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The aim of this paper is to derive the hydrodynamics for a cold Bose gas from the microscopic platform
based on the many-body Schrödinger equation and general assumptions of the hydrodynamic approach (HA)
applicable to any dimension. We develop a general HA for a cold spatially inhomogeneous Bose gas assuming
two different temporal and spatial scales and obtain the energy as a functional of both fast inner quantum mode
and slow macroscopic mode. The equations governing the fast and slow modes are obtained from this functional
by their independent variations. The fast mode is the wave function in the stationary state at local density which
can be ground, excited with a nonzero atom momenta, or a superposition of more than one state. The energy
eigenvalue (or expectation value) of this local wave function universally enters the hydrodynamic equation for
the slow mode in the form of the local chemical potential which incorporates the inner local momentum. For
zero inner momenta and particular choices of this eigenvalue as a function of gas density, this equation reduces
to the known equations based on the local density approximation. If, however, the inner momenta are nonzero,
the equation includes the interaction between these momenta and the slow mode velocity. Relation between this
general HA and the standard local density approximation is elaborated. Two effects of the local momenta and
their density dependence on the soliton solutions are demonstrated.
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I. INTRODUCTION

The clouds of ultracold Bose and Fermi gases in electro-
magnetic traps naturally invoke the idea of a hydrodynamic-
type description in terms of a local order parameter, density,
and velocity. To a great extent, the successful development
of this area of quantum physics has been based on the hy-
drodynamic approach (HA) which intrinsically assumes the
local density approximation (LDA). However, at present the
hydrodynamic-type approach to quantum gases in terms of
smoothly varying local quantities not only continues to be
used as one of the main theoretical tools, but also is a subject
of ongoing developments, modifications, and amendments.
This work is also motivated by the idea that not all capabil-
ities of the HA and the related LDA have already been fully
explored and a further development is still possible. There are
(roughly) four main arguments that motivated this work.

First, there has been an ongoing chain of modifications
and amendments to the main mean field approach to quantum
gases in the form of the Gross-Pitaevskii equation (GPE).
The GPE with a cubic nonlinearity was proposed in the early
1960s [1–3] for description of a Bose-Einstein condensate.
The idea underlying the GPE derivation is to associate and
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replace the Heisenberg field operator with a classical mean
field order parameter which is assumed to vary slowly on
distances of the order of the interatomic force [3]. The square
of the modulus of this order parameter was shown to repre-
sent gas density which in this way entered the theory. As a
result, via Madelung’s ansatz, there have been obtained the
equivalent alternative hydrodynamic equations which formed
the HA for a superfluid. Although the GPE derivation does
not resort to the LDA and the equivalent superfluid HEs es-
sentially express the mass and momentum conservation [3,4],
the superfluid HA describes cold atomic gas in terms of a
local density and velocity, which has paved way to the natural
further development in the spirit of the conventional HA and
the underlying LDA. Different HAs have been developed and
successfully applied to ultracold gases. But even before GPE
appeared, Lee, Huang, and Yang [5] found what is now called
a quantum correction to the GPE nonlinearity, which appeared
to be the lowest power of the gas density expansion; the
GPE with this correction is now known as the extended GPE
(eGPE).

In 2000 Kolomeisky et al. [6], based on a renormaliza-
tion group analysis [7], argued that in low dimensions strong
atoms’ repulsion actually results in a quintic nonlinearity. The
square of the modulus of the mean field introduced in [6] is
associated with the local density and, as a result, the theory
again becomes equivalent to certain HA. It turned out, how-
ever [8], that this theory incorrectly predicts highly contrast
interference patterns in the one-dimensional split dynamics
[9] and shock wave formation [10,11] in a strongly inter-
acting Bose gas in the Tonks-Gerardeau regime. Moreover,
a similar situation was found to take place also in a weakly
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interacting Bose gas in the GPE regime [10,11]. The reason
is that the interference effects involve short length oscilla-
tions which break the applicability of the LDA in general
for any interaction strength and, mathematically, the so-called
quantum pressure term is responsible for this problem [11,12]
(see Conclusion section for more discussion). Nevertheless,
the HA explicitly or indirectly exploiting the LDA remained
attractive as it correctly describes the situations with smooth
density variations that often take place in the experiment.

The intensive studies of a quasi-one-dimensional Bose
gas in the early 2000s brought about the idea, suggested
by Dunjko, Lorent, and Olshanii [13], that in this geometry
actual nonlinearity in the HA depends on the local gas en-
ergy density [13–15] and can be taken from the Lieb-Liniger
solution [16,17] (alternatively, it is given by the equation of
state obtained independently [18]). The advantage of such HA
was recently demonstrated both for gas with a short-range
repulsion [19,20] and for a dipolar gas [21]. In [19–21], the
repulsion-induced nonlinearity in the one-dimensional hydro-
dynamic equation was determined by the local energy density
of the Lieb-Liniger gas. In these papers, the starting point was
the classical hydrodynamic equations for local density and
velocity. Then the quantum pressure term was formally added
to these equations because it is necessary to convert them to a
Schrödinger-type equation by means of the Madelung ansatz.
The result of such a conversion was dubbed modified non-
linear Schrödinger equation (MNLSE) [19] and Lieb-Liniger
GPE (LLGPE) [21]. This conversion procedure was described
in [19] as merely a convenient numerical tool for simulating
MNLSE instead of the hydrodynamic equations with the re-
mark that the hydrodynamic equations themselves should be
carefully examined in the future. Note that the conventional
HA does not account for the infinitely many integrals of mo-
tion of the Lieb-Liniger gas which is adequately described by
the recently developed generalized hydrodynamics [22–24].
Nevertheless, the standard HA based on LDA, which is much
simpler than the generalized hydrodynamics, remains valid in
many situations of interest and, in particular, for zero temper-
ature and in absence of velocity multivaluedness (see [25]).

We see that the modifications of the GPE depend on the
specific system and its dimension. The general HA in contrast
is expected to predict a hydrodynamic equation (HE) with
certain term whose origin is universal and only its specific
form depends on the system and its geometry. In the classical
HEs such term is the pressure gradient which connects the
macroscopic motion with microscopic nature of the medium
via the equation of state. As such, the HA comprises two
separate problems: first, finding the pressure as a function of
density and temperature for a given liquid with its specific
statistics, dimensions, molecular structure, and so on, and,
second, solving the HE with this pressure. Such a HA, which
is general in the above sense, has not been developed for a
generic cold Bose gas of any origin and dimension.

Second, the fundamental relation between the microscopic
molecular theory and HA has been well established in the
classical statistical physics. The classical hydrodynamic equa-
tions can be derived from the many-body distribution function
by its reduction to the one-particle distribution and then
momentum integration. At the same time, the main idea of
the derivation of the HEs proposed for quantum gases in

[1–3,13–15,20,21] is based on the essentially one-particle
description and its hydrodynamic form in the Madelung rep-
resentation of the one-particle wave function.

Third, the LDA, applied to a cold gas at zero temperature,
assumes that locally gas is in its ground state at the local
density. However, a local equilibrium at zero temperature
implies only that the gas is in its stationary state which is
not necessarily ground state. For instance, a stationary state
can be an excited state with a nonzero local momentum or it
can be a superposition of different states. Such states can be
incorporated only on the level of many-particle descriptions.
In particular, because in these cases the total many-particle
phase of system’s wave function does not have the form of the
sum of individual atoms’ phases and the one-particle phase
cannot be introduced.

The above arguments motivated us to derive the general
HA to a cold Bose gas which, on the one hand, would have
a general form to justify the different known equations on
the common ground and, on the other hand, would provide
the connection with the many-body quantum mechanical de-
scription which is a counterpart of the microscopic foundation
of the classical HA. Our fourth motivation argument is that,
in principle, establishing such connection and incorporating
local nonground states could reveal new effects and, in partic-
ular, novel modifications of the known equations. In this paper
this program has been performed. As we have seen above, on
the one hand, some large-scale descriptions of a cold quantum
gas are explicitly HAs. On the other hand, the large-scale
mean field description in terms of Schrödinger-type or GPE-
type equations via the Madelung transform also reduce to
certain equivalent HA. For this reason and for brevity, we will
refer to these approaches as known or standard HAs or known
or standard HEs to distinguish them from our HA and HE
proposed in this paper.

The standard HA assumes that local small but still macro-
scopic subvolumes are in the thermodynamic equilibrium with
some local temperature and density, and that such subvolumes
move as a whole with the local average velocity. All these
quantities change very little over distances of order of the
interatomic separation and thus are slow variables depending
on the position X of the center of mass of the subvolumes.
Thus, the LDA applied for a quantum gas at finite temperature
assumes the local thermodynamic equilibrium [26]. In the
case of a quantum gas at zero temperature, we assume that
it is locally in a stationary state (ground or excited) corre-
sponding to the local atoms’ density n, that it moves with
a local velocity v, so that n and v practically do not change
within a small local subvolume and are slow functions of the
position of its center of mass and time. To this end we separate
a slow amplitude A from the reduced one-body density matrix
and find the HE for this A. The nonlinearity in this HE is
specified by the density dependence of the local chemical
potential which in turn is determined by the eigenvalues of
the Schrödinger equation for the locally homogeneous states.
It is this chemical potential that universally enters the HE
while the nonlinearity depends on the specific system and its
dimension via the specific density dependence of the local
energy eigenvalues.

In the HA, only small macroscopic subsystems are in
the locally stationary states. This approach presupposes two
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different relaxation processes, a fast microscopic and much
slower hydrodynamic. At the first stage, small subsystems
equilibrate to their stationary states because their size �V is
much smaller than the total system size V and their local mi-
croscopic inner equilibrium is achieving much faster than the
total one. At the second, hydrodynamic stage, the density and
velocity difference between stationary subvolumes drives the
slow macroscopic dynamics of the whole system. We derive
the energy as a functional of both fast mode and slow mode.
The fast mode is the wave function ψn which is the stationary
state of the system Hamiltonian at the local density n of the
subvolume. If the local stationary state has momentum exci-
tations, then the local Hamiltonian in addition to the standard
short-range part also has the term describing the interaction
of the local momenta 〈p〉 with the velocity of the slow mode.
After integrating out the fast mode, we obtain the general HE
only for slow mode A. This HE contains the contribution from
the local energy eigenvalue and the term 〈p〉 · ∇A describing
interaction between the fast and slow motions. The form of
this HE is universal and reduces the HA to the two universal
problems: first finding the stationary states ψ for a given
cold Bose gas at given density and, second, solving the HE
with their energy eigenvalues and finding A. For 〈p〉 = 0 and
particular choice of the energy eigenvalues as functions of gas
density, the HE reduces to the known equations. If, however,
gas momenta are not due to its motion as a whole and if
these momenta depend on the gas density, the derived HA
is the only tool applicable in this case. Two examples of the
influence of such momenta on gray solitons are presented as
an illustration to prompt possible related effects.

In Sec. II A, we develop the general HA to a cold inhomo-
geneous Bose gas, then in Sec. II B derive energy functional of
both fast and slow modes and impose local stationary states;
in Sec. II C the HE is derived, discussed, and its equivalent
standard hydrodynamic form is obtained via the Madelung
transform. In Sec. III A, we introduce the effective combined
wave function of both slow and fast modes, introduce its
common coordinate description, and, in Sec. III B, present
two examples of such function; then some important general
properties of our HA and its relation to the known GPE-type
equations are addressed in Sec. III C. In Sec. IV, it is shown
that, if local momenta are nonzero, the periodic soliton train
considered in [27] can be made a propagating wave. In Sec. V,
we consider the effect of density-dependent local momen-
tum on a soliton in a one-dimensional Lieb-Liniger gas, and
Sec. VI. concludes the paper.

II. FROM THE MICROSCOPIC TO HYDRODYNAMIC
DESCRIPTION OF A COLD BOSE GAS

A. General consideration

The system of our interest is an inhomogeneous gas as
its density slowly varies in space. Consider such gas of N
cold boson atoms of mass m in the volume V , dim V = d (d
can be 1, 2, or 3). Let xi be a d -dimensional vector of the
position of ith atom, xi ∈ V , and x = (x1, x2, . . . , xi, . . . , xN )
be the Nd-dimensional vector describing the total system in
the Nd-dimensional volume V ⊗ V ⊗ V · · · = V N , x ∈ V N ;
notation xN−k is used for the set of coordinates of some N − k

atoms, dN x = dx1 . . . dxN and dN−kx = dxk+1 . . . dxN . The
gas wave function ψ (x, t ) depends on Nd spatial variables and
is normalized on unity, 〈ψ |ψ〉 = 1. The gas Hamiltonian ĥ is
the sum

ĥ = K̂ + Û = − h̄2

2m

N∑
i=1

�i +
N∑

i> j=1

U (xi − x j ), (1)

where h̄ is Planck’s constant, m is atom’s mass, K̂ and Û
are the operators of kinetic and potential energy, and U is
a short-range potential; external and long-range potentials
will be addressed later. The local density n(y) is introduced
through the reduced one-body density matrix

ρ(y, y′) =
∫

V N−1
dN−1xψ∗(y, xN−1)ψ (y′, xN−1). (2)

The probability density f (y) at y is f (y) = ρ(y, y) and the
atom density n(y) = N f (y).

To make a contact with subvolumes with different den-
sities, for each subvolume with the atom density n we also
introduce an auxiliary homogeneous system Vn of N atoms at
density n which, by this definition, has the volume Vn = N/n
(Fig. 1). The idea is that, by virtue of a short-range interaction,
the energy of a subvolume with density n can be computed as
a fraction of the energy of the associated auxiliary system Vn

with the same density n. Consider the homogeneous system
Vn. Its wave function ψn(x), which is normalized on unity,
and the energy En are functions (functionals) of the density
n which is indicated by a subscript n. The system energy is

En =
∫

V N
n

dN x ψ∗
n (x )̂hψn(x). (3)

If the system is in a stationary state, then En = Nεn where En

is the eigenvalue of the equation

ĥψn = Enψn (4)

and εn is that per atom. The energy of a short-range interac-
tion is additive, i.e., the energy of a number of macroscopic
subvolumes is the sum of their energies. To see this explicitly
in the case of potential energy, the formula Un = 〈ψn|Û |ψn〉
can be presented in the following equivalent way possible due
to the symmetry with respect to atoms’ coordinates:

Un = N (N − 1)

2

∫
Vn

dy
∫

Vn

dy′U (y − y′)G2(y, y′), (5)

where

G2(y, y′) =
∫

V N−2
n

dN−2x ψ∗
n (y, y′, xN−1)ψn(y, y′, xN−2) (6)

is the pair distribution. If the potential range is much shorter
than the size of the macroscopic subvolumes �V then

Un = N (N − 1)

2

∑
�V

∫
�V

dy
∫

�V
dy′U (y − y′)G2(y, y′). (7)

In particular, the potential energy �Un of a macroscopic sub-
system with the number of atoms �N is the fraction of the
total Un:

�Un = �N

N
〈ψn|Û |ψn〉. (8)
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FIG. 1. One-dimensional sketch of the main construction of our approach. An inhomogeneous Bose gas divided into m quasihomogeneous
subvolumes �Vk with the atom density nk and which are centered at Xk . At the first stage, each �Vk (bold rectangles) is considered a part of an
auxiliary homogeneous gas of N atoms (dashed rectangles), which has the density nk and volume Vnk = N/nk ; Vnk is larger for lower density
nk . The d-dimensional vector of the coordinate x(k)

i of i th atom, i = 1, 2, . . . , N , is defined in the entire auxiliary volume Vnk relative to some
reference frame Ok . The onsets of Ok in different Vnk are not correlated; for instance, they can be connected to the left ends of Vnk as shown
by the arrows from O1 and O2. Thus, the atoms’ coordinates x(k)

i in different Vnk are not mutually adjusted. But, at the second, hydrodynamic
stage, the atoms are described only in the actual volume V which requires the vectors x̃i ∈ V , continuously extrapolating local x(k)

i between
different �Vk . This x̃i can be obtained by synchronizing x(k)

i in different �Vk by taking the common onset O for all Ok , as shown by the bottom
arrow. Then at the boundary B1,2 between �V1 and �V2, x(1)

i = x(2)
i , . . . , and so on. As a result, defining x̃i to be equal to x(k)

i within �Vk gives
the desired continuous position vector of ith atom in the actual volume V .

It is instructive to present a similar relation for the kinetic
energy in the form that will help us to make a contact with the
varying density. To this end we separate the first or first two
arguments of the wave function ψn(x): ψn(y, x2, x3, . . . ) =
ψn(y, xN−1), ψn(y, y′, x3, . . . ) = ψn(y, y′, xN−2) where sym-
bols y and y′ stand for the d-dimensional vector of position
of a single atom, a point in V . Then the kinetic energy Kn =
〈ψn|K̂|ψn〉 can be presented in terms of the reduced density
matrix ρn(y, y′) of the system Vn:

Kn = − h̄2N

2m

∫
Vn

dy
∫

Vn

dy′δ(y − y′)�y′ρn(y, y′), (9)

where

ρn(y, y′) =
∫

V N−1
n

dN−1xψ∗
n (y, xN−1)ψn(y′, xN−1) (10)

is the reduced one-body density matrix in a homogeneous gas
with the density n. It follows that the kinetic energy �Kn of a

macroscopic susbsystem of �N atoms is

�Kn = − h̄2N

2m

∫
�V

dy
∫

�V
dy′δ(y − y′)�y′ρn(y, y′)

= �N

N
Kn. (11)

The probability density fn(y) = ρn(y, y) and atom density n =
N fn in a homogeneous system are constant. Equations (9)–
(11) will be used to introduce slow density variations and
obtain the energy functional in which the slow and fast modes
are separated.

Consider now our inhomogeneous system with slowly
modulated f (y) and n(y). We divide the volume V into
small macroscopic subvolumes of equal volume �V 	 V
with the linear size �V 1/d much larger than the average
interatomic separation n−1/d , so that the number of atoms
n�V in �V is large. Let y = X be the position of the center
of �VX ,

∑
X �VX = V (Fig. 1). We will indicate quantities

related to �VX centered at X by a subscript X , i.e., if y ∈ �VX

then f (y) = fX (y), n(y) = nX (y); these functions computed at
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y = X will be denoted by the same symbols but without the
argument, i.e., fX (X ) = fX , nX (X ) = nX . Clearly, at different
X the functions fX and nX can be very different, but their
dependence on X is slow and the total energy is the sum of
energies of the subvolumes �VX :

E =
∑

X

�EX =
∑

X

(�KX + �UX ). (12)

As for y ∈ �VX one has fX (y) 
 fX , nX (y) 
 nX ,∑
X fX �VX = 1, the energy terms without derivatives can

be taken at y = X which accounts for their dependence on
the coarse-grained coordinate X since their variations within
�VX can be neglected. However, differentiation of ρ(y, y′) in
�Kn (11) can result in the kinetic energy terms due to a slow
but finite density variation nX (y) − nX even within each �VX .

To obtain these terms, in Appendix A we separate from the
density nX (y) a slow amplitude AX (y) which accounts for the
density deviation relative to nX within �VX . Namely, for each
X and atom’s coordinates y and y′ within �VX , in the full
local one-body density matrix ρn(y, y′) in �VX we separate
the factor A∗

X (y)AX (y′) due to the variation nX (y) − nX and
obtain the following relation:

ρn(y, y′) = AX (y)∗AX (y′)
fX

ρX (y, y′), (13)

y, y′ ∈ �VX

where fX = AX
∗(X )AX (X ) = AX

∗AX and the reduced one-
body density matrix ρX (y, y′) is computed at the central
density nX . This ρX (y, y′) is defined by the formula (10) with
ψnX = ψX which corresponds to the homogeneous system VnX

of N atoms with the density nX .
Now we compute the y derivatives of ρX . Setting

∂AX (y)/∂y = ∂AX /∂X and ∂2AX (y)/∂y2 = ∂2AX /∂X 2, the
kinetic energy �KX [Eq. (11)] of the subsystem with �NX

atoms and density nX obtains in the following form:

�KX = − Nh̄2

2m

(
�NX

N fX

)∫
VX

dy dy′δ(y−y′)[|AX |2�y′ρX (y, y′)

+ (A∗
X �X AX )ρX (y, y′) + 2A∗

X ∇X AX · ∇y′ρX (y, y′)].
(14)

B. Local equilibrium and the stationary states

Now we can obtain the total energy E [Eq. (12)] as a
functional of both fast and slow modes. To this end, in �KX

(14) we return to the expression of ρX (10) in terms of the
function ψnX = ψX . Adding �UX (8) to this equation and
setting �NX = N fX �VX , one obtains the total energy E in
the form of the following sum:

E{ψX , AX } =
∑

X

�VX

∫
V N

n

dN x A∗
X ψ∗

X ĤAX ψX , (15)

Ĥ = ĥ − ih̄

m
∇X ·

N∑
i=1

p̂i − Nh̄2

2m
�X , (16)

where ĥ is the short-range Hamiltonian (1) and p̂i = −ih̄∇i is
the momentum operator in xi which both act only on ψX (x),
whereas the operators ∇X and �X act on AX = A(X ). This E
is a functional of both fast variables ψX (x), ψ∗

X (x), and slow

variables A(X ), A∗(X ), both normalized to unity:∫
V N

n

dN x ψ∗
X ψX = 1,∑

X

�VX A∗
X AX = 1. (17)

We are now ready to impose a local equilibrium which is
determined by the local density nX . As the variations δψX and
δAX are very different in their temporal and spatial scales, the
variational equations must be applied separately to each of
them. As now the total wave function is AX ψX , the variational
equation for the fast component at constant slow component
A is

ih̄AX ∂ψX /∂t = δE

A∗
X δψ∗

X

, (18)

which gives the following Schrödinger equation:

ih̄∂ψX /∂t =
(

ĥ − ih̄

m
∇X ln AX ·

N∑
i=1

p̂i

)
ψX (x). (19)

By our assumption, locally the system is in a stationary state
for which the Schrödinger equation (19) reduces to the eigen-
problem (

ĥ − ih̄

m
∇X ln AX ·

N∑
i=1

p̂i

)
ψX = NεX,AψX . (20)

As AX is slow, the second term can be treated as a perturbation
of the Hamiltonian ĥ. For this reason, the function ψX will be
considered as the eigenfunction of the unperturbed operator
ĥ with the eigenvalue NεX which corresponds to the homoge-
neous density nX as defined in Eq. (4). Then the total perturbed
eigenvalue εX,A per atom is

εX,A = εX − ih̄

m
∇X ln AX · 〈p〉X (21)

and

N〈p〉X =
∫

V N
n

dN x ψ∗
X

N∑
i=1

p̂iψX , (22)

where 〈p〉X is the corresponding average momentum per par-
ticle (at the density nX ). If gas in a subvolume �VX is in
the ground state then of course 〈p〉X = 0, but in general the
average momentum per atom in �VX is nonzero and depends
on the density nX = N |AX |2, i.e., 〈p〉X = 〈p〉X (|AX |2).

So far we have assumed that the stationary state is a pure
eigenstate, but the stationary state can also be a superposition
of more than one pure state with an obvious weighted form
of the average energy εX per atom. For instance, a two-state
superposition is

ψX (x, t ) = a1ψ1,X (x)e−iNε1t/h̄ + a2ψ2,X (x)e−iNε2t/h̄, (23)

where ψ1,X is the eigenstate with the per atom eigenvalue
εX = ε1, ψ2,X is the eigenstate with εX = ε2, t is the fast time,
and |a1|2 + |a2|2 = 1. In particular, ψ1,X can be a ground state
with zero momentum and ψ2,X can be a state with nonzero
〈p〉. We see that the two states have different exponential
time dependence. However, on averaging over fast time, these
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exponentials play no role in the HA as they disappear in the
final hydrodynamic energy functional (25). Instead of wave
function of the form (23) the expressions of the HA derived
below contain the effective wave function of the form

ψX = a1ψ1,X (x) + a2ψ2,X (x) (24)

and the average per atom energy εX = |a1|2ε1 + |a2|2ε2. The
case of a superposition of two states can be directly gener-
alized to the superposition of any number of eigenstates. For
simplicity, in what follows we will continue our consideration
in terms appropriate for a single pure inner state.

C. Hydrodynamic equation

Now we are ready to establish the equation describing
the slow component AX . Making use of Eqs. (20) and (21)
allows one to perform averaging over the fast time t and the x
integration in each �VX to eliminate the fast mode ψX . Then
we change �V for dX and obtain the total energy Esr of the
short-range interaction as a functional of A∗ and A in the form
of the following X integral:

Esr{AX } = N
∫

dX

[
− h̄2

2m
A∗

X �X AX + |AX |2eX

− ih̄

m
A∗

X ∇X AX · 〈p〉X

]
. (25)

If the external potential Uext changes rapidly, i.e., over the
scale of an order of the interparticle distance, then it has to be
included in the short-range Hamiltonian operator ĥ, otherwise,
it can be incorporated along with the long-range interaction
potential Ulr which is assumed here. A long-range potential
changes over the large X scale, it interacts with the total num-
ber of particles N |AX |2dX in �VX , and its source in another
subsystem X ′ is the total number of particles N |AX ′ |2dX ′ in
�VX ′ . If both Uext and Ulr are long-range interactions, then the
total energy due to this interactions have the following form:

Elr{AX } = N (N − 1)

2

∫
dX

∫
dX ′|AX |2|AX ′ |2(1 + g2,XX ′ )

×Ulr(X − X ′) + N
∫

dX |AX |2Uext(X − X ′),

(26)

where g2,XX ′ is the coarse-grained hydrodynamic pair cor-
relation obtained by averaging G2 (6) over �VX and �VX ′

(see Appendix B). The total energy of the inhomogeneous
system is the sum E = Esr + Elr. The dynamics of the slow
modulation AX can be obtained from the following variational
equation:

ih̄
√

N∂AX /∂t = δE√
NδA∗

X

. (27)

Performing this variation we have to remember that
the local energy eigenvalue εX and average momentum
〈p〉X depend on the local probability density |AX |2. The
coarse-grained hydrodynamic equation (27) obtains in the

form

ih̄
∂A

∂t
= − h̄2

2m
�A + A

(
ε + |A|2 ∂ε

∂|A|2
)

− ih̄

m
∇A ·

(
〈p〉 + |A|2 ∂〈p〉

∂|A|2
)

+ AUext + (N − 1)A
∫

V
dX ′|AX ′ |2(1 + g2,XX ′ )

×Ulr (X − X ′), (28)

where the arguments X and t of the functions A and Uext

are omitted for brevity. Here ε and 〈p〉 are, respectively,
the per-atom eigenvalue of the operator ĥ (1) and the av-
erage particle momentum (22) in a homogeneous system
of density N |A|2, which are certain functions of A∗A =
|A|2. The second and third terms in the right-hand side
of Eq. (28) are the contributions to the local chemical
potential, respectively, from the unperturbed local eigen-
value ε and its perturbation: μX = ∂ (NX εX,A)/∂NX where
NX = N |AX |2dX is the number of atoms in �VX and εX,A

is the total eigenvalue (21). This derivative is equal to

μX,A = ∂ (|AX |2εX,A)/∂|AX |2, (29)

which results in the terms in question. It is this μX that
universally appears in the HE and, in this sense, plays
the role similar to the pressure gradient in the classical
HEs. The specific form of its A dependence determines
the nonlinearity in A and depends on the specific sys-
tem via the specific density dependence of the local
eigenvalues of the stationary Schrödinger equation (20).

Equation (28) shows that the flows of the fast and slow
modes interact via the product ∝∇A · 〈p〉. If eX is the eigen-
value of an excited state with a nonzero momentum, then this
term can play its role. The GPE obtains from (28) for 〈p〉 = 0
in the weak interaction limit: both in three dimensions (3D)
[5] and one dimension (1D) [16,17] the first term in the en-
ergy expansion is proportional to the density n ∝ |A|2 so that
ε|A|2 ∝ |A|4, which results in the GPE with the qubic nonlin-
earity. If ε is the ground-state eigenvalue for the Lieb-Lineger
gas, then (28) gives the equation considered in [13–15,20,21].
In particular, this approach reduces to the eGPE for a low
density and to the fifth-power nonlinearity proposed in [6] in
the strong-coupling regime. However, Eq. (28) is not restricted
to a specific model and dimension and is a general HE for a
cold Bose gas.

Equation (28) can be presented in the classical hydrody-
namic form. Setting A = a exp(iθ/h̄) with the real amplitude
a and phase θ , we multiply (28) by a exp(−iθ/h̄) and sepa-
rate the imaginary and real parts. The imaginary part can be
reduced to the form

∂a2

∂t
+ ∇[a2(v + 〈p〉/m)] = 0, (30)

where v = ∇θ/m. This equation is interpreted as that of con-
tinuity and v as velocity of the slow mode. The real part
can be interpreted as the Hamilton-Jacobi equation with the
quantum corrections [28]. Applying operator ∇ to this equa-
tion, one obtains the analog of the standard hydrodynamic
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Navier-Stokes equation for an inviscid fluid:

∂v
∂t

+ (v∇)v = − 1

m
∇

[
μtot + v·

(
〈p〉 + a2 ∂〈p〉

∂a2

)]
, (31)

where

μtot = ε + |A|2 ∂ε

∂|A|2 − h̄2�a

2ma
+ Vext

+ (N − 1)
∫

V
dX ′|AX ′ |2Ulr (X − X ′)(1 + g2,XX ′ )

(32)

and 〈p〉 is the average momentum per atom. We see that
the right-hand side has the form (pressure gradient/N ) =
∇(μX,A + μq + μlr )/m where μq ∼ h̄2/m is the quantum
pressure term and μlr is the contribution to the local chem-
ical potential due to the long-range interaction. Note that the
relation between Schrödinger’s equation and hydrodynamics
has been revealed by Madelung long ago [29] and since then
has been extensively used as the motivation for the HA and
LDA. The hydrodynamic Madelung representation is derived
from Schrödinger’s equation for the one-particle wave func-
tion [28,29]. In contrast, we arrived at the above HEs (30) and
(31) in the reverse procedure, i.e., first deriving the HE (28)
from the many-particle Schrödinger’s equation (20) and only
then applying Madelung’s ansatz to the slow mode A which is
indeed a one-particle quantity.

III. TOTAL EFFECTIVE WAVE FUNCTION

A. Introduction of the common coordinate

The general energy functional (15) can be presented in the
following suggesting form:

Esr{	} =
∫

V
dX

∫
V N

X

dN x 	∗
X (x)Ĥ	X (x), (33)

	X (x) = AX ψX (x). (34)

Here 	X (x) is the total effective inhomogeneous wave func-
tion and Esr{	} can be interpreted as the expectation value
of the Hamiltonian Ĥ (16) in the state 	X (x). The function
ψX is of the type (24) without fast t exponentials. The ef-
fective wave function depends on the Nd-dimensional vector
x = (x1, x2, . . . , xN ) and the coarse-grained coordinate X . The
d-dimensional components xi of the argument x in 	X (x)
are defined in the auxiliary volume VnX (Fig. 1), which we
denote simply as VX , and X is a d-dimensional vector de-
fined in the actual system’s volume V . The dependence of
the effective wave function 	X (x) = AX ψX (x) on the coarse-
grained coordinate X through AX is explicit, and is in general
functional one via dependence of ψX (x) on the local density
nX . Thus, each local subvolume �VX is represented by a
homogeneous system VX of N atoms at density nX , the number
of atoms in �VX is set by the factors A∗

X and AX , so that
the operator Ĥ acts on the vector X ⊕ x ∈ �VX ⊗ V N

X . The
total space in which our inhomogeneous gas is described is
⊕X (�VX ⊗ V N

X ). It is appropriate to associate X and �VX with
the macrospace and x and VX with the inner space: in the inner
space the system is in the stationary quantum state ψX (x) and
in the macrospace space the system is in the state AX .

The coordinates of the inner vectors x in different subsys-
tems �VX are independent as they are defined in different
domains VX and so far there was no need in their “syn-
chronization.” However, after the inner space has been used
and the HE (28) already obtained, there is no need to resort
to the auxiliary domains VX , but instead there is a need of
description in terms of the atoms’ coordinates in the actual
volume V . Then it is convenient and, for some reason even
necessary, to use the common coordinate system in which
vector x̃ = (̃x1, . . . , x̃N ) has components that are smoothly
interpolating those of the local inner vectors x(X ) in differ-
ent subsystems �VX through the entire system. For instance,
the phase of the total wave function depends on the atoms’
positions in the actual space V and thus is a function of
such x̃ with the components x̃i from V . To introduce x̃,
the inner coordinates x in different subsystems �VX can be
“synchronized” by choosing the common coordinate onset in
all VX as sketched in Fig. 1. Let x(X ) = (x(X )

1 , x(X )
2 , . . . , x(X )

N )
be the vector of a point related to �VX and defined in
its VX . If the onset is common, then at the boundary B12

between two adjacent �VX1 and �VX2 , the components of
x(2) = (x(2)

1 , x(2)
2 , . . . , x(2)

N ) with x(2)
i ∈ �VX2 are equal to the

components of x(1) = (x(1)
1 , x(1)

2 , . . . , x(1)
N ) with x(1)

i ∈ �VX1 ;
similar matching takes place at all boundaries between neigh-
boring �V ’s. Thanks to this pairwise adjustment, combining
coordinates in different �VX in the common reference frame
one obtains the vector x̃ = (̃x1, x̃2, . . . , x̃N ) that continuously
interpolates between the local coordinates through the entire
system. The vector x̃ does not need the superscript X and is
such that (i) its components x̃i are continuous and defined in
the total system’s volume V , (ii) its components x̃i in �VX

coincide with the local components x(X )
i of this point, i.e.,

x̃i = x(X )
i if x̃i ∈ �VX . As the densities at both sides of the

boundaries BXX ′ are equal, ψX (̃x) is a continuous function of
the variable x̃. In particular, the phase of ψX (̃x), arg(ψX ), is a
function of the coordinates of all atoms in the actual volume
V . In what follows we omit tilde and use notation x for the
common coordinate x̃.

B. Two forms of states with a nonzero momentum

As usual, in the HA the system is specified in its inner
space, and here we present two important examples of inner
states (34) which we are going to implement below. For clar-
ity, the d-dimensional vectors such as components xi of x, as
well as y and X , will be presented in boldface.

First, we want to set gas in motion as a whole. Let the
local ground-state wave function of the initial state be 	X,0 =
A0(X,t )ψX,0(x). In this state, the energy density is N |AX |2εX

where εX is given in (4), momentum density is 0, and A0 is
governed by Eq. (28) with 〈p〉 = 0. If this gas is set in motion
as a whole so that all atoms have the same momentum p, then
its new inner state ψX,p and hence the total 	X,p acquires the
factor exp

∑N
i i(pxi )/h̄ where (pxi ) is the scalar product of

two d-dimensional vectors. Then the total wave function of
the gas moving as a whole is

	X,p = AX ψX,p(x)

= AX ψX,0(x) exp
N∑

i=1

i(pxi )/h̄. (35)
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This 	X,p is the local state with the energy density
N |AX |2(εX,0 + p2/2m) − N ih̄

m A∗
X (p · ∇X )AX where εX,0 is the

eigenvalue for the eigenfunction ψX,0, it has the inner mo-
mentum Np with density Np|AX |2; the macrostate A is now
the solution of Eq. (28) with 〈p〉 = p. Thus, in the state
(35), the momentum density is changing along with the atom
density ∝|AX |2, but the individual momenta p = const. As
the ground-state function is real and its phase is zero, the
fast phase at some point y in the gas volume V is equal
to θfm(xk = y) = arg[exp iN (py)/h̄] = N (py)/h̄ and the total
phase θtot(y) = θsm + θfm where θsm(y) = arg[A(y)]. It can be
noticed that in this state the fast phase is additive so that
it is possible and natural to assign an individual fast phase
(pxi )/h̄ to each atom. Then the total phase of a single atom
is θ1(y) = θsm(y) + (py)/h̄. The related problem is that in a
ring geometry stretched, say, along y, the periodic boundary
condition implies that the total phase change θtot(L) along
the system length L must be a multiple of 2π . However, if
�θsm = θsm(L) �= 0, which is the case of gray solitons, this
phase θtot(L) = �θsm + N pL/h̄ is different and the excess
phase mod(θtot, 2π ) must be compensated. Our result shows
that the compensating source can be a very slow flow of the
gas as a whole with the velocity v′ chosen as to cancel the
phase, i.e., to make mod[θtot(L) + Nmv′L/h̄, 2π ] = 0. Due
to additivity of the fast phase, this periodic boundary condition
reduces to the condition mod[θ1(L) + v′mL/h̄, 2π ] = 0 on
the phase θ1(y) of single atom, which is equivalent to

�θsm + mod[(p + mv′)L/h̄, 2π ] = 0. (36)

While the additional kinetic energy Nmv′2/2 ∼ 1/N is neg-
ligible, the total slow momentum per atom psm, up to
unimportant constant, changes to

p′
sm = psm − �θsmh̄/L. (37)

This expression for the new momentum p′
sm is in line with the

so-called momentum renormalization which has always been
assumed in the soliton theory [3,30,31]. The advantage of
dealing only with the single-atom phase θ1 makes it possible
the description in terms of a one-particle wave function. It is
shown below that, both in our HA and in the standard HA, a
gas moving as a whole can indeed be described by the same
equation for a one-particle wave function.

Second, we want to describe a state with average nonzero
momenta of some αN out of N atoms. In this state, the total
wave function is similar to (24), i.e., it is a superposition
of the local ground state AX ψX,0(x) and state with certain
momentum:

	X,p = AX ψX,p(x)

= AX ψX,0(x)

[
a0 + ap exp

N∑
i=1

i(pxi )/h̄

]
, (38)

where (ap/a0)2 = α. If the ground state as a whole is set in
motion, then a0 = 0, ap = α = 1, and the wave function (38)
reduces to the wave function (35). The state (38) has the en-
ergy density N |AX |2(εX,0 + αp2/2m) − N ih̄

m A∗
X (αp · ∇X )AX

where εX,0 is the eigenvalue for the eigenfunction ψX,0, the
inner momentum density is Nαp|AX |2. In each �V with its
|A|2, the average ratio (number of atoms with momentum

p)/(number of atoms with zero momentum) = α and re-
mains fixed. Now the fast phase at a point y in V is θfm(y) =
arg[ψX,p(xi = y)]:

θfm(y) = arctan

[
ap sin [N (py)/h̄]

a0 + ap cos [N (py)/h̄]

]
. (39)

This phase cannot be separated into individual phases of
single atoms so that, in contrast to the above case of gas
motion as a whole, the one-particle description is impossible.
The counterpart of Eq. (36) for the velocity v′ of the phase
compensating flow in a one-dimensional ring geometry has
the form

mod[�θsm + θfm(L) + Nmv′L/h̄, 2π ] = 0, (40)

where θfm is given in (39). In spite of the difference with the
case of the wave function (35), the renormalized slow mode
momentum is the same [Eq. (37)]. The states with the wave
function (38) will be addressed in Sec. IV.

The two states (35) and (38) are useful for our presentation
as their many-particle phases are known. At the same time,
the phase of a single excited eigenstate of the operator ĥ (1)
with nonzero momentum is usually not known. Such a state is
employed in Sec. VI where the momentum and energy eigen-
values will suffice for our purpose. The peculiarity of such
states is that the number of excited atoms remains constant in
all �V , but their momenta can depend on the density via |A|2.

C. General properties of the general HA and its relation to the
standard HA

As a general HA, the presented description of a cold Bose
gas comprises two modes. As a result, not only the energy
(25) but also the total momentum P and total phase θ consist
of both slow and fast contributions:

P = Psm + N〈p〉, θtot = θsm + θfm, (41)

where Psm = −ih̄mN
∫

dV (A∗∇A − A∇A∗) is the slow mode
momentum and N

∫
dV 〈p〉X /V is the fast mode momentum,

the phases are defined at points y in the actual volume V ,
θsm(y) = arg A(y) and θfm(y) = arg[ψX (xi = y)]. We see that
our HA which explicitly describes an inhomogeneous system
in terms of both microscopic inner many-particle fast mode
ψ (x) and the slow macroscopic hydrodynamic mode A(X ) is
substantially different from the standard HA which describes
the system solely in terms of the slow one-particle mode. We
will now show that, nevertheless, at least in a one-dimensional
geometry, both descriptions are consistent with one another
as long as the gas moves as a whole and 〈p〉 is a constant
momentum p of every atom, which is independent of the
density.

To address this and our next problems we introduce
the renormalized time τ , coordinate y, momentum p, and
new function φ(τ, y) : t = τm/(π2n2

0 h̄), X = y/(πn0), xk =
yk/(πn0), where y is the renormalized one-dimensional co-
ordinate from V , yi is the renormalized coordinate of ith
atom, p = 〈p〉/(πn0 h̄), φ = A

√
N/n0, where n0 = N/L is the

unperturbed density and L is system’s length. In these vari-
ables, the energy is in units h̄2π2n2

0/m and L = πN ; the atom
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momentum, related velocity, which is now in units of the
sound velocity vS = πn0 h̄/m, and wave number 〈p〉/h̄ in units
πn0 are equal numbers (which one should keep in mind). For
a constant p, the general form of Eq. (28) in one dimension is

i∂τφ = − 1
2φ′′ + μ(|φ|2)φ − ipφ′, (42)

where prime of φ stands for the y derivative and μ(|φ|2) =
ε + |φ|2∂ε/∂|φ|2 is the unperturbed local chemical potential.
As we showed above, if ψg is the initial local inner ground
state of the gas, but the gas is set in motion as a whole
and all atoms have the same momenta p, then the ψg ac-
quires the factor exp(

∑N
k ipyk ), the inhomogeneous system

is described by the total function of the form (35), i.e., 	 =
φ(y, τ )ψg exp(

∑N
i ipyi ), all atoms have similar fast phase py,

and the slow mode φ is the solution of Eq. (42). At the same
time, the corresponding equation of the standard HA is similar
to (42), but without p term:

i∂τφ = − 1
2φ′′ + μ(|φ|2)φ. (43)

However, now both slow and fast modes appear as the so-
lution of the standard equation (SE) (43) which describes
the one-atom state and therefore must have the form φSE =
φsm(y, t ) exp i(py − p2t/2) where φsm(y, t ) is the slow mode
and p is an arbitrary momentum. Substituting this φSE in
Eq. (43) we find that the φsm satisfies exactly Eq. (42) of
our HA. Thus, the slow component of φSE and φ satisfy the
same equation (42), the total spatial phase of the function φSE

and that of an individual atom in ψ are similar and equal to
arg(φ) + py. The difference is that both momentum p and
coordinate y in the standard HA and our HA have different
origin. In the standard HA, py is the common linear phase
of all atoms whereas in our HA, pyi is the fast phase of ith
atom; the momentum p in the standard HA is the parameter
of the solution φSE which is interpreted as the wave number
of the background oscillation [31], whereas in our HA, p is
the local momentum eigenvalue per atom. Thus, the SE (43)
for the supposedly macroscopic variable φSE describes both
fast oscillations and actual slow variable φsm, the last alone
being governed by our Eq. (42). Thanks to this fact both the
LDA and our HA are equivalent in the case when the gas
is moving as a whole. However, in the state with the wave
function (38) when certain gas fraction is in the ground state
and the total momentum is that of the local excitations, and/or
when this momentum depends on the local density, then such
a gas can be described only by our HA as the standard HA is
not applicable in this case. Below we illustrate possible effects
in such systems by two examples.

IV. CAN A PERIODIC SOLITON TRAIN PROPAGATE?

The GPE has both single-soliton solution and the so-called
periodic soliton train solution [27,32]. Here we show that in
contrast to the former solution whose phase at the periphery
can be of the form v0y with arbitrary v0 independent of the
soliton velocity v, the latter is always of the form of a standing
wave

φtrain = φ(y − vt ) exp i(vy − v2t/2). (44)

Here φ(y − vt ) is the slow mode which describes the periodic
train moving with velocity v, and the exponential exp(ivy)

describes the total gas set in motion as a whole with the same
velocity v. The reason why we call this a standing wave is
that the train’s velocity with respect to the medium (the gas)
is zero, i.e., the train does not propagate with respect to the
medium. We show that the above φtrain is a general solution of
the time-dependent GPE.

We are interested in the solution of Eq. (43) in the form
φtrain = φ(y, t ) exp i(v0y − v2

0t/2) in which φ is a stationary
solution φ = φ(y − vt ) = R exp iθsm where R is the real am-
plitude and θsm is real phase. As shown above, if the gas is
moving as a whole with velocity v0 then the slow mode φ

is the solution of Eq. (42) with p = v0. The imaginary part
of (42) is the phase equation which does not depend on the
potential μ and has the form

(θ ′
sm + v0 − v)R2 = C, (45)

where C is an integration constant. If the solution is solitary,
then, at the periphery, R takes a constant value R∞, θ ′

sm =
0, and one has θsm(y) = (v0 − v)

∫ y
−∞ dy′[R2

∞/R2(y′) − 1].
Adding the fast phase v0y we obtain θtot = θsm(y) + v0y,
which describes the medium moving with the velocity v0 and
the soliton superimposed upon it. As v in R = R(y − vt ) is
arbitrary, the soliton is propagating in the medium with the
relative velocity v − v0 restricted only by the speed of sound.

In the case of a periodic solution, the phase acquires a term
linear in y. For periodic R Eq. (45) is solved by

θsm(y) =
∫ y

0
dy′C/R2(y′) + (v − v0)y. (46)

It has been shown that the first integral is expressed in terms of
elliptic functions and does not have terms linear in y [27,32].
The total phase is then θtot = θsm + v0y and has the linear term
vy which indicates that the resulting velocity of the medium is
v in accord with (44). Thus, the periodic train is moving with
the velocity v exactly equal to that of the medium and there-
fore is a standing wave. This means that the periodic soliton
train can be set in motion with velocity v0 only along with the
whole medium moving with the same velocity and momentum
Nmv0. The wave function of the state considered above is of
the form (35), it allows for the one-particle description, and
can be considered both in the standard and our HA.

To make the train a propagating wave, its velocity must be
made different from the velocity of the ground-state atoms.
This is possible if the medium has αN < N local excitations
v0 with small α so that the total momentum N〈p〉 = αNv0 <

Nv0. In this case, the wave function is of the form (38), the
slow mode is governed by Eq. (42) with p = αv0, and the slow
phase has the form (46) in which v0 is replaced with αv0. But
now in average N (1 − α) atoms remain in the ground-state
fraction with zero momenta and only small fraction of αN
atoms have average momenta. The total wave function of the
fraction of N (1 − α) atoms with zero momentum has the form
a0R(y − vt ) exp(iθsm)ψg where θsm has the linear term (v −
αv0)y. We see that the train velocity v differs from that of the
medium: its major fraction which in average consists of N (1 −
α) atoms is moving with the common velocity v − αv0, hence,
the train drifts with respect to the medium with the velocity
αv0. If α = 1 then θfm = vy, the velocities of the train and
medium are both v, and the train is a standing wave. Thus,
the local excitation momenta can push the train with respect
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to the bulk of atoms at rest, thereby making the soliton train
a propagating wave. The state considered cannot be described
in terms of the one-particle HA.

V. EFFECT OF THE DENSITY-DEPENDENT LOCAL
MOMENTA ON A SOLITON

A stationary soliton with velocity v in a gas with a constant
momentum δ per atom (both due to all atoms in the same
motion and only to some atoms with nonzero momenta) has
the form φ(y − vt |v, δ) which depends on the parameters v

and δ. This solution can be obtained from that in a gas at
rest, φ(y − vt |v), by a simple shift of the parameter v by δ,
i.e., φ(y − vt |v, δ) = φ(y − vt |v − δ). This is a general rule
that follows from this observation: both in the imaginary part
[Eq. (46)] and in the real part of Eq. (42), the parameter v

appears in the combination v − δ. But we now want to see
how a soliton solution can be modified in a gas with local
momenta that depend on the local gas density. To this end,
as a simple application of the obtained equation (28), we
consider a cold one-dimensional Lieb-Liniger Bose gas in the
strong repulsion Tonks-Girardeau regime [16,17]. The energy
structure of a Lieb-Liniger gas in this regime is known to
be Fermilike with the ground state in which all the energy
levels up to certain maximal value are occupied. We assume
that a small fraction of αN upper levels are excited and bear
momenta p. In principle, this p can depend on the local density
in itself. To support this possibility, we suggest the following
reasoning. The total momentum of a Lieb-Liniger gas is a
multiple of 2π/L [16]. As the inner state ψX of each sub-
volume �VX is related to a homogeneous system of N atoms
and length LX = N/nX , the possible momenta in a subvolume
�VX are multiples of 2πnX /N which is proportional to the
density nX . If atoms’ momenta p are adiabatically following
the momentum levels that are slowly changing in space along
with density, then p(|A|2) ∝ |A|2. This suggests a model of an
inhomogeneous system, in which both energy and momentum
of individual atoms are changing with the density.

Consider the eigenstate with αN exited atomic levels. If p
is the excitation momentum at the nonperturbed density n0,
then the excitation momentum at density n is (n/n0)p. The
ground-state energy per atom is e0 = (n/n0)2/6 [16,17,33].
As the density is n = N |A|2 = n0|φ|2, one has e0 = |φ|4/6
and e0 + |φ|2∂e0/∂|φ|2 = |φ|4/2, 〈p〉(n) = δ|φ|2 and 〈p〉 +
|φ|2∂〈p〉/∂|φ|2 = 2δ|φ|2 where δ = αp. Making use of these
functions in the energy (25), one gets

E = 1

π

∫ L

0
dy

(
−1

2
φ∗φ′′ + 1

6
|φ|6 − iδφ∗φ′|φ|2

)
. (47)

Substituting φ(y − vτ ) exp(−iλτ ) in the HA (42) gives the
equation for φ:

ivφ′ − 1
2φ′′ + 1

2 |φ|4φ − 2iδφ′|φ|2 − λφ = 0. (48)

The function φ has the asymptotics φ(y → ± ∝) = 1[A(x →
± ∝) = 1/

√
L] so that

∫
dy|φ|2 = πN . We are looking for

the stationary solution of Eq. (48) in the form φ(τ, y) =
R(y − vτ )eiθ (y−vτ ) where R and θ are real functions, and v is
the wave velocity in units vs = πn0 h̄/m of sound velocity for

(a)

(b)

FIG. 2. Total phase change along the soliton �θsm(v − δ).
(a) δ = 0 and p = const independent of density, every soliton has
antisoliton with the opposite phase. (b) p ∝ |φ|2, δ = 0.3, solitons
with the phase above the point indicated by the arrow do not have
antisolitons.

δ = 0. The soliton profile |φ|2 is found to be

|φ|2 = 1 − 3B

2 + 3vδ + D cosh[2
√

B(y − vτ )]
, (49)

where B = 1 − (v − δ)2 + 2vδ, D =
√

(1 + 3v2)(1 + 3δ2).
The phase change �θsm along the soliton due to the slow mode
is

�θsm = − sign(v − δ) cos−1

(
3(v − δ)2 − 1 − 3vδ

D

)

+
√

3δ ln

(√
3B + 2 + 3vδ

D

)
. (50)

The condition B � 0 yields the following anisotropic re-
striction on the soliton velocity which is different in the
directions along and opposite to δ: 2δ − √

1 + 3δ2 < v <

2δ + √
1 + 3δ2. It is important that δ is not the actual atoms’

velocity p but the effective one αp. If the excited fraction α

is small, then δ is considerably smaller than p which in itself
can be larger than unity (i.e., than the speed of sound). Both
for δ = 0 and p independent of density, the soliton with any
allowed velocity v and phase change �θsm has an antisoliton
with the phase change −�θsm, and the two velocities are sym-
metric with respect to v = δ [Fig. 2(a)]. In contrast, Eq. (50)
shows that a density dependent p changes the symmetry: not
for all v solitons have antisolitons and the velocities of a
soliton and its antisoliton are asymmetric [Fig. 2(b)].
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(a)

(b)

FIG. 3. Soliton energy Esm (solid lines) and momentum Psm

(dashed lines) vs (v − δ). (a) δ = 0 and p = const independent of
density, (b) p ∝ |φ|2, δ = 0.3.

The energy Esm of the slow mode is equal to the total E
[Eq. (47)] minus the contribution from the homogeneous gas
with the excitations (see Appendix C) (the excitation energy
has to be excluded too, but it was set to zero [33]). This Esm

and the soliton momentum Psm (37) are obtained in the form

Esm =
√

3

π

[
1 − (v − δ)2 + G

]
ln

[√
3B + 2 + 3vδ

D

]

+
√

3vδ

π
(9δ2 − 1)B, (51)

Psm = −
√

3

π
v(1 + 3δ2) ln

[√
3B + 2 + 3vδ

D

]

+
√

3δ

π
B − �θsm

π
, (52)

where G = 4vδ(1 + 3vδ) − 2δ(v − δ)(1 + 3vδ) +
3δ2{2/3 + v2 − (1 + 3vδ)2 − (v − δ)2} and the energy is
in units h̄2π2n2

0/2m. For δ = 0, for which the above results
(49)–(52) reproduce those found in [6], as well as for constant
p, both Esm and Psm are symmetric with respect to the
value v = δ [Fig. 3(a)]. However, for p ∝ |φ|2, both Esm(v)
and Psm(v) are asymmetric which is shown for δ = 0.3 in
Fig. 3(b).

In usual situation, when a soliton is excited in the gas
ground state, its momentum includes only that of a slow mode
and the compensating momentum. Our situation is different
in that the total excitation comprises the local excitations
of the momenta p and the slow soliton mode. However, we
are interested in the soliton dispersion relation Esm vs Psm =
Ptot − mod(θtot, 2π )/π in which θtot contains the contribution
of the momenta p [Eq. (40)]. Thus, the dispersion relation
Esm(Psm) accounts for the soliton excitation in the gas with

(a)

(b)

FIG. 4. Soliton dispersion relation Esm(Psm). (a) δ = 0 and p =
const independent of density. (b) p ∝ |φ|2, δ = 0.3.

local momentum excitations. Figure 4 presents the depen-
dence Esm(Psm) for δ = 0 and a density independent p, and
for δ = 0.3 in the case of p ∝ |φ|2. For δ = 0 and constant
p this curve is symmetric with respect to the line Psm = 0
[6] [Fig. 4(a)]. This is in line with the above rule that if the
momentum p is density independent, then the soliton velocity
v is just replaced by v − δ resulting in symmetric Esm(Psm).
In our case this momentum is proportional to the density and
the dependence Esm(Psm) is deformed and asymmetric with
respect to the line Psm = 0 [Fig. 4(b)]. Thus, the reason for
the asymmetry of the curves in Figs. 2(b), 3(b), and 4(b) as
well as for the absence of antisolitons in some velocity range
[Fig. 2(b)] is not a nonzero excitation momentum p itself, but
its density dependence.

VI. CONCLUSION

The development of the physics of ultracold gases
has demonstrated a high efficiency of the large-scale
hydrodynamic-type description in terms of local smoothly
varying or coarse-grained quantities. A number of equations
have been presented, e.g., the mean field GPE [1–3], eGPE
with the beyond mean field Lee-Huang-Yang corrections [5],
the modified GPE with the quintic nonlinearity [6], as well as
based on the hydrodynamic analogy MNLSE [19] and LLGPE
[20]. All of them have been successfully applied to certain
domain of Bose gas parameters such as dimension, interaction
strength, density, and all of them have somewhat or substan-
tially different derivation and mathematical form which reflect
such parameters. All these derivations have in common that
they have been based on the one-particle quantum description.
This motivated us to derive the general HA to a cold Bose
gas which would have a general form and provide the con-
nection with the many-body quantum mechanical description.
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Starting from the many-body quantum mechanical approach
we developed the HA. As any standard HA, it presupposes
two different temporal and spatial scales and, respectively, two
different modes, the fast and slow. Our HA is grounded on
the energy functional E{ψX , AX } [Eqs. (15) and (16)] of both
modes. The fast mode and the local equilibrium are identified,
respectively, with the many-body wave function ψn and its
stationary state at local density n. The integration over the fast
mode (over the short scale) naturally resulted in the HE for the
slow mode alone which is the counterpart of the momentum
integration in the local distribution function in the classical
HA. The HE contains two universal terms, the local chemical
potential expressed via the energy eigenvalues of the local
ψn and the interaction between the local momenta and slow
velocity. For different particular forms of the former term the
HE (28) reduces to the known equations. The second term is
new and its full exploration is a novel problem. In this paper
we sketched only two possible effects related to the local
excitations and their density dependence.

To conclude, we can speculate about possible relevance
and applications of the presence of the momentum-related
term. We may point to the following experimental situations
and problems. Excitations of local momenta in the Lieb-
Liniger gas have been induced experimentally by a laser beam
in [34]. States with the peaks at nonzero momenta have been
observed in experiments on colliding clouds of cold Bose
atoms. The occupation inversion obtained in this experiment
was attributed to a negative temperature [10,35]. However, the
thermodynamic approach to such systems is an approximation
and, in principle, in terms of the HA this situation can be
thought of as an excited state with nonzero momentum.

In the Introduction, we mentioned the problem related to
the quantum pressure term, which violates the consistency
of the slow mode equation and results in incorrect interfer-
ence patterns: on the one hand, it is present in the exact
Schrödinger equation and cannot be just discarded, but, on the
other hand, it “spoils” the slow mode equation. The problem
is that the second-order spatial density derivative should be
better attributed to the fast mode equation, but the known
HAs consist of the equation only for a slow mode. Our HA,
which consists of both slow mode equation (20) and fast
mode equation (28), suggests a possible remedy. The quantum
pressure term, which is a part of the term �A in Eq. (28), can
in principle be relocated from this equation to the fast mode
equation (20). In this way, the slow mode equation would be
more consistent while the local energy eigenvalue be renor-
malized. This can hopefully extend the applicability of the HA
to the interference-type effects.

As we saw above, the constant phase of a stationary soliton
in a ring geometry can be compensated by the global flow of
the whole gas. However, in course of a gas dynamics the local
phase can rapidly vary and the global flow is hardly a remedy.
Can the local phase be compensated by a local momenta
excitation? Interestingly, such a possibility was mentioned by
Kivshar and coworkers in [31,36]. These papers address gray
solitons of a nonlinear Schrödinger equation (similar to the
GPE) describing their propagation in a fast oscillating back-
ground. Surprisingly, though this equation allows only for
a constant spatially independent background wave number,
in [31,36] a spatial dependence of the wave number in the

soliton vicinity was mentioned as a possible source of the
phase compensation. Our result seems to be the right tool to
approach this problem.
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APPENDIX A: SEPARATION OF THE EFFECT OF A SLOW
DENSITY VARIATION IN THE REDUCED ONE-BODY

DENSITY MATRIX

Consider a single subsystem �VX with the center at X .
The density n(y) is slowly varying within this volume and
the psi function is a functional of n, ψ (y, xN−1|n) = ψn(y),
where for brevity the dependence on x is omitted. We want
to separate the contribution due to this density variation from
the one-body density matrix taken at the central density nX =
n(X ). A small change in density n = nX + δn(y) results in
the change ψn(y, xN−1) = ψX (y, xN−1) + δψ (y, xN−1) of the
wave function. Then one has

ρn(y, y′) =
∫

dxN−1[ψ∗
X (y) + δψ∗(y)] × [ψX (y′) + δψ (y′)]


 ρX (y, y′) +
∫

dxN−1[ψ∗
X (y)δψ (y′)

+ ψX (y′)δψ∗(y)]. (A1)

Due to the presence of δ(y − y′) in the integrand of (14), we
can consider only the case �y = y′ − y → 0. Then, neglect-
ing the terms on the order δψ�y, the above one-body density
matrix can be reduced to the form

ρn(y, y′) = ρX (y, y′) + δρ(y′) + δρ∗(y), (A2)

where δρ(y′) = ∫
dxN−1ψ∗

X (y′)δψ (y′) and δρ∗(y) =∫
dxN−1ψX (y)δψ∗(y). Since ρX (y, y) = fX (y) �= 0, there

exists a finite vicinity of y′ − y = 0 in which ρX (y, y′) �= 0,
hence, one can divide by this function. Then one has

ρn(y, y′) = ρX (y, y′)[1 + δρ(y′)/ fX + δρ∗(y)/ fX ], (A3)

where, in the denominators, ρX (y, y′) is replaced by fX in
within the accuracy up to O(�y2). Neglecting terms quadratic
in δρ, this can be cast in the form of Eq. (13), i.e.,

ρn(y, y′) = AX (y)A∗
X (y′)

fX
ρX (y, y′), (A4)

where we introduced the amplitude A(y) and its conjugate
according to the following definition:

AX (y) =
√

fX + δρ(y)/
√

fX ,

A∗
X (y′) =

√
fX + δρ∗(y′)/

√
fX . (A5)

For constant density nX , Eq. (A4) recovers ρX (y, y′) and for
y = y′ it reduces to fX (y). In formulas (A4) and (A5), the
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contribution of the density variation within �VX is separated
from the one-body density matrix at nX in the form of the
product AX (y)A∗

X (y′) which is employed in the calculation of
the kinetic energy (14).

APPENDIX B: COARSE-GRAINED CORRELATION
FUNCTION AND THE LONG-RANGE

INTERACTION ENERGY

In a liquid state, at large separation y − y′ 
 X − X ′,
the pair distribution G2(y, y′) usually tends to the product
f (y) f (y′) of the probability densities, so that in general
G2(y, y′) = f (y) f (y′)[1 + g2(y, y′)] where g2 is the pair cor-
relation. The coarse-grained hydrodynamic pair distribution
ρ2,XX ′ and coarse-grained correlation g2,X,X ′ are defined by the
following equation:

ρ2,XX ′ |AX |2|AX ′ |2 = 1

(�V )2

∫
�VX

dy
∫

�VX ′
dy′G2(y, y′)

= |AX |2|AX ′ |2(1 + g2,X,X ′ ), (B1)

where we made use of the relations (A4), ρX (y, y) = fX (y) 

fX . Then the energy of the long-range interaction is

Elr{AX } = N (N − 1)

2

∫
V

dy
∫

V
dy′G2(y, y′)Ulr(y − y′)

+ N
∫

V
dyUext(y)ρ(y, y)

= N (N − 1)

2

∑
�VX ,�VX ′

∫
�VX

dy
∫

�VX ′
dy′G2(y, y′)

× Ulr(y − y′) + N
∑
�VX

∫
�VX

dyUext(y)ρ(y, y)


 N (N − 1)

2

∫
dX

∫
dX ′|AX |2|AX ′ |2(1 + g2,XX ′ )

× Ulr(X − X ′) + N
∫

dX ′|AX |2Uext(X − X ′),

(B2)

which is Eq. (26).

APPENDIX C: THE SOLITON ENERGY

The soliton energy is the difference between the energy E
of the system with soliton and |φ|2 = f → 1 at the periphery,
and the energy E0 of the homogeneous system with the same
number of atoms N . As the density n in the area of gray soliton
is lower than n0 = N/L, the actual density far from soliton
f̃∞ = |φ̃∞|2 is slightly higher than f∞ = 1, so that f̃ = f +
δ f where δ f is nonzero at the periphery and very small in a
large system. Then∫

dy δ f +
∫

dy( f − 1) = 0. (C1)

Here we find the soliton energy taking into account this cor-
rection at the periphery. The total energy with φ satisfying the
equation (48) can be found in the form of the virial theorem.
We multiply (48) with φ∗/π and integrate over the system
length which, regarding the expression for the energy (47),
gives

0 = 1

π

∫ L

0
dy

(
ivφ∗φ′−1

2
φ∗φ′′+1

2
f 3−2ipφ∗φ′|φ|2−λ|φ|2

)
= E + 1

π

∫ L

0
dy

(
ivφ∗φ′ − λ f + 1

3
f 3 − ipφ∗φ′ f

)
,

(C2)

whence

E = 1

π

∫ L

0
dy

(
−ivφ∗φ′ + λ f − 1

3
f 3 + ipφ∗φ′ f

)
. (C3)

Next, from Eq. (48) at the periphery one finds λ = f 2
∞/2 =

1
2 . Now we change f to the actual f + δ f and λ to λ′ =
1/2(1 + 2δ f∞) in the expression (C3), taking into account
that

∫
dy f kδ f = ∫

dy δ f + O(soliton width/L) for any k and
that the first and last terms in (C3) vanish at the periphery.
Retaining only terms linear in δ f and making use of (C1), one
obtains

E = 1

π

∫ L

0
dy

(
−ivφ∗φ′ + 1

2
− 1

3
f 3 + ipφ∗φ′ f

)
. (C4)

The soliton energy Esm is E minus the contribution from
the constant background: Esm = E − ∫

dy(−13/3 + 1/2). Fi-
nally, the renormalized soliton (slow mode) energy is

Esm = 1

π

∫ L

0
dy

[
1

3
(1 − |φ|6) − ivφ∗φ′ + ipφ∗φ′|φ|2

]
,

(C5)

which was computed to give the value (51).
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