quadratic quantization.

B. Example

We take the bosons with contact interaction in the 1D
optical lattice as an example, and obtain the extended Bose-
Hubbard model and the corresponding parameters by using
the above method. We show the effectiveness of our method
by comparing energy spectrum and dynamic evolution of the
effective Hamiltonian and the original Hamiltonian. Com-
pared with the calculation results of the two-band model
without considering the parameter modification, it shows that
the effective Hamiltonian is more accurate. In addition, the
Hilbert space of the effective Hamiltonian is smaller, the com-
putation will be more efficient.

Following the above method, we consider the system with
two bosons, and the Hamiltonian of the system is

H =
∑

x=x1,x2

[
− h̄2

2m
∂2

x + V cos2(kx)

]
+ gδ(x1 − x2), (37)

where V is the potential field strength and g is the contact
interaction strength. Both of them are adjustable parameters,
in units of recoil energy ER = h̄2k2

2m . The number of periods
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-0.01

0

0.01

0.02
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0.04

FIG. 3. The parameters in Eq. (38) vary with the interaction
strength g. We add uncorrected on-site interactions as a contrast. The
potential well depth of the optical lattice is V = 5ER.

of the potential well is N = 6. Then we get the Wannier
functions of the first few energy bands when g = 0. It is
worth noting that the more you use the Wanneir functions,
the more accurate the calculated value will be. Because we
need to verify it in the multiparticle system later, we choose
to obtain the Wannier functions of only the first four en-
ergy bands. Next, the energy spectrum and eigenstates of the
lowest-energy band are obtained by exactly diagonalizing the
Hamiltonian under the Wannier functions. Finally, the opti-
mal two-particle Wannier functions are found by using the
above method. By using the Hamiltonian under these two-
particle Wannier functions, the parameters of the two-body
operator are obtained by comparing with the Hamiltonian
when g = 0.

Keeping the relatively significant terms, the effective
Hamiltonian of the first energy band of the system can be
written as

Hs = H0 +
∑

i

[gi,i,i,i

2
â†

i â†
i âiâi + gi,i+1,i+1,i

2
â†

i â†
i+1âi+1âi

]

+
∑

i

[gi,i,i,i±1

2
â†

i â†
i âiâi±1 + gi−1,i,i,i+1

2
â†

i−1â†
i âiâi+1

+ gi,i,i,i±2

2
â†

i â†
i âiâi±2 + gi+1,i+1,i,i

2
â†

i+1â†
i+1âiâi + H.c.

]
,

(38)

where H0 is the known single-body Hamiltonian. The first
two terms represent on-site and nearest-neighbor interactions
and the last four terms represent tunneling due to density. If
they are not corrected by higher-energy bands, their values
can be directly obtained by calculating overlap integrals of
the interaction term using the Wannier functions, they are
proportional to the interaction strength. In Fig. 3, we show
how the parameters in Eq. (38) change with the strength of
the interaction when considering the effects of high-energy
bands, specifically adding the on-site interaction without the
modification as a comparison. We can see that under the
effects of the high-energy bands, the greater the interaction
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FIG. 4. Partial energy spectra of the four-band model, the ef-
fective model, and the two-band model in the four-particle system,
where the interaction strength g = 0.45ER and the potential well
depth V = 5ER. The inset enlarges the energy spectrum of the first
15 eigenstates.

is, the greater the correction is needed, and the absolute value
is smaller than that without the modification.

Next, we will verify the validity of the parameters in
the three and four-particle systems by comparing energy
spectrum and dynamics evolution with the original system
and the two-band Bose-Hubbard model. In the original
system, we consider six potential wells. In the process of
computational dynamics, we use the four-band model as the
approximate Hamiltonian, and mark the dynamic evolution
of states in this Hamiltonian as |ψ4(t )〉. The similar |ψ1(t )〉
and |ψ2(t )〉 are used to mark the dynamic evolution where
only one band and two bands are considered. In addition,
the dynamic evolution of the state computed by the effective
Hamiltonian Hs is denoted |ψs(t )〉. Finally, we project all
states into the Hilbert space of the lowest energy band, that
is, |ψ4(t )〉 ⇒ |ψ4(t ) → 1〉 and |ψ2(t )〉 ⇒ |ψ2(t ) → 1〉. We
calculated the occupancy probabilities of these states in the
lowest band as P4(t ) = 〈ψ4(t ) → 1|ψ4(t ) → 1〉 and P2(t ) =
〈ψ2(t ) → 1|ψ2(t ) → 1〉, and the similarity between these
states and |ψ4(t ) → 1〉 is calculated as fs(t ) = |〈ψ4(t ) →
1|ψs(t )〉|2/P4(t ), f1(t ) = |〈ψ4(t ) → 1|ψ1(t )〉|2/P4(t ) and
f2(t ) = |〈ψ4(t ) → 1|ψ2(t ) → 1〉|2/P4(t )/P2(t ). This gives
a quantitative way to compare the effectiveness of effective
models.

In the three-particle system, we choose two initial states,
the first is |1, 0, 1, 0, 1, 0〉 and the second is |2, 1, 0, 0, 0, 0〉.
The influence of the interaction on these two initial states is
increasing gradually. In the four-particle system, the initial
states we choose are |1, 1, 0, 1, 0, 1〉 and |2, 1, 1, 0, 0, 0〉. In
Fig. 4, we draw the energy spectrum of the first 75 eigenstates
of the effective model, the two-band model and the four-band
model in the four-particle system, where the first 15 eigen-
states are mainly contributed by the single-occupied states
and the last 60 states are contributed by the double-occupied
states. The inset magnifies the energy spectrum comparison
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FIG. 5. (a) The projected probability of the dynamic calculation
results in the lowest band for the four-band model. N is the particle
number, ini = 2 indicates that the initial state is the second initial
state, and g is the interaction strength. (b) Comparison of the dy-
namic calculation results of each model with the four-band model.
fs represents the effective model, f2 represents the two-band model,
and f1 represents the single-band model. Strength of interaction
g is 0.45ER.

results of the first 15 states. In the eigenstates contributed
by the single-occupied states, the energy spectrums of the
effective and four-band models are almost the same, while
the energy spectrum of the two-band and four-band models
are somewhat different. In the eigenstates contributed by the
dual-occupied states, the energy spectrum of the two models
is different from that of the four-band model, but the effective
model is closer to the four-band model. Figure 5(a) shows the
change of the occupancy probability of the four-band model
in the first band with time under different interactions. We
can see that as the increase of interaction, the probability of
occupation of higher-energy bands also increases gradually.
Figure 5(b) shows the similarity of the dynamics evolution
of other models and the dynamics evolution of the four-band
model under different initial states and interactions. We can
see that the higher the number of particles, the lower the
fidelity, but in all the test cases, the result of the effective
Hamiltonian is closer to the four-band model than the two-
band model. The results show that the parameters obtained
by this method can effectively reflect the properties of the
real system, and considering the modification of parameters
cannot only improve the accuracy but also greatly reduce the
calculation time compared with directly building the multi-
band model.
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IV. CONCLUSION AND OUTLOOK

In conclusion, we propose a more rigorous method for
modeling boson optical lattice systems. This method involves
two improvements. The first improvement is to adopt the
maximum localization criterion to directly obtain the real-
valued MLWFs based on the real-valued eigenstates obtained
by using the DVR method in the case of no interaction. The
second improvement is that in the presence of interactions,
we additionally consider the effect of particle entanglement
on the lowest-energy band on the basis of considering the
effect of higher energy band on the Wanneir functions of
the lower-energy band. To achieve this goal, we extract the
information of the lowest band and obtain the effective two-
particle Wannier functions based on the local single-particle
Wannier functions and the strict calculation results using the
two-particle model. Finally, the values of the parameters in the
effective Hamiltonian are calculated by using the two-particle
Wannier functions. Compared with the dynamic calculation
results of the original system and the two-band model, the
effectiveness and relative accuracy of this method are verified,
which provides an effective method for the accurate study of
interacting systems.

As for the outlook, our current study primarily focuses
on the modification of two-body interactions by particle

entanglement, and without accounting for the effective
three-body interactions that should exist in the system, which
has been proved by many works [48–50]. Therefore, the
effect of particle entanglement on the three-body interactions
can be considered next, and the effective three-particle
Wannier functions need to be obtained by using the strict
calculation results of the three-particle model. Furthermore,
we can explore special cases. If we think that it is almost
impossible for two particles to occupy the same potential well,
when choosing the lowest-energy band, we can abandon the
multioccupied state and keep only the single-occupied state.
In this way, the effective Hamiltonian of the single-occupied
state can be obtained, which can greatly reduce the subsequent
calculation, and obtain the parameters of the effective
Hamiltonian of the single-occupied state more accurately
than using the second-order perturbation theory.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 11625417, No. 11604107,
No. 91636219, and No. 11727809) and the National Key
Research and Development Program of China, Grants No.
2022YFC3003802.

[1] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and Immanuel Bloch, Direct measure-
ment of the Zak phase in topological Bloch bands, Nat. Phys.
9, 795 (2013).

[2] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Creating, moving and merging Dirac points with a Fermi gas
in a tunable honeycomb lattice, Nature (London) 483, 302
(2012).

[3] X.-Q. Wang, G.-Q. Luo, J.-Y. Liu, G.-H. Huang, Z.-X. Li, C.
Wu, A. Hemmerich, and Z.-F. Xu, Evidence for quantum stripe
ordering in a triangular optical lattice, Phys. Rev. Lett. 131,
226001 (2023).

[4] J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss,
Site-Resolved imaging of ultracold fermions in a triangular-
lattice quantum gas microscope, PRX Quantum 2, 020344
(2021).

[5] G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,
and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical
kagome lattice, Phys. Rev. Lett. 108, 045305 (2012).

[6] P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley,
W. D. Phillips, and J. V. Porto, Sublattice addressing and spin-
dependent motion of atoms in a double-well lattice, Phys. Rev.
Lett. 99, 020402 (2007).

[7] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto,
Lattice of double wells for manipulating pairs of cold atoms,
Phys. Rev. A 73, 033605 (2006).

[8] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter,
U. Bissbort, and T. Esslinger, Artificial graphene with tunable
interactions, Phys. Rev. Lett. 111, 185307 (2013).

[9] K. L. Lee, B. Grémaud, R. Han, B.-G. Englert, and C.
Miniatura, Ultracold fermions in a graphene-type optical lattice,
Phys. Rev. A 80, 043411 (2009).

[10] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[11] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Feshbach resonances in atomic Bose–Einstein condensates,
Phys. Rep. 315, 199 (1999).

[12] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y.
Takahashi, Tools for quantum simulation with ultracold atoms
in optical lattices, Nat. Rev. Phys. 2, 411 (2020).

[13] C. Gross, and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[14] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K. N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang,
T. Lahaye, A. M. Läuchli, and A. Browaeys, Quantum simula-
tion of 2D antiferromagnets with hundreds of Rydberg atoms,
Nature (London) 595, 233 (2021).

[15] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms, Nature (London) 415, 39
(2002).

[16] B. Song, S. Dutta, S. Bhave, J. C. Yu, E. Carter, N. Cooper,
and U. Schneider, Realizing discontinuous quantum phase tran-
sitions in a strongly correlated driven optical lattice, Nat. Phys.
18, 259 (2022).

[17] D. van Oosten, P. van der Straten, and H. T. C. Stoof, Quan-
tum phases in an optical lattice, Phys. Rev. A 63, 053601
(2001).

[18] C. Monroe, Quantum information processing with atoms and
photons, Nature (London) 416, 238 (2002).

[19] I. Ryabtsev, I. Beterov, D. Tretyakov, V. Entin, and E.
Yakshina, Spectroscopy of cold rubidium Rydberg atoms for
applications in quantum information, Phys. Usp. 59, 196
(2016).

033312-8

https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nature10871
https://doi.org/10.1103/PhysRevLett.131.226001
https://doi.org/10.1103/PRXQuantum.2.020344
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevLett.99.020402
https://doi.org/10.1103/PhysRevA.73.033605
https://doi.org/10.1103/PhysRevLett.111.185307
https://doi.org/10.1103/PhysRevA.80.043411
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1038/s42254-020-0195-3
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/415039a
https://doi.org/10.1038/s41567-021-01476-w
https://doi.org/10.1103/PhysRevA.63.053601
https://doi.org/10.1038/416238a
https://doi.org/10.3367/UFNe.0186.201602k.0206


MODIFICATION OF THE BOSE-HUBBARD MODEL … PHYSICAL REVIEW A 110, 033312 (2024)

[20] V. Kasper, D. González-Cuadra, A. Hegde, A. Xia, A. Dauphin,
F. Huber, E. Tiemann, M. Lewenstein, F. Jendrzejewski, and
P. Hauke, Universal quantum computation and quantum error
correction with ultracold atomic mixtures, Quantum Sci.
Technol. 7, 015008 (2022).

[21] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn,
K. Jooya et al., Multi-qubit entanglement and algorithms on
a neutral-atom quantum computer, Nature (London) 604, 457
(2022).

[22] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition, Phys.
Rev. B 40, 546 (1989).

[23] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81, 3108
(1998).

[24] N. Marzari and D. Vanderbilt, Maximally localized generalized
Wannier functions for composite energy bands, Phys. Rev. B
56, 12847 (1997).

[25] B. Vaucher, S. R. Clark, U. Dorner, and D. Jaksch, Fast ini-
tialization of a high-fidelity quantum register using optical
superlattices, New J. Phys. 9, 221 (2007).

[26] M. Modugno and G. Pettini, Maximally localized Wannier
functions for ultracold atoms in one-dimensional double-well
periodic potentials, New J. Phys. 14, 055004 (2012).

[27] J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and M.
Modugno, Self-consistent tight-binding description of Dirac
points moving and merging in two-dimensional optical lattices,
Phys. Rev. A 88, 033631 (2013).

[28] R. Walters, G. Cotugno, T. H. Johnson, S. R. Clark, and D.
Jaksch, Ab initio derivation of Hubbard models for cold atoms
in optical lattices, Phys. Rev. A 87, 043613 (2013).

[29] J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and
M. Modugno, Tight-binding models for ultracold atoms in
honeycomb optical lattices, Phys. Rev. A 87, 011602(R)
(2013).

[30] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N.
Marzari, Exponential localization of wannier functions in insu-
lators, Phys. Rev. Lett. 98, 046402 (2007).

[31] S. Paul and E. Tiesinga, Wannier functions using a discrete
variable representation for optical lattices, Phys. Rev. A 94,
033606 (2016).

[32] S. Kivelson, Wannier functions in one-dimensional disordered
systems: Application to fractionally charged solitons, Phys.
Rev. B 26, 4269 (1982).

[33] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt,
L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Imaging the
mott insulator shells by using atomic clock shifts, Science 313,
649 (2006).

[34] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell,
M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, An
optical lattice clock with accuracy and stability at the 10−18

level, Nature (London) 506, 71 (2014).
[35] S. Will, T. Best, U. Schneider, L. Hackermüller, D. Lühmann,

and I. Bloch, Time-resolved observation of coherent multi-body
interactions in quantum phase revivals, Nature (London) 465,
197 (2010).

[36] P. R. Johnson, D. Blume, X. Y. Yin, W. F. Flynn, and E.
Tiesinga, Effective renormalized multi-body interactions of har-
monically confined ultracold neutral bosons, New J. Phys. 14,
053037 (2012).

[37] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D. S. Lühmann,
B. A. Malomed, and J. Zakrzewski, Non-standard Hubbard
models in optical lattices: A review, Rep. Prog. Phys. 79,
116401 (2016).

[38] M. Hughes, A. U. J. Lode, D. Jaksch, and P. Molignini, Accu-
racy of quantum simulators with ultracold dipolar molecules: A
quantitative comparison between continuum and lattice descrip-
tions, Phys. Rev. A 107, 033323 (2023).

[39] W. Beugeling, J. C. Everts, and C. Morais Smith, Topological
phase transitions driven by next-nearest-neighbor hopping in
two-dimensional lattices, Phys. Rev. B 86, 195129 (2012).

[40] D. Lühmann, O. Jürgensen, and K. Sengstock, Multi-orbital and
density-induced tunneling of bosons in optical lattices, New J.
Phys. 14, 033021 (2012).

[41] O. Jürgensen, F. Meinert, M. J. Mark, H. Nägerl, and D.
Lühmann, Observation of density-induced tunneling, Phys.
Rev. Lett. 113, 193003 (2014).

[42] X. F. Zhou, Y. S. Zhang, and G. C. Guo, Pair tunneling of
bosonic atoms in an optical lattice, Phys. Rev. A 80, 013605
(2009).

[43] J. Q. Liang, J. L. Liu, W. D. Li, and Z. J. Li, Atom-pair tunneling
and quantum phase transition in the strong-interaction regime,
Phys. Rev. A 79, 033617 (2009).

[44] Q. Zhu, Q. Zhang, and B. Wu, Extended two-site Bose–
Hubbard model with pair tunneling: Spontaneous symmetry
breaking, effective ground state and fragmentation, J. Phys. B
48, 045301 (2015).

[45] M. J. Mark, E. Haller, K. Lauber, J. G. Danzl, A. J. Daley, and
H. C. Nägerl, Precision measurements on a tunable mott insu-
lator of ultracold atoms, Phys. Rev. Lett. 107, 175301 (2011).

[46] M. Łacki, D. Delande and J. Zakrzewski, Dynamics of cold
bosons in optical lattices: Effects of higher Bloch bands, New
J. Phys. 15, 045021 (2013).

[47] J. Major, J. M. Łacki, and J. Zakrzewski, Reexamination of
the variational Bose-Hubbard model, Phys. Rev. A 89, 043626
(2014).

[48] P. R. Johnson, E. Tiesinga, J. V. Porto and C. J. Williams,
Effective three-body interactions of neutral bosons in optical
lattices, New J. Phys. 11, 093022 (2009).

[49] M. Singh, A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Three-
body on-site interactions in ultracold bosonic atoms in optical
lattices and superlattices, Phys. Rev. A 85, 051604(R) (2012).

[50] S. Mondal, A. Kshetrimayum, and T. Mishra, Two-body re-
pulsive bound pairs in a multibody interacting Bose-Hubbard
model, Phys. Rev. A 102, 023312 (2020).

[51] S. Zhu and B. Wu, Interaction effects on Wannier functions for
bosons in an optical lattice, Phys. Rev. A 92, 063637 (2015).

[52] M. Kremer, R. Sachdeva, A. Benseny, and T. Busch,
Interaction-induced effects on Bose-Hubbard parameters, Phys.
Rev. A 96, 063611 (2017).

[53] W. Xu, M. Olshanii, and M. Rigol, Multiband effects and the
Bose-Hubbard model in one-dimensional lattices, Phys. Rev. A
94, 031601(R) (2016).

[54] A. Pricoupenko and D. S. Petrov, Higher-order effective inter-
actions for bosons near a two-body zero crossing, Phys. Rev. A
103, 033326 (2021).

[55] P.-O. Löwdin, On the nonorthogonality problem, Adv. Quantum
Chem. 5, 185 (1970).

[56] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integral-
gleichungen, Math. Ann. 64, 161 (1907).

033312-9

https://doi.org/10.1088/2058-9565/ac2d39
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1088/1367-2630/9/7/221
https://doi.org/10.1088/1367-2630/14/5/055004
https://doi.org/10.1103/PhysRevA.88.033631
https://doi.org/10.1103/PhysRevA.87.043613
https://doi.org/10.1103/PhysRevA.87.011602
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevA.94.033606
https://doi.org/10.1103/PhysRevB.26.4269
https://doi.org/10.1126/science.1130365
https://doi.org/10.1038/nature12941
https://doi.org/10.1038/nature09036
https://doi.org/10.1088/1367-2630/14/5/053037
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1103/PhysRevA.107.033323
https://doi.org/10.1103/PhysRevB.86.195129
https://doi.org/10.1088/1367-2630/14/3/033021
https://doi.org/10.1103/PhysRevLett.113.193003
https://doi.org/10.1103/PhysRevA.80.013605
https://doi.org/10.1103/PhysRevA.79.033617
https://doi.org/10.1088/0953-4075/48/4/045301
https://doi.org/10.1103/PhysRevLett.107.175301
https://doi.org/10.1088/1367-2630/15/4/045021
https://doi.org/10.1103/PhysRevA.89.043626
https://doi.org/10.1088/1367-2630/11/9/093022
https://doi.org/10.1103/PhysRevA.85.051604
https://doi.org/10.1103/PhysRevA.102.023312
https://doi.org/10.1103/PhysRevA.92.063637
https://doi.org/10.1103/PhysRevA.96.063611
https://doi.org/10.1103/PhysRevA.94.031601
https://doi.org/10.1103/PhysRevA.103.033326
https://doi.org/10.1016/S0065-3276(08)60339-1
https://doi.org/10.1007/BF01449890


SHOU-LONG CHEN PHYSICAL REVIEW A 110, 033312 (2024)

[57] T. Kock, M. Ölschläger, A. Ewerbeck, W. M. Huang, L.
Mathey, and A. Hemmerich, Observing chiral superfluid or-
der by matter-wave interference, Phys. Rev. Lett. 114, 115301
(2015).

[58] Z. Xu, L. You, A. Hemmerich, and W. Vincent Liu, π -Flux dirac
bosons and topological edge excitations in a bosonic chiral p-
Wave superfluid, Phys. Rev. Lett. 117, 085301 (2016).

[59] Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Multiparticle wannier
states and thouless pumping of interacting bosons, Phys. Rev. A
95, 063630 (2017).

[60] W. C. Lu, C. Z. Wang, T. L. Chan, K. Ruedenberg, and K. M.
Ho, Representation of electronic structures in crystals in terms
of highly localized quasiatomic minimal basis orbitals, Phys.
Rev. B 70, 041101(R) (2004).

033312-10

https://doi.org/10.1103/PhysRevLett.114.115301
https://doi.org/10.1103/PhysRevLett.117.085301
https://doi.org/10.1103/PhysRevA.95.063630
https://doi.org/10.1103/PhysRevB.70.041101

