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Lattice-induced wave-function effects on trapped superfluids
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Wave-function effects in uncorrelated systems are characterized by the Berry curvature and quantum metric.
Beyond those, we propose gauge-independent tensors describing Bloch wave-function effects on local interaction
between correlated particles. We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
Ground states and collective modes of superfluids in isotropic harmonic traps are solved for highly symmetric
lattices. In a dynamic process, the wave-function effects are featured by the eigenfrequency, amplitude, and
phase shift of an excited breathing mode and can be observed in experiments. We also give a tight-binding
model of a bipartite square lattice with nontrivial wave-function effects, where results are estimated with typical
experimental parameters. Our discovery advances the connections between the modern band theory and quantum
many-body physics.
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I. INTRODUCTION

Quantum systems are traditionally featured by the eigenen-
ergies of Hamiltonians. Lattices modify the low-energy
spectra of electrons or atoms through effective mass [1,2].
Eigenstates of quantum systems are also crucial for physical
observables. As global properties of Bloch wave functions,
topological indices distinguish insulator phases [3–8] and lead
to quantized Hall conductances [9–18]. Local properties of
wave functions are quantified by the quantum geometric ten-
sor, i.e., the Berry curvature and quantum metric [19–21].
Quantum geometric effects on linear [22–26] and nonlinear
[27–32] transport have been widely studied.

Wave-function effects of single-particle Bloch states play
important roles even in many-body systems. It indicates
possible fractional Chern insulators [33–35] and stabilizes
superfluid [36–39] or superconductor [40–50] phases in flat-
band systems. For trapped interacting bosonic atoms in optical
lattices [51–55], the wave-function effects on hydrodynamic
equations have been proposed based on the Berry curvature
[56,57]. However, the spatial density fluctuation of atoms
is comparable with the lattice for a ground state, so it is
improper to treat the interaction as a slowly varying mean-
field potential as in the literature. Matrix elements between
two-body Bloch states are necessary to characterize the corre-
lation between particles. Despite some results of Bogoliubov
excitation spectra [58,59], a hydrodynamic theory extracting
the wave-function effects beyond the single-body quantum
geometric tensor is still lacking.

In this paper, we derive a low-energy effective hydrody-
namic theory of locally interacting bosons in an optical lattice
with an additional external potential. The spatial variation
of the external potential is assumed to be small compared
with the lattice, so a generalized effective mass theory with a
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gradient expansion [60] applies to the system. Distinct from
the single-body external potential, in the second order of
momentum, a φ4 interaction is corrected by one scalar, one
vector, and three second-order symmetric tensors. Those
quantities characterize lattice-induced (Bloch) wave-function
effects of the system. All of the quantities are invariant under
a gauge transformation in the momentum space. One of the
second-order tensors is related to inverse participation ratios
[61] of Bloch wave functions in a unit cell. Another is odd
under time reversal, whose symmetry is forbidden in the quan-
tum geometric tensor. For a three-dimensional (3D) lattice of
the cubic crystal system or a two-dimensional (2D) lattice
with a Zn (n � 3) rotational symmetry, the effective theory
becomes isotropic when the external potential is central. With-
out time-reversal symmetry, the Thomas-Fermi distribution
[57,62] for a ground state is corrected with a finite spatial
variation of the phase of bosons.

Our corrections to the hydrodynamic theory stem from a
different physical origin, compared with those due to quantum
fluctuations, e.g., the Lee-Huang-Yang correction [63,64].
Although both of them are many-body effects, the lattice-
induced wave-function effects are already displayed in the
classical limit of the boson field. In a weakly interacting limit
in 2D or 3D, where the interaction becomes small enough
while chemical potential keeps in the same order, the quan-
tum fluctuation corrections are negligible compared with the
lattice corrections. The classical hydrodynamic description is
valid in this limit. The results in this paper are derived therein
and can be generalized with the quantum fluctuations.

For measurable predictions, we solve collective modes in
a harmonic trap [65–68] for the isotropic cases. The ground
state depends on the lattice potential, so the collective modes
can be excited and observed by suddenly varying the optical
lattice at some time. In the leading order of the gradient expan-
sion, values of the scalar and two of the three second-order
tensors describing the lattice-induced wave-function effects
can be differentiated experimentally. When the wave-function
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effects are weak, they are directly linked to three observables,
the frequency, amplitude, and initial phase of a breathing
mode. To make a nonzero initial phase, the time-reversal
symmetry needs to be broken. As a concrete example of
tight-binding models, we consider a bilayer square lattice in
a nonuniform synthetic magnetic field [69–71], whose Bloch
wave-function effects are only exhibited with interaction.
Therein, the main results of this paper are estimated with typ-
ical orders of magnitude of experimental parameters [72–77].
Although the lattice model is a theoretical prototype, essen-
tial physics is shown, and our framework applies to general
superfluids in lattices.

This paper is structured as follows. In Sec. II, we derive
the continuous-space effective theory of superfluids in lattices
with φ4 interaction and show the lattice-induced effective
corrections to the interaction. In Sec. III, we calculate the
hydrodynamic properties of the superfluids based on the ef-
fective theory, including ground states and collective modes
of the system. We also discuss when the quantum fluctuations
are negligible compared with the lattice-induced corrections.
In Sec. IV, we apply the hydrodynamic theory where the
external potential is the isotropic harmonic trap. In particu-
lar, we propose the direct observables of the lattice-induced
wave-function effects. In Sec. V, we provide the tight-binding
example with nontrivial wave-function effects. A brief sum-
mary and outlook are given in Sec. VI. Technical details for
deriving the effective interaction and solving the collective
modes in the harmonic trap are shown in Appendix A and
Appendix B, respectively. Further discussions on tight-
binding modes are offered in Appendix C.

II. EFFECTIVE THEORY OF SUPERFLUIDS IN LATTICES

We start from a continuous model of bosonic atoms in
d dimensions. The Hamiltonian of the system is given by
three parts, H = H0 + HU + HI . Here, H0 is a single-body
Hamiltonian with an optical lattice and is diagonalized in a
Bloch basis (h̄ = 1),

H0 =
∑

n

∫
BZ

dd kb†
n,kεn(k)bn,k, (1)

where n is a band index and BZ denotes an integral in the
first Brillouin zone. The bottom of the lowest band (n = 0)
is assumed at k = 0, around which there is a quadratic dis-
persion, ε0(k) ≈ k2

2m . Bosonic operators in the real space and
Bloch space are linked by Bloch wave functions,

a(r) =
∑

n

∫
BZ

dd keik·run,k(r)bn,k. (2)

un,k(r) is normalized such that the average of |u0,k(r)|2 in a
unit cell equals (2π )−d . HU is an applied external potential
and HI is a local repulsive interaction between atoms,

HU =
∫

∞
dd ra†(r)U (r)a(r),

HI = g

2

∫
∞

dd ra†(r)a†(r)a(r)a(r). (3)

In cold-atom systems, it is proper to model the interaction
to be short ranged [62,78,79], even at the length scale of the

optical lattice. The spatial variation of U (r) is assumed to be
small compared with the lattice, such that the Fourier com-
ponents of U (r) outside the first Brillouin zone are negligible
[60]. In addition, supposing only the excitation of Bloch states
near the band bottom of the lowest band are considered in a
low-energy effective theory, the position index r of a Wannier
basis bn(r) (i.e., a Fourier transform of the Bloch basis) is
approximated to be continuous in an effective theory. Those
assumptions require that the typical energy and momentum
scales of the external potential are much smaller than those of
the chemical potential and band dispersion. Those assump-
tions apply to ground states and low-energy hydrodynamic
collective modes with slowly varying U (r) (see Secs. III
and IV).

Taking hydrodynamic variables, i.e., b(r) = √
n(r)eiθ (r),

and letting the field variables depend on time, we get an
effective action in the (coarse-grained) Wannier basis by a
second-order expansion of the (quasi)momentum k,

S =
∫

dt

[ ∫
∞

dd r(−n∂tθ + μn) − H0 − HU − HI

]
, (4)

where the theory has been projected to the lowest band (the
band index is omitted) and μ is a chemical potential. The free
Hamiltonian of quasiparticles reads

H0 =
∫

∞
dd r

1

2m

[
(∇n)2

4n
+ n(∇θ )2

]
. (5)

A. Effective external potential

The effective correction to the external potential by the
Berry curvature (�γ ) and quantum metric (gαβ) have been
derived in the literature [60],

HU =
∫

∞
dd r
[
Un + 1

2
gαβ (0)n∂α∂βU

− 1

2
�(0) · (∇U × ∇θ )n

]
, (6)

�γ (k) = 1

2
εαβγ �αβ = 1

2
εαβγ

[
∂kα

Aβ (k) − ∂kβ
Aα (k)

]
,

gαβ (k) = 1

2

[〈
∂kα

uk

∣∣(1 − |uk〉〈uk|)
∣∣∂kβ

uk
〉+ (α ↔ β )

]
,

Aα (k) = i
〈
uk

∣∣∂kα
uk
〉
. (7)

A gauge transformation uk → ukeiϑk has been applied when
deriving Eq. (6) such that the result becomes “gauge indepen-
dent,”

ϑk = Aα (0)kα + 1
4

[
∂kα

Aβ (0) + ∂kβ
Aα (0)

]
kαkβ. (8)

Actually, the result is gauge dependent, while it equals a
gauge-independent quantity in the specific gauge.

Note that n(r) in Eq. (4) also depends on the gauge. As an
observable, the (gauge-independent) physical density of the
atoms, nph(r), should be derived from the physical external
potential U (r),

nph(r) = − δS
δU (r)

= n + (∇n) · (∇θ × �) + 1

2
gαβ∂α∂βn.

(9)
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Here the time argument is omitted and U (r, t ) = U (r). The
physical density can also be obtained when counting the
chemical potential μ into the external potential U (r). Because
μ is a constant, from Eq. (6) we know the result given by
Eq. (9) is unaffected by such substitution.

B. Effective interaction

To derive an effective interaction, we write the φ4 interac-
tion in the Bloch basis,

2

g
HI = 1

(2π )d

∫
BZ

(
3∏

i=1

dd ki

)
b†

k1
b†

k2
bk3 bk4

〈〈
uk1 uk2

∣∣uk3 uk4

〉〉
,

(10)

where k4 ≡ k1 + k2 − k3,〈〈
uk1 uk2

∣∣uk3 uk4

〉〉 ≡ (2π )2d

�cell

∫
cell

dd ru∗
k1

(r)u∗
k2

(r)uk3 (r)uk4 (r),

(11)

“cell” denotes an integral in the unit cell, and �cell is the
volume of the unit cell. A relation has been applied when
taking a sum over lattice vectors R,∑

R

ei(k3+k4−k1−k2 )·R = (2π )d

�cell
δd (k1 + k2 − k3 − k4). (12)

Only half of the first Brillouin zone near the band bottom
has been considered such that reciprocal scattering has been
neglected. We further approximate the integral domain of
momenta in Eq. (10) to be infinity to get an effective theory in
the continuous space.

Then we can apply a second-order expansion of momen-
tum. We get a zeroth-order term [51],

HI0 = g

2

∫
∞

dd rM(0)n(r)2, (13)

a first-order term,

HI1 = g

2

∫
∞

dd rM ′
α (0)n2(∂αθ ), (14)

and a second-order term (see Appendix A 1),

HI2 = g

2

∫
∞

dd r
[

1

2
M ′′

αβ (0)n2(∂αθ )(∂βθ )

− 2S̃αβ (0)n(∂αn)(∂βθ ) + Wαβ (0)(∂αn)(∂βn)

]
, (15)

where

M(k) = 〈〈ukuk|ukuk〉〉

= 1 + (2π )2d

�cell

∫
cell

dd r
[
|uk(r)|2 − 1

(2π )d

]2

� 1,

(16)

M ′
α (k) = ∂kα

M(k), M ′′
αβ (k) = ∂kα

∂kβ
M(k),

Wαβ (k) = 3
8 M ′′

αβ (k) − Pαβ (k)

= 3
8 M ′′

αβ (k) − 〈〈∂kα
(u∗

kuk)
∣∣∂kβ

(u∗
kuk)

〉〉
,

S̃αβ (k) = Im
[〈〈

ukuk

∣∣uk∂kα
∂kβ

uk
〉〉

− 〈〈ukuk

∣∣(∂kα
uk
)(

∂kβ
uk
)〉〉]

. (17)

TABLE I. The permutation and time-reversal symmetries of the
gauge-independent second-order tensors characterizing the lattice-
induced wave-function effects. “+” and “−” denote even and odd
parities, respectively. The parities of Sαβ are different from either gαβ

or �αβ .

gαβ �αβ M ′′
αβ Wαβ Sαβ

Permutation + − + + +
Time reversal + − + + −

By choosing the same gauge in Eq. (8) as in Eq. (6),
an effective interaction HI = HI0 + HI1 + HI2 is also gauge
independent (see Appendix A 2). M(k) itself is “gauge inde-
pendent,” while S̃αβ (0) equals a gauge-independent quantity
Sαβ (0) in this gauge,

Sαβ (k) = Im
[〈〈

ukuk

∣∣uk∂kα
∂kβ

uk
〉〉− 〈〈ukuk

∣∣(∂kα
uk
)(

∂kβ
uk
)〉〉

− M(k)
〈
uk

∣∣∂kα
∂kβ

uk
〉]
. (18)

The argument k of the Bloch wave-function quantities, �γ ,
gαβ , M, M ′

α , M ′′
αβ , Wαβ , and Sαβ , will be omitted when k = 0.

Note that the “double Dirac notation” defined in Eq. (11)
is not an inner product between two-body states. Instead, it is
a matrix element of the interaction between two-body states.
For the φ4 interaction, the matrix element M(k) takes the
(quartic) inverse participation ratio of the Bloch wave function
in the unit cell, quantifying the gathering of particles. We can
see that the lattice-induced corrections to the interaction are
qualitatively distinct from those to the external potential (see
Table I). Contrary to �αβ , the three tensors M ′′

αβ , Wαβ , and
Sαβ appearing in the effective interaction are all symmetric
tensors. In addition, while Sαβ is symmetric, it is odd un-
der time reversal. So the quantum geometric tensor Bαβ =
gαβ + i�αβ is not sufficient to describe lattice-induced wave-
function effects in the correlated system.

III. HYDRODYNAMIC THEORY

In a hydrodynamic theory neglecting quantum corrections,
classical equations of motion of a superfluid are determined
by δS = δ

∫
dtdd rL(n, θ ) = 0,

∂tθ = − 1

2m
(∇θ )2 + ∇2n

4mn
+ (∇n)2

8mn2

−
(

U + 1

2
gαβ∂α∂βU

)
− 1

2
∇θ · (∇U × �)

+ μ − gMn − gM ′
αn∂αθ − g

2
M ′′

αβn(∂αθ )(∂βθ )

− gSαβn∂α∂βθ + gWαβ∂α∂βn, (19)

∂t n = − ∇ ·
(

n

m
∇θ + n

2
∇U × �

)
− ∂α

(
g

2
M ′

αn2 + g

2
M ′′

αβn2∂βθ − gSαβn∂βn

)
. (20)

The chemical potential μ is included on the right-hand side
of Eq. (19). Thereby, we absorb an unobservable uniform
phase winding ∂tθ = −μ for ground states without external
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potential [62]. Equation (20) is a continuity equation,

∂t n + ∇ · (nv) = 0, (21)

where

vα = 1

m
∂αθ + 1

2
εαβγ (∂βU )�γ

+ g

2
M ′

αn + g

2
M ′′

αβn∂βθ − gSαβ∂βn. (22)

A. Ground state and collective modes without external potential

We first simply discuss the ground state of the system
when U (r) = 0. Suppose ∇n and ∇θ are small. Then, at the
leading order, Eq. (19) gives n(r) = n0 = μ

gM . However, θ (r)
is determined by(

1

m
δαβ + gn0

2
M ′′

αβ

)
∂βθ = −gn0

2
M ′

α. (23)

When M ′
α is small but finite, θ (r) acquires a finite momentum.

For a general M ′
α , we cannot apply the expansion of ∇θ . In the

remainder of the paper, we only consider the case of M ′
α = 0.

It can be realized when there is an inversion symmetry, when
there is a Zn (n � 3) rotational symmetry for 2D, or when a
3D lattice belongs to the cubic crystal system. In this case,
there is a uniform ground state,

n(r) = n0 = μ

gM
, θ (r) = θ0. (24)

The system has a typical energy scale μ and a typical
momentum scale

√
mμ, and they can form other typical scales

with different dimensions. In the remainder of the paper, for
ground states and low-energy collective modes with U (r), we
further assume that reduced by the two typical scales, ∇nU
and ∇nθ (including ∂n

t θ ) are nth-order small quantities (which
can be verified a posteriori), and the Bloch wave-function
quantities are, at most, O(1). Note that ∇(n − n0) and ∇θ

do not need to be in the same order [see Eqs. (25) and (31)].
The results of the remainder of the paper will be derived in
the leading order of this gradient expansion. A correction of
the density in Eq. (9) is second order, so we take nph(r, t ) =
n(r, t ).

With n = n0 + δn, we get the leading order of the equa-
tions of motion,

∂2
t θ = −gM∂tδn

= gMn0

m
∇2θ + g2Mn2

0

2
M ′′

αβ∂α∂βθ. (25)

The d × d real symmetric matrix M ′′
αβ has d eigenvalues

λ1, . . . , λd , so the system is anisotropic in general and we get
d sound velocities [58,59],

ci =
√

gMn0

m
+ g2Mn2

0

2
λi =

√
μ

m
+ λiμ2

2M
(i = 1, . . . , d ).

(26)

B. Ground state with external potential

When U (r) 
= 0, a static solution of the system is deter-
mined by ∂tθ = ∂t n = 0. Suppose the ground state of U (r) 
=
0 is static and adiabatically connected to the ground state

of U (r) = 0. Denote the ground state as b(r) = √
n0(r)eiθ0(r).

From Eq. (19), in the leading order, we get

n0(r) =
{

μ−U (r)
gM when μ > U (r)

0 when μ � U (r).
(27)

When n(r) is fixed, the Lagrangian L becomes a quadratic
form of ∇θ . To minimize the quadratic form, we cannot
simply require v(n0, θ0) = 0 because nv is not rotation free
in general. In the leading order, to solve θ0(r), we can take
n in Eq. (20) to be n0. As ∇U is proportional to ∇n0, the
antisymmetric term of the Berry curvature vanishes. Then,
θ0(r) is determined by[

n0

m
δαβ + g

2
M ′′

αβn2
0

]
∂α∂βθ0+

[
1

m
δαβ + gM ′′

αβn0

]
(∂αn0)(∂βθ0)

= 1

2
gSαβ∂α∂βn2

0. (28)

When the time-reversal symmetry is broken such that
Sαβ 
= 0, it is nontrivial to determine θ0(r). In the remainder
of the paper, we focus on a simple case where the external po-
tential is central, i.e., U (r) = U (r). Furthermore, suppose the
lattice belongs to the cubic crystal system in 3D or there is a
Zn (n � 3) rotational symmetry in 2D. For those highly sym-
metric cases, M ′

α = 0, gαβ = gδα,β , M ′′
αβ = M ′′δα,β , Wαβ =

W δα,β , Sαβ = Sδα,β ; � = �êz for 2D and � = 0 for 3D. The
stability of the ground state without U (r) requires

η ≡ M ′′mμ

M
> −2. (29)

Suppose the ground-state configuration is isotropic. Then
we get the rotation-free part of the velocity for n(r) = n(r),
θ (r) = θ (r),

ṽ ≡ v − 1

2
(∇U ) × �

=
(

1

m
+ gM ′′

2
n

)
∇θ − gS∇n. (30)

The ground state is given by ṽ(n0, θ0) = 0, as a term n∇θ ·
(∇U × �) in the Lagrangian L vanishes. For μ > U (r),
we get [

1

m
+ M ′′

2M
(μ − U )

]
∇θ0 = − S

M
∇U . (31)

According to Eqs. (27) and (31), small ∇U justifies the mo-
mentum expansion of ∇n0 and ∇θ0.

Equation (27) is the same as the Thomas-Fermi distribution
[57,62] (except a constant factor M). However, Eq. (31) gives
a correction to the Thomas-Fermi distribution, which cannot
be obtained when the interaction between atoms is treated as
a mean field [56,57]. ∇θ0 becomes nonzero and in the same
order as ∇U . Although an equilibrium distribution of θ0(r)
may not be observed directly, there are observable effects
when the equilibrium distribution depends on time due to the
manipulation of the optical lattice. An observable dynamic
process thereby will be discussed in Sec. IV B 2.
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C. Collective modes with external potential

Consider collective modes near the isotropic static
ground state, n(r, t ) = n0(r) + δn(r, t ), θ (r, t ) = θ0(r) +
δθ (r, t ). We take the double expansion of derivatives of U
and δθ in Eqs. (19) and (20), and calculate leading-order
equations of motion. Similar to the case of U (r) = 0, δn is
in the same order as ∂tδθ ,

∂tδθ = −gMδn, (32)

where we have used the condition that ∂tδθ = 0 when δθ =
δn = 0. For μ > U (r), Eq. (21) gives

∂2
t δn = −∇ · (n0∂tv) − ∇ · (δn∂tv)

− ∇ · [(∂tδn) 1
2 (∇U ) × �

]− ∇ · [(∂tδn)ṽ]

≈ −∇ · (n0∂tv). (33)

Here the first term on the right-hand side is in the same order
as ∂2

t δn, which will be verified in Eq. (34). The second term is
neglected because δn makes it one order higher than ∂2

t δn.
The third term is neglect because ∇U makes it one order
higher than ∂2

t δn, although a correction of the Berry curvature
was discussed in previous works [56,57]. The last term is ne-
glected because ṽ(n0, θ0) = 0, so terms in ṽ are proportional
to ∇δθ or δn, which makes the last term one order higher than
∂2

t δn. Then, for μ > U (r), δn(r, t ) is given by

∂2
t δn ≈ −∇ ·

[
μ − U

gM

(
1

m
∇∂tδθ + g

2
M ′′ μ − U

gM
∇∂tδθ

)]
= ∇ · (μ − U )

[
1

m
∇δn + M ′′

2M
(μ − U )∇δn

]
= μ − U

m

[
1 + η

2

(
1 − U

μ

)]
∇2δn

− ∇U

m
·
[

1 + η

(
1 − U

μ

)]
∇δn. (34)

Here we also neglected the terms proportional to ∇∂tδn and
(∂tδn)∇δθ in ∂tv because their orders are one higher than
∇∂tδθ . Compared with Eqs. (26) and (27), we know that the
first term in Eq. (34) is to replace the constant density n0 by
the density distribution n0(r). The two terms in Eq. (34) are
both important when the momentum scales of U and δn are in
the same order.

D. Discussion on quantum fluctuations

In this section, we derive the lattice-induced corrections to
the hydrodynamic theory in the classical-field limit, i.e., δS =
0. In addition, quantum fluctuations may also give corrections.
Typically, the quantum-fluctuation corrections are small (e.g.,
about 1%) [63,64]. However, it should be clarified in what
limit our treatment is justified. The ratio between the quantum
correction to the particle density nq and classical density ncl

vanishes in a weakly interacting limit (d = 2, 3),

nq

ncl
∼ ξ−d

h

μ/g
∼ (mμ)

d
2

μ/g
= m

d
2 μ

d
2 −1g → 0, (35)

where the particle density n = ncl + nq, and ξh is the typi-
cal length scale (i.e., healing length [62]) of the superfluid

state. Equation (35) guarantees the applicability of the hy-
drodynamic theory. On the other hand, the lattice-induced
corrections may survive in this limit. Suppose the interaction
strength g decreases while the particle density n increases,
such that the chemical potential μ keeps in the same or-
der. Then, from the classical equations of motion given by
Eqs. (19) and (20), or from the results given by Eqs. (26),
(27), (31), and (34), we can see that the lattice-induced cor-
rections remain in the same order, despite the suppression
of the quantum corrections. Therefore, it is fair to stay on
this limit and neglect the quantum fluctuations in this paper.
Our derivations can be generalized when further taking the
quantum fluctuations into consideration.

IV. SUPERFLUID DYNAMICS IN A HARMONIC TRAP

In cold-atom systems, U (r) is commonly taken as an
isotropic harmonic potential [62],

U (r) = 1

2
mω2

0r2 ≡ μ
r2

R2
. (36)

Here, ω0 � μ � J and k0 ≡ 1
R � √

mμ � kM such that the
gradient expansion (i.e., momentum and frequency expan-
sion) is applicable for r < R. J is the bandwidth of the lowest
band and kM is the momentum range of the first Brillouin
zone.

A. Collective modes

Define ρ( r
R , t ) ≡ δn(r, t ). The solutions of Eqs. (34) and

(36) depend on η. For the 3D case with spherical coordinates
r = (r, θ, φ),

ρ(r, t ) =
∑
n,�,m

∑
ξ=±

e−iξωn,�t an,�,m,ξ ρn,�(r)Y�,m(θ, φ), (37)

where Y�,m are spherical harmonics. Then we get a one-
dimensional eigenequation for ρn,�(r) with 0 < r < 1,

−ω2
n,�ρn,� = 1

2
ω2

0(1 − r2)

[
1 + η

2
(1 − r2)

][
d2

dr2
+ 2

r

d

dr

− �(� + 1)

r2

]
ρn,� − ω2

0r[1 + η(1 − r2)]
d

dr
ρn,�.

(38)

For the 2D case with polar coordinates r = (r, φ),

ρ(r, t ) =
∑
n,m

∑
ξ=±

e−iξωn,|m|t an,m,ξ ρn,|m|(r)eimφ. (39)

Then we get

−ω2
n,|m|ρn,|m| = 1

2
ω2

0(1 − r2)

[
1 + η

2
(1 − r2)

][
d2

dr2
+ 1

r

d

dr

− m2

r2

]
ρn,|m| − ω2

0r[1 + η(1 − r2)]
d

dr
ρn,|m|.

(40)

In Eqs. (37) and (39), n takes non-negative integers.
When η 
= 0, eigenfrequencies (eigenenergies) ωn,j cannot

be obtained analytically, where j ≡ � for d = 3 and j ≡ |m| for
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FIG. 1. Numerical results of eigenfrequencies of collective modes (ωn,j ≡ ω0
√

κ) in an isotropic harmonic trap as functions of the quantity
η = M ′′mμ

M . Here, κ and η are dimensionless. (a)–(d) for 3D (j = �); (e)–(h) for 2D (j = |m|). Parameters are taken to be (a),(e) (n, j) = (0, 1),
(b),(f) (n, j) = (0, 2), (c),(g) (n, j) = (1, 0), and (d),(h) (n, j) = (1, 1). Orange solid curves are for k0 = 4 and blue dashed curves are for k0 = 5
defined in Eq. (42). The results are convergent where the differences between the solid and dashed curves are much smaller than the averages.
The two curves almost coincide for most of the data of η > −1, and thus it shows good numerical convergence. When n or |η| increases, larger
k0 is needed for convergence. In addition, we plot black dotted lines in (c) and (g) according to the first-order perturbation theory [see Eq. (49)
with η ≈ mμM ′′], where κ is linear in η. The perturbative results are consistent with the numerical results.

d = 2. Nevertheless, when η > −1, solutions take the form of
an infinite series,

ρn,j(r) =
∞∑

k=0

αn,j,2kr2k+j, (41)

and the eigenfrequencies are solvable numerically [80].
According to an asymptotic analysis of αn,j,2k (see
Appendix B 2), we can iteratively determine αn,j,2k+2

αn,j,2k
as func-

tions of ωn,j for k � k0, and obtain ωn,j (see Fig. 1) by
requiring

αn,j,2k0+2

αn,j,2k0

= k0

k0 + 1

η

η + 2
, (42)

with a certain integer k0 large enough for convergence. For
several low-energy levels, i.e., n and j are not large, the
eigenfrequency ωn,j is in the same order as ω0. According to
Eqs. (32) and (34) with ω0 � μ, this justifies the momentum
and frequency expansion of δn0 and δθ0 for the low-energy
collective modes. When η = 0, Eq. (42) returns to the con-
dition that the series becomes finite [65] and the numerical
results in Fig. 1 are consistent with those without the lattice.

In addition, collective modes are normalizable and satisfy
an orthonormal relation [81] (see Appendix B 3 for a proof),

∫ 1

0
rd−1ρ∗

n1,j(r)ρn2,j(r)dr = δn1,n2 . (43)

The orthonormal condition is independent of η, which enables
perturbative solutions of the collective modes in Sec. IV B 1.

B. Breathing mode with weak lattice-induced
wave-function effects

From Eqs. (27), (29), and (31) and Fig. 1, in the leading
order of the gradient expansion, we know Md ≡ M − 1, M ′′,
and S are already involved in the dynamics of the superfluid in
the isotropic harmonic trap [82]. To demonstrate more explicit
relations between the three Bloch wave-function quantities
and experimental observables, suppose the lattice-induced
wave-function effects are weak,

Md ≡ M − 1 � 1, mμ|M ′′| � 1, mμ|S| � 1. (44)

The last condition in Eq. (44) can be weakened and substituted
by mω0|S| � 1, which has been automatically satisfied by
previously imposed conditions mμ|S| = O(1) and ω0 � μ.
We will keep the leading order of the three quantities, which
leads to |η| ≈ |M ′′|mμ � 1.

The weak wave-function effects can be realized by a weak
lattice potential. They can also be effectively realized in a
tight-binding limit by weakly breaking sublattice symmetry,
where the integrals of r in the definition Eq. (11) should be
renormalized and become summations of a sublattice index
(see Appendix C 1). Here we define the sublattice symmetry
physically, i.e., by permuting the sublattices, which may be
different from a conventional one [3–6].

As an example, we focus on the lattice-induced wave-
function effects on the breathing mode (n = 1, j = 0) [62].
As explained below Eq. (42), the momentum and frequency
expansion is valid for the breathing mode. Without the wave-

function effects, (zeroth-order) eigenvalues (κn,j ≡ ω2
n,j

ω2
0

) and
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normalized eigenfunctions (ρn,j) of Eqs. (38) and (40) for the
breathing mode are given by (see Appendix B 1 and Ref. [65])

κ
(0)
1,0 =

{
5 for 3D
4 for 2D,

(45)

ρ
(0)
1,0 =

{
3
√

7
2

(
1 − 5

3 r2
)

for 3D√
6(1 − 2r2) for 2D.

(46)

1. Eigenfrequency

At the first order, κ1,0 should be a linear function of η, i.e.,
a linear function of M ′′. We can apply a perturbation theory
similar to that in quantum mechanics and get the first-order
correction to the eigenvalue κ1,0,

κ
(1)
1,0 =

∫ 1

0
rd−1ρ

(0)
1 L̂(1)ρ

(0)
1 dr =

{
10
9 η for 3D
η for 2D,

(47)

where the first-order operator L̂(1) with � = 0 is given by

L̂(1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− η

4 (1 − r2)2 d2

dr2

− η

2 (1 − r2)(1 − 3r2) 1
r

d
dr

for 3D

− η

4 (1 − r2)2 d2

dr2

− η

4 (1 − r2)(1 − 5r2) 1
r

d
dr

for 2D.

(48)

So the first-order eigenfrequency of the breathing mode reads

ω1,0 =
{√

5ω0
(
1 + 1

9 mμM ′′) for 3D

2ω0
(
1 + 1

8 mμM ′′) for 2D.
(49)

2. Amplitude and initial phase in a dynamic process

To further show the effects of Md and S, we consider a dy-
namic process. Atoms are initially at the ground state with the
harmonic potential, satisfying the Thomas-Fermi distribution.
There is no lattice or a tight-binding lattice with negligible
Bloch wave-function effects, i.e., Md = M ′′ = S = 0. At time
t = 0, we suddenly open or change the lattice potential to
make the weak lattice-induced wave-function effects. Then
the ground-state distribution is substituted by Eqs. (27) and
(31), and the atoms are at an excited state.

Suppose, for t < 0, the chemical potential, the effective
mass of atoms, the typical frequency of the harmonic traps,
and the trapping radius of the atoms are μ̃, m̃, ω̃, R̃. For t > 0,
they become μ, m, ω, R. Because U (r) does not change, we
have

1
2 mω2

0r2 = 1
2 m̃ω̃2

0r2, (50)

μ = 1
2 mω2

0R2, μ̃ = 1
2 m̃ω̃2

0R̃2. (51)

In addition, suppose the amount of atoms remains invariant
during the process,

μ

gM

∫ R

0

(
1 − r2

R2

)
rd−1dr = μ̃

g

∫ R̃

0

(
1 − r2

R̃2

)
rd−1dr.

(52)

Combining Eqs. (50)–(52) with Eqs. (27) and (31), we get
initial conditions at t = 0,

ρ(r, 0) ≈
{

μ

g Md
(

3
5 − r2

)
for 3D

μ

g Md
(

1
2 − r2

)
for 2D,

(53)

d

dr
δθ (r, 0) ≈ 2mμS

r

R2
, (54)

∂tδn(r, 0) ≈ −∇ · (n0v) ≈ −∇ ·
(

êr
n0

m

d

dr
δθ

)
. (55)

Equation (53) is not valid for R̃
R < r < 1. However, that region

leads to a higher-order contribution. Equations (54) and (55)
further give

∂tρ(r, 0) =
{−mμ

g ω2
0S(3 − 5r2) for 3D

− 2mμ

g ω2
0S(1 − 2r2) for 2D.

(56)

To satisfy the initial conditions given by Eqs. (53) and (56),
for t > 0, ρ(r, t ) takes a form

ρ(r, t ) =
∑

n

bn,0ρn,0(r)cos(ωn,0t + ϕn,0), (57)

where amplitudes (bn,0) and initial phases (ϕn,0) are deter-
mined,

bn,0cosϕn,0 =
∫ 1

0
rd−1ρ(r, 0)ρn,0(r)dr, (58)

ωn,0bn,0sinϕn,0 = −
∫ 1

0
rd−1∂tρ(r, 0)ρn,0(r)dr. (59)

At the leading order, we can take ρn,0(r) = ρ
(0)
n,0(r). Then we

get the amplitude and initial phase of the breathing mode,

b1,0cosϕ1,0 =
⎧⎨⎩

2μMd

5
√

7g
for 3D

μMd

2
√

6g
for 2D,

(60)

b1,0sinϕ1,0 =
⎧⎨⎩

2mμω0S√
35g

for 3D
mμω0S√

6g
for 2D.

(61)

The phase shift ϕ1,0 can be observed by a corresponding time
shift, τ1,0 ≡ ϕ1,0

ω0
. A nonzero phase shift ϕ1,0 is a characteristic

of time-reversal symmetry breaking.
When Md and mμS are in the same order, despite |ϕ1,0| �

1, it is possible to observe the time shift as τ1,0 = O(μ−1). In
addition, even if |ϕ1,0| � 1, when the corrections to ω1,0 and
ρ1,0 in the next-to-leading order are considered, a correction
to ϕ1,0 is also in the next-to-leading order.

V. TIGHT-BINDING EXAMPLE

A nonzero S can be generally realized by a synthetic mag-
netic field breaking the time-reversal symmetry. For a toy
model showing essential physics, we consider a 2D tight-
binding model of a bilayer square lattice in a nonuniform
magnetic field, where the Z4 rotational symmetry remains
intact,

H0 =
∑
i, j

(a†
i,A, a†

i,B)(h0)i, j

(
a j,A

a j,B

)
,

(h0)i, j

a2
L

=
(

�δi, j − t1δ〈i, j〉 −t2δi, j − t3e−iθ3δ〈i, j〉
−t2δi, j − t3eiθ3δ〈i, j〉 −�δi, j − t1δ〈i, j〉

)
.

(62)

Here, i and j are two-dimensional site positions, A and B are
two layers, and aL is the edge length of a unit cell. δ〈i, j〉 = 1
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when i and j are the nearest-neighbor sites in the 2D plane
and vanishes for other cases. t1,2,3 are positive hopping co-
efficients. � is an on-site potential breaking the sublattice
symmetry of the two layers. θ3 is a phase of the complex inter-
layer hopping between neighboring 2D sites. When sinθ3 
= 0,
the complex hopping breaks both the time-reversal symmetry
and sublattice symmetry. The complex hopping can be in-
duced by an in-plane synthetic magnetic field rotating around
every vertical bond.

The Hamiltonian in the momentum space reads

(H0)k = �σz − 2t1[cos(kxaL ) + cos(kyaL )]σ0 − t2σx

− 2t3cosθ3[cos(kxaL ) + cos(kyaL )]σx

− 2t3sinθ3[cos(kxaL ) + cos(kyaL )]σy. (63)

When � and θ3 are small, we get (see Appendix C 2)

m = 1

2(t1 + t3)a2
L

, Md = �2

(t2 + 4t3)2
,

M ′′ = 8

3
W = 4a2

Lt3�2

(t2 + 4t3)3
, S = − a2

Lt2t3θ3�

(t2 + 4t3)3
. (64)

The Bloch wave-function quantities (Md , M ′′, W , S) are
proportional to �2 or θ3�, so they vanish when the sublat-
tice symmetry is restored. This is reasonable because they
characterize the sublattice structures of Bloch wave functions.
S is proportional to θ3 as it is time-reversal odd. Moreover,
the quantum geometric tensor B = g + i� = 0 at k = 0 be-
cause it only contains first-order derivatives of wave functions.
Although B = 0, there are still lattice-induced wave-function
effects, which are clearly beyond the traditional description.

We can estimate orders of magnitude of the Bloch
wave-function quantities and resulting observables in typical
experimental setups of cold atoms (e.g., Rb87). Typical wave-
length and strength of lasers, chemical potential of atoms, and
harmonic confinement [72–77] give aL ∼ 1 µm, t1,2,3 ∼ μ ∼
1 kHz, ω0 ∼ 10 Hz. The condition ω0 � μ ∼ t1,2,3 is satis-
fied, so the gradient expansion applies to the hydrodynamic
theory. To evaluate � and t3θ3, we take them at a typical
order of a mass breaking sublattice symmetry or time-reversal
symmetry [75], � ∼ t3θ3 ∼ 100 Hz. Then, Eq. (64) leads to
Md ∼ mμM ′′ ∼ mμS ∼ 0.01. According to Eqs. (49), (60),
and (61), experimental observables are obtained, δω1,0 ∼
0.1 Hz, b1,0/n̄0 ∼ 10−2, τ1,0 ∼ 1 ms. Here, δω1,0 is the lattice
correction to ω1,0, n̄0 ∼ μ/g is the average density of the
atoms, and the relative amplitude of density, b1,0/n̄0, can be
detected by the absorption strength of light [83,84]. In this
example, the lattice corrections are about 1%, which is small
but may be in the same order as the quantum-fluctuation
corrections discussed in Sec. III D. In this case, the two kinds
of corrections should be added together.

VI. SUMMARY AND OUTLOOK

In this paper, we study lattice-induced wave-function ef-
fects on correlations between bosonic particles in lattices.
The hydrodynamic properties of superfluids are influenced
by a richer structure of Bloch wave functions beyond the
single-body quantum geometric tensor. The lattice-induced

wave-function effects can be observed by the dynamic dis-
tribution of the particle density.

Our discussions are restricted to the simplest quantum
many-body system where the interaction is local and the re-
sulting effective theory is isotropic. The author wishes this
paper promotes further exploration and application of wave-
function effects in wider many-body systems.

In addition, the discussions are still based on single-body
Bloch wave functions. We derive the results at a practical
level. Namely, this paper aims to propose specific many-body
physical effects of Bloch wave functions, instead of clarifying
more systematic or mathematical structures of two-body or
many-body quantum states. Thus, a better understanding of
quantum geometry in many-body systems and the correspond-
ing physical consequences remains intended [85–87].
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APPENDIX A: DERIVATION OF THE SECOND-ORDER
EFFECTIVE INTERACTION

In this Appendix, we derive the second-order effective
interaction [Eqs. (15)–(17)] in Sec. A 1 and the form after the
gauge transformation [Eq. (18)] in Sec. A 2. We denote

2

g
HI2 ≡ 1

(2π )d

∫
∞

(
3∏

i=1

dd ki

)
b†

k1
b†

k2
bk3 bk4 F2(k1, k2, k3, k4).

(A1)

We define three independent momenta, respectively, repre-
senting the Cooper, direct, and exchange channels,

s ≡ k1 + k2, t ≡ k3 − k1, u ≡ k3 − k2. (A2)

1. Momentum expansion and Fourier transform

Second-order terms in 〈〈uk1 uk2 |uk3 uk4〉〉 read

F2(k1, k2, k3, k4) = 1
2

〈〈
u∂kα

∂kβ
u
∣∣uu
〉〉

0(k1αk1β + k2αk2β )

+ 1
2

〈〈
uu
∣∣u∂kα

∂kβ
u
〉〉

0(k3αk3β + k4αk4β )

+ 〈〈(∂kα
u
)(

∂kβ
u
)∣∣uu

〉〉
0k1αk2β

+ 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0k3αk4β

+ 〈〈u∂kα
u
∣∣u∂kβ

u
〉〉

0(k1α + k2α )(k3β+k4β ).

(A3)

With momentum conservation, we get

F2(k1, k2, k3, k4)|k4=k1+k2−k3

= 1
4

(〈〈
uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0 + 〈〈uu
∣∣u∂kα

∂kβ
u
〉〉

0

+ 〈〈u∂kα
u
∣∣u∂kβ

u
〉〉

0 + 〈〈u∂kβ
u
∣∣u∂kα

u
〉〉

0 + c.c.
)
sαsβ
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+ 1
4

(〈〈
uu
∣∣u∂kα

∂kβ
u
〉〉

0 − 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0

+ c.c.
)
(tαtβ + uαuβ )

+ 1
4

(〈〈
uu
∣∣u∂kα

∂kβ
u
〉〉

0 − 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0

− c.c.
)
(tαuβ + uαtβ ), (A4)

where we have used

k1 − k2 = (k3 − k2) − (k3 − k1), (A5)

k3 − k4 = (k3 − k1) + (k1 − k4)

= (k3 − k1) + (k3 − k2). (A6)

Note that the direct channel and the exchange channel are
symmetric.

Because 〈〈uu|uu〉〉k ≡ 〈〈ukuk|ukuk〉〉 is not a constant, we
have two gauge-independent quantities characterizing mo-
mentum dependence,

∂kα
〈〈uu|uu〉〉k = 2

〈〈
u∂kα

u
∣∣uu
〉〉

k + 2
〈〈

uu
∣∣u∂kα

u
〉〉

k, (A7)

∂kα
∂kβ

〈〈uu|uu〉〉k

= 4
〈〈

u∂kα
u
∣∣u∂kβ

u
〉〉

k + 2
〈〈(

∂kα
u
)(

∂kβ
u
)∣∣uu

〉〉
k

+ 2
〈〈

u∂kα
∂kβ

u
∣∣uu
〉〉

k + 4
〈〈

u∂kβ
u
∣∣u∂kα

u
〉〉

k

+ 2
〈〈

uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

k + 2
〈〈

uu
∣∣u∂kα

∂kβ
u
〉〉

k. (A8)

In addition, we can apply derivatives on |uk|2 to construct a
gauge-independent quantity,〈〈

∂kα
(u∗u)

∣∣∂kβ
(u∗u)

〉〉
k

≡ (2π )2d

�cell

∫
dd r∂kα

[u∗
k(r)uk(r)]∂kβ

[u∗
k(r)uk(r)]

= 〈〈u∂kα
u
∣∣u∂kβ

u
〉〉

k + 〈〈u∂kβ
u
∣∣u∂kα

u
〉〉

k

+ 〈〈(∂kα
u
)(

∂kβ
u
)∣∣uu

〉〉
k + 〈〈uu

∣∣(∂kα
u
)(

∂kβ
u
)〉〉

k. (A9)

Then two of the terms in Eq. (A4) are gauge independent,

F2(k1, k2, k3, k4)|k4=k1+k2−k3

= 1

8
M ′′

αβ (0)sαsβ + 1

8
[M ′′

αβ (0) − 4Pαβ (0)](tαtβ + uαuβ )

+ i

2
S̃αβ (0)(tαuβ + uαtβ ). (A10)

We can further express HI2 in the real space with the
hydrodynamic variables. With

b(r) =
∫

∞

dd k

(2π )
d
2

bkeik·r, (A11)

we get

1

(2π )d

∫
∞

(
3∏

i=1

dd ki

)
b†

k1
b†

k2
bk3 bk4

1

8
M ′′

αβ (0)sαsβ

=
∫

∞
dd r

1

8
M ′′

αβ (0)[∂α (b†b†)][∂β (bb)]

=
∫

∞
dd r

1

8
M ′′

αβ (0)[(∂αn)(∂βn) + 4n2(∂αθ )(∂βθ )],

(A12)

1

(2π )d

∫
∞

(
3∏

i=1

dd ki

)
b†

k1
b†

k2
bk3 bk4

1

8
[M ′′

αβ (0)

− 4Pαβ (0)](tαtβ + uαuβ )

=
∫

∞
dd r

1

4
[M ′′

αβ (0) − 4Pαβ (0)][∂α (b†b)][∂β (b†b)]

=
∫

∞
dd r
[

1

4
M ′′

αβ (0) − Pαβ (0)

]
(∂αn)(∂βn), (A13)

1

(2π )d

∫
∞

(
3∏

i=1

dd ki

)
b†

k1
b†

k2
bk3 bk4

[
i

2
S̃αβ (0)

]
(tαuβ + uαtβ )

=
∫

∞
dd rS̃αβ (0)

i

2
[b†(∂α∂βb†)bb − (∂αb†)(∂βb†)bb

− b†b†b(∂α∂βb) + b†b†(∂αb)(∂βb)]

= −2
∫

∞
dd rS̃αβ (0)n(∂αn)(∂βθ ). (A14)

When deriving Eq. (A14), we have used
1
2 (tαuβ + uαtβ )

= − 1
4 [(k1α − k2α )(k1β − k2β ) − (k3α − k4α )(k3β − k4β )],

(A15)

b†(∂α∂βb†)bb − (∂αb†)(∂βb†)bb

= n
3
2 ∂α∂βn

1
2 − n

(
∂αn

1
2
)(

∂βn
1
2
)− in2∂α∂βθ. (A16)

Equations (A1), (A10), and (A12)–(A14) are consistent with
Eqs. (15)–(17).

2. Gauge transformation

Under the gauge transformation,

uk → ũk ≡ ukeiϑk , (A17)

S̃(k) is changed,〈〈
ũũ
∣∣ũ∂kα

∂kβ
ũ
〉〉

k − 〈〈ũũ
∣∣(∂kα

ũ
)(

∂kβ
ũ
)〉〉

k − c.c.

= 〈〈uu
∣∣ue−iϑ∂kα

[(
∂kβ

u
)
eiϑ + i

(
∂kβ

ϑ
)
ueiϑ

]〉〉
k

− 〈〈uu
∣∣[∂kα

u + i
(
∂kα

ϑ
)
u
][

∂kβ
u + i

(
∂kβ

ϑ
)
u
]〉〉

k − c.c.

= 〈〈uu
∣∣u∂kα

∂kβ
u
〉〉

k − 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

k

+ i
(
∂kα

∂kβ
ϑ
)〈〈uu|uu〉〉k − c.c. (A18)

With the gauge given by Eq. (8), we get〈〈
ũũ
∣∣ũ∂kα

∂kβ
ũ
〉〉

0 − 〈〈ũũ
∣∣(∂kα

ũ
)(

∂kβ
ũ
)〉〉

0 − c.c.

= 〈〈uu
∣∣u∂kα

∂kβ
u
〉
0 − 〈〈uu

∣∣(∂kα
u
)(

∂kβ
u
)〉〉

0

+ i

2
〈〈uu|uu〉〉0

[
∂kα

Aβ (0) + ∂kβ
Aα (0)

]− c.c.

= 〈〈uu
∣∣u∂kα

∂kβ
u
〉〉

0 − 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0

− 1

2
〈〈uu|uu〉〉0

(
∂kα

〈
u
∣∣∂kβ

u
〉
0 + ∂kβ

〈
u
∣∣∂kα

u
〉
0

)− c.c.

= 〈〈uu
∣∣u∂kα

∂kβ
u
〉〉

0 − 〈〈uu
∣∣(∂kα

u
)(

∂kβ
u
)〉〉

0

− 〈〈uu|uu〉〉0
〈
u
∣∣∂kα

∂kβ
u
〉
0 − c.c. (A19)
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So, S̃αβ (0) in Eq. (15) should be substituted by Sαβ (0) de-
fined in Eq. (18). We can also verify that Sαβ (k) is gauge
independent,〈〈

ũũ
∣∣ũ∂kα

∂kβ
ũ
〉〉

k − 〈〈ũũ
∣∣(∂kα

ũ
)(

∂kβ
ũ
)〉〉

k

+ i

2
〈〈ũũ|ũũ〉〉k[∂αÃβ (k) + ∂β Ãα (k)]

= 〈〈uu
∣∣u∂kα

∂kβ
u
〉〉

k − 〈〈uu
∣∣∂kα

u∂kβ
u
〉〉

k

+ i∂kα
∂kβ

ϑ (k)〈〈uu|uu〉〉k + i

2
〈〈uu|uu〉〉k

[
∂kα

Aβ (k)

− ∂kα
∂kβ

ϑ (k) + ∂kβ
Aα (k) − ∂kα

∂kβ
ϑ (k)

]
= 〈〈uu

∣∣u∂kα
∂kβ

u
〉〉

k − 〈〈uu
∣∣∂kα

u∂kβ
u
〉〉

k

+ i

2
〈〈uu|uu〉〉k

[
∂kα

Aβ (k) + ∂kβ
Aα (k)

]
, (A20)

where Ãα (k) ≡ i〈ũ|∂kα
ũ〉k.

APPENDIX B: SOLUTIONS OF COLLECTIVE MODES
IN A HARMONIC TRAP

In this Appendix, we solve the linear homogeneous ordi-
nary differential equations (38) and (40) with proper boundary
conditions to get the low-energy collective modes in the har-
monic trap. We first take η = 0 to review the results without
the optical lattice in Sec. B 1. The general case of η 
= 0
is solved in Sec. B 2. Obvious differences can be seen by
a comparison of the two cases. In addition, we prove the
orthonormal relation given by Eq. (43) in Sec. B 3. We omit
the subscripts of ρn,j and ωn,j when there is no ambiguity and
denote κ = ω2

ω2
0
.

1. Without lattice-induced wave-function effects

a. 3D case

When η = 0, Eq. (38) becomes

1

2
(1 − r2)

d2ρ

dr2
+ (1 − 2r2)

1

r

dρ

dr

+
[
κ − (1 − r2)

�(� + 1)

2r2

]
ρ = 0. (B1)

When r → 0, we get

1

2

d2ρ

dr2
+ 1

r

dρ

dr
− �(� + 1)

2r2
ρ = 0. (B2)

Taking ρ = rl into Eq. (B2), we get l (l + 1) = �(� + 1), so
l = � or l = −� − 1. Because � ∈ N, to make ρ(r) finite
when r → 0, we take l = �. Suppose an eigenfunction is a
polynomial,

ρ(r) =
N′∑

k′=0

αk′rk′+�, (B3)

and we get

N′−2∑
k′=−2

αk′+2

[
1

2
(� + k′ + 2)(� + k′ + 1)

+ (� + k′ + 2) − 1

2
�(� + 1)

]
r�+k′

=
N′∑

k=0

αk′

[
1

2
(� + k′)(� + k′ − 1)

+ 2(� + k′) − κ − 1

2
�(� + 1)

]
r�+k′

. (B4)

An equation for r�−2 is automatically satisfied because it is
equivalent to the asymptotic equation (B2). Equations for
r�+2k′−1 (k′ ∈ N) require k′ and N′ to be even numbers, so we
can denote k′ = 2k, N′ = 2N. Equations for r�+2k (0 < k <

N, k ∈ N) give a recursion condition,

α2k+2
[

1
2 (� + 2k + 2)(� + 2k + 1) + (� + 2k + 2)

− 1
2�(� + 1)

] = α2k
[

1
2 (� + 2k)(� + 2k − 1)

+ 2(� + 2k) − κ − 1
2�(� + 1)

]
. (B5)

When N is finite, N = n and an equation for r�+2n gives

κ = 1
2 (� + 2n)(� + 2n − 1) + 2(� + 2n) − 1

2�(� + 1)

= 2n2 + 2n� + 3n + �. (B6)

Taking Eq. (B6) into Eq. (B5), we have

α2k+2 = − (n − k)(2k + 2n + 2� + 3)

(k + 1)(2k + 2� + 3)
α2k. (B7)

Below we explain why we cannot take N = ∞. In this case,
when k → ∞, Eq. (B5) gives

α2k+2

α2k
= 2 + 2�+3

k

2 + 2�+5
k

+ O

(
1

k2

)
= 1 − 1

k
+ O

(
1

k2

)
. (B8)

We can take a test form of α2k for k → ∞,

α2k = C

kζ

(
1 + C′

kζ ′

)
, (B9)

where ζ > 0, ζ ′ > 0, and C and C′ are constant; then

α2k+2

α2k
= kζ

(k + 1)ζ
1 + C′

(k+1)ζ ′

1 + C′
kζ ′

=
(

1 − ζ

k

)[
1 + C′

(k + 1)ζ ′

](
1 − C′

kζ ′

)
+ O

(
1

kζ ′+1

)
+ O

(
1

k2

)
= 1 − ζ

k
+ O

(
1

kζ ′+1

)
+ O

(
1

k2

)
. (B10)

Comparing Eq. (B10) with Eq. (B8), we get ζ = 1. Equa-
tion (B9) can be generalized to show that α2k = C

k + O( 1
k2 ).
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Then we get

ρ(r → 1) =
k0∑

k=0

α2k +
∞∑

k=k0

[
C

k
+ O

(
1

k2

)]
→ ∞, (B11)

where k0 is a constant that is large enough. It is unphysical to
have a divergent ρn,� when r → 1. Note that at least one of
n and � is nonzero in the divergent case, so n(r, t ) becomes
negative for some spacetime coordinates. To avoid the diver-
gence, we need Eq. (B6) to truncate the sequence α2k and get
a finite N.

In summary, eigenfunctions take a form

ρn,� =
N∑

k=0

αn,�,2kr2k+�, (B12)

where αn,�,2k satisfies Eq. (B7). When η = 0, we get N = n in
Eq. (B12), but we will show that this is not true for η 
= 0.

b. 2D case

When η = 0, Eq. (40) becomes

1

2
(1 − r2)

d2ρ

dr2
+ 1

2
(1 − 3r2)

1

r

dρ

dr

+
[
κr2 − 1

2
m2(1 − r2)

]
ρ

r2
= 0. (B13)

An analysis of r → 0 gives ρ(r → 0) → r|m|; then we get

ρn,|m| =
N∑

k=0

αn,|m|,2kr2k+|m|. (B14)

Let us take m � 0 for simplicity. There is a recursion relation,

α2k+2
[

1
2 (m + 2k + 2)(m + 2k + 1)

+ 1
2 (m + 2k + 2) − 1

2 m2]
= α2k

[
1
2 (m + 2k)(m + 2k − 1)

+ 3
2 (m + 2k) − κ − 1

2 m2
]
. (B15)

If N is finite, we get N = n and

κ = 1

2
(m + 2n)(m + 2n − 1) + 3

2
(m + 2n) − 1

2
m2

= 2n2 + 2nm + 2n + m, (B16)

α2k+2 = α2k
2(k − n)(k + n) + 2(k − n)(m + 1)

1
2 (m + 2k + 2)2 − 1

2 m2

= α2k
(k − n)(k + n + m + 1)

(k + 1)(k + m + 1)
. (B17)

If N = ∞, then when k → ∞, we get

α2k+2

α2k
= 2k2 + (2m + 2)k

2k2 + (2m + 4)k
+ O

(
1

k2

)
= 1 − 1

k
+ O

(
1

k2

)
, (B18)

and by the analysis below Eq. (B8), we know it is impossible.

2. With lattice-induced wave-function effects

a. 3D case

Consider Eq. (38) with η 
= 0. Note that η can be an O(1)
quantity. We have an equation,

1

2

[(
1 + η

2

)
− (1 + η)r2 + η

2
r4

]
d2ρ

dr2

+
[(

1 + η

2

)
− 2(1 + η)r2 + 3η

2
r4

]
1

r

dρ

dr

+
{
κr2 − 1

2
�(� + 1)

[(
1 + η

2

)
− (1 + η)r2

+ η

2
r4

]}
ρ

r2
= 0. (B19)

When r → 0, we get

1

2

(
1 + η

2

)
d2ρ

dr2
+
(

1 + η

2

)
1

r

dρ

dr
− 1

2
�(� + 1)

(
1 + η

2

)
ρ

r2

= 0. (B20)

Equation (B20) is identical to Eq. (B2). Then we can take
Eq. (B12) into Eq. (B19), and the difference from before is
that we will get a second-order recursion relation, i.e., α2k+2

should be determined by α2k and α2k−2,

N−1∑
k=−1

α2k+2

[
1

2

(
1 + η

2

)
(� + 2k + 2)(� + 2k + 1)

+
(

1 + η

2

)
(� + 2k + 2) − 1

2

(
1 + η

2

)
�(� + 1)

]
r�+2k

+
N∑

k=0

α2k

[
− 1

2
(1 + η)(� + 2k)(� + 2k − 1)

− 2(1 + η)(� + 2k) + κ + 1

2
(1 + η)�(� + 1)

]
r�+2k

+
N+1∑
k=1

α2k−2

[
η

4
(� + 2k − 2)(� + 2k − 3)

+ 3

2
η(� + 2k − 2) − η

4
�(� + 1)

]
r�+2k = 0. (B21)

However, if N is finite, an equation for α2Nr�+2N+2 gives
1
4 (� + 2N)(� + 2N − 1) + 3

2 (� + 2N) − 1
4�(� + 1)

= (N + 1)� + 1
2 N(2N + 5) = 0, (B22)

whose only solution is N = � = 0, and an equation for
α2Nr�+2N gives κ = 0. Except for this trivial zero mode (δn
is a constant), we should take N = ∞.

When N = ∞ and k → ∞, we can apply an expansion of
k−1. At the leading order, we get a recursion relation,

(2 + η)α2k+2 − 2(1 + η)α2k + ηα2k−2 = 0, (B23)

which leads to

α2k = A1 + A2

(
η

2 + η

)k

. (B24)

033310-11



YEYANG ZHANG PHYSICAL REVIEW A 110, 033310 (2024)

So there are two parts of α2k with different decay exponents.
Let us concentrate on the case of η > −1 so that | η

2+η
| < 1.

At the next-to-leading order, similar to Eq. (B9), A1 and A2 in
Eq. (B24) are no longer constants but proportional to powers
of k. Because Eq. (B23) is linear, we can solve A1 and A2 sep-
arately, namely, we can take only one of them to be nonzero.
Taking α2k = C1

kζ1
, we get(

1 − ζ1

k

)(
1 + η

2

)(
1 + 2� + 5

2k

)
− (1 + η)

(
1 + 2� + 3

2k

)
+
(

1 + ζ1

k

)
η

2

(
1 + 2� + 1

2k

)
+ O

(
1

k2

)
= 0, (B25)

so the power ζ1 is determined,

ζ1 =
(

1 + η

2

)(
� + 5

2

)
− (1 + η)

(
� + 3

2

)
+ η

(
�

2
+ 1

4

)
= 1. (B26)

Then we get α2k = C1
k + O( 1

k2 ), which leads to the divergence
shown in Eq. (B11). To avoid the divergence, in the asymp-
totic behavior of α2k shown in Eq. (B24), only the second part
should be nonzero. Taking α2k = C2

kζ2
( η

2+η
)k, we get(

1 − ζ2

k

)(
1 + η

2

)(
1 + 2� + 5

2k

)
η2

− (1 + η)

(
1 + 2� + 3

2k

)
η(2 + η)

+
(

1 + ζ2

k

)
η

2

(
1 + 2� + 1

2k

)
(2 + η)2 + O

(
1

k2

)
= 0,

(B27)

so the power ζ2 is determined,

ζ2 =
[(

1 + η

2

)(
� + 5

2

)
η2 − (1 + η)

(
� + 3

2

)
η(2 + η)

+ η

(
�

2
+ 1

4

)
(2 + η)2

][
−
(

1 + η

2

)
η2 + η

2
(2 + η)2

]−1

= 1. (B28)

Then we get the asymptotic behavior of α2k,

α2k =
[

C2

k
+ O

(
1

k2

)](
η

2 + η

)k

. (B29)

To make C1 = 0, κ should take discrete values. However,
because C1 = 0 is an asymptomatic condition for the sequence
α2k, we can only solve κ numerically. From the recursion
relation for k � 0,[

1

2

(
1 + η

2

)
(� + 2k + 2)(� + 2k + 1)

+
(

1 + η

2

)
(� + 2k + 2) − 1

2

(
1 + η

2

)
�(� + 1)

]
α2k+2

=
[

1

2
(1 + η)(� + 2k)(� + 2k − 1)

+ 2(1 + η)(� + 2k) − κ − 1

2
(1 + η)�(� + 1)

]
α2k

−
[
η

4
(� + 2k − 2)(� + 2k − 3)

+ 3

2
η(� + 2k − 2) − η

4
�(� + 1)

]
α2k−2, (B30)

where α−2 ≡ 0, when α0 is normalized to be 1, we can get
α2k0+2(κ ) and α2k0 (κ ) for some large enough integer k0. Then,
κ can be solved by [Eq. (42)]

α2k0+2 = α2k0

k0

k0 + 1

η

2 + η
. (B31)

Equation (B31) is an equation of order (k0 + 1), so we will
get (k0 + 1) solutions of κ . When k0 → ∞, we should get
infinite solutions of κ , which form a discrete spectrum. Note
that when η = 0, Eq. (B31) becomes the condition that N
in Eq. (B12) is finite, which is consistent with our previous
result.

b. 2D case

Consider Eq. (40) with η 
= 0,

1

2

[(
1 + η

2

)
− (1 + η)r2 + η

2
r4

]
d2ρ

dr2

+ 1

2

[(
1 + η

2

)
− 3(1 + η)r2 + 5η

2
r4

]
1

r

dρ

dr

+
{
κr2 − 1

2
m2

[(
1 + η

2

)
− (1 + η)r2 + η

2
r4

]}
ρ

r2
= 0.

(B32)

We still have Eq. (B14). Taking m � 0 for simplicity, we get
a recursion relation,[

1

2

(
1 + η

2

)
(m + 2k + 2)(m + 2k + 1)

+ 1

2

(
1 + η

2

)
(m + 2k + 2) − 1

2

(
1 + η

2

)
m2

]
α2k+2

+
[

− 1

2
(1 + η)(m + 2k)(m + 2k − 1)

− 3

2
(1 + η)(m + 2k) + κ + 1

2
(1 + η)m2

]
α2k

+
[
η

4
(m + 2k − 2)(m + 2k − 3)

+ 5

4
η(m + 2k − 2) − η

4
m2

]
α2k−2 = 0. (B33)

Then, N = ∞, unless m = 0 and N = 0, because

1
4 (m + 2N)(m + 2N − 1) + 5

4 (m + 2N) − 1
4 m2

= m(2N + 1) + N(N + 2) � 0. (B34)

When N = ∞ and k → ∞, taking an expansion of k−1, at
the leading order we get the same results as Eqs. (B23) and
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(B24). Taking α2k = C1

kζ1
, we get(

1 − ζ1

k

)(
1 + η

2

)(
1 + m + 2

k

)
− (1 + η)

(
1 + m + 1

k

)
+
(

1 + ζ1

k

)
η

2

(
1 + m

k

)
+ O

(
1

k2

)
= 0; (B35)

then,

ζ1 =
(

1 + η

2

)
(m + 2) − (1 + η)(m + 1) + η

m
2

= 1,

(B36)

and we should take C1 = 0 to make an eigenfunction conver-
gent when r → 1. Taking α2k = C2

kζ2
( η

2+η
)k, we get(

1 − ζ2

k

)(
1 + η

2

)(
1 + m + 2

k

)
η2

− (1 + η)

(
1 + m + 1

k

)
η(2 + η)

+
(

1 + ζ2

k

)
η

2

(
1 + m

k

)
(2 + η)2 + O

(
1

k2

)
= 0,

(B37)

so

ζ2 = −
[(

1 + η

2

)
(m + 2)η2 − (1 + η)(m + 1)η(2 + η)

+ η

2
m(2 + η)2

]
[η2 + 2η]−1 = 1, (B38)

and Eq. (B31) is still valid to determine eigenvalues numeri-
cally.

3. Orthonormal relation

The linear differential operators in Eqs. (B19) and (B32)
are non-Hermitian if we use the simplest definition of an
inner product in a Hilbert space, so we need to apply the
Sturm-Liouville theory [81] to find proper definitions of the
inner product. For an eigenfunction of a second-order linear
differential operator,

P(r)
d2ρ

dr2
+ Q(r)

dρ

dr
+ [κW (r) − S(r)]ρ = 0, (B39)

it has a Sturm-Liouville form,

d

dr

[
p(r)

dρ

dr

]
+ [κw(r) − s(r)]ρ = 0, (B40)

where

p(r) = e
∫ Q(r)

P(r) dr, w(r) = W (r)

P(r)
e
∫ Q(r)

P(r) dr,

s(r) = S(r)

P(r)
e
∫ Q(r)

P(r) dr . (B41)

Taking the 3D case as an example, when a boundary condition
is satisfied,

p(r)

[
ρn2,�

dρ∗
n1,�

dr
− ρ∗

n1,�

dρn2,�

dr

]∣∣∣∣r=1

r=0

= 0, (B42)

the eigenfunctions can be normalized to form an orthonormal
basis with an inner product,

(ρn1,�, ρn2,�) ≡
∫ 1

0

w(r)

w
ρ∗

n1,�
(r)ρn2,�(r)dr = δn1,n2 , (B43)

where w is an arbitrary coefficient.

a. 3D case

In the 3D case,

p(r) = e
∫ Q(r)

P(r) dr

= exp

{∫ (
1 + η

2

)− 2(1 + η)r2 + 3
2ηr4

r
2

[(
1 + η

2

)− (1 + η)r2 + η

2 r4
]dr

}
= r2(1 − r2)(2 + η − ηr2), (B44)

w(r) = 2(
1 + η

2

)− (1 + η)r2 + η

2 r4
r2(1 − r2)(2 + η − ηr2)

= 4r2, (B45)

s(r) = �(� + 1)(1 − r2)(2 + η − ηr2). (B46)

Near r = 0, we have ρ(r) ∼ r�. Near r = 1, we have required
that ρ(r) is finite, and by an expansion of 1 − r, we have
dρ

dr = κρ, so dρ

dr is also finite. Because p(0) = p(1) = 0, for
two different eigenfunctions ρn1,�(r) and ρn2,�(r), the condi-
tion given by Eq. (B42) is satisfied. So we get the orthonormal
relation in Eq. (43),

(ρn1,�, ρn2,�) ≡
∫ 1

0
r2ρ∗

n1,�
(r)ρn2,�(r)dr = δn1,n2 , (B47)

where we have taken w = 4 in Eq. (B43).

b. 2D case

In the 2D case,

p(r) = exp

{∫ (
1 + η

2

)− 3(1 + η)r2 + 5
2ηr4

r
[(

1 + η

2

)− (1 + η)r2 + η

2 r4
]dr

}
= r(1 − r2)(2 + η − ηr2), (B48)

w(r) = 4r, s(r) = m2

r
(1 − r2)(2 + η − ηr2). (B49)

Taking w = 4, we get the orthonormal relation in Eq. (43),

(ρn1,m, ρn2,m) ≡
∫ 1

0
rρ∗

n1,m(r)ρn2,m(r)dr = δn1,n2 . (B50)

APPENDIX C: DISCUSSIONS ON TIGHT-BINDING
MODELS

In this Appendix, as a supplement to the continuous model
given by Eqs. (1)–(3), we discuss Bloch wave-function effects
in tight-binding models defined in discretized lattices. We first
clarify a general tight-binding limit of the continuous model in
Sec. C 1. We then focus on the simplest example, i.e., bipartite
tight-binding models, and calculate their Bloch wave-function
quantities in Sec. C 2.
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1. General tight-binding limit

In the tight-binding limit, the integral of r in a unit cell
is substituted by a summation of sublattice indices times the
volume of a unit cell. Namely, our Hamiltonian becomes

H0 = �2
cell

∑
R,R′

ns−1∑
σ,σ ′=0

a†
R+tσ ,σ (H0,eff )σ,σ ′

× (R − R′ + tσ − tσ ′ )aR′+tσ ′ ,σ ′

+ geff

2
�cell

∑
R

ns−1∑
σ=0

a†
R+tσ ,σ a†

R+tσ ,σ aR+tσ ,σ aR+tσ ,σ

+ �cell

∑
R

ns−1∑
σ=0

U (R + tσ )a†
R+tσ ,σ aR+tσ ,σ , (C1)

where σ and σ ′ are sublattice indices, R and R′ take lattice
vectors, ns is the number of sublattices in a unit cell, and
tσ is the relative position of the σ th sublattice in a unit cell.
Different from a more commonly used convention that dif-
ferent sublattices in the same unit cell are regarded as in the
same position, here we keep tσ in Fourier transforms to make
crystal symmetries more explicit. This convention results in
discontinuity of a k-space Hamiltonian at the boundary of the
first Brillouin zone, but this is not a problem for us because
we only care about the Bloch states near the band bottom.

In Eq. (C1), U (R + tσ ) ≡ U (r = R + tσ ) and its Fourier
transform is defined in the continuous space as the general
cases of the continuous model,

U (R + tσ ) =
∫

∞

dd k
(2π )d

eik·(R+tσ )Uk

≈
∫

BZ

dd k
(2π )d

eik·(R+tσ )Uk. (C2)

Because now aσ (R + tσ ) and (H0,eff )σ,σ ′ (R − R′ + tσ − tσ ′ )
are defined in the lattice, to recover the general result of the
low-energy effective action in the Bloch basis, their Fourier
transforms are defined by

aR+tσ ,σ =
ns−1∑
n=0

∫
BZ

dd k

(2π )
d
2

eik·(R+tσ )un,k,σ bn,k, (C3)

(H0,eff )σ,σ ′ (R − R′ + tσ − tσ ′ )

=
ns−1∑

n,n′=0

∫
BZ

dd k
(2π )d

eik·(R−R′+tσ −tσ ′ )(H0,eff )σ,σ ′,k

=
ns−1∑

n,n′=0

∫
BZ

dd k
(2π )d

eik·(R−R′+tσ −tσ ′ )u∗
n,k,σ un,k,σ ′ (H0,eff )n,k,

(C4)

where n is the band index, and un,k,σ is the normalized eigen-
vector of (H0,eff )σ,σ ′,k in the sublattice space,

ns−1∑
σ=0

u∗
n,k,σ un′,k,σ = δn,n′ . (C5)

Note that the interaction strength geff in Eq. (C1) is differ-
ent from g in Eq. (3), so we add a subscript “eff” to emphasize

this, although they play the same role for a low-energy ef-
fective theory. The tight-binding limit makes M → ∞ and
geff = O(gM ) → ∞. This is because atoms are constrained
at only several points in the unit cell, which significantly
enlarges the effective repulsive interaction. Though, as there
must be finite widths of Wannier functions in reality, we can
renormalize geff to be finite.

A Bloch wave-function quantity Mn,eff is defined by

Mn,eff (k) = ns

ns−1∑
σ=0

u∗
n,k,σ u∗

n,k,σ un,k,σ un,k,σ , (C6)

and other Bloch wave-function quantities are defined simi-
larly. When the sublattices become equivalent, |un,k,σ | = 1√

ns

and Mn,eff (k) = 1; for a general case, |un,k,σ | depends on σ

and Mn,eff (k) > 1. We focus on the lowest band, i.e., n = 0,
whose dispersion is assumed to be (H0,eff )0,k = k2

2m + O(k3)
near the band bottom k = 0.

In the next section, we only consider the tight-binding limit
and only discuss the quantities with the subscript “eff,” so
we will omit the subscript for convenience. We also omit the
band index in (H0)k when denoting a matrix and in uk,σ when
denoting the lowest band.

2. Bloch wave-function quantities of bipartite
tight-binding models

Next, we focus on bipartite lattices (ns = 2). For a 2D
lattice, suppose there is a Zn (n � 3) rotational symmetry; for
a 3D lattice, suppose it belongs to the cubic crystal system.
Near the band bottom k = 0, in the sublattice space we can
expand the single-body Hamiltonian by Pauli matrices,

(H0)k = h̃ksin�kcos�kσx + h̃ksin�ksin�kσy

+ h̃kcos�kσz + h̄kσ0, (C7)

where we neglect a constant which shifts the energy of k = 0
of the lower band to be zero. Then the lower-band eigenvector
is given by

uk ≡
(

uk,1

uk,2

)
=
(

−sin �k
2

cos�k
2 ei�k

)
. (C8)

The Hamiltonian near k = 0 is constrained by the lattice sym-
metry,

(H0)k = (ax − 1
2 bxk2)σx + (ay − 1

2 byk2)σy

+ (az − 1
2 bzk

2
)
σz + 1

2 b0k2σ0 + O(k3). (C9)

For simplicity, we take ax,y,z � 0, bx,y,z,0 � 0, and it can be
generalized to other cases.

If there is a time-reversal symmetry, i.e., (H0)∗k = (H0)−k,
then ay = by = 0. If there is an inversion symmetry that ex-
changes two sublattices (e.g., 2D honeycomb lattice), i.e.,
σx(H0)kσx = (H0)−k, then ay = by = az = bz = 0. If there
is an inversion symmetry that keeps the sublattices invariant
(e.g., 2D bipartite square lattice), i.e., (H0)k = (H0)−k, it
does not give additional constraints to Eq. (C9). In addition,
we take the permutation of sublattices as our definition of
the sublattice symmetry, i.e., σx(H0)kσx = (H0)k, which is
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different from a conventional one, i.e., σz(H0)kσz = −(H0)k.
The sublattice symmetry requires ay = by = az = bz = 0.

We can calculate the Bloch wave-function quantities near
k = 0, which are much simplified by ∂kx �0 = ∂kx �0 = 0,

Md (k) = M(k) − 1 = 2

(
sin4 �k

2
+ cos4 �k

2

)
− 1

= cos2�k, (C10)

∂kx M(k) = −sin2�k∂kx �k, (C11)

M ′′(0) = ∂2
kx

M(0) = −sin2�0∂
2
kx
�0, (C12)

∂kx uk =
( − 1

2

(
∂kx �k

)
cos�k

2

− 1
2

(
∂kx �k

)
sin �k

2 ei�k + i
(
∂kx �k

)
cos �k

2 ei�k

)
,

(C13)

∂2
kx

u0 =
( − 1

2

(
∂2

kx
�0
)
cos �0

2

− 1
2

(
∂2

kx
�0
)
sin �0

2 ei�0 + i
(
∂2

kx
�0
)
cos �0

2 ei�0

)
,

(C14)

S(0) = Im

[
2

1∑
σ=0

u∗
0,σ u∗

0,σ u0,σ ∂k2
x
u0,σ − M(0)

1∑
σ=0

u∗
0,σ ∂k2

x
u0,σ

]

= 2cos4 �0

2
∂2

kx
�0 − (1 + cos2�0)cos2 �0

2
∂2

kx
�0

= 1

4
sin2�0∂

2
kx
�0. (C15)

When there is the time-reversal symmetry, we get �k = 0,
so S(k) = 0. When there is the sublattice symmetry or a 3D
inversion symmetry that exchanges the two sublattices, we
get cos�0 = 0, so Md (0) = M ′′(0) = S(0) = 0, where there
are no lattice-induced wave-function effects in the low-energy
effective theory.

When the sublattice symmetry and the time-reversal sym-
metry are weakly broken, ay

ax
, by

bx
, az

ax
, and bz

bx
are small. Then, at

the leading order, we get

m ≈ 1

b0 + bx
, Md (0) ≈ a2

z

a2
x

, (C16)

�k = π

2
− arctan

az − 1
2 bzk2√(

ax − 1
2 bxk2

)2 + (ay − 1
2 byk2

)2 ,

�k = arctan
ay − 1

2 byk2

ax − 1
2 bxk2

, (C17)

∂2
kx
�0 = 2

∂�0

∂k2

= 1

1 + a2
z

a2
x+a2

y

[
bz(

a2
x + a2

y

) 1
2

− 1

2

2az(axbx + ayby)(
a2

x + a2
y

) 3
2

]

≈ bz

ax
− bxaz

a2
x

, (C18)

∂2
kx
�0 = 2

∂�0

∂k2
= − 1

1 + a2
y

a2
x

axby − aybx

a2
x

≈ −by

ax
+ bxay

a2
x

, (C19)

M ′′(0) ≈ − 2az

ax

(
bz

ax
− bxaz

a2
x

)
,

S(0) ≈ − az

2ax

(
by

ax
− bxay

a2
x

)
. (C20)

If ay

ax
, by

bx
, az

ax
, and bz

bx
are in the same order, μ and ax (or a

bandwidth) are in the same order; then, without fine tuning,
Md (0), mμM ′′(0), and mμS(0) are in the same order.

For the example given in Eq. (62), from Eq. (63) we get

b0 = 2t1a2
0, ax = −t2 − 4t3cosθ3,

bx = −2t3a2
0cosθ3, (C21)

ay = −4t3sinθ3, by = −2t3a2
0sinθ3,

az = �, bz = 0. (C22)

We can apply a gauge transformation to take an additional
sign for ax,y and bx,y so that they become positive. The gauge
transformation is in the sublattice space instead of the mo-
mentum space, which does not affect the Bloch wave-function
quantities. When � and θ3 are small, by taking Eqs. (C21)
and (C22) into Eqs. (C16) and (C20), and keeping the leading
order, we get the results of Eq. (64), where two terms in S(0)
have been combined,

S(0) = − �

2(t2 + 4t3)

[
2t3a2

0θ3

t2 + 4t3
− 8t2

3 a2
0θ3

(t2 + 4t3)2

]
= − a2

0t2t3θ3�

(t2 + 4t3)3
. (C23)
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