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Spectrum of density, spin, and pairing fluctuations of an attractive two-dimensional Fermi gas
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We leverage random phase approximation and unbiased auxiliary-field quantum Monte Carlo methods to
compute dynamical correlations for a dilute homogeneous two-dimensional attractive Fermi gas. Our main
purpose is to quantitatively study the collective excitations of the system to generate robust benchmark results
and to shed light into fermionic superfluidity in the strongly correlated regime. In particular we are motivated
by a recent paper suggesting that the Higgs mode can be detected in the spectrum of spin fluctuations. Despite
the fact that we are somewhat limited by finite-size effects, our study indeed pinpoints a clear peak in the spin
channel at low momentum, but a detailed analysis suggests that such a peak, though certainly interesting, does
not correspond to the Higgs mode. We propose a different explanation for the shape of the spin structure factor.
However, our results clearly show that the Higgs mode can be detected in the density channel at very small wave
vectors, although very good resolution is necessary.
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I. INTRODUCTION

The ab initio calculation of the dynamical correlation func-
tions of a strongly correlated quantum system is a fundamental
and challenging task which gives access to critical information
about the system’s excitation spectrum. In particular, these
correlation functions can be used to probe collective exci-
tations, such as the Nambu-Goldstone mode and the more
elusive celebrated Higgs or amplitude mode in superfluids.
The Higgs mode is particularly hard to observe and it has
been the center of a long-standing experimental effort, both
in condensed matter physics [1,2] and in atomic physics. In
the realm of ultracold bosons, the Higgs mode has been inves-
tigated in a series of experiments employing lattice shaking
or cavity-enhanced Bragg spectroscopy [3–5]. In ultracold
Fermi gases, the actual detection of the amplitude mode has
proved particularly challenging since the Higgs mode in these
systems has a very slow-decaying spectral tail [6,7]. This
corresponds to real-time damping due to the proliferation
of quasiparticle excitations. Only very recently were exper-
imental observations reported, which used direct coherent
excitation of the mode with radio-frequency pulses, Bragg
spectroscopy following an interaction quench, or interaction
modulation via periodic tuning of the magnetic field [8–11].

On the theoretical and computational side, the Higgs
mode in neutral Fermi systems has been studied with
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various methodologies, including, e.g., the time-dependent
Bogoliubov–de Gennes equations [12–15], time-dependent
density functional theory [16], the functional-integral method
[6,17,18], and exact diagonalization (for few-body systems)
[19]. More recently, relying on the generalized random-phase
approximation, it was suggested that the Higgs mode of an
attractive fermionic system could be detected in the dynam-
ical correlations of the spin degrees of freedom [20], which
can be measured experimentally through spin-sensitive Bragg
spectroscopy [21–23]. Such measurements would extend the
insightful investigations that can be performed in the density
fluctuations sector [10,24–26]. The authors of [20] also argued
that the two-dimensional (2D) configuration, as contrasted to
the three-dimensional one mostly considered so far, renders
the Higgs signal in the spin sector particularly prominent.

The investigation of spin correlation functions to address
collective modes, and in particular the Higgs mode, in Fermi
superfluids is fascinating, but correctly interpreting the results
may be subtle. The key advantage of a spin probe is that the
correlation functions at low momentum are expected to be
significantly different from zero only close to 2� (� being
the superfluid gap), which is exactly where the Higgs mode
is expected, while the lower-energy Goldstone mode is, at
least partially, filtered out. The difficulty, however, is to dis-
criminate whether and to what extent the Higgs mode can
indeed be excited with a spin probe. The analysis in [27], in
fact, suggested that beyond mean-field studies were necessary
to detect the coupling between the Higgs mode and the spin
fluctuations.

Our plan for this work is to gain further insight by sys-
tematically running generalized random phase approximation
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calculations (GRPA) [20,28–31] for the the dynamical struc-
ture factor S(q, ω), its spin homologous Ss(q, ω), and the
pairing amplitude dynamical structure factor Sa(q, ω) (de-
fined below). In addition, we leverage unbiased quantum
Monte Carlo (QMC) results to explore the effect of many-
body correlations in the density and the spin channel.

In the density channel, we find qualitative agreement be-
tween the QMC results and the GRPA spectrum, with a
renormalization of the Goldstone mode. Our GRPA calcula-
tions, for very large lattices and at very small momentum (not
accessible with QMC), also suggest that the Higgs mode can
be detected in the density dynamical structure factor. In the
spin channel, the GRPA results show a very interesting peak
at low momentum, consistent with the results in [20], and the
correlated QMC results appear to confirm the existence of
such a peak, with a renormalized energy. However, our GRPA
analysis, relying on Sa(q, ω), indicates that this spin peak
cannot be interpreted as the Higgs mode and we propose a
different kinematic explanation, rooted in the density of states
of pairs of quasiparticles.

The paper is organized as follows. Section II explains the
Hamiltonian and the methodologies that we used: GRPA,
QMC, and the analytic continuation procedure. Then in
Sec. III we describe our results and present a systematic
comparison between GRPA and QMC. Finally, we draw our
conclusions and present some perspectives in Sec. IV.

II. MODEL AND METHODS

Our starting point is the Hamiltonian for a collection of
attractive unpolarized spin-1/2 fermions of equal mass m
moving in two dimensions. In this context, the two spin
species, denoted by ↑ and ↓, respectively, represent two hy-
perfine states of 6Li or 40K atoms. We focus on the dilute
regime, where the fine details of the interparticle forces can
be neglected, and consider an attractive zero-range interaction
v↑↓(r1, r2) = −gδ(r1 − r2), g > 0. The Hamiltonian can be
written, in field-theoretical notation, as

Ĥ = K̂ + V̂, (1)

with

K̂ =
∫

dr
∑

σ

ψ̂†
σ (r)

(
− h̄2∇2

2m

)
ψ̂σ (r), (2)

and

V̂ = −g
∫

dr ψ̂
†
↑(r) ψ̂

†
↓(r) ψ̂↓(r) ψ̂↑(r). (3)

Our main objective is the calculation of the zero-temperature
spin and density dynamical structure factors of the system in
the dilute regime to extract information about the low-energy
collective excitations. We explore the dependence on the in-
teraction strength ln(kF a), where kF is the Fermi momentum
(which will be defined later) and a the s-wave scattering
length (in this work, we adopt the convention that the dimer
binding energy εb of the contact model is related to a by
|εb| = h̄2/ma2 [32]).

The zero-temperature density dynamical structure factor of
N fermions is defined as the following two-body dynamical

correlation function

S(q, ω) =
∫ +∞

0

dt

2πN
eiωt

〈
eiĤ t

h̄ n̂q e−iĤ t
h̄ n̂−q

〉
, (4)

where the angular brackets denote a ground state expectation
value and n̂q is the Fourier component of the particle density
operator n̂(r) = n̂↑(r) + n̂↓(r) = ψ̂

†
↑(r)ψ̂↑(r) + ψ̂

†
↓(r)ψ̂↓(r).

Similarly, we define the spin dynamical structure factor
Ss(q, ω) by replacing, in Eq. (4), the total particle density with
the spin density n̂s(r) = 1

2 (n̂↑(r) − n̂↓(r)).
We address the singularities due to the contact potential

in Eq. (1) through lattice regularization, i.e., by introducing a
high-momentum cutoff in the kinetic energy term

K̂ �
∑

σ

∫
[−π/b,π/b)2

dk ε(k) ψ̂†
σ (k)ψ̂σ (k), (5)

where the dispersion relation is, as usual, ε(k) = h̄2k2

2m . In
Eq. (5), we integrate over the first Brillouin zone of a
square lattice with parameter b, (bZ)2. In addition, we fur-
ther regularize the problem by introducing a supercell L =
[−L/2, L/2]2 ∩ (bZ)2, i.e., a finite square lattice with M =
L/b × L/b sites, and choosing periodic boundary conditions
(PBC). The choice of PBC restricts the integration in Eq. (5) to
a finite summation over the set of allowed momenta k = 2π

L n,
with n ∈ Z2 such that k ∈ [−π/b, π/b)2. We observe that,
within this regularization technique, the continuum limit can
be recovered by letting b → 0 and the infinite system limit can
be recovered by letting L → +∞. The interaction term in the
Hamiltonian is regularized by introducing a contact interac-
tion of the form v↑↓(r1, r2) = −Ub−2δr1,r2 , where δ is now
the discrete Kronecker delta, while the interaction strength
of the discrete model is tuned in such a way that the lattice
two-body problem has the same zero-energy s-wave scattering
length a as the problem in the continuum. This regularization
procedure maps the original Hamiltonian into a lattice model
which we can write as

ĤL =
∑
k,σ

ε(k) ψ̂†
σ (k)ψ̂σ (k) − U

∑
r

n̂↑(r)n̂↓(r). (6)

Using the typical notation for “Hubbard-like” Hamiltonians,
we can write ε(k) = t |bk|2, with hopping amplitude given by
t = h̄2

2mb2 , and, as shown in [33]

U

t
= 4π

ln(kF a) + ln(C√
n)

, (7)

where n = N/M is the particle density on the lattice, kF =√
2πn
b is Fermi momentum, a is the s-wave scattering length of

the original problem in the continuum, while C = 0.80261 is
a constant. In the following we will denote the Fermi energy
of the lattice model by εF = ε(kF ).

The crucial advantage of stepping from Eqs. (1) to (6) is the
possibility, for attractive unpolarized fermions, irrespective of
the total density (filling), to calculate exactly the intermediate
scattering function in imaginary time

F (q, τ ) = 1

N
〈eτ ĤL n̂q e−τ ĤL n̂−q〉, τ � 0, (8)

both in the density and the spin channels (substituting n̂ with
n̂s), by leveraging unbiased auxiliary-field quantum Monte
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Carlo methodologies (AFQMC), which are extensively ex-
plained in [34–36]. In fact, it is possible to map the imaginary
time evolution operator exp(−τ ĤL ) into a random walk in
the manifold of N particles’ Slater determinants, modeling
independent fermions moving in a stochastic external field
(the “auxiliary field”). It has been shown that, whenever the
system is spin-balanced and the interaction is attractive, the
infamous sign problem does not affect the calculations and
we can find exact results with a computational time which is
polynomial in the size of the system [33,35]. The dynamical
structure factors can then be obtained by performing analytic
continuation of the imaginary time data [37–39].

We employ the differential evolution for analytic contin-
uation (DEAC) algorithm [40], which evolves a population
of candidate solutions for the dynamical structure factor over
several generations, each one improving their average fitness
and adaptively adjusting the control parameters. We use the
DEAC code by Del Maestro’s group [41]. To assess the ro-
bustness of our results, we also performed some cross checks
(not shown) employing the genetic inversion by falsification
of theories (GIFT) algorithm [37,38].

In addition to unbiased QMC calculations, we compute
the dynamical structure factors within the generalized ran-
dom phase approximation (GRPA) [20,28–31], still relying
on the above lattice regularization. GRPA implements a lin-
ear response theory approach, studying the response of the
local density to a time-dependent perturbation coupled to the
density itself, resulting in a Hamiltonian of the form

Ĥ (t ) = ĤL − μN̂ +
∑

r

u(r, t )n̂(r), (9)

where ĤL is the lattice Hamiltonian (6), μ is a chemical
potential, N̂ the particle number operator, while u(r, t ) is an
external potential. An analogous definition holds for the spin
perturbations. GRPA approximately computes the response
function χ (q, ω), yielding the change in the local density
as the system evolves unitarily under the influence of the
perturbation

δ〈n̂〉(q, ω) = χ (q, ω)u(q, ω), (10)

where the angular brackets denote an expectation value with
respect to the time-dependent quantum state, evolving from
the unperturbed ground state. Within GRPA, the Hamilto-
nian ĤL − μN̂ is replaced by the most general mean-field
breakup [29], and the order parameters are, at each time in-
stant, self-consistently adjusted to follow the time-dependent
perturbation. Finally, the dynamical structure factors can be
obtained through the fluctuation-dissipation theorem

S(q, ω) = − h̄

πn
lim

η→0+
χ ′′(q, ω + iη), (11)

where n is the average density, χ ′′ = Imχ , and η is a conver-
gence parameter. In actual GRPA numerical implementations,
the parameter η has to be set to some small positive number,
as we will discuss in Sec. III. Our GRPA computations allow
us to make a direct comparison with QMC and with previous
results in [20], where a different regularization is used. In
addition, GRPA helps us perform a mode-coupling analysis
to explore the suggestion in [20] to use the spin dynamical

structure factor to detect the elusive Higgs mode. At the same
time, since GRPA calculations only scale linearly with the
lattice size M (they just require numerical summations over
the Brillouin zone), their results allow us to readily estimate
size effects in the calculations.

III. RESULTS

Motivated by the paper [20], we address two key questions:
are there significant discrepancies between GRPA and corre-
lated AFQMC calculations in the description of the density
and spin dynamical correlations? If AFQMC confirms, at least
qualitatively, the GRPA picture displaying a peak in the spin
channel, were the authors of [20] justified in claiming that
such a peak can be identified with the celebrated Higgs mode?

A. Comparison between GRPA and AFQMC

We use AFQMC to compute exactly the dynamical corre-
lations in imaginary time (8) for a system of N = 26 atoms
using a regularization square lattice with M = 1225 sites. In
this context, “exactly” means that, for the given system size,
the systematic error in the properties of the lattice model
is below the level of the statistical uncertainty. Thanks to
the spin balance and the absence of the infamous sign prob-
lem, this can be achieved with polynomial scaling. Previous
AFQMC studies by some of us [44] on the spectral func-
tion of the 2D Fermi gas indicate that the lattice size and
number of particles used in this paper are large enough to
achieve accurate estimations in the bulk and in the contin-
uum limit. This is also the largest closed-shell size we are
able to study with the algorithm for two-body correlations
described in [35]. As discussed below, we use GRPA as a tool
to further assess finite-size effects. Our calculations yield the
imaginary-time intermediate scattering functions F (q, τ ) in
both the density and spin channels, for momenta as small as
q � 0.5kF , kF being the Fermi momentum. We perform DEAC

analytic continuation of F (q, τ ) to extract the density dynam-
ical structure factor S(q, ω) and the spin dynamical structure
factor Ss(q, ω). We study the behavior of the structure factors
as we increase the interaction strength from the weakly cor-
related BCS regime with ln(kF a) = 2.5 to the more strongly
correlated, though still not molecule-dominated, regime with
ln(kF a) = 1.0. The choice of the values of interaction was
dictated by the intent to compare with the results in [20].

In Fig. 1, our AFQMC results in the density (left column)
and spin channels (right column) are shown as circles, rep-
resenting the maxima of the structure factors, together with
vertical bars representing the widths at half heights (the de-
tailed shapes of the AFQMC structure factors are shown in
Figs. 2 and 4). The results are superimposed to background
color plots, obtained with GRPA, for S(q, ω) (left column),
and for Ss(q, ω) (right column) for a much larger system at the
same particle density, precisely N = 5850 atoms moving on
a regularization lattice with M = 525 × 525 sites. The larger
system allows for the investigation of a denser set of momen-
tum values, providing a clearer picture, and gives important
information about finite-size effects, as we will discuss below.
The horizontal lines represent 2�,� being the superfluid gap
(i.e., the energy needed to break a Cooper pair) as computed
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FIG. 1. Dynamical structure factors (arbitrary units) in the density (left) and spin (right) channels for interaction strengths ln(kF a) = 2.5
(top), 1.5 (middle), and 1.0 (bottom). Dots: Maxima of the structure factors obtained by QMC for a system of 26 fermions, with vertical bars
representing their full width at half maximum. Color plots: Dynamical structure factors (arbitrary units) obtained by GRPA for a larger system
of N = 5850 fermions at the same density. Dashed horizontal lines: Two times the quasiparticle gap for the system of N = 26 fermions;
for interaction strength ln(kF a) = 2.5, it is calculated from the theory by Gor’kov and Melik-Barkhudarov [42,43], which was shown to
be accurate in this weak-interaction condition [44]; for interaction strengths ln(kF a) = 1.5 and 1.0, it is calculated with QMC from [44].
Dash-dotted horizontal lines: Two times the quasiparticle gap predicted by BCS theory for the system of N = 5850 fermions.

within a BCS mean-field approach (say �BCS), informing
the GRPA calculations (red dashed-dotted lines), or within
AFQMC (white dashed lines) [44].

Our GRPA results, despite the different choice of regular-
ization, appear to be consistent with the results in [20]. In
the density channel, a sharp Nambu-Goldstone mode is vis-
ible at low energy ω < 2�BCS; for higher energy ω > 2�BCS

the quasiparticle pair continuum emerges, and the Nambu-
Goldstone mode is strongly damped. At the AFQMC level,
the lattice supercell is large enough to explore the behav-
ior below the superfluid gap, and the results confirm the
existence of a sharp Nambu-Goldstone mode whose disper-
sion is renormalized by the correlations beyond mean field:
the peak at the lowest values of the momentum is at lower
energy with respect to the GRPA prediction (this is not a
finite-size effect, as we will show below), consistently with

a significantly smaller superfluid gap, as was found in pre-
vious calculations in [44]. The AFQMC results at higher
momentum are also consistent with the emergence of a quasi-
particle pair continuum, as shown by the increasing size of
the bars. Incidentally, we observe that the Higgs mode is
expected to appear in the density structure factor, although
the Goldstone mode has a much higher spectral weight. In-
deed, while such an effect is beyond the resolution of the
color plot, in Fig. 5 (blue solid line) we show that, at the
GRPA level, we see a second peak which, as we will discuss
below, can be interpreted as the Higgs mode. However, at
the AFQMC level, the dominant peak of the Goldstone mode
and the broadening due to the quasiparticle pair continuum
make the requirements for the detection of the amplitude
mode beyond the resolution we can achieve with analytic
continuation.
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FIG. 2. Spin dynamical structure factor Ss(q, ω) (arbitrary units) for interaction strength ln(kF a) = 1.5 and wave numbers q = 0.492 kF

(left panel) and 0.695 kF (right panel). The solid lines represent our results, with markers indicating selected data points to improve readability.
Blue dots: QMC results for 26 fermions. Orange triangles: GRPA results for 26 fermions. Green squares: GRPA results for 5850 fermions.
Dashed vertical line: Two times the quasiparticle gap for 26 fermions, calculated with QMC from [44]. Dotted vertical line: Double the
quasiparticle gap predicted by BCS theory for 26 fermions. Dash-dotted vertical line: Double the quasiparticle gap predicted by BCS theory
for 5850 fermions.

In the spin channel, as expected, within GRPA no excita-
tion is present for ω < 2�BCS. At higher energies, the GRPA
spin dynamical structure factor appears to develop a sharp
peak at low momentum which broadens at higher momenta.
By comparing different interaction strengths, we observe that
the spin structure factor gets flatter and fainter as the in-
teraction strength increases [and ln(kF a) decreases]. This is
consistent with the system being more and more similar to a
Bose-Einstein condensate of tightly bound molecules, where
the spin degrees of freedom are suppressed. We notice that the
widths of the QMC results increase with the coupling more
than within GRPA.

The key result in [20] was the observation of the sharp
spin mode, say ωs(q), which the authors interpreted as the
celebrated Higgs mode, with a dispersion of the form ωs(q) =
2�BCS + αq2 as q/kF → 0. Our GRPA calculations are also
consistent with a sharpening of the dynamical structure factor
at low momentum, although we feel the need to be very
cautious about the interpretation of this spin “mode” as the
evidence of a detection of the Higgs mode, as we will discuss
in details below. Before diving into this discussion, we com-
ment about the comparison with AFQMC. At the unbiased
AFQMC level, we are somewhat limited by the system size,
which does not allow us to compute the structure factors be-
low |q| � 0.5kF . Our AFQMC results for the spin dynamical
structure factor are shown in the right column of Fig. 1 and, in
more detail, in the subsequent Figs. 2 and 4. At the lowest con-
sidered momenta, the shape of the spin dynamical structure
factor displays a clear peak whose intensity decreases with
the interaction strength and whose energy may be compatible
with a mode that would converge to 2� (with the AFQMC
pairing gap) in the limit q → 0. At the same time, the peak
does not appear very sharp, in particular, if we compare it with
the peaks in the density channel. Nevertheless, we suggest
that the broadening of the peak may be due to the finite size.
To corroborate such a statement, in Fig. 2 we show the spin
dynamical structure factor Ss(q, ω) for interaction strength
ln(kF a) = 1.5, focusing on the two smallest wave numbers
q = 0.492 kF and 0.695 kF . We compare the AFQMC spectra
for 26 atoms with the GRPA ones for 26 and 5850 atoms
at the same density. All of them show a peak that moves to

higher frequency as q increases from 0.492 kF to 0.695 kF .
The GRPA spectra exhibit maxima at approximately the same
positions for both system sizes, with a sharper peak for the
larger system. The AFQMC results have a width which is
compatible with the corresponding GRPA result for 26 atoms,
while the peaks are shifted to lower frequency, as expected
from the renormalization of the gap. If we assume that the sig-
nificant sharpening observed at the GRPA level for increasing
size also happens at the correlated level, then we can suggest
that a sharp mode does indeed exist also at the AFQMC level,
and it is not an artifact of GRPA.

We take a closer look at the size dependence within GRPA
in Fig. 3, but, before delving into it, a discussion of our choices
for the convergence parameter η is in order. The dynamical
structure factor resulting from the GRPA theory is achieved
in the limit η → 0+, see Eq. (11). In our implementation, we
choose a finite positive value to broaden Dirac deltas in the
dynamical structure factor. We tune the values empirically,
and in particular we choose η � 0.06εF for 26 atoms and
η � 0.03εF for 5850 atoms.

In Fig. 3, we compare the GRPA spectra for interaction
ln(kF a) = 1.5 and for two system sizes: N = 26 and N =
5850 atoms. The larger system shows the same qualitative
behavior, and the positions of the peaks do not show signif-
icant change. However, the larger size displays significantly
sharper peaks in both channels, allowing for a clearer distinc-
tion between the collective modes and the quasiparticle pair
continuum. On one hand, this highlights that in the 26-atoms
system there are still relevant finite-size effects, thus encour-
aging future efforts to allow AFQMC to access larger sizes; at
the same time, if we assume that GRPA provides an accurate
recipe for size corrections, this allows us to strengthen our
claim that a sharp mode does indeed exist at the QMC level in
the spin channel.

Figure 4 shows the density (top panels) and spin (bot-
tom panels) dynamical structure factors yielded by our QMC
calculations for interaction strengths ln(kF a) = 1.5 and 1.0
and selected momenta. The qualitative picture presented by
the two interaction strengths is similar, the main quantitative
difference being due to the different value of the superfluid
gap. The density structure factors for small q are dominated
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FIG. 3. GRPA results for the dynamical structure factors (arbitrary units) in the density (top panels) and spin (bottom panels) channels of
a system of 26 (left panels) and 5850 (right panels) fermions, for interaction strength ln(kF a) = 1.5 and various values of the wave number
q. The solid lines represent our results, with markers indicating selected data points to improve readability. Dotted vertical lines: Double the
quasiparticle gap for 26 fermions, as predicted by BCS theory. Dash-dotted vertical lines: Double the quasiparticle gap for 5850 fermions, as
predicted by BCS theory.

FIG. 4. QMC results for the dynamical structure factors (arbitrary units) in the density (top panels) and spin (bottom panels) channels, for
interaction strengths ln(kF a) = 1.5 (left panels) and 1.0 (right panels) and various values of the wave number q. The solid lines represent our
results, with markers indicating selected data points to improve readability. Dashed vertical lines: Two times the quasiparticle gap, calculated
with QMC from [44].
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FIG. 5. GRPA dynamical structure factors (arbitrary units) in the density, spin, and amplitude channels, for 5850 fermions at interaction
strength ln(kF a) = 1.5 and wave numbers q = 0.164 kF (upper left), q = 0.328 kF (upper right), q = 0.492 kF (lower left), and q = 0.819 kF

(lower right). For ease of comparison, the dynamical structure factors were scaled so that their peaks in the range ω > 2�BCS have the same
height, conventionally set to 1. The vertical dotted line marks twice the BCS quasiparticle gap. The vertical dashed line marks ωp(q), the
maximum of the density of pair quasiparticle states of total momentum q.

by the Nambu-Goldstone peak. As q increases, this peak
moves to higher frequency and becomes less sharp, eventually
merging with the quasiparticle pair continuum when it reaches
the energy of twice the superfluid gap. The spin dynamical
structure factors for small q exhibit a peak above twice the
quasiparticle gap. This peak moves to higher frequency as q
increases and eventually significantly broadens and becomes
compatible with a quasiparticle pair continuum.

B. Higgs mode or spin mode?

We thus observed that, within the resolution of our calcu-
lations, AFQMC qualitatively confirms the GRPA description
of the dynamical structure factors. The main quantitative dif-
ference appears to be rooted in the unbiased superfluid gap
being significantly smaller than the mean-field value, which
informs GRPA. On this ground, we were able to reproduce
the interesting peak in the spin channel originally highlighted
by [20]. In this section, we wish to leverage our GRPA study
to address the claim that such a peak is the Higgs mode.
The first observation is that, within GRPA, there is no direct
coupling between the dynamics of the order parameter and the
spin excitations, as it is evident from Eq. (14) in [20] and the
analysis in [27] [Eq. (120) and following]. More explicitly, let
us denote χα,β (q, ω) the matrix of linear response functions
[like the one in Eq. (10)], with labels α, β = n, s,�,�†, n
denoting particle density, s denoting spin density and � being
the on-site pairing �̂(r) = ψ̂↓(r)ψ̂↑(r). Within GRPA, we
rigorously find that χn,s(q, ω) = χ�,s(q, ω) = χ�†,s(q, ω) =
0; in other words, a perturbation coupled to the spin density

(a magnetic field) is not able to excite modulations in the
particle density or in the superfluid order parameter. As a
consequence, the relation∫ +∞

0
dω χ ′′

�,s(q, ω) ∝ 〈�BCS|�̂(q) n̂s(−q)|�BCS〉 (12)

(where, again, χ ′′ denotes the imaginary part of χ ) implies
that the quantum state n̂s(−q)|�BCS〉 (|�BCS〉 being the BCS
ground state) must be orthogonal to all quantum states of
the form �̂(q)|�BCS〉; in simple words, if we induce a spin
modulation on top of the BCS ground state we obtain a quan-
tum state that has no overlap with states which are obtained
by modulating the order parameters (Nambu-Goldstone and
Higgs).

In Fig. 5 we show the GRPA calculation of the density dy-
namical structure factor S(q, ω), the spin dynamical structure
factor Ss(q, ω), as well as the amplitude dynamical structure
factor constructed from the response function of the operator
�̂ + �̂† (Hermitian part of the pairing operator) as follows:

Sa(q, ω) ∝ χ ′′
�,� + χ ′′

�,�† + χ ′′
�†,� + χ ′′

�†,�† . (13)

We focus on wave vectors within the Fermi surface. At the two
smallest wave vectors shown in the figure, we notice that both
S(q, ω) (blue solid line) and Sa(q, ω) (green dashed-dotted
line) display the Goldstone mode below 2�BCS (black dotted
vertical line) and higher energy peaks at exactly the same
energy above 2�BCS. The actual definition of Sa(q, ω) as the
amplitude response makes it very natural to interpret such
peaks as the Higgs mode. As the magnitude of the wave vector
increases, the secondary peak in the density channel broadens
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due to the quasiparticle pair continuum. However, the spin
dynamical structure factor (orange dashed line) shows a peak
but at a slightly higher energy, with a discrepancy increasing
with the magnitude of the wave vector. Our conclusion is thus
that, while a peak exists in the spin channel, it cannot be
interpreted as a manifestation of the amplitude (Higgs) mode
of the order parameter.

We propose, however, that such a spin “mode” has a kine-
matic origin. This is related to the BCS dispersion relation
E (k) =

√
(ε(k) − μ)2 + �2

BCS, which governs the possible
quasiparticle excitations. When a spin probe with momentum
q acts on the system, we expect the formation of pairs of
quasiparticles with momenta −k and k + q for all possible
values of k. Indeed, one can easily check that the peaks
in the spin dynamical structure factor follow very closely
the maxima ωp(q) of the (suitably η-regularized) function∑

k δ{ω − [E (k + q) + E (−k)]}, reported as red dashed ver-
tical lines in Fig. 5. This observation suggests that the spin
structure factor is entirely governed by the quasiparticle pair
continuum, which is pretty “narrow” at small momentum,
giving rise to a peak in the response function.

We comment that the actual possibility to resolve the Higgs
mode from the peak in the spin channel required the study of
a very large system (� 6000 fermions). For smaller systems,
finite-size effects broaden the structures (see Fig. 2), thus
making it impossible to have enough resolution. This also
implies that, within our current capabilities, it would not be
realistic to investigate this discrepancy using AFQMC. We
also notice that, at the AFQMC level we cannot exclude that
a coupling between the pairing and spin channel might exist
due to correlations beyond mean-field, but any such coupling,
if it even exists, would be well below our resolution.

IV. DISCUSSION AND CONCLUSION

In summary, our study leveraged generalized random
phase approximation and the unbiased auxiliary-field quan-
tum Monte Carlo method to compute density and spin density
dynamical correlation functions for a two-dimensional homo-
geneous system of attractive fermions. Our current AFQMC
algorithm allowed us to compute the structure factors, in the
(q, ω) plane, for momenta as low as 0.5 kF , which turned out
to be small enough to resolve the collective Nambu-Goldstone
mode below the superfluid gap. However, with GRPA we
were able to study much larger systems, which allowed us
to assess the severity of finite-size effects, as well as to
gain further insight into the physical interpretations of the
results.

Incidentally, we remark that the possibility to obtain unbi-
ased two-body dynamical correlations for Fermi superfluids
for small momenta, well inside the Fermi sea, is very im-
portant beyond the scope of atomic physics, with potential
applications in nuclear physics and nuclear astrophysics.

Comparison between AFQMC and GRPA results, together
with the analysis of size effects obtained via GRPA, re-
vealed overall qualitative agreement. In the density channel
a Nambu-Goldstone mode was clearly evident, very sharp at
low energy and momentum and merging with a quasiparticle
pair continuum at higher energies. The many-body correla-
tions renormalized the dispersion relation of the mode and the

superfluid gap, controlling the threshold for the emergence
of the quasiparticle pair continuum. In addition, our GRPA
results for S(q, ω) and Sa(q, ω) in very large systems clearly
showed that the Higgs mode appears as a secondary peak
in the density dynamical structure factor at very small wave
vectors. The resolution needed to detect this secondary peak
is beyond our capability with AFQMC.

We also observed a distinct peak in the spin channel,
which was previously highlighted in [20] and considered as
evidence of the detection of the celebrated Higgs mode. The
observation in [20] was an important motivation for our study.
This peak in the spin channel indeed displayed a dispersion
which was compatible with a quadratic behavior reminiscent
of the celebrated Higgs mode. Our analysis, though, implied
that, at least within GRPA, such a peak must have an origin
which is different from the dynamics of the amplitude of the
order parameter, as we extensively discuss. Our suggestion is
that the peak is entirely due to the density of states of pairs
of quasiparticles, which can be excited when a spin probe
acts on the system. Our QMC results indicate a significant
renormalization of the dispersion of such a spin “mode” due
to the many-body correlations, consistent with a smaller value
of the pairing gap in the unbiased calculations with respect
to the mean-field result. However, it appears natural to us to
assume that the origin of the spin peak is still rooted in the
quasiparticle kinematics.

Despite the challenges posed by finite-size effects, our
study thus contributes to the fundamental understanding of
two-dimensional Fermi superfluids, providing unbiased re-
sults which can serve as crucial benchmarks for many-body
theories and can provide important insight to experimental
researchers in the important challenge of measuring collective
modes in superfluids.

A particularly exciting direction in the study of collec-
tive modes involves the investigation of the role of spin
polarization in attractive Fermi gases [45–47]; in fact, re-
cent numerical findings confirmed the stability of an elusive
Fulde-Ferrell-Larkin-Ovchinnikov phase at zero temperature
[45] whose experimental detection is very complicated: one
of the possibilities is to measure the anisotropy of the speed
of sound, which can be extracted from dynamical structure
factors. In this context, the availability of numerical results,
like the ones we presented in this paper, can be a very im-
portant asset to inform and guide the experimental search. For
spin-imbalanced gases the inclusion of p-wave contributions
might also be relevant [48].

As we navigate these perspectives, our findings open the
doors for theoretical and experimental advancements, pushing
the boundaries of our comprehension of dynamical properties
within strongly correlated quantum systems.
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