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We study the decoherence of a system of N noninteracting heavy particles (atoms) due to coherent scattering
with a background gas. We introduce a framework for computing the induced phase shift and loss of contrast for
arbitrary preparations of N-particle quantum states. We find phase shifts that are inherently (N � 2)-body effects
and may be searched for in future experiments. We analyze simple setups, including a two-mode approximation
of an interferometer. We study fully entangled N00N states, which resemble the correlated positions in a matter
interferometer, as well as totally uncorrelated product states that are representative of a typical state in an atom
interferometer. We find that the extent to which coherent enhancements increase the rate of decoherence depends
on the observable of interest, state preparation, and details of the experimental design. In the context of future
ultralow-recoil (e.g., light dark matter) searches with atom interferometers we conclude that (i) there exists
a coherently enhanced scattering phase which can be searched for using standard (i.e., contrast/visibility and
phase) interferometer observables; (ii) although decoherence rates of one-body observables are not coherently
enhanced, a coherently enhanced loss of contrast can still arise from dephasing; and (iii) higher statistical
moments (which are immediately accessible in a counting experiment) are coherently enhanced and may offer a
new tool with which to probe the soft scattering of otherwise undetectable particles in the laboratory.
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I. INTRODUCTION

Decoherence is a pervasive quantum phenomenon which
underlies much of what we understand about the quantum
to classical transition [1,2]. It is universal and can occur in
kinematic regimes in which no other measurable effect would
be induced. For example, collisional decoherence arises from
the ultrasoft scattering of a probe with a quantum system
(e.g., N noninteracting1 atoms), which leaves the positions of
single atoms essentially unchanged as a result of a momentum
transfer q [3,4]. The position is resolved within a region of
size 1/|q|. If the resolution size is smaller than the separa-
tion of the spatial superposition, i.e., 1/|q| < |�x|, then its
quantum state decoheres, and position is einselected as the
preferred classical label [3–5]. This phenomenon is generic,
it can be induced by almost any scattering process and its
observable signatures are calculable, being directly related to
the scattering cross section [6–10].

Collisional decoherence is therefore intimately tied to the
limit of soft scattering. This has lead Riedel to propose,
in a series of papers [11–13], that measurements of deco-
herence (e.g., with matter or atom interferometers) can be
used as a sensitive probe of soft spin-independent scattering
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1By “noninteracting atoms” we mean that interactions between

atoms can be neglected in comparison with the interactions between
the atoms and the environment.

induced by sub-GeV dark matter. This idea has been further
pursued in more recent literature [14–16]. Traditional direct
detection is subject to detector thresholds, and even large
scattering cross sections can be unobservable if their reaction
products are invisible (i.e., lie below detection thresholds);
this makes models dominated by soft-scattering particularly
challenging to search for. Atom interferometers are effectively
threshold-less detectors and therefore offer a complimen-
tary probe of models with large cross sections, but whose
scattering against ordinary matter is dominated by small
momentum transfers. These momentum transfers can be so
small that atom kinematics are negligibly affected, and effects
such as atom loss2 can be completely neglected. A sample
of models which naturally satisfy this criteria are discussed
in Ref. [13].

In the limit of low momentum transfer, it is natural to
consider enhanced sensitivity that would arise due to the con-
structive interference between scattered waves from different
atoms. In the context of scattering from nuclei [17–19] this
phenomenon is often referred to as coherent scattering and
refers specifically to scattering rates that scale as N2 as op-
posed to N (as would be obtained from an incoherent sum
of scattering cross sections from individual atoms). In the
rest of this paper we will use the term “coherent scattering”
or “coherent enhancement” in this specific technical sense of
parametric scaling, i.e., N2 vs N . Coherent enhancements are

2Atom loss includes both getting “kicked out” of the cloud, or
being Doppler-shifted outside the velocity class of an experimentally
relevant laser transition.
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commonplace in scattering off nuclei [20], and offer order
of magnitude improvements in sensitivity for direct detection
experiments when considering models of spin-independent
dark matter [19,21]. In the context of matter and atom inter-
ferometers, coherent enhancements are quite dramatic since
N ∼ 106-1010 in some experiments [22–25]. It is therefore
crucial to reliably establish how coherent scattering enters
into the derivation of, and potentially modifies, formulas for
collisional decoherence.

Surprisingly no such formalism currently exists. The orig-
inal papers on collisional decoherence [3,6] and subsequent
publications [4,26] all explicitly worked on an atom-by-atom
basis. In this work, we address this lacuna by developing
a general and flexible formalism for computing collisional
decoherence for a noninteracting N-body system. As we will
see, a consistent derivation of decoherence for an N-body
system differs from N iterations of a single-body experiment.

Before proceeding to technical details, let us sketch a brief
motivation as to why N-particle coherent scattering may differ
from N independent single-particle experiments. Consider an
interferometer, with a left arm and a right arm. Suppose an
initial state is prepared such that every atom will end up in
a superposition of left and right arms at a later time, i.e.,
|�〉 = ⊗N

i=1
1√
2
(|Li〉 + |Ri〉). The wave function will have

many branches with varying numbers of particles in the left
and right arms of the interferometer, respectively NL and NR.
Coherent scattering with the background gas will modify the
coefficients that multiply each branch of the wave function
in a manner that depends on NL and NR. Thus the scattered
branch of the wave function will no longer be a product
state and will be entangled with the environment in an NL-
dependent way. When considering measurements of only the
atoms, one may trace out the environment. Since the envi-
ronment and atoms are entangled in an N-dependent fashion,
one expects the rate of decoherence to depend on N . The
purpose of this paper is to provide a formalism for computing
these effects. In what follows we compute collisional deco-
herence for a noninteracting N-body system. The formalism
is general and flexible, and can easily interpolate between
different limits.

Our results provide a conclusive answer to the question of
when and how coherent enhancements arise in the context of
atom and matter interferometers. We find that, at the level
of the N-particle density matrix, coherent scattering always
influences the rates of decoherence and induces a coherently
enhanced phase shift. This is a necessary, but not suffi-
cient, condition for coherent enhancements to be observable
in the laboratory. In particular we find that when restricted
to one-body measurements, only the coherently enhanced
phase survives. Nevertheless, given an experiment with many
iterations it is trivial to construct higher-body observables
by considering statistical fluctuations (i.e., higher-order mo-
ments). We find that these quantities generically are sensitive
to enhanced rates of decoherence for generic state prepa-
rations. We stress that this observation is not restricted to
“exotic” states that are delicately prepared in the laboratory
(e.g., N00N states), since it also applies to objects whose
constituents are entangled by inter-particle interactions, i.e.,
for matter interferometers.

The rest of the paper is organized as follows: In Sec. II,
we develop a formalism for collisional decoherence from an
N-body system in the limit of small momentum transfers. We
work in terms of a general T matrix, and then specialize our
analysis to weak coupling where the Born approximation ap-
plies. Next, in Sec. III, we consider a toy-model of a two-arm
interferometer. We first discuss product states in Sec. III A (for
atom interferometers), focusing on when and how coherently
enhanced scattering rates influence relevant observables. We
discuss statistical fluctuations of observables in Sec. III B,
which can be sensitive to coherent enhancements. We find
that strong rates of collisional decoherence that respect a
permutation symmetry can lead to nonclassical statistics at
late times. In Sec. III C, we consider entangled states (for
matter interferometers). Finally, in Sec. IV, we summarize
our findings, contextualize our results, and comment on future
directions.

II. COLLISIONAL DECOHERENCE

A “probe” with momentum p, |π (p)〉, is incident and scat-
ters upon a gas of N atoms prepared in a state ρA. The total
Hamiltonian can be written as Ĥ = ĤA + Ĥπ + Ĥint , where
ĤA acts only on the atoms’ Hilbert space, Ĥπ only on the
probe’s Hilbert space, and Ĥint is the interaction between the
two systems. As discussed in Appendix B, in the limit of
|q|/MA → 0, where MA is the mass of the atom, we can model
Ĥint as a sum of static potentials. For example, if π interacts
with atoms via a massive spin-1 mediator (analogous to a
photon with nonvanishing mass), then Ĥint � ∫

d3y
∑

i V (y −
xi )n̂π (y) where, {xi} are the location of atoms, n̂π (x) is the
number density operator, and V (x) is a Yukawa potential with
a range set by the mass of the mediator. We assume that
ĤA is a nonrelativistic Hamiltonian, while Ĥπ may be either
relativistic or nonrelativistic.

Prior to scattering, the system and probe are described in
terms of the total density matrix ρ = ρA ⊗ ρπ ; we will assume
ρπ is a mixed state diagonalized in momentum space. The dy-
namics of collisions between the atoms and probe particles are
captured by the (unitary) scattering operator S. Assuming that
the probe gas is sufficiently dilute, so that the time between
collisions is long compared to the duration of a collision, we
model the effects of collisions by a two-particle scattering
operator ρ → ρ ′ = SρS†.

Using the standard definition of the T matrix, S = 1 + i T ,
we may write the change in the density matrix due to scatter-
ing, �ρ = ρ ′ − ρ as

�ρ = i
2 [T + T †, ρ] + i

2 {T − T †, ρ} + T ρT †

= i
2 [T + T †, ρ] − 1

2 {T †T, ρ} + T ρT † , (1)

where in going to the second line we used the optical theorem,
i (T − T †) = −T †T . The above equation exhibits a Lindbla-
dian form. The anticommutator piece describes the unitary
dynamics and may cause phase shifts in the evolution of the
density matrix. The second and third terms are responsible for
decoherence, where T can be identified as the jump operators.
Our goal is to compute the reduced density matrix of the atoms

ρ ′
A = Trπρ ′ =

∫
d3 p

(2π )3
〈π (p)|ρ ′|π (p)〉 , (2)
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where p is the three-momentum of the probe and Trπ is the
trace over environmental degrees of freedom. In the static
limit (defined by |q| 
 MA, where MA is the atomic mass),
atomic position is conserved in the scattering process and
|{x}〉 = ⊗N

i=1 |xi〉 acts as a good pointer basis [3,5,27]. At the
level of the T matrix, this manifests as

T (|{x}〉 ⊗ |π〉) = |{x}〉 ⊗ (
T{x}|π〉). (3)

We refer to T{x} as the induced T matrix; it depends on all of
the atomic spatial coordinates. Whenever the probe interacts
in the same way with all of the atoms, T{x} is invariant under
permutations of atomic positions. It acts on the probe Hilbert
space and has matrix elements normalized as is appropriate
for potential scattering, i.e., Ref. [28],

〈π (p′)|T{x}|π (p)〉 = (2π )δ(E ′ − E )M{x}(p′, p) , (4)

being E and E ′ the energies of the initial and final states,
respectively. It may be computed by treating each atom as a
background potential centered at xi and summing the resulting
amplitudes (cf. Appendix A for a discussion on scattering
theory conventions and Appendix B for a derivation).

We may expand the scattering matrix elements perturba-
tively using the Born series. For feebly interacting particles,
such as dark matter or neutrinos, this treatment is always
justified (even when considering matter interferometers). For

particles with larger interaction rates, e.g., photons or neu-
trons, the Born approximation applies in the dilute limit where
na3 
 1 where n is the number density and a is the probe-
atom scattering length [29–31]. At first order we have

M(1)
{x}(p

′, p) =
∑

i

Ṽ (q)eiq·xi , (5)

where Ṽ (q) is the Fourier transform of the scattering potential
V (x) with q = p′ − p. At second order we have

M(2)
{x}(p

′, p) =
∑

i j

∫
d3q1

(2π )3

d3q2

(2π )3
eiq1·x j eiq2·xiṼ (q2)

× Gπ (p + q1)Ṽ (q1)(2π )3δ(3)(q1 + q2 − q),

(6)

where the probe propagator appears as Gπ .
Without loss of generality we can write any atomic density

matrix in terms of its position eigenstates

ρA =
∫

[d{x}][d{x′}] ρA({x}, {x′}) |{x}〉〈{x′}| , (7)

where [d{x}] = ∏N
i=1 d3xi. The behavior of the states |{x}〉

as a pointer basis allows us to evolve each of these matrix
elements independently of one another. The matrix elements
of �ρA then satisfy (abbreviating |π (p)〉 to |p〉)

�ρA({x}, {x′}) = ρA({x}, {x′})
∫

d3 p

(2π )3
ρπ (p)

(
i

2
〈p|(T{x} + T †

{x} − T{x′} − T †
{x′})|p〉

− 1

2
〈p|(T{x}T

†
{x} + T{x′}T

†
{x′})|p〉

+ 〈p|T †
{x′}T{x}|p〉

)
. (8)

We stress that Eq. (8) does not assume that atoms are localized
in position eigenstates and does not rely on the Born approx-
imation. Rather, we have expanded a (completely general)
density matrix in the coordinate representation and used the
(exact) T{x} matrix for the probe states for each configuration
of atoms in the distribution.

Equation (8) is our major result, and what follows are
simple applications of this formula. Notice that Eq. (8) is
manifestly traceless and Hermitian and, by the invariance of
T{x} under particle relabeling, there also exist off-diagonal
entries in Eq. (8) that vanish. The first line of Eq. (8) corre-
sponds to the forward scattering phase, and contains nontrivial
contributions starting at O(V 2).3 The second and third lines,
which correspond to the decoherence part of the Lindblad
equation, contain contributions starting at second order in the
Born series, since T contains contributions starting at O(V ).

3Since the probe momentum in- and out- states are identical, the
first line of Eq. (8) is simply given by Eq. (4), where the scattering
matrix element is evaluated for p = p′; at first order in the Born
series, M(1)

{x}(p, p) = ∑
i Ṽ (0), which implies that the first line of

Eq. (8) vanishes at this order.

Whenever T{x} �= T{x′} the forward scattering phase is observ-
able and we comment on its impact on specific measurements
in what follows.

Equation (8) reduces to the standard result for a single atom
[3,4]. The first line has only forward scattering amplitudes and
vanishes for a single atom, as shown in Ref. [4]. However, it
does not vanish for N � 2 and therefore represents a phase
shift which is a bona fide N-particle effect, and which can
survive even for an isotropic density matrix for probe states.

Interpreting each unitary S matrix as inducing a change in
the state over a small interval of time �t , the above equa-
tions can be re-written in differential form,

d

dt
ρA({x}, {x′}) = −λ({x}, {x′})ρA({x}, {x′}). (9)

The solution of this differential equation is trivial being
given by

ρA({x}, {x′}, t ) = ρA({x}, {x′}) exp

[
−

∫ t

0
dτλ({x}, {x′}, τ )

]
.

(10)
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We have anticipated the form of the evolution equation in
a semi-classical picture where atomic positions change as a
function of time x → x(τ ). For example, if ĤA is taken to be
the free Hamiltonian, then x(τ ) = x0 + v0τ . The function λ

is calculable and can be decomposed into a unitary, λU , and
“decohering” component, λD, which are identified by their
appearance in the first line and subsequent lines of Eq. (8),
respectively. At leading order in the Born series, the expres-
sions for λU and λD are given via Eqs. (5) and (6) by

λU =
∫

d3 p

(2π )3
ρπ (p)

∫
d3q′

(2π )3
Ṽ (−q′)[Gπ (p + q′)

+ G†
π (p + q′)]Ṽ (q′)

⎡
⎣ i

2

N∑
i j

eiq′ ·(x′
i−x′

j ) − eiq′ ·(xi−x j )

⎤
⎦,

(11)

λD =
∫

d3 p

(2π )3
ρπ (p)

∫
d3q

(2π )3
(2π )δ(	E )|Ṽ (q)|2

×
⎡
⎣1

2

N∑
i j

eiq·(xi−x j ) + eiq·(x′
i−x′

j ) − 2eiq·(xi−x′
j )

⎤
⎦, (12)

where q′ is not to be confused with the momentum transferred
by the probe. Equations (11) and (12) factorize into a real
function ωU,D that depends solely on the kinematics [i.e.,
after averaging over ρπ (p)], and a kernel (in square brackets)
KU,D({x}, {x′}). For definiteness, in what follows we will treat
the N particles as distinguishable; this is justified for atomic
de Broglie wavelengths that are short relative to the interpar-
ticle spacing.

In the following, we aim to understand the way in which
coherent (multiatom) effects differentiate the imprints of the
environment on an experiment employing a N-atomic cloud
from the imprints of the environment on N iterations of an
experiment employing a single atom.

III. TOY MODEL OF A TWO-ARM INTERFEROMETER

The parametric scaling of Eqs. (11) and (12) with N can be
most easily understood in a two-mode interferometer with N
atoms, for which the Hilbert space is 2N dimensional. In this
model, the position labels {x} and {x′} assume discrete values
which we label as L or R, e.g., {x} = {L, L, R, L, L, R} for a
specific configuration of a six-atom system. The two discrete
positions L and R are separated by a (time dependent) distance
�x = |xL − xR|. This approximates a realistic two-arm inter-
ferometer when momenta transfers are sufficiently small that
the cloud appears pointlike (i.e., it corresponds to the limit
where the cloud radius is taken to be much smaller than the
typical inverse momentum transfer). We will label the number
of atoms in the left arm of |{x}〉 by NL (e.g., NL = 4 for
|{LLRLLR}〉) and the number of atoms in the left arm of 〈{x′}|
by N ′

L, and define n = NL − N ′
L as the atom asymmetry. With

this convention, in the limit of coherent scattering |q| < 1/rc,
being rc the cloud radius, we may evaluate the kernels, defined
as the terms in between square brackets in Eq. (11) (unitary

kernel) and Eq. (12) (decoherence kernel), for any N-tuple {x}
and {x′}

KU = i n(n + N − 2NL )[1 − cos(q′ · �x)] , (13)

KD = n2[1 − cos(q · �x)] − iNn sin(q · �x) , (14)

where −N � n � N and 0 � NL � N , and |�x| is the sepa-
ration between the interferometer arms (cf. Appendix D for
a derivation of these kernel formulas). Notice that both ker-
nels are invariant under permutations of the atoms’ labels
and therefore vanish for n = 0. This also agrees with the
information-theoretic understanding of decoherence [32]: the
larger the asymmetry between states, the more “which-path”
information is gathered by a single scattering event. Pairs of
N-particle states for which n = 0 (e.g., |LR〉〈RL| for N = 2
or |LLR〉〈LRL| for N = 3) are invariant under open-system
dynamics induced by the probe-system scattering process and
are therefore elements of decoherence-free subspaces [33].
We note that KD → 0 in the limit where the probe particle
does not resolve the two interferometer arms, |q| 
 1/|�x|,
as expected from a probe particle (potential observer) that
does not localize where the atoms are amongst the two in-
terferometer paths.

A. Product states

Let us now consider a two-arm interferometer in which
the atoms are initially uncorrelated and each prepared in a
superposition of the left and right arm, 1√

2
(|L〉 + |R〉). This

many-particle wave function can be written as a product state
|�〉 = ⊗N

i=1
1√
2
(|Li〉 + |Ri〉). This may be considered as a toy

model of an atom interferometer, such as the 10-meter atom
fountain at Stanford [34], or the proposed MAGIS [23] and
AION [35] experiments (whose primary goals are to search
for midfrequency gravitational waves and ultralight dark mat-
ter [36]), employing a dilute atom cloud of radius rc 
 |�x|
and rc 
 1/|q|, where |q| is the momentum transferred by
the probe. In this case the density matrix is not sparse, and
one must consider all entries in ρA, for which the decoherence
kernel is given by Eq. (14).

Equation (14) shows that density matrix elements with
n ∼ O(N ) have coherently enhanced rates of decoherence. A
typical measurement in an atom interferometer, however, is
a one-body measurement [37], i.e., the observable is repre-
sented by an operator O1B = ∑N

i=1 Oi where i labels each
atom in the gas. In this case, because N − 1 single-atom
Hilbert spaces are traced over, only terms with |n| � 1 in ρA

contribute to the expectation value of the observable.
For example, in atom interferometers based on diffuse

atomic clouds, the accessible experimental observable is the
relative number of atoms measured in a given port, e.g.,
|+〉, with respect to the total number of atoms measured. A
fringe is typically inferred using Oi = |+i〉〈+i| with |+i〉 =

1√
2
(|Li〉 + |Ri〉) [37,38] (which projects the atoms in port |+〉).

This fringe is characterized by its amplitude, usually named
visibility/contrast V and phase shift ϕ. The expectation value
of O+ = ∑N

i=1 Oi is then given by

〈O+〉 = Tr(ρAO+) = N

2
(1 + V cos ϕ) , (15)
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where the trace is over the 2N -dimensional Hilbert space. The
measured contrast and phase shift are related to the one-body
reduced density matrix ρ1 = TrN−1(ρA) via

V cos ϕ = 2 Re(〈L|ρ1|R〉) . (16)

After accumulating a dynamical (i.e., independent of open-
quantum system dynamics) phase-shift φ, the off-diagonal
element of ρ1 can be written as

〈L|ρ1|R〉 = 1
2 cosN−1(τ ) e−s+i[φ−Nγ ] , (17)

where

s =
∫

dt
∫

d3q

(2π )3
ωD(q, t )[1 − cos(q · �x)], (18)

γ =
∫

dt
∫

d3q

(2π )3
ωD(q, t ) sin(q · �x), (19)

τ =
∫

dt
∫

d3q′

(2π )3
ωU (q′, t )[1 − cos(q′ · �x)], (20)

are real functions which scale as |Ṽ (q)|2 and parametrize pre-
viously known (s and γ ) [3,4] and novel, (τ ) collision-induced
effects. We refer the reader to Appendix E for the deriva-
tion of a generic matrix element of a α-body density matrix
[the results above can be obtained by taking α = 1, NL = 1
and N ′

L = 0 in Eq. (E1)]. The phase τ , which originates
from forward scattering, is only observable for N � 2 and
does not vanish even for a rotationally invariant ρπ (p) (e.g.,
a Maxwell-Boltzmann gas).4 The cosine in Eq. (17) arises
from (destructive) interference between different terms in the
partial trace. Both γ and τ receive N enhancements while s
does not, in agreement with Eqs. (13) and (14) for |n| = 1.
Although the overall amount of decoherence, e−s, is not en-
hanced by factors of N , there can still be a loss of contrast
from dephasing, cosN−1(τ ), which is both enhanced in the
large-N limit and absent in the single atom case. Therefore,
τ can be measured using the standard contrast/visibility ob-
servable. Furthermore, in the regime where the probe particle
does not resolve the two interferometer paths, |q| 
 1/|�x|,
the integrands of s and γ are suppressed by (q · �x)2 and
(q · �x), respectively. However, the unitary kernel in Eq. (13)
still contributes to the contrast loss via the phase τ .

B. Statistical fluctuations of one-body operators

Higher-order moments of one-body operators offer a nat-
ural probe of enhanced decoherence rates. For example
consider counting atoms in a port “+”. After ℵ runs of
the experiment the collected data can be written as the se-
quence {n(1)

+ , n(2)
+ , n(3)

+ , . . . , n(ℵ)
+ }. The fluctuations of n(i)

+ are
sensitive to enhancements that scale like n2. As a simple illus-
tration let us consider the variance (second moment) estimated
using 1

ℵ
∑ℵ

a=1[n(a)
+ − 〈n+〉]2, where 〈n+〉 = 1

ℵ
∑ℵ

a=1 n(a)
+ is the

estimator of the mean.
The counting operation corresponds to the one-body op-

erator O+ previously defined. The mean number of counts
in this port is 〈O+〉 = Tr[ρ O+], while the variance is given

4For a discussion on the nonvanishing forward scattering phase; see
Appendix C.

by σ 2
+ = 〈O2

+〉 − 〈O+〉2 = Tr[ρ O2
+] − 〈O+〉2. The two-body

operator O2
+ can be expanded as

O2
+ =

N∑
i=1

N∑
j �=i

OiO j +
N∑

i=1

Oi . (21)

To evaluate 〈O2
+〉, one must use ρ2 = TrN−2ρA; see, e.g.,

Ref. [39]. The two-body reduced density matrix, ρ2, will have
two entries which decohere with a rate enhanced by (n = 2)2.
We show this schematically below for the elements of ρ2

labeled (left to right, and top to bottom) by states |LL〉, |LR〉,
|RL〉, and |RR〉

ρ2 =

⎛
⎜⎜⎜⎝

◦ � � �
� ◦ ◦ �
� ◦ ◦ �
� � � ◦

⎞
⎟⎟⎟⎠ . (22)

Entries with ◦ have n = 0, entries with � have |n| = 1, and
entries with � have n = 2. The variance σ 2

+ = 〈O2
+〉 − 〈O+〉2

can be constructed using

〈O2
+〉 = 〈O+〉 + N (N − 1)

4

×
[

3

2
+ 4Re〈L|ρ1|R〉 + 2Re〈LL|ρ2|RR〉

]
. (23)

The corner-entry of ρ2 may be written as

〈LL|ρ2|RR〉 = 1
4 cosN−2(2τ ) e−4s+2i[φ−Nγ ] , (24)

for N � 2. Equation (24) exhibits enhanced decoherence rel-
ative to Eq. (17) due to 〈LL|ρ2|RR〉 having n = 2. More
generally, the ηth moment of O+ is computed using ρη =
TrN−ηρA whose corner entry has n = η (cf. Appendix E for
a discussion on reduced density matrices and Appendix F for
general expressions of the statistical fluctuations of one-body
operators). Thus, for η ∼ O(N ) one can construct observables
which experience rates of decoherence enhanced by O(N ).

Examining Eqs. (22) and (23) one finds another interesting
phenomenon that occurs in the limit of e−s → 0. Although the
mean follows what would be expected from a conventional
classical state of coin flipping, 〈O+〉 = 1/2, we find that the
variance remarkably scales as N2 instead of N ,

σ 2
+ = N (N + 1)

8
. (25)

The statistics follow a super-Poissonian distribution. This is
a consequence of the nonzero off-diagonal entries (◦) with
n = 0 in Eq. (22) which would vanish for a maximally mixed
state. These entries do not decohere because of the permuta-
tion symmetry of the atomic positions {x} and {x′}, cf. Eq. (8).
Although this result can be anticipated mathematically, it is
classically counterintuitive. For ultrafeeble interactions, such
as those of dark matter, the e−s → 0 limit will not occur.
However, for standard environmental decoherence this limit
is ubiquitous. Equation (25) may therefore be interpreted as a

033311-5



BADURINA, MURGUI, AND PLESTID PHYSICAL REVIEW A 110, 033311 (2024)

generic signal for a system which has been strongly decohered
as a result of coherent scattering.

C. Entangled states

Before concluding, let us consider an example that
illustrates the N2 enhancements, and that is simple to
analyze theoretically. Suppose that the N-atom system
is prepared in the maximally entangled (N00N) state
|�〉 = 1√

2
(
⊗N

i=1 |Li〉 + ⊗N
i=1 |Ri〉). This configuration mim-

ics a matter-wave interferometer, which is similarly entangled
but due to intra-material forces rather than state preparation.
For such a system preparation, there are only two nonvanish-
ing off-diagonal entries in ρA. These correspond to (n, NL ) =
(N, N ) and (n, NL ) = (−N, 0). Using Eqs. (13) and (14) de-
rived in the limit of coherent scattering 1/|q| < rc, one finds
KU = 0 and

KD(q, {x}, {x′}) = N2(e±iq·(x−x′ ) − 1) , (26)

equivalent to the replacement |Ṽ (q)|2 → N2|Ṽ (q)|2 in the
single atom formula. An atom interferometer employing
N00N states and measuring O = |ψ〉〈ψ | is therefore suscep-
tible to coherent enhancements.

N00N states with N � 10 are difficult systems to prepare
in the laboratory; hence, we do not expect N00N states them-
selves to play an important role in future atom interferometer
searches for dark matter. Nevertheless, the parametric scaling
we have identified applies to other systems of experimental
relevance. We have in mind, in particular, matter-wave in-
terferometers employing mesoscopic objects. Ordinary matter
naturally contains both a large number of particles and a high
level of entanglement. The state of, e.g., a piece of gold, can
be described by a many-body wave function in which the
relative coordinates are tightly localized (and therefore entan-
gled) about the center-of-mass coordinate. In a matter-wave
interferometer, the center of mass can be delocalized, and the
system placed in a quantum superposition with highly entan-
gled relative coordinates. This situation is closely analogous
to the N00N state analyzed above. Equation (26) suggests
that existing approaches in the literature [11,13–15] for com-
puting decoherence for matter-wave interferometers, such as
MAQRO [25], are therefore reliable. While these matter inter-
ferometers offer experimental challenges of their own right,
they offer a clear path towards macroscopic atom populations,
i.e., N ∼ 1010 for the MAQRO experiment [25].

IV. DISCUSSION AND CONCLUSIONS

In this work we have computed the collisional decoherence
of a system of N atoms due to scattering with a background
gas. Specifically, Eq. (8) can be used to compute the colli-
sional decoherence of a generic N-particle system. Focusing
on the case when the probe states scatter coherently off of the
atoms, we find that a careful treatment of the N-body system is
required to properly characterize both the phase shift and loss
of visibility arising from collisional decoherence, cf. Eq. (15).
Indeed, there exist inherently (N � 2)-body effects that can be
searched for in future two-arm interferometers. Importantly,
the observation of this phase shift and of coherently enhanced
decoherence rates depends on (i) the initial state preparation,

(ii) the dynamics of the interferometer, and (iii) the final
measurement being performed.

Although we have focused on a toy-model of an in-
terferometer, our qualitative conclusions have immediate
consequences for dark matter direct detection [11,13–15], and
atom interferometers more generally. While we find that one-
body observables are less sensitive to coherent enhancements
than one would naively expect, it is clear that some coherent
effects can be used as a resource for the discovery of dark mat-
ter. For example atom interferometers employing N00N states
and matter-wave interferometers naturally exhibit coherently
enhanced decoherence. Similarly, statistical fluctuations of
counting measurements in atom interferometers offer a probe
of coherent enhancements using uncorrelated initial states.
We leave a more detailed investigation into optimal strategies
for measuring decoherence and modeling of proposed and
existing experimental configurations to future work. Never-
theless we have identified observable N enhancements for: the
phase γ , loss of contrast from dephasing due to the forward
scattering phase τ , and decoherence that enters from higher
statistical moments of one-body observables. All of these ef-
fects are resources that enhance sensitivity when searching for
decoherence from feebly interacting environmental particles
such as light dark matter.

It would be interesting to test the features of decoherence
that are inherent to (N � 2)-particle systems in the laboratory.
This could be achieved even for a system with a modest num-
ber of atoms (e.g., N ∼ 10) and a background gas which has
a large coherent cross section with atoms in the limit of low
momentum transfer. One could study higher-order moments
of single-body operators as described above, and search for
coherently enhanced rates of decoherence and/or the influence
of the forward scattering phase. Ideally, to match onto the
two-mode approximation employed in this work, the radial
size rc of the N-atom system (not to be confused with the
separation between the arms of the interferometer) would have
to satisfy rc 
 1/|qmax| with |qmax| ≈ √

2mT with T and m
the temperature and mass of the background gas, respectively.
Furthermore, while Eq. (8) applies generally to any N-atom
system, the expressions in Eqs. (11) and (12) rely on the Born
approximation. Therefore, if these analytic results are to be
used, then one should have a dilute gas satisfying na3 
 1
where n is the number density of the atoms and a is the
atom-atom scattering length [29–31]. We leave a more de-
tailed modeling of effects (e.g., system substructure, finite
temperature, etc.) that go beyond the idealized limit discussed
above to future work.

The formalism presented here can be tested in future exper-
iments, including searches for the forward scattering phase,
and coherently enhanced rates of decoherence. This would
both shed light on the quantum to classical transition, and
aid in the design and optimization of future interferome-
ters. The forward scattering phase, τ , and the decoherence
phase, γ , are enhanced by O(N ), and may be an important
background (or new signal) when searching for anomalous
phase shifts in atom interferometers. Theoretical control over
coherently enhanced effects will, in turn, benefit dark matter
searches, gravitational wave detection, and other applications
to fundamental physics (see Refs. [40,41] and references
therein).
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APPENDIX A: SCATTERING THEORY CONVENTIONS

For a self-contained discussion, we provide here our con-
ventions for the normalization of states and the definition of
the scattering cross section. We take our states to be relativis-
tically normalized

〈p′|p〉 = 2Ep(2π )3δ(3)(p − p′) . (A1)

Scattering matrix elements are defined in terms of the T ma-
trix, S = 1 + iT ,

〈 f |T |i〉 = (2π )4δ(4)(	p)M f i , (A2)

where 	p = 	p f − 	pi, and pi, f are the four momenta of
the initial and final states, respectively. Scattering cross sec-
tions involving 2 → n processes are given by

σ f i = 1

F

∫
d�1 . . .d�n(2π )4δ(4)(	p)|M f i|2 , (A3)

where d� = d3 p/(2Ep)/(2π )3, and F = 2
√

λ(s, m2
1, m2

2 ) is
a Lorentz invariant flux normalization with λ(x, y, z) = x2 +
y2 + z2 − 2xy − 2yz − 2xz the Källen triangle function. The
masses of the incoming particles are m1 and m2. Using the
above expression it is straightforward to derive

dσ

d�
=

∫
d3q

(2π )3
(2π )δ(	E )|M|2 , (A4)

where 	E = 	E f − 	Ei, for 2 → 2 scattering in the static
limit where s − m2

1 
 m2
1.

It is also useful to introduce the relevant normalization for
potential scattering. These are frame dependent since the static
background field implicitly selects a preferred frame, i.e., the
rest frame of the target. Scattering in a background field is a
1 → 1 process and in this case the normalization of T -matrix
elements is

〈p′|T |p〉 = (2π )δ(E ′ − E )M(p′, p) . (A5)

The differential cross section is written in terms of the
potential-scattering matrix element as

σv = 1

2E

∫
d� (2π )δ(	E ) |M|2 , (A6)

where v = |p|/E is the velocity of the incident particle in
the laboratory frame. When scattering from a background
potential, the matrix element at first order in the Born ap-
proximation is related to the Fourier transform of the potential
M = (2E )Ṽ (q). The factor of (2E ) is related to the relativis-
tic normalization of states.

APPENDIX B: POTENTIAL SCATTERING DERIVATION

In this section we explain how the background potential
approximation emerges from the analysis of Feynman dia-
grams. This helps resolve certain conceptual ambiguities. For
example, if one considers 3 → 3 scattering involving atom
i, atom j, and the probe π , then the associated Feynman
diagram appears as a tree-level graph. However, in the poten-
tial scattering calculation, this diagram is second order in the
Born series, and one must integrate over momentum transfers.
This “paradox” arises because we consider atoms in position
eigenstates, rather than momentum eigenstates. We discuss
this point in detail in what follows.

Let us work out the scattering of a probe on a single particle
at a fixed position,

|x〉 =
∫

d3k

(2π )3
eik·x|k〉 . (B1)

As a short-hand we will use [dk] = d3k/(2π )3. We are inter-
ested in

〈p′|T |x, p〉 =
∫

[dk]eik·x〈p′|T |k, p〉 , (B2)

where T is the T matrix appearing in the definition of the S
matrix, i.e., S = 1 + i T . Inserting a complete set of atomic
momentum eigenstates,

〈p′|T |x, p〉 =
∫

[dk][dk′]eik·x|k′〉〈p′, k′|T |k, p〉 . (B3)

Using the definition of the scattering matrix element

〈p′, k′|T |k, p〉 = (2π )4δ(4)(	p) iM(v · q, q2) , (B4)

where we assume that the matrix element depends only on
the Lorentz invariants v · q and q2, with v the atom’s four
velocity,5 and qμ = p′

μ − pμ. To first order (i.e., the probe
scattering off of an atom once), the corresponding Feynman
diagram for the ith atom is (trivially),

(B5)

At second order mediators can talk to the same atom twice.
For the ith atom, this corresponds to a two-body one-loop
graph,

(B6)

5This approximation is related to the hierarchy of scales |q| 
 MA.
For an atom at rest, vμ = (1, 0, 0, 0).
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The two momentum transfers q1 and q2 are constrained by
q1 + q2 = q. Using the delta function to integrate over k′,
Eq. (B4) takes the form

〈p′|T |x, p〉 =
∫

[dk]eik·x|k + q〉(2π )δ(	E )iM(v · q, q2) .

(B7)

Next, writing |k + q〉 = eiq·x̂|k〉, and then using the fact that
the matrix element and energy conserving delta function do
not depend on k, we find

〈p′|T |x, p〉 = (2π )δ(	E )iM(v · q, q2)eiq·x̂|x〉
= (2π )δ(	E )iM(v · q, q2)eiq·x|x〉 , (B8)

where in the last equality we have acted with the position
operator on the position eigenstate. We may rewrite this as

T (|x〉 ⊗ |p〉) = |x〉 ⊗ (Tx|p〉) . (B9)

Notice the that the induced T matrix is normalized as is
appropriate for potential scattering [28].

What if the probe scatters off of two different atoms? In this
case, the problem at hand is 3 → 3 scattering. The leading-
order Feynman diagram appears as a tree-level graph,

(B10)

where i �= j. Performing the exact same analysis as above in
terms of position eigenstates and T matrices, one arrives at

〈p′|T |x1, x2, p〉 = (2π )δ(	E )
∫

[dq1]iM(q1, q)eiq1·x1

× ei(q−q1 )·x2 |x1, x2〉 . (B11)

It follows that T (|x1, x2〉 ⊗ |p〉) = |x1, x2〉 ⊗ (T(x1,x2 )|p〉).
Equation (B11) is the same amplitude that would be obtained
using potential scattering Feynman rules for two potentials
located at x1 and x2, i.e., the second-order term in the Born
series. Note that the matrix element is normalized with a
single energy conserving delta function, as is appropriate for
potential scattering.

For decoherence, in which one typically considers small
momentum transfers, it is most efficient to formulate the
problem in the language of potential scattering. The probe
state may be relativistic or nonrelativistic. Iteration generates
higher loop order diagrams from potential scattering such that
the induced S matrix corresponds to potential scattering at
arbitrary order in perturbation theory.

We have focused on a noninteracting dilute gas, allowing
us to neglect inter-atomic interactions to a good approxi-
mation. In the instance where interactions among particles
are important, the Feynman diagram approach here can be
used to incorporate interactions between atoms. Such a pro-
gram is often considered in the context of nuclear scattering
where one-pion exchange graphs generate two-body poten-
tials [42,43]. One could similarly consider an interacting gas
of probe states via the same approach.

APPENDIX C: NONVANISHING FORWARD
SCATTERING PHASE

The forward scattering phase does not vanish upon aver-
aging over all angular directions of the probe’s momentum
p. To see this explicitly, consider the Feynman diagrams in
Eqs. (B6) and (B10) for q = p′ − p = 0. Recall that we as-
sume the clouds to be pointlike, i.e., the distance between
interferometer arms is large, but the interparticle separation
is small. Any term with xi and x j in different arms of an
interferometer can be dropped due to their rapidly oscillating
exponentials. For the remaining terms, with xi and x j in the
same arm, we can make the replacement eiq′ ·(xi−x j ) → 1 in the
loop integral. We are then left with the integral,

I (p) =
∫

d3q′

(2π )3
|Ṽ (q′)|2 [Gπ (p + q′) + G†

π (p + q′)]. (C1)

Assuming Ṽ (q′) is rotationally invariant, there is no addi-
tional reference vector in the problem except for p. This
implies that the integral written above can depend only on
p2, I (p) = I (p2). Therefore the average over initial particle
directions does not vanish even for isotropic probe momentum
distributions, ∫

[d p] ρπ (p) I (p2) �= 0 . (C2)

APPENDIX D: COMBINATORICS

In the limit of coherent scattering, the momenta transfers
are sufficiently small that the cloud in each arm of the experi-
mental appears pointlike. Hence, we may assume that an atom
in the left arm is located at position xL, while an atom in the
right arm is located at position xR. Let us now suppose that
our state |{x}〉 has NL atoms in the left arm and NR atoms in
the right arm. Similarly, let us take |{x′}〉 to have N ′

L atoms in
the left arm and N ′

R atoms in the right arm.
Since Eqs. (11) and (12) are manifestly invariant under

particle relabeling, let us order the particle labels such that
x1 . . . xNL = xL and xNL+1 . . . xN = xR (and similarly for the
primed case). It is convenient to align the kets in this form:

|{x}〉 = |L, L, . . . , . . . , L, L〉
NR︷ ︸︸ ︷

|R, . . . , R〉
|{x′}〉 = |L, . . . , L〉︸ ︷︷ ︸

N ′
L

|R, R, . . . , . . . , R, R〉 .
(D1)

We can now ask what the possible outcomes of the terms in
the sum above above. It is clear that every exponential can
evaluate to one of three numbers: (i) 1, (ii) e+iq·�x, and (iii)
e−iq·�x.

We define the difference in path length via �x = xL − xR.
q is the momentum transferred by the probe. Therefore, the
decoherence kernel [i.e., term between squared brackets in
Eq. (12)] is given by

1

2

⎛
⎝∑

i j

2eiq·(xi−x′
j ) − eiq·(xi−x j ) − eiq·(x′

i−x′
j )

⎞
⎠

= 1

2
(A1 + A+e+iq·�x + A−e−iq·�x ) . (D2)
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Evaluating the coefficients A1, A+, and A− is a straightforward
combinatorics problem. We may without loss of generality,
focus on the case where n � 0,

A1 = 2N ′
LNL + 2N ′

RNR − (
N2

L + N2
R + N ′2

L + N ′2
R

)
, (D3)

A+ = 2NLN ′
R − (NLNR + N ′

LN ′
R) , (D4)

A− = 2N ′
LNR − (NLNR + N ′

LN ′
R) . (D5)

As discussed in the main text, it is convenient to introduce the
atom asymmetry

n = NL − N ′
L = NR − N ′

R , (D6)

which characterizes how different the state |{x}〉 is from the
state |{x′}〉, so that we may usefully express the previous
expressions in terms of n,

A1 = −2n2 ,

A+ = n(n − N ) ,

A− = n(n + N ) . (D7)

It is important to note that all of these corrections vanish
as n → 0. Adding everything together we get the following
expression for the decoherence kernel:

KD = n2[1 − cos(q · �x)] − inN sin(q · �x) . (D8)

The unitary kernel [i.e., term between squared brackets in
Eq. (11)] contains only a subset of the terms above. We find
for this case,

i

2

⎛
⎝∑

i j

eiq′ ·(xi−x j ) − eiq′ ·(x′
i−x′

j )

⎞
⎠

= i

2
(B1 + B+e+iq′ ·�x + B−e−iq′ ·�x) . (D9)

These constants can be taken from the relevant terms above,

B1 = N2
L + N2

R − N ′2
L − N ′2

R ,

B+ = NLNR − N ′
LN ′

R ,

B− = NLNR − N ′
LN ′

R , (D10)

which can be expressed in terms of n as

B1 = −2n(n + N − 2NL ) ,

B+ = n(n + N − 2NL ) ,

B− = n(n + N − 2NL ) . (D11)

As for the decohering part, these corrections vanish as
n → 0. From these expression we find the following closed-
form expression for the unitary kernel,

KU = −i n(n + N − 2NL )[1 − cos(q′ · �x)] . (D12)

From Eqs. (D8) and (D12), one can show that the mul-
tiparticle density matrix remains Hermitian after scattering.
Since the multiparticle density matrix prior to scattering, ρA,

is Hermitian by definition,

ρA({x}, {x′}) = ρA({x′}, {x})∗ . (D13)

Therefore, for ρA(t ) to remain Hermitian for t > 0, we require
that

λU,D({x}, {x′}) = λU,D({x′}, {x})∗ . (D14)

For consistency, when mapping n → −n one must hold
NL + N ′

L fixed. Under this map we have

ρA({x}, {x′}) → ρA({x′}, {x}) , (D15)

KU,D({x}, {x′}) → KU,D({x′}, {x}) = KU,D({x}, {x′})∗ .

(D16)

Since λU,D({x}, {x′}) ∝ KU,D({x}, {x′}) and all other factors in
λU,D are real. It follows that the multiparticle density matrix
after scattering is manifestly Hermitian.

APPENDIX E: REDUCED DENSITY MATRICES

In the main body of the text we have made use of reduced
density matrices. For an N-body system, the M-body reduced
density matrix is defined as ρM = TrN−M[ρ]. In the case of an
N-atom system, TrN−M is the trace over N − M single-atom
Hilbert spaces.

Let us now consider the matrix elements of a reduced
density matrix. Without loss of generality, take 〈N ′

L|ρα|NL〉,
where the states 〈N ′

L| and |NL〉 have N ′
L and NL particles in

the left arm, and α − N ′
L and α − NL particles in the right

arm, respectively. The partial trace which defines ρα involves
a sum over states with NL = NL + ML and N ′

L = N ′
L + ML

where ML accounts for the number of particles in the left arm
from the states being traced over. Using the definitions of the
kernels [cf. Eqs. (D8) and (D12)], and the fact that the unitary
kernel is linear in NL, we find

〈N ′
L|ρα|NL〉 = 〈N ′

L|
⎡
⎣ N−α∑

ML=0

(
N − α

ML

)
〈ML|ρ|ML〉

⎤
⎦|NL〉

= 1

2N
e f (n)ei2nNLτ

N−α∑
ML=0

(
N − α

ML

)
ei2nMLτ

= 1

2α
e f (n)

(
1 + ei2nτ

2

)N−α

ei2nNLτ , (E1)

for a function f (n) given by

f (n) = −n2s − inNγ − in(N + n)τ , (E2)

where s, γ and τ are defined in Eqs. (18) to (20). Importantly,
Eqs. (E1) and (E2) provide compact expressions for reduced
density matrix elements.

For sufficiently weak coupling between the probe and the
atoms (or equivalently at early times), the impact of the novel
phase shift τ can be inferred from Eq. (E1) for a particular
observable. For example, consider the expectation value of the
observable O+ [cf. Eqs. (15) to (17)]. Since this observable
is a one-body observable, it depends on a one-body reduced
density matrix [i.e., α = 1 in Eq. (E1)]. The expansion for
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TABLE I. Coefficients C(α) necessary to compute 〈Oη

1B〉 for η ∈
{3, 4, 5, 6, 7}.

η C(1) C(2) C(3) C(4) C(5) C(6) C(7)

3 1 3 1 — — — —
4 1 7 6 1 — — —
5 1 15 25 10 1 — —
6 1 31 90 65 15 1 —
7 1 63 301 350 140 21 1

〈O+〉 is given by

〈O+〉 = N

2
{(1 + cos φ) − (s cos φ + Nγ sin φ)

+
[

1

2
cos φ(s2 + N2γ 2 − (N − 1)τ 2) + Nsγ sin φ

]}
+ . . . , (E3)

where the first bracketed expression is O(t0), the second is
O(t1) and the remaining pieces are O(t2). We see that τ

neither imprints a phase, nor affects decoherence at O(t1), but
influences observables at O(t2).

APPENDIX F: STATISTICAL FLUCTUATIONS
OF ONE-BODY OPERATORS

In this Appendix we provide completely general formulas
for the statistical fluctuations in our toy model of a two-mode
interferometer. We begin with a formulas for 〈Oη

1B〉 with η a
positive integer, and then describe how to construct arbitrary
statistical moments.

Using the property that O2
i = Oi we find

Oη

1B =
η∑

α=1

C(α)
∑
{i}dist.

Oi1Oi2 . . .Oiα . (F1)

The notation {i}dist. refers to the set of distinct indices satis-
fying i1 �= i2 �= · · · �= iα , and the product of operators should
be understood as a tensor product. Since the expectation value
〈Oi1 · · ·Oiα 〉 is invariant under permutations of the indices,
we can replace the sum over the set {i}dist. by N (N − 1)(N −
2) · · · (N − (α − 1)) = N!/(N − α)!. We then find

〈
Oη

1B

〉 =
η∑

α=1

C(α)
N!

(N − α)!

〈
Oi1Oi2 · · ·Oiα

〉
. (F2)

The coefficients C(α) can be constructively determined us-
ing the Bookkeeper’s Rule, however it is more efficient
for η � 4 to determine them iteratively using the sum rule∑

α C(α)N!/(N − α)! = Nη; for 3 � η � 7 the coefficients
C(α) are shown in Table I. Next, when computing the
expectation value we make use of the identity〈

Oi1Oi2 · · ·Oiα︸ ︷︷ ︸
all indices distinct

〉 = Tr
[
Oi1Oi2 · · ·Oiαρα

]
. (F3)

This gives

〈
Oη

1B

〉 =
η∑

α=1

C(α)
N!

(N − α)!
Tr

[
Oi1Oi2 · · ·Oiαρα

]
. (F4)

For Oi = |Ai〉〈Ai|, where |Ai〉 = 1√
2
(|Li〉 + eiφ|Ri〉), and using

the binomial distribution, the trace in Eq. (F4) takes the form

Tr
[
Oi1Oi2 · · ·Oiαρα

] = 1

2α

∑
NL,N ′

L

(
α

NL

)(
α

N ′
L

)
einφ〈N ′

L|ρα|NL〉 ,

(F5)

where we made use of the short-hand notation for the matrix
elements of a reduced density matrix. It is convenient to re-
express this as a sum over n = NL − N ′

L,
α∑

NL=0

α∑
N ′

L=0

=
α∑

n=−α

α∑
NL=0

α∑
N ′

L=0

δNL−N ′
L,n , (F6)

We may treat n = 0, n < 0, and n > 0 separately. The results
at n < 0 are just the complex conjugate of n > 0 and so we
can further restrict to n = 0 and n > 0. For n = 0, we simply
set NL = N ′

L and evaluate the sum. For n > 0 the sum over NL

runs from NL = n to NL = N . By making use of Eq. (E1) one
finds

Tr
[
Oi1Oi2 · · ·Oiαρα

] = 1

2α

α∑
NL=0

(
α

NL

)2

+ 1

2α

α∑
n=1

α∑
NL=n

(
α

NL

)

×
(

α

N ′
L

)[
einφ〈N ′

L|ρα|NL〉 + c.c.
]
,

where N ′
L = NL − n.

In general, it is possible to find analogous formulas for one-
body observables of the type |Ai〉 = aL|Li〉 + aR|Ri〉, where
aL, aR ∈ C and |aL|2 + |aR|2 = 1. In this case, these for-
mulas simply involve appropriate powers of aL and aR as
would occur when expanding (aL + aR)α using the binomial
distribution.
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