
PHYSICAL REVIEW A 110, 033305 (2024)

Universality of Efimov states in highly mass-imbalanced cold-atom mixtures
with van der Waals and dipole interactions

Kazuki Oi ,1,3 Pascal Naidon ,2 and Shimpei Endo 3,*

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Few-Body Systems Physics Laboratory, RIKEN Nishina Centre, RIKEN, Wako 351-0198 Japan

3Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

(Received 2 April 2024; accepted 17 July 2024; published 3 September 2024)

We study three-body systems in a mass-imbalanced, two-component, cold-atom mixture, and we investigate
the three-body parameter of their Efimov states for both bosonic and fermionic systems, with a major focus
on the Er-Er-Li Efimov states. For a system interacting solely via van der Waals interactions, the van der
Waals universality of the three-body parameter is analytically derived using the quantum defect theory. With
the addition of a perturbative dipole interaction between the heavy atoms, the three-body parameters of the
bosonic and fermionic Efimov states are found to behave differently. When the dipole interaction is as strong
as the van der Waals interaction, corresponding to realistic Er-Er-Li Efimov states, we show that the van der
Waals universality persists once the effects of the nonperturbative dipole interaction are renormalized into the
s-wave and p-wave scattering parameters between the heavy atoms. For a dipole interaction much stronger than
the van der Waals interaction, we find that the universality of the Efimov states can be alternatively characterized
by a quasi-one-dimensional scattering parameter due to a strong anisotropic deformation of the Efimov wave
functions. Our work thus clarifies the interplay of isotropic and anisotropic forces in the universality of the
Efimov states. Based on the renormalized van der Waals universality, the three-body parameter is estimated for
specific isotopes of Er-Li cold-atom mixtures.
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I. INTRODUCTION

Recent progress in the field of cold atoms has significantly
advanced our understanding of strongly correlated quantum
systems and their universal behaviors. A prime example of
quantum phenomenon realized in cold atoms is the Efimov
effect [1–6], which allows the existence of weakly bound
three-body states featuring a discrete scale invariance. While
these Efimov states have been theoretically suggested to ap-
pear universally for various physical systems [3,7,8], they
require the particles to interact with large s-wave scattering
lengths. This condition can be achieved in cold atoms by
using a Feshbach resonance [9,10], which enables the precise
control of the s-wave scattering length between the atoms.
Efimov states have been observed in systems of identical
bosons [11], mass-imbalanced bosonic mixtures [12–14], and
three-component Fermi systems [15–17]. An Efimov state has
also been observed as the excited state of the 4He trimer [18],
due to a naturally large s-wave scattering length between 4He
atoms. Importantly, the Efimov states observed for various
different atomic species [19] and internal spin states [20] have
been found to have almost the same physical property: the
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three-body parameter, characterizing the binding energy and
hence the size of the Efimov states, has been found to scale
universally with the van der Waals length between the atoms.
This universality of the three-body parameter has been termed
“van der Waals universality” and actively investigated both
theoretically and experimentally for identical bosons [19–23]
as well as mass-imbalanced bosonic mixtures [24,25]. It has
been demonstrated to hold true except for systems close to a
narrow Feshbach resonance [26–34].

Efimov physics has also been explored in fermionic sys-
tems. The repulsion between identical fermions due to the
Pauli exclusion competes with the Efimov attraction and leads
to a richer few-body physics. Theoretically, Efimov trimers
have been predicted to appear in a mass-imbalanced two-
component fermionic mixture when the mass ratio is large:
M/m > 13.6 . . . [2,35]. With such a large mass imbalance,
the Efimov attraction surpasses the repulsion and forms the
Efimov trimers, in stark contrast to a moderate mass ratio
8.1 . . . < M/m < 13.6 . . . for which there exist “Kartavtsev-
Malykh trimers” [36,37] and their crossover into the Efimov
trimers [38], and a small mass ratio M/m < 8.1 . . . for which
no trimer appears. While these fermionic trimers are formed in
the L� = 1− state, distinct from the L = 0+ state of identical
bosons, they require a fermionic cold atom mixture with a
well-controlled Feshbach resonance. Until recently, the 40K-
6Li mixture has been the major mass-imbalanced Fermi sys-
tem. The mass ratio, however, is smaller than that required for
the appearance of the trimer, and only a precursor of the trimer
formation has been observed [39]. Furthermore, the Fesh-
bach resonance of 40K-6Li is of a relatively narrow character
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[10,40]. Recently, Feshbach resonances have been realized in
highly mass-imbalanced Fermi mixtures of Er-Li [41,42] and
Cr-Li [43], where multiple broad resonances have been found.
This opens the possibility of observing the trimer physics of
fermions in cold atoms. In particular, Er-Li is well inside the
Efimov regime, and it is expected to be the first system to ex-
hibit a “rotating” Efimov state, i.e., Efimov state with nonzero
orbital angular momentum L = 1. One major challenge of the
Er-Li mixture is that there is a strong dipole-dipole interaction
between the Er atoms [44,45]. The dipole interaction couples
states with different angular momentum, so that the orbital
angular momentum L is no longer a good quantum number
[46,47]. Since the dipole interaction is as strong as the van
der Waals interaction, we are faced with the question of how
the interplay of dipole and van der Waals interaction can
modify the universal properties of the Efimov states: “Is the
three-body parameter in the Er-Li system universal?”

We address this question by investigating the Efimov
states in a highly mass-imbalanced three-body system. Us-
ing the Born-Oppenheimer approximation valid for a highly
mass-imbalanced system, we study the universality of the
three-body parameter, i.e., the binding energy of the Efimov
states in the unitary limit. To elucidate the role of the statistics
of the heavy atoms, we study both bosonic and fermionic
systems with a variable strength of dipole interaction. First,
we study the three-body system interacting solely with a
van der Waals interaction. Using the quantum defect the-
ory (QDT), the three-body parameter is explicitly expressed
as a universal function of the van der Waals length and s-
wave scattering length (p-wave scattering volume) between
the heavy atoms for bosons (fermions), respectively. Second,
for a system interacting with the van der Waals interaction
and a weak dipole interaction, our perturbative analysis, to-
gether with numerical calculations, show that the bosonic and
fermonic Efimov states are affected in a distinct manner by
the dipole interaction. Third, for moderate dipole interaction
strengths, including the realistic dipole strengths between Er
atoms, our coupled-channel numerical calculations vindicate
the universality of the three-body parameter. For the bosonic
system, the van der Waals universality formula is found to
persist even though the dipole interaction is so large that the
s-wave scattering length and the binding energy are signif-
icantly modified; once the effects of the dipole interaction
are renormalized into the s-wave scattering length, the QDT
formula derived for a purely van der Waals system holds true,
so that the s-wave scattering length between the heavy atoms
universally characterizes the three-body parameter. Based on
this renormalized van der Waals universality, we estimate
the three-body parameters of the Efimov states for some
specific isotopes of Er-Li systems. For the fermionic sys-
tems, the p-wave scattering volume is no longer a viable
physical parameter, and we find an alternative low-energy
scattering parameter which characterizes the universality of
the three-body parameter. Finally, for a dipole interaction
much stronger than the van der Waals interaction, the above
universal description with the three-dimensional scattering
parameters should break down, but we find that quasi-one-
dimensional scattering parameters between the heavy atoms
can be used to universally describe the Efimov states in both
bosonic and fermionic systems.

This paper is organized as follows: in Sec. II,
after introducing the Born-Oppenheimer description of
the mass-imbalanced three-body system, our QDT analysis
of nondipolar system is presented. In Sec. III we present
the results of our numerical calculations and compare them
with our analytical results for nondipolar, weak dipole, and
moderate dipole interactions, followed by the analysis in the
limit of strong dipole interactions. In Sec. IV we present
our estimates of the three-body parameters of some Er-Li
isotopes. We conclude and present future perspectives in
Sec. V. Throughout the paper, the natural unit h̄ = 1 is used.

II. BORN-OPPENHEIMER DESCRIPTION OF HIGHLY
MASS-IMBALANCED 3-BODY SYSTEM

A. General formulation

We consider a three-body system of two heavy particles
(mass M) which interact resonantly with a light particle (mass
m). The heavy particles are assumed to be either identical
spin-polarized bosons or fermions, to model 166,168,170Er and
167Er atoms, respectively. As the light particle and heavy
particles interact with a large s-wave scattering length aHL,
a condition for the Efimov states to appear, we model the
light-heavy interaction by the zero-range contact interaction
[48]. On the other hand, the interaction between the heavy
particles is assumed to be the sum of van der Waals and dipole
interactions. This amounts to neglecting the van der Waals
interaction length scale between the light and heavy particles,
which should be a reasonable assumption because the van der
Waals length between the heavy atoms is larger than that be-
tween the light-heavy atoms. Throughout this paper, we focus
on the unitary limit 1/aHL = 0, and model the light-heavy
interaction via the unitary Bethe-Peierls boundary condition
[48]. We note that this treatment of the interspecies interaction
is valid in describing broad Feshbach resonances, but less so
for narrower ones [10]

In a highly mass-imbalanced system, the Born-
Oppenheimer approximation provides a good description
of the Efimov physics. Indeed, it successfully reproduces the
Efimov scale factor and the critical mass ratio for the Efimov
effect M/m = 13.99 . . . [2] in good agreement with the
exact value M/m = 13.60 . . . [35]. The Born-Oppenheimer
approximation has also been confirmed to reproduce well the
van der Waals universality of the Efimov states without the
dipole interaction for mass ratios 14 � M/m � 29 [24]. It is
therefore a good approximation for an Er-Li mixture, whose
mass ratio is M/m ≈ 28. The light particle’s Schrödinger
equation is solved analytically and leads to the induced
attractive interaction between the heavy particles −�2/2mr2,
where � = 0.5671 . . . [3]. The Schrödinger equation between
the heavy particles then reads(

−∇2
r

M
− �2

2mr2
− C6

r6
+ Cdd (1 − 3 cos2 θ )

r3

)
ψ (r) = Eψ (r),

(1)

where θ is an angle measured from the z axis taken to be
parallel to the orientation of the dipoles (parallel to the exter-
nal magnetic field). Here C6 and Cdd are the van der Waals
and dipole coefficients, from which we can define the van
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der Waals length rvdw = 1
2 (MC6)1/4 and the dipole length

add = MCdd/3 between the heavy atoms.
The binding energy of the Efimov states (i.e., three-body

parameter) can be obtained by solving Eq. (1). It needs to
be supplemented with a short-range boundary condition. For
this purpose, we use a hard wall condition at Rmin: ψ (r =
Rmin) = 0. We will see later that the results are insensitive to
the way the boundary condition is introduced as long as Rmin

is small enough. As the dipole interaction couples different
partial waves, the angular momentum is no longer a good
quantum number, but the parity � and the z component of
the angular momentum Mz are good quantum numbers. While
various values of Mz are allowed in general, we restrict our-
selves to the Mz = 0 channel in this paper. For the bosonic
heavy atoms, the M�

z = 0+ state is allowed by the symmetry.
This state involves the L = 0, 2, 4, . . . angular momentum
channels, among which the L� = 0+ channel shows the Efi-
mov effect and the others do not for the Er-Li mass ratio
[2,3,36,49,50]. For the fermionic heavy atoms, the M�

z = 0−
channel is allowed by the symmetry. This state involves L =
1, 3, 5, . . . angular momentum channels, among which the
L� = 1− channel shows the Efimov effect and the others do
not for the mass ratio in question [2,3,36,49,50]. Therefore, in
the following, we study the M�

z = 0+ and M�
z = 0− states for

the bosonic and fermionic Er atoms, respectively.

B. Quantum defect theory for nondipolar system

For typical cold atomic species, rvdw � add so that the
dipole interaction is negligible in Eq. (1). While this is not
the case for Er atoms, it still provides us with a basis for
understanding the universal behavior of the Efimov states with
the dipole interactions. Therefore, in this section we analyze(

−∇2
r

M
− �2

2mr2
− C6

r6

)
ψ (r) = Eψ (r) (2)

with a short-range boundary condition ψ (|r| = Rmin) = 0.
While this equation was studied numerically in Ref. [25]
and the van der Waals universality of the Efimov states was
clarified for the mass-imbalanced system, we show below
that Eq. (2) can be solved analytically and provide explicit
formulas for the binding energies and wave functions of the
Efimov states.

Without the dipole interaction, the angular momentum is
a good quantum number, and Eq. (2) is essentially a single-
channel Schrödinger equation with 1/r6 potential:(

− 1

M

d2

dr2
+ s2

� − 1
4

Mr2
− C6

r6

)
u�(r) = Eu�(r) (3)

with ψ (r) = u�(r)

r
Y�m(r) and

s2
� =

(
� + 1

2

)2

− M

2m
�2. (4)

Since we are interested in the Efimov states, we focus on
the � = 0 (� = 1) channel where s2

� < 0 for the mass ra-
tio of interest M/m ≈ 28 for bosons (fermions), respectively
[2,3,36,49,50]. Equation (3) can be solved analytically using
Ref. [51], with a remark that the centrifugal term is attractive

due to the Efimov attraction. In other words, the angular
momentum in Ref. [51] should be generalized to an imaginary
number. We can then apply the quantum defect theory (QDT)
[52,53] to obtain the analytical behavior of the Efimov states,
using the QDT parameter Kc introduced as

u�(r) = f c
� (r) − Kcgc

�(r), (5)

where f c
� and gc

� are two independent solutions of Eq. (3).
The binding energies of the Efimov states can be obtained by
imposing u�(r → ∞) = 0, from which we find [52]

Kc = W c
f −

W c
g−

=
(1 + M�) sin

πν

2
cos θ� + (1 − M�) cos

πν

2
sin θ�

(1 − M�) cos
πν

2
cos θ� − (1 + M�) sin

πν

2
sin θ�

.

(6)

The parameters θ�, ν, and M� can be obtained from the
standard procedure of solving the van der Waals two-body
problem (see Appendix A). At low energy |E | � 1/Mr2

vdw,
by performing the low-energy expansion in a similar manner
to Refs. [53,54], we find (see Appendix B)

|E |= 4

Mr2
vdw

exp

⎧⎪⎪⎨
⎪⎪⎩

2

|s�|

⎡
⎢⎢⎣arctan

⎛
⎜⎜⎝ Kc

tanh
π |s�|

4

⎞
⎟⎟⎠+ ξ�

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭e− 2nπ

|s� | ,

(7)

where ξ� = arg[
( i|s�|
2 )
(1 + i|s�|)] and n is an arbitrary inte-

ger satisfying |E | � 1/Mr2
vdw.

The QDT parameter Kc is formally a matrix acting on mul-
tiple channels, but it simplifies as a scalar parameter for the
single-channel scattering. Its value is related to the short-range
phase, hence the short-range boundary condition. Indeed, at
short distance, one can substitute the low-energy form of the
wave function Eq. (A7) because the energy is much smaller
than the potential, and imposing u�(r = Rmin) = 0, one finds

Kc = − tanh

(
π |s�|

4

)Re[J s�
2

(�)]

Im[J s�
2

(�)]
(8)

� − 1

tan
(
� − π

4

) , (9)

where � = 2r2
vdw/R2

min. In the second line, we have used
the asymptotic form of the Bessel function [or equivalently
Eq. (A4)] valid for Rmin � rvdw. This relation between Rmin

and Kc, substituted into Eq. (7) gives an explicit analytical
formula of the Efimov binding energies as a function of Rmin.
The wave function of the Efimov states is also analytically
obtained as [x ≡ 2(rvdw/r)2]

u�(r) =
√

r

2

{
Re[J s�

2
(x)]

cosh π |s�|
4

+ Kc
Im[J s�

2
(x)]

sinh π |s�|
4

}
(10)

=
√

r

2

Re[J s�
2

(�)]

cosh π |s�|
4

{
Re[J s�

2
(x)]

Re[J s�
2

(�)]
−

Im[J s�
2

(x)]

Im[J s�
2

(�)]

}
, (11)

033305-3



KAZUKI OI, PASCAL NAIDON, AND SHIMPEI ENDO PHYSICAL REVIEW A 110, 033305 (2024)

where the log-periodic behavior characteristic of the Efimov
states appears from the oscillation of the imaginary-index
Bessel function.

While the Rmin dependence of the binding energy and wave
function may look like a nonuniversal short-range dependence
of the Efimov states, we can recast it into universal forms by
using the relation between Rmin and the two-body universal
scattering parameter between the heavy atoms; if we consider
the two-body problem of the two heavy atoms[

− 1

M

d2

dr2
+ �(� + 1)

Mr2
− C6

r6

]
u�(r) = Eu�(r), (12)

the only difference with Eq. (2) is the presence or absence
of the 1/r2 attraction. At short distance r ∼ Rmin � rvdw,
this attraction is much smaller than the van der Waals
force so that the two equations are essentially the same.
More physically, the short-range phase of the three-body
system is dominated by the potential between the heavy
atoms. This assumption should be particularly true for a
highly mass-imbalanced system, because due to the larger
atomic polarizability of the heavy atoms, their van der
Waals force and higher-order forces are much stronger than
those for the light atom. Therefore, the QDT parameter of
the three-body system can be approximated by that of two
heavy atoms Kc

3body � Kc
2body, which amounts to adopting

the same short-range cutoff Rmin value for the two- and
three-body systems. While this assumption is plausible for
our model, it can be compromised by finite-range effects of
the heavy-light atoms’ interaction. It may also be invalidated
by the nonadiabatic effects beyond the Born-Oppenheimer
approximation, which break down the single-channel
description.

The van der Waals two-body problem [Eq. (12)] with the
QDT condition [Eq. (5)] has been solved in Refs. [53,54], and
the following relations between the the QDT parameter and
the two-body scattering parameters have been obtained:

a(HH)

rvdw
= 4π


2
(

1
4

)
(

1 + 1 + Kc tan π
8

Kc − tan π
8

)
, (13)

v(HH)
p

r3
vdw

= −1

3



(

1
4

)


(

7
4

) 1 + tan 3π
8 − (

1 − tan 3π
8

)
Kc

√
2
(

tan 3π
8 − Kc

) , (14)

where a(HH) and v(HH)
p are the s-wave scattering length and

p-wave scattering volume between the heavy atoms, re-
spectively. Noting that the bosonic (fermionic) heavy atoms
interact dominantly with the s-wave scattering length (p-wave
scattering volume) at low energy, and substituting Eqs. (13)
and (14) into Eq. (7), the binding energies of the Efimov states
are represented as

|E | = 4

Mr2
vdw

exp

⎛
⎜⎜⎜⎜⎝

2

|s0|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan

⎡
⎢⎢⎢⎢⎣

1

tanh
π |s0|

4

a(HH)

rvdw
tan

π

8
+ 4π


2( 1
4 )

(
1 − tan

π

8

)
a(HH)

rvdw
− 4π


2( 1
4 )

(
1 + tan

π

8

)
⎤
⎥⎥⎥⎥⎦+ ξ0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠e− 2nπ

|s0 | (15)

for the bosonic heavy atoms (� = 0), and

|E | = 4

Mr2
vdw

exp

⎛
⎜⎜⎜⎜⎝

2

|s1|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan

⎡
⎢⎢⎢⎢⎣

1

tanh
π |s1|

4

v(HH)
p

r3
vdw

tan
3

8
π + 1

3
√

2


( 1
4 )


( 7
4 )

(
1 + tan

3

8
π

)
v(HH)

p

r3
vdw

+ 1

3
√

2


( 1
4 )


( 7
4 )

(
1 − tan

3

8
π

)
⎤
⎥⎥⎥⎥⎦+ ξ1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠e− 2nπ

|s1 | (16)

for the fermionic heavy atoms (� = 1), where n is an arbitrary integer such that |E | � 1/Mr2
vdw.

As we will see in Sec. III A, these analytical formulas
excellently reproduce the numerical results for nondipolar
systems. These analytical formulas suggest that the binding
energy of the Efimov states in the unitary limit, i.e., the three-
body parameter, is insensitive to the short-range details of
the system but universally determined by the van der Waals
length and the s-wave scattering length (p-wave scattering
volume) for the bosonic (fermionic) Efimov states. This van
der Waals universality has been experimentally demonstrated
for equal-mass [19,20] and mass-imbalanced bosonic sys-
tems [29] close to a broad Feshbach resonance. The van
der Waals universality has also been demonstrated theoret-
ically with numerical calculations for equal-mass [21–23]
and mass-imbalanced bosonic systems [24,25]. In particu-
lar, the same Born-Oppenheimer equation (2) with the same

short-range boundary condition has been employed in
Ref. [25] and solved numerically to study the universality of
the Efimov states. Our QDT analysis provides an analytical
demonstration of the van der Waals universality of hetero-
nuclear Efimov states; namely, the assumption of Kc

3body �
Kc

2body is pivotal in universally characterizing the three-body
parameter with the two-body scattering parameters between
the heavy atoms. As we use the single-channel QDT, Eqs. (15)
and (16) are invalid for describing the Efimov states near a
narrow Feshbach resonance, which have been demonstrated
both experimentally [26–29] and theoretically [30–34] to
deviate from the van der Waals universality; the multichan-
nel QDT [55,56] is necessary for capturing their sensitivity
to the channel coupling and nature of the internal spin
states.
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FIG. 1. Binding energy (in the van der Waals energy unit
1/Mr2

vdw) of the Efimov states with the unitary heavy-light interaction
for (a) bosonic and (b) fermionic heavy atoms interacting via the
van der Waals interaction. The mass ratio are (a) M/m = 27.5855 . . .

and (b) M/m = 27.7520 . . ., corresponding to 166Er-6Li and 167Er-
6Li, respectively. The numerical results for the bosons (blue circles)
and fermions (orange squares) with �max = 20 are shown, together
with the analytical curves of Eq. (7) with Eq. (8) (black solid) and
Eq. (9) (green dashed). The vertical thin dotted lines (black) denote
the thresholds at which the higher angular momentum bound states
of � = 2 (� = 3) start to appear for the bosons (fermions), obtained
from Eqs. (B6) and (8).

III. NUMERICAL RESULTS

We show the numerical solutions of Eq. (1) in this sec-
tion. As we are particularly interested in Er-Er-Li three-body
systems, we perform the calculations with Er-Li mass ratio:
M/m = 27.5855 . . . for the bosonic system corresponding to
166Er-6Li, and M/m = 27.7520 . . . for the fermions corre-
sponding to 167Er-6Li, respectively. The differential Eq. (1)
is discretized in the log-scaled coordinate space between Rmin

and Rmax, where Rmax is typically taken as ∼ 400–1000 rvdw.
We find that 4000 grid points and �max =10–20 are enough to
attain convergence for most cases, while we take up to 30000
grid points and �max ≈ 40 for some cases of stronger dipole
interactions.

A. Nondipolar case add = 0

First, we show the results without the dipole interaction:
in Fig. 1 we show the binding energy of the Efimov states
(in the van der Waals energy unit 1/Mr2

vdw) as the short-range

FIG. 2. Binding energy of the Efimov states plotted against (a),
(b) the s-wave scattering length a(HH) for the bosons, and (c), (d)
p-wave scattering volume v(HH)

p for the fermions, obtained by con-
verting Rmin in Fig. 1 into a(HH) and v(HH)

p using Eqs. (8), (13),
and (14). The left (right) panels are negative (positive) scattering
length/volume sides, which should smoothly connect with each other
in the unitary limit 1/a(HH) = 0, 1/v(HH)

p = 0 corresponding to the
border between the left and right panels. The solid curves (black)
are the analytical results of Eqs. (15) and (16), and the dashed curves
(green) are the dimer binding energy of the heavy atoms. The vertical
dotted lines (black) are the same as those in Fig. 1.

boundary Rmin is varied. As Rmin gets smaller, the short-range
van der Waals attraction increases, leading to the successive
appearance of bound states and increase of the binding energy.
The numerical data points almost perfectly agree with the an-
alytical curves obtained with the QDT in Eq. (7), particularly
at small energy. There are a few points which significantly
deviate from the analytical curves. They are ascribed to higher
angular momentum states of � = 2, 4, . . . for the bosons and
� = 3, 5, . . . for the fermions, respectively. The thresholds at
which the � = 2 (� = 3) bound states start to appear, denoted
by the vertical dotted lines in Figs. 1(a) and 1(b), agree with
most of the stray data points, supporting this interpretation.
A few stray points which agree with neither are ascribed
to higher angular momentum channels � � 4 (� � 5). This
classification of the states has also been confirmed from the
shape of the wave functions. Because the higher angular
momentum states are localized to shorter distances than the
s-wave (p-wave) state owing to the centrifugal barrier, they are
more sensitive to Rmin, resulting in the steeper binding energy
curves. The binding energy curves of different partial waves
do not render an avoided crossing but simply cross because the
angular momentum is a good quantum number in the absence
of the dipole interaction.
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In Fig. 2 we show the binding energies plotted against the
s-wave scattering length a(HH) and p-wave scattering volume
v(HH)

p between the heavy atoms, obtained from Fig. 1 and
Eqs. (8), (13), and (14). The numerical data with different
values of Rmin collapse into universal curves. Therefore, the
three-body parameter of the Efimov states is universally char-
acterized by (a(HH), rvdw) for the bosons and (v(HH)

p , rvdw) for
the fermions, respectively. In other words, they are insensitive
to the short-range details, but are universally characterized
by the two-body scattering parameters which describe the
long-range asymptotic behavior of the two heavy atoms. The
numerical data in Fig. 2 excellently agree with the curves of
Eqs. (15) and (16), vindicating our QDT analytical formulas.
Some points in Fig. 2 deviating from the curves are higher
angular momentum states, whose energies change rapidly as
Rmin hence a(HH) and v(HH)

p are varied; although they sig-
nificantly deviate from the analytical curves of Eqs. (15)
and (16), the data points with different Rmin still tend to
collapse into a single curve [Figs. 2(b) and 2(c)] due to
the angular-momentum-insensitive nature of the short-range
phase originating from Rmin � rvdw [52]. The marginal dis-
agreement of the large binding energy region |E | � 1/Mr2

vdw
in Fig. 2(c) is ascribed to the breakdown of the low-energy
condition used to derive Eqs. (15) and (16).

We note that the universal behaviors of the bosonic system
in Figs. 2(a) and 2(b) were found numerically in Ref. [25];
we have found here that a similar universal behavior holds
true for the fermions [Figs. 2(c) and 2(d)], together with their
analytical descriptions in Eqs. (15) and (16).

In Fig. 2 we also show the dimer energy of two heavy
atoms (green dashed) obtained by solving Eq. (12). Wherever
the Efimov trimers lie above the dimer energy, they are in
fact resonant trimers embedded in the dimer-atom continuum
[25]. In the Born-Oppenheimer approximation, however, the
trimers appear as bound states because the channel describing
the dimer-atom continuum is neglected.

B. Weak dipole interaction add � rvdw

We show in Fig. 3 the binding energies of the Efimov states
in the presence of a weak dipole interaction. As the angular
momentum is no longer a good quantum number, different
partial wave states mix with each other, resulting in avoided
crossings. We have confirmed that the shape of the wave func-
tion changes across the avoided crossing via a superposition of
different partial waves. We have also confirmed that the width
of the avoided crossings increases as add gets larger.

As shown in Fig. 3, the numerical results generally get
shifted toward larger binding energy. This can be understood
by the perturbation theory: we have analytically found that
the energy shift induced by the dipole interaction is E −
E (0) ∝ a2

dd for the bosons predominantly in the L = 0 chan-
nel, and E − E (0) ∝ add for the fermions predominantly in the
L = 1 channel, with both negative shifts E − E (0) < 0 (see
Appendix C). The difference in the scaling originates from
the absence (presence) of the diagonal matrix element of the
dipole interaction for L = 0 (L = 1) states: 〈L = 0|Vdd |L =
0〉 = 0, 〈L = 1|Vdd |L = 1〉 �= 0. This is confirmed in Fig. 4:
the change in binding energy, i.e., three-body parameter of
the Efimov states, scales quadratically for the bosons and

FIG. 3. Binding energy of the Efimov states for (a) bosonic
and (b) fermionic heavy atoms interacting via the van der Waals
interaction and weak dipole interaction add/rvdw = 0.40. The other
parameters and notations are the same as those in Fig. 1.

linearly for the fermions. Notably, in most previous studies
on the Efimov effect, the role of the statistics of the particles
has been rather marginal, at best to modify the value of s�,
and thereby change the absence or presence of the Efimov
effect through the condition s2

� < 0 as the mass ratio is varied
[2–6,35,49,50]. In other words, the statistics of the particles
has been essentially irrelevant once its effect is incorporated
into the value of s�. Figure 4 is one of the few examples where
the quantum statistics of the particles plays an explicit role
in qualitatively changing the universal behavior of the Efimov
states.

C. Moderate dipole interaction add ∼ rvdw

Erbium atoms interact with a strong dipole interaction
owing to their large magnetic moments: the dipole length of
166Er-166Er is add = 75.5a0, which is comparable to their van
der Waals length rvdw = 65.5a0 [57,58] (see Table I). Figure 4
shows that this is away from the region where the perturbation
theory works well add/rvdw � 0.5.

We have therefore performed the numerical calculations
for moderate strengths of the dipole interaction in Figs. 5(a)–
5(f); we first show the binding energy of the bosonic
Efimov states plotted against the heavy-heavy s-wave scat-
tering length estimated without the dipole interaction a(HH)

no−dd
[Eq. (8)]. As the dipole strength is increased from a smaller
[Figs. 5(a) and 5(b)] to a larger [Figs. 5(e) and 5(f)] value, the

033305-6



UNIVERSALITY OF EFIMOV STATES IN HIGHLY … PHYSICAL REVIEW A 110, 033305 (2024)

FIG. 4. Energy shift induced via the dipole interaction with a
fixed value of Rmin/rvdw = 0.40 for (a) the bosons (blue circles)
and (b) fermions (orange squares). The dashed lines (black) are the
perturbation results in Eqs. (C11) and (C13), where the unperturbed
energy E (0) and the matrix elements of Eq. (C10) are evaluated with
the energies and wave functions numerically obtained for the purely
van der Waals system in Sec. III A.

avoided crossing between the � = 0 dominant state and the
� = 2 dominant state gets broader. Due to the admixture of the
� = 0 state, the slope of the � = 2 dominant state appearing
around a(HH)

no−dd/rvdw � 1 gets gentler. Furthermore, the binding
energies increase as the dipole interaction gets larger, which is
consistent with the perturbative analysis in Sec. III B. The de-
viation from the analytical curves of the nondipolar system in
Eq. (15) (black curves) is so significant that they cannot well
explain the numerical results of the realistic dipole interaction
strength [middle row, Figs. 5(c) and 5(d)], let alone stronger
ones [bottom row Figs. 5(e) and 5(f)]. Still, the binding energy
data of different short-range parameters Rmin collapse onto
a single curve, suggesting the universality of the three-body
parameter of the bosonic Efimov states even in the presence
of nonperturbatively large dipole interactions.

To further elucidate the nature of this universality, we con-
vert the horizontal axis into an authentic s-wave scattering
length between the heavy atoms a(HH)

with−dd in Figs. 5(g)–5(l); in
the presence of the dipole interaction, the s-wave scattering
length between the heavy atoms a(HH)

with−dd gets significantly
modified from a purely van der Waals value of a(HH)

no−dd in
Eq. (13) [59,60]. As the experimentally accessible scattering
length between the Er atoms is a(HH)

with−dd rather than a(HH)
no−dd,

it should be more physical to use a(HH)
with−dd to eliminate Rmin.

In Fig. 6 we show a(HH)
with−dd (circles) obtained by numerically

solving the coupled-channel Schrödinger equation between
the two heavy atoms[

−∇2
r

M
− C6

r6
+ Cdd (1 − 3 cos2 θ )

r3

]
ψ (r) = Eψ (r), (17)

with the boundary condition ψ (|r| = Rmin) = 0, and compare
it with a(HH)

no−dd. While they are almost indistinguishable for a
weak dipole interaction [Fig. 6(a)] except for the proximity of
higher-partial wave induced resonances (dotted vertical lines)
[59,61], a(HH)

with−dd is markedly different from a(HH)
no−dd for a real-

istic dipole strength [Fig. 6(b)] and stronger one [Fig. 6(c)].
This is expected because the realistic dipole strength of the Er
atoms add/rvdw = 0.86755 . . . . in Fig. 6(b) [and stronger one
in Fig. 6(c)] is away from the perturbative regime, which was
confirmed to be add/rvdw � 0.5 in Sec. III B.

In Figs. 5(g)–5(l), we show the binding energies of the
Efimov states plotted against a(HH)

with−dd. Similar to Figs. 5(a)–
5(f), the data with different values of Rmin mostly collapse into
a single curve, demonstrating the universality. One notable
difference is that the agreement between the numerical data
and the purely van der Waals analytical curves (black) is much
better in Figs. 5(g)–5(l) than those in Figs. 5(a)–5(f): except
for the broad avoided crossing at a(HH)

with−dd/rvdw � 1, a signifi-
cant fraction of the numerical results agree well with the van
der Waals curves not only for the weak dipole interaction, but
also for the realistic dipole strength [Figs. 5(i) and 5(j)] and
stronger dipole interaction [Figs. 5(k) and 5(l)]. This suggests
that the van der Waals QDT of the bosonic Efimov states in
Eq. (15) can capture the universal behavior of the Efimov
states in the presence of the dipole interaction, once the ef-
fects of the dipole interaction are incorporated into the s-wave
scattering length between the heavy atoms: a(HH) = a(HH)

with−dd.
In other words, the major role of the dipole interaction is to
change, hence renormalize, the value of the s-wave scattering
length between the heavy atoms, so that the van der Waals
universality of the Efimov states in Eq. (15) persists with the
renormalized s-wave scattering length a(HH)

with−dd. This renor-
malized van der Waals universality for the dipolar bosonic
Efimov states we have found here seems nonpertubative; the
dipole interaction is so large that it significantly changes
both the binding energies [Figs. 5(c)–5(f)] and the s-wave
scattering length [Figs. 6(b) and 6(c)] from the purely van
der Waals system. Some horizontal data points in Figs. 5(g)
and 5(l) which are not present in Figs. 5(a)–5(f) are artifacts
of the higher-partial-wave–induced resonances: the two-body
problem between the heavy atoms in Eq. (17) not only shows
the s-wave dominated resonances, but also shows the resonant
enhancement of a(HH) induced by higher-partial-wave chan-
nels [59,61], whose approximate positions are indicated by
the vertical black dotted lines in Fig. 6. The narrow nature
of these higher-partial-wave–induced resonances leads to an
abrupt change of a(HH)

with−dd as Rmin is changed, resulting in
flat energy spectra in Figs. 5(g)–5(l). Equation (15) cannot
explain these flat data points. We note, however, that these
flat energy spectra are absent in Figs. 5(a) and 5(b), and they
should therefore be interpreted as artifacts originating from
the two-body effect of a(HH) rather than a genuine three-body
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FIG. 5. Binding energy of the bosonic Efimov states for the mass ratio M/m = 27.5855 . . . corresponding to 166Er-166Er-6Li system. Weaker
dipole strength add/rvdw = 0.40 [top row (a), (b), (g), (h)], realistic dipole strength for 166Er-166Er of add/rvdw = 0.86755 . . . . [middle row (c),
(d), (i), (j)], and stronger dipole strength add/rvdw = 1.5 [bottom row (e), (f), (k), (l)]. (a)–(f) The horizontal axis is the s-wave scattering length
between the heavy atoms estimated by Eq. (8), i.e., without the dipole interaction. (g)–(l) The horizontal axis is the s-wave scattering length
between the heavy atoms numerically obtained by solving the coupled-channel two-body equation in Eq. (17). The left (right) panels in each
column show the negative (positive) s-wave scattering length. The solid curve (black) is the analytical QDT formula for nondipolar system in
Eq. (15).

FIG. 6. S-wave scattering length between the heavy atoms as Rmin is varied, obtained numerically by solving Eq. (17). The solid curve
(black) is the s-wave scattering length without the dipole interaction a(HH)

no−dd, i.e., the analytical formula of Eqs. (13) and (8). The dotted vertical
lines (black) are the same as those in Fig. 1(a).
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phenomenon. Physically, when we attempt to evaluate the
binding energies of the Efimov states from an experimentally
obtained value of a(HH) (see Sec. IV), we can simply use the
van der Waals curves of Eq. (15) by neglecting the stray flat
spectra, except for the case where the two Er atoms are coin-
cidentally in the proximity of the s-wave resonance induced
by a d-wave or higher-angular-momentum molecular state.
In the avoided crossing region, the variance of the spectrum
is larger than in the other regions [see Fig. 5(l)]. This is
due to the finite values of Rmin, as it can be checked that
reducing it further does lead to a converged universal behavior.
For the finite values of Rmin used in the figures (which is
varied between 0.25 and 0.4 rvdw), it is still justified to call
this region’s behavior universal despite the noticeable energy
variance because it remains much smaller than the Efimov
period, in sheer contrast with the strength of the van der
Waals interaction at short distance, which varies by a factor
16. Yet a d-wave dimer of the two heavy atoms appearing
around a(HH)

with−dd/rvdw � 1 (see Fig. 11 in Appendix D, where
the dimer energies are presented) seems to significantly affect
two-body and three-body behaviors in this region, making the
simple renormalized van der Waals universality of Eq. (15)
inadequate.

While the physical origin of the renormalized van der
Waals universality is yet to be clarified, we suspect that the
angular momentum insensitive nature of the short-range phase
[52] is playing a crucial role; we have confirmed in our
three-body calculations that a substantial fraction of the wave
function is occupying � � 2 states. If the short-range phase
shifts in various angular momentum channels are directly re-
lated with each other, as in the angular-momentum-insensitive
QDT [52], a(HH) characterizing the s-wave short-range phase
can universally capture the scatterings occuring in all the
angular momentum channels. We also suspect that a universal
three-body repulsion appearing at moderately large distance
may be another possible mechanism [21–23,46,47]; in the
three-body system of identical bosons interacting via the van
der Waals interaction, the appearance of a nonadiabatic three-
body repulsion at a large distance r � 2rvdw is ascribed to
be the physical origin of the universality of the three-body
parameter of the Efimov states [21–23]. Furthermore, for three
identical bosons interacting via purely dipolar interactions, a
three-body repulsion has also been found to appear universally
at r � add [46]. The multichannel effects with an interplay
of the van der Waals and dipole interaction in our system
may lead to a similar three-body repulsion scenario. We also
remark that our universality of the Efimov states involving
higher partial-wave channels is analogous to the partial-wave
phase-locking mechanism found in the resonant exchange
collisions [62,63], where the phase shifts of different scat-
tering channels between the atoms are related with each
other.

Since the s-wave scattering length between the heavy
atoms characterizes the universal behavior of the bosonic
Efimov states so precisely, it is tempting to use the p-wave
scattering volume v(HH)

p to analyze the fermionic Efimov
states. However, v(HH)

p cannot be defined in the presence of
the dipole interaction, because the dipole interaction is present
even at large distance in the � = 1 channel and the asymptotic

FIG. 7. K (3D)
c,F between two heavy fermionic atoms for add/rvdw =

0.86755 . . . . corresponding to the realistic dipole strength be-
tween 167Er atoms (add = 75.7a0 and rvdw = 65.9a0 [57,58]). The
solid curve (black) is K (3D)

c,F calculated with purely dipole interac-
tion (i.e., without the van der Waals interaction) in (18): K (3D)

c,F =
J3(qmin )/Y3(qmin ) with qmin =

√
48add
5Rmin

.

wave function is no longer a free plane wave, in stark contrast
to the � = 0 channel [60]. We therefore consider below an
alternative scattering parameter K (3D)

c,F which characterizes the
large-distance asymptotic wave function of the two heavy
fermionic dipoles: we consider the Schrödinger equation be-
tween the two heavy atoms(

− 1

M

∂2

∂r2
+ 2

Mr2
− C6

r6
− 4

5

Cdd

r3

)
u1(r) = Eu1(r). (18)

We have only kept the van der Waals interaction and the
diagonal � = 1 element of the dipole interaction, which are
reasonably assumed to play major roles in determining the
short- and long-range behaviors. At large distance, the van
der Waals interaction is negligible in (18), so that the wave
function behaves at vanishing energy as [64]

u1(r → ∞) = √
r

[
J3

(√
48

5

add

r

)
− K (3D)

c,F Y3

(√
48

5

add

r

)]
,

(19)

where J3 and Y3 are the Bessel and Neumann functions cor-
responding to two independent solutions under the central
1/r3 potential. K (3D)

c,F is introduced in an analogous manner
as the QDT parameter Kc in the van der Waals case [see
Eq. (5)] and hence is expected to be a universal parameter
characterizing the short-range two-body phase shift. In Fig. 7
we show K (3D)

c,F numerically calculated from Eqs. (18) and (19)
with the hard-wall boundary condition u1(r = Rmin) = 0. We
note that the van der Waals term is essential in determining
the short-range phase: K (3D)

c,F is markedly different from that
obtained by neglecting the van der Waals term (black solid),
suggesting both the van der Waals and dipole interactions
are relevant for characterizing the scattering between the two
heavy fermionic atoms.

In Fig. 8 we show the binding energies of the fermionic
Efimov states plotted against K (3D)

c,F as obtained above. The
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FIG. 8. Binding energy of the fermionic Efimov states for
the mass ratio M/m = 27.7520 . . . corresponding to 167Er-167Er-
6Li system. K (3D)

c,F in the horizontal axis is obtained numerically
from Eqs. (18) and (19). Realistic dipole strength for 167Er-167Er
of add/rvdw = 0.8705 . . . . [top row (a), (b)], and stronger dipole
strengths of add/rvdw = 1.6 [middle row (c), (d)], and add/rvdw = 2.0
[bottom row (e), (f)] are presented.

numerical data of different short-range Rmin values collapse
into a single curve, demonstrating the universality of the
fermionic Efimov states. The universality holds particularly
well for a realistic add value of 167Er-167Er [Figs. 8(a) and
8(b)], where only a few points of higher angular momentum
character deviate from the universal curve. In contrast to the
bosonic case, we cannot find an analytical expression which
could explain the universal energy spectra owing to the im-
possibility of using v(HH)

p and hence Eq. (16). The avoided

crossing at K (3D)
c,F � −1 originates from the � = 3 channel

which is present without the dipole interaction at around
r3

vdw/v(HH)
p � −0.3 [see Figs. 2(c) and 12 in Appendix D]. It

shifts toward a larger negative K (3D)
c,F side with a decreased

slope as the dipole strength is increased from a realistic
value of 167Er-167Er [Figs. 8(a) and 8(b)] toward larger values
[Figs. 8(c)–8(f)]. The foothill of the avoided crossing shows
a larger variance for stronger dipole interactions [Figs. 8(c)–
8(f)]. This is likely to be a precursor of the breakdown of
our assumption that the single-channel short-range phase in

� = 1 universally characterizes the three-body system (see
Sec. III D), especially for a very strong dipole interaction and
large K (3D)

c,F [Figs. 8(c), 8(e), and 8(f)].

Although the K (3D)
c,F parameter has the advantage of cap-

turing the universal behavior of the fermionic Efimov states,
it is marginally useful in predicting the three-body parameter
of experimental systems of interest, e.g., 167Er-167Er-6Li. This
is primarily because it is not easy, though not impossible, to
determine the value of K (3D)

c,F ; it sensitively depends on the
position (i.e., Rmin) and shape of the short-range repulsive
potential, and it is therefore challenging to predict its value by
theoretical calculations [57,65,66]. Furthermore, as the K (3D)

c,F
dependence appears as the next-next-next leading order if we
perform the asymptotic expansion of the J3 and Y3 at large
distance in (19), it contributes to the low-energy scattering
cross section as a small correction term modifying the domi-
nant quasi-universal contribution [60].

D. Strong dipole interaction add � rvdw

While the universal descriptions via partial-wave scattering
parameters of a(HH) (boson) and K (3D)

c,F (fermion) are shown in
Sec. III C to be valid for moderate dipole strengths including
the realistic values for Er atoms, they should break down in the
limit of strong dipole interactions. This is because the single
partial-wave description in defining the short-range two-body
phase between the two heavy atoms becomes invalid since all
the even (odd) angular momentum channels almost equally
contribute for the bosons (fermions).

We therefore need to introduce an alternative scattering
parameter which should characterize the short-range scatter-
ing phase of two strong dipoles. As the two dipoles prefer
to be aligned in a head-to-tail, hence quasi-one-dimensional,
configuration in the strong dipole limit, we consider a one-
dimensional equation(

− 1

M

∂2

∂z2
− C6

z6
− 2Cdd

z3

)
u(z) = Eu(z), (20)

which corresponds to Eq. (17) constrained to the one-
dimensional configuration on the z axis. We introduce the
scattering parameter K (1D)

c between the two dipoles inspired
from the asymptotic behavior of the zero-energy wave func-
tion of (20) at |z| → ∞ [67]

u(z) → (sgnz)P
√

|z|
[

J1

(√
24add

|z|

)
− K (1D)

c Y1

(√
24add

|z|

)]
,

(21)

where J1 and Y1 terms are two independent solutions of (20)
without the van der Waals interaction. We impose a hard-wall
boundary condition u(z = ±Rmin) = 0 corresponding to the
three-dimensional counterpart. Since the positive and negative
z regions are separated, the bosonic and fermionic systems
become equivalent, with the same value of K (1D)

c ; their only
difference appears in the overall parity, i.e., P = 0 for bosons
and P = 1 for fermions in (21).

In Fig. 9 the binding energies of the Efimov states obtained
from Eq. (17) are plotted as a function of K (1D)

c in Eqs. (20)
and (21). The bosonic (blue circles) and fermionic (orange
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FIG. 9. Binding energy of the bosonic (blue circles) and
fermionic (orange squares) Efimov states for strong dipole inter-
actions of add/rvdw = 50 [top row (a), (b)], and add/rvdw = 100
[bottom row (c), (d)]. K (1D)

c in the horizontal axis is obtained nu-
merically from Eqs. (20) and (21). The mass ratio is taken as
M/m = 27.5855 . . . , which corresponds to 166Er-6Li for the boson,
while for the fermion it is hypothetically taken to be the same value
as the boson to demonstrate the difference via the statistics of the
particles.

squares) systems, hypothetically assumed to be the same mass
ratio, show rather similar behaviors, in stark contrast to the
weak and moderate dipole systems of Secs. III A–III C. This
is because the parity of the wave function plays a marginal
role when the two heavy atoms are mostly aligned in a quasi-
one-dimensional configuration along the z axis, and the z > 0
and z < 0 regions are separated by the hard-wall boundary
condition. This is particularly true when the size of the trimer
is much smaller than add , beyond which the centrifugal re-
pulsion in Eq. (17) representing the three-dimensional nature
becomes more dominant than the dipole term. For the tightly
bound states in Fig. 9, the bosonic and fermionic systems
become almost indistinguishable, supporting this scenario. In
other words, the statistics of the particles is irrelevant for the
strongly dipolar Efimov states as long as their binding energy
is larger than the dipole scale 1/Ma2

dd .
The data points with a small slope in Fig. 9, including

the weakly bound states, tend to collapse into a single curve
for both the bosonic and fermionic systems. Although the
spreading of the data points is larger than those in Figs. 5
and 8, it remains much smaller than the Efimov period, even
with an almost 16 times change in the short-range part of
the van der Waals interaction. We have also confirmed that
the spreading gets smaller as Rmin is decreased, in a similar
manner to Fig. 5. We can thus conclude that K (1D)

c univer-
sally characterizes the short-range phase, hence the Efimov
states with the strong dipole interactions. On the other hand,
the data points with steeper slopes do not seem to show the

FIG. 10. Contour plot of |rψ (r)| of the relative position of
the two heavy particles in the Efimov states, plotted in the y = 0
plane. (a) Shallow bound states in the universal regime for the
bosons and (b) for the fermions. (c) Shallow bound states in
the nonuniversal regime [i.e., a steep slope region between the
avoided crossings in Fig. 9(a)] for the bosons and (d) tightly
bound states for the bosons [plotted in a smaller xz region than
(a)–(c)]. For all (a)–(d), the dipole strength and mass ratio are
the same as those in Figs. 9(a) and 9(b), with the following
parameters: (a) Mr2

vdw|E | = 1.24×10−4, (K (1D)
c )−1 = 0.71 . . .

(Rmin/rvdw = 0.25225 . . .), (b) Mr2
vdw|E | = 1.23×10−4,

(K (1D)
c )−1 = 2.58 . . . (Rmin/rvdw = 0.2617 . . .), (c) Mr2

vdw|E | =
1.10×10−4, (K (1D)

c )−1 = −1.14 . . . (Rmin/rvdw = 0.25758 . . .),
and (d) Mr2

vdw|E | = 9.72×10−3, (K (1D)
c )−1 = −3.42 . . .

(Rmin/rvdw = 0.2592 . . .).

universality with respect to K (1D)
c . Since those states have

significant contributions from large angular momentum states
� � 1 and the angular-momentum-insensitive nature of their
short-range phase can break down, it is not unexpected to find
that their features cannot be universally captured by the one-
dimensional scattering model in Eqs. (20) and (21) where the
angular momentum is absent (see also dimers in Fig. 13 in Ap-
pendix D with similar behaviors). Nevertheless, the physical
mechanism behind the universal and nonuniversal behaviors
in Sec. III C and Fig. 9 and how they change between them
have yet to be clarified.

In Fig. 10 we show the amplitude of the wave function.
For a bosonic Efimov state with a small binding energy
[Fig. 10(a)], it essentially comprises two regions; the inner
region R � add where the dipole interaction is so strong
that the two heavy particles are preferentially aligned on
the z axis, and the outer region R � add where the dipole
interaction is smaller than the kinetic term, thus forming a
three-dimensional halo state of a predominantly s-wave na-
ture. They are neither a perfect one-dimensional geometry
nor a spherical s-wave halo owing to the strong admixture
of angular momentum states, but their universal nature is
essentially determined by the phase in the short-range re-
gion, where the one-dimensional configuration is dominant
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and hence K (1D)
c is a universal parameter. For fermionic

Efimov states with a similarly small value of the binding
energy [Fig. 10(b)], the short-range and long-range natures are
almost the same, with the only notable difference being the
presence of a node in the wave function at z = 0, representing
the antisymmetrization. In contrast, the wave function in the
nonuniversal regime [Fig. 10(c)] shows a distinct feature: the
wave function in the inner region R � add no longer shows a
simple quasi-one-dimensional character, but rather a strongly
anisotropic shape, which is likely induced by an admixture of
various angular momentum states. This is consistent with the
breakdown of the universality with respect to K (1D)

c . When the
binding energy is so large that the size of the wave function
is smaller than add [Fig. 10(d)], the whole wave function is
localized in the inner region R � add , forming an almost per-
fect quasi-one-dimensional state. In this limit, the hard-wall
boundary condition R = Rmin necessarily produces a node in
the wave function at z ≈ 0, so that the bososnic and fermionic
wave functions become the same except for the sign change.
In this limit, the bosonic and fermionic systems show the same
universal behaviors. While this limit of boson-fermion duality,
analogous to the Tonks-Girardeau limit [68,69], is fascinating,
it is challenging to achieve because it requires a very large
dipole interaction strength, which is impossible for cold atoms
with magnetic dipole interactions, but may be possible with
polar molecules [70,71] or Rydberg atoms [72,73].

IV. THREE-BODY PARAMETERS
OF ER-ER-LI EFIMOV STATES

In Table I we list some combinations of isotopes of the
Er-Li systems, together with their physical parameters. The
dipole lengths are comparable to the Er-Er van der Waals
length add/rvdw � 0.87, which lie outside the perturbative
regime add/rvdw � 0.5 discussed in Sec. III B. Nevertheless,
they are not strong enough to be in the strong-dipole limit
discussed in Sec. III D; they are in the parameter region well
described by the renormalized van der Waals universality
shown in Sec. III C. We can therefore use Eq. (15) to evaluate
the binding energy of the Efimov states for the bosonic Er
atoms interacting with a 6Li atom in unitary limit. The s-
wave scattering length between the Er atoms a(HH) generally
depends on the applied magnetic field, owing to the existence
of a series of broad and narrow Feshbach resonances [57,65],
and it is yet to be determined by experiments or by sophisti-
cated theoretical calculations. Still, by using the background
s-wave scattering lengths reported in the literature [57,58] as
representative values, we can estimate the binding energy of
the Efimov states |E | = κ2

∗/M. The results are tabulated in
Table I; we find that the difference in the values of a(HH)

significantly affects the three-body parameter κ∗ across the
isotopes while the mass and add are almost the same and
therefore play marginal roles. The values of κ∗ in Table I
can be readily improved with better knowledge of the Er-Er
scattering length a(HH). We also note that the larger binding
energy states in Table I may not be so accurate because we
use the low-energy analytical formula in Eq. (15); this can also
be straightforwardly improved using the numerical results of
Sec. III C.

TABLE I. Three-body parameters of the Er-Er-Li Efimov states:
binding energy at the unitary Er-Li scattering length |E | = κ2

∗/M,
and the Er-Li scattering length a(HL)

− (a(HL)
∗ ) at which the Efimov

states dissociate into three atoms (an atom and a dimer), respectively.
The van der Waals and dipole lengths between the Er atoms are from
Refs. [57,58] with the mass scaling. a(HH) between the heavy atoms
are estimated by the background scattering lengths abg tabulated in
Refs [58]. a0 is the Bohr radius.

Species rvdw
a0

add
a0

a(HH)

a0
κ∗rvdw

a(HL)
−

rvdw

a(HL)∗
rvdw

166Er-6Li 75.5 65.5 68 0.495 −10.1 0.269
0.107 −46.7 1.25

2.29×10−2 −217 5.81
4.94×10−3 −1.01×103 27.0

168Er-6Li 75.8 66.3 137 0.352 −14.2 0.381
7.65×10−2 −65.3 1.75
1.66×10−2 −300 8.05
3.62×10−3 −1.38×103 37.0

170Er-6Li 76.0 67 221 0.298 −16.8 0.452
6.55×10−2 −76.6 2.06
1.44×10−2 −349 9.37
3.16×10−3 −1.59×103 42.7

While there are spectroscopic methods to directly asso-
ciate the Efimov trimers and observe their binding energies
[74–77], it is challenging to perform such experiments, es-
pecially in the unitary limit. It is more straightforward to
observe the three-body loss rate of the atoms for variable
s-wave scattering lengths a(HL), and search for the negative
scattering length a = a(HL)

− at which the loss rate peak appears
[11–14,16,19]. Alternatively, one can prepare a mixture of
heavy-light Feshbach molecules and heavy atoms, and ob-
serve the dimer-atom loss rate to find the positive scattering
length a = a(HL)

∗ at which its peak appears [17]. The values
a(HL)

− and a(HL)
∗ correspond to the points at which the Efimov

states dissociate into three atoms, or a dimer and an atom, re-
spectively. Notably, any of a(HL)

− , a(HL)
∗ , or κ∗ can be regarded

as the universal scale characterizing the Efimov states because
they can be related with each other by the universal Efimov
theory [1–6]. Using the zero-range Efimov theory, we have
estimated a(HL)

− , a(HL)
∗ from the κ∗ values. The results are pre-

sented in the last two columns of Table I. The values of a(HL)
−

corresponding to the most tightly bound Efimov states are
likely to be either around a(HL)

− /rvdw ≈ −10–17, or adjacent
ones with ≈ −2–4 (not tabulated). With the low-energy for-
mula Eq. (15) and the zero-range theory, we cannot conclude
which of them are the ground Efimov state. We also note that
they can be significantly affected by finite-range effects owing
to their relatively large binding energy, while results for the
more weakly bound states in Table I should be more quan-
titatively reliable. Similarly, we expect that the dissociation
points of the excited Efimov states around a(HL)

∗ /rvdw ≈ 5–9
are more likely to be experimentally observed than those of
≈1 − 2 or ≈0.2–0.4 corresponding to the tightly bound states.
This is analogous to the measurement of a∗ in systems of three
identical bosons, for which the loss-rate peak corresponding
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to the excited Efimov states appear clearly, whereas those for
the ground and first excited states may not appear, or only
barely [78,79].

For the fermionic Efimov states explored in recent cold-
atom experiments of 167Er-6Li mixture [42], the shortage of
scattering data between the fermionic 167Er atoms prevents us
from making a similar estimate. Since the fermionic Efimov
states show the universal behavior characterized by K (3D)

c,F (see
Sec. III C), we can make a theoretical prediction once the
value of K (3D)

c,F is known. However, since the low-energy scat-
tering between the fermionic 167Er atoms is dominated by the
universal dipolar scattering, the determination of K (3D)

c,F should
be challenging, requiring the determination of the sub-leading
contributions in the 167Er-167Er scattering.

V. CONCLUSION AND OUTLOOK

We have studied the universality of the Efimov states in
a mass-imbalanced three-body system of heavy-heavy-light
atoms with a unitary interaction between the heavy-light
atoms, with the major motivation of elucidating the interplay
between the van der Waals and magnetic dipole interactions in
Er-Er-Li Efimov states. By reducing the three-body problem
to a coupled-channel two-body equation between the heavy
atoms using the Born-Oppenheimer approximation, we have
investigated analytically and numerically the three-body pa-
rameters (i.e., binding energies in the unitary limit) of the
Efimov states for various strengths of dipole interactions be-
tween the bosonic and fermionic heavy atoms.

In the absence of dipole interaction, using the quantum
defect theory, we derive analytical formulas of the three-body
parameters of the Efimov states, which are represented as
explicit universal functions of the van der Waals length and
s-wave scattering length (p-wave scattering volume) between
the heavy bosonic (fermionic) atoms. The analytical formu-
las excellently reproduce the numerical results reported in
Ref. [25], demonstrating the van der Waals universality in an
analytical manner.

In the presence of dipole interaction, different orbital an-
gular momentum states get coupled, thus we have performed
coupled-channel numerical calculations. For a weak dipole in-
teraction, we find that the three-body parameters are affected
by the dipole interaction in a different manner for the bosons
and fermions. Due to the presence (absence) of the dipole
matrix element for bosons in the L = 0 (fermions in L = 1)
states, the three-body parameter gets a quadratic (linear) shift
with respect to a perturbative dipole interaction for the bosons
(fermions), respectively.

When the dipole interaction is as strong as the van der
Waals interaction, we find that the values of the three-body
parameters get significantly altered from those of a nondipolar
system. However, once the s-wave scattering length between
the heavy atoms is calculated in the presence of both the
dipole and van der Waals interactions, the QDT formulas
derived for a pure van der Waals system can well reproduce
the three-body parameters of the bosonic Efimov states. Us-
ing this renormalized van der Waals universality, we have
estimated the three-body parameters of the Er-Er-Li Efimov
states for the bososnic Er isotopes. For the fermionic heavy
atoms, on the other hand, the p-wave scattering volume can

no longer be defined, owing to the long-range nature of the
dipole interaction, so that the renormalized van der Waals uni-
versality does not hold. However, they can still be described
universally with a low-energy scattering parameter between
the two fermionic dipoles which characterizes the phase shift
of an asymptotic p-wave state, so that the universality of the
three-body parameter holds true.

For an extremely large dipole interaction, neither the s-
wave scattering length nor the p-wave low-energy scattering
parameter can universally characterize the Efimov states,
because the two dipoles get preferentially aligned in a lin-
ear geometry at short distance and they are neither s-wave
nor p-wave dominant. In this limit, a quasi-one-dimensional
scattering parameter is capable of capturing the short-range
scattering phase. We show that except for some regions be-
tween avoided crossings, the Efimov states can be universally
described by the one-dimensional scattering parameter.

With the above studies, we have elucidated how the inter-
play of the van der Waals and dipole interactions can affect
the universality of the Efimov states. In particular, we have
clarified the roles of the statistics of the particles and the
angular momentum channels, in the presence of both isotropic
and anisotropic forces. Our work is not only relevant for the
current challenge of observing Efimov states in the highly
mass-imbalanced cold atom mixture of Er-Li atoms [41,42],
but also can shed new light on halo nuclear phenomena. The
Efimov states are believed to appear universally in various
strongly interacting quantum systems [3,8,18]. In particular,
Efimov-like weakly bound three-body states have been ac-
tively studied in nuclear systems, such as neutron-rich nuclei
[7,80–82], the Hoyle state of 12C [83,84], and in near-breakup
excited states of nuclei [85]. In nuclear physics, the tensor
force has been pointed out to play a crucial role in determining
the stability and reactions of nuclei. Notably, the tensor force
has an anisotropic nature similar to the dipole-dipole inter-
action [86]. Investigating the interplay of the van der Waals
interaction and dipole interaction is thus analogous to the
nuclear problems where the interplay of the central part of the
strong force and the tensor force is relevant. Our study of the
dipole and van der Waals interactions in strongly interacting
quantum few-body systems lays the basis for the quantum
simulation of nuclear phenomena using dipolar cold-atom
mixtures [41–43,58,87].
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APPENDIX A: ANALYTICAL SOLUTION OF EQ. (2)

Equation (2) can be analytically solved in a similar man-
ner as Ref. [51]: introducing x ≡ 2( rvdw

r )2, � ≡ Mr2
vdwE/4

and u�(r) ≡ √
rU�(x), Eq. (2) is written in the dimensionless
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form as(
x2 d2

dx2
+ x

d

dx
+ x2 − ν2

0

)
U�(x) = −2�

x
U�(x), (A1)

where ν0 = s�/2. In the absence of the induced attraction
via the light particle, Eq. (2) is the van der Waals potential
problem; the attraction modifies the last term in the left-hand
side from the quarter integer ν0 = (2� + 1)/4 into ν0 = s�/2.
When the Efimov effect is present (absent) as in the � = 0
(large �) channel, ν0 is purely imaginary (real).

In a similar manner as Ref. [51], the two linearly indepen-
dent solutions of Eq. (2) are represented as

f�(r) = √
r
∑

n

bnJν+n(x),

g�(r) = √
r
∑

n

bnYν+n(x). (A2)

bn and ν are determined from the same transcendental equa-
tions in Ref. [51], with the modification ν0 = (2� + 1)/4 →
ν0 = s�/2. In order to have favorable short-range asymptotic
features, it is convenient to consider f c

� and gc
�, which are

defined as linear transforms of f� and g� as

f c
� (r)= 1√

2(X 2
� +Y 2

� )

[
cos

(νπ

2
+ θ�

)
f�−sin

(νπ

2
+ θ�

)
g�

]
,

gc
�(r)= −1√

2(X 2
� +Y 2

� )

[
sin

(νπ

2
+ θ�

)
f�+cos

(νπ

2
+ θ�

)
g�

]
,

(A3)

where tan θ� = Y�/X� with X� = ∑
n(−1)nb2n and Y� =∑

n(−1)nb2n+1.
The short-distance asymptotic forms of f c

� and gc
� for

r � rvdw are

f c
� (r) → 1√

2π

r3/2

rvdw
cos

(
x − π

4

)
,

gc
�(r) → − 1√

2π

r3/2

rvdw
sin

(
x − π

4

)
. (A4)

Notably, they are independent of angular momentum nor en-
ergy, which are essential features for the angular-momentum-
insensitive QDT [52].

The large-distance asymptotic forms of f c
� and gc

� for
E = k2/M > 0 are

[
f c
�

gc
�

]
→

√
2

πk

[
Zc

f s Zc
f c

Zc
gs Zc

gc

][
sin

(
kr − lπ

2

)
− cos

(
kr − lπ

2

)
]

(A5)

and for E = −κ2/M < 0 are

[
f c
�

gc
�

]
→

√
1

2πκ

[
W c

f + W c
f −

W c
g+ W c

g−

][−2e−κr

eκr

]
. (A6)

The elements of the matrices Zc and W c are the same as those
in Ref. [51], with the modification ν0 = (2� + 1)/4 → ν0

= s�/2.

At vanishing energy � → 0, the wave function is dom-
inantly described by the single term of the Bessel series in
Eq. (A2) and ν � ν0:

f c
� (r) =

√
r

2

[
cos

πν0

2
Jν0 (x) − sin

πν0

2
Yν0 (x)

]
,

gc
�(r) =

√
r

2

[
− sin

πν0

2
Jν0 (x) − cos

πν0

2
Yν0 (x)

]
. (A7)

In the absence of the light particle, ν0 = (2� + 1)/4 and the
wave function is essentially the Bessel function with a quarter
integer index as found in Ref. [88]. In the presence of the
light particle and hence the Efimov effect, the wave function
is still the Bessel function, but now with a purely imaginary
index ν0 = s�/2; this reflects the log-periodic behavior of the
Efimov states. Using Yα (z) = [Jα (z) cos απ − J−α (z)]/ sin απ

and J−iq(r) = (Jiq(r))∗ for real q and r, Eq. (A7) is
rewritten as[

f c
�

gc
�

]
=
√

r

2

[
Re[J s�

2
(x)]/ cosh π |s�|

4

−Im[J s�
2

(x)]/ sinh π |s�|
4

]
. (A8)

APPENDIX B: LOW-ENERGY QDT EXPANSION

Following Refs. [53,54], we can perform an expansion
(QDT expansion) at low energy. Indeed, when |�| � 1,

ν = ν0 − 3

2ν0

�2(
ν2

0 − 1
)(

4ν2
0 − 1

) + O(�4), (B1)

from which we find X� � 1 and

tan θ� � Y� � − 4�(
4ν2

0 − 1
) . (B2)

We also obtain

M� � |�|2ν0
2π2

[
(ν0)
(1 + 2ν0)]2

1

sin(πν0) sin(2πν0)
, (B3)

where M� ≡ G�(−ν)/G�(ν) with G� is defined as

G�(ν)≡ lim
n→∞

∞∑
s=0

(−1)n+s n!
(2ν + n + 1)

s!
(−ν − n − s + 1)
�−ν−nb−n−2s.

(B4)

Notably, all the above equations remain unchanged from
Refs. [53,54] even when ν is a real non-quater integer value
(s2

� > 0) or a purely imaginary value (s2
� < 0).

For the van der Waals QDT expansion, or more generally
for real ν, ν0, and s� values, Eq. (B3) suggests

M� ∝ |�|2ν0 → 0. (B5)

Therefore, M� becomes small at low energy, and thus can be
negligible in evaluating the right-hand side of Eq. (6) at the
leading order [89]

Kc � tan
πν0

2
. (B6)

On the other hand, in the presence of the Efimov effect
(ν0 = s�/2 with s2

� < 0), ν takes a purely imaginary value.
Using

|
(1 + i|s�|)|2 = π |s�|
sinh π |s�| (B7)
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and introducing

ξ� ≡ arg

[



(
i|s�|

2

)

(1 + i|s�|)

]
, (B8)

we now find

M� � −|�|i|s�|e−2iξ� = − exp (i[|s�| ln |�| − 2ξ�]). (B9)

In stark contrast to Eq. (B5), the magnitude of M� remains
unity at low energy. The log-periodic oscillation is a mani-
festation of the log-periodicity of the Efimov effect; indeed,
substituting Eqs. (B9), (B1), and (B2) into Eq. (6), we find

Kc � tan

( |s�|
2

ln |�| − ξ�

)
tanh

π |s�|
4

. (B10)

From above, we obtain the binding energy of the Efimov states
as a function of Kc:

|�| = exp

⎧⎪⎪⎨
⎪⎪⎩

2

|s�|

⎡
⎢⎢⎣arctan

⎛
⎜⎜⎝ Kc

tanh
π |s�|

4

⎞
⎟⎟⎠+ ξ�

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭e− 2nπ

|s� | ,

(B11)

which reproduces the discrete scale-invariant energy spec-
trum. The above equation is valid at low energy |�| � 1,
which implies that it holds well when the integer n is large
n � 1.

APPENDIX C: PERTURBATIVE CALCULATION
AT WEAK DIPOLE LIMIT |add | � rvdw

When the dipole-dipole interaction is small, we can regard
the dipole interaction as a small perturbation for the van der
Waals Efimov states in Sec. II B. We start from

(Ĥ0 + V̂dd )|ψIL〉 = EIL|ψIL〉. (C1)

As the angular momentum is the good quantum number when
V̂dd = 0, we label the states with L and I as |ψIL〉 � |ψ (0)

IL 〉: L
is the angular momentum of the unperturbed state and I is the
label of the state. The second-order perturbation theory reads

EIL = E (0)
IL + E (1)

IL + E (2)
IL , (C2)

|ψIL〉 = ∣∣ψ (0)
IL

〉+ ∑
i� �=IL

a(1)
IL,i�

∣∣ψ (0)
i�

〉+ ∑
i� �=IL

a(2)
IL,i�

∣∣ψ (0)
i�

〉
, (C3)

where

E (1)
IL = 〈

ψ
(0)
IL

∣∣V̂dd

∣∣ψ (0)
IL

〉
, (C4)

E (2)
IL = −

∑
i� �=IL

∣∣〈ψ (0)
IL

∣∣V̂dd

∣∣ψ (0)
i�

〉∣∣2
E (0)

i� − E (0)
IL

, (C5)

a(1)
IL,i� = −

〈
ψ

(0)
i�

∣∣V̂dd

∣∣ψ (0)
IL

〉
E (0)

i� − E (0)
IL

, (C6)

a(2)
IL,i� = −

〈
ψ

(0)
i�

∣∣V̂dd

∣∣ψ (0)
IL

〉〈
ψ

(0)
IL

∣∣V̂dd

∣∣ψ (0)
IL

〉
(
E (0)

i� − E (0)
IL

)2

+
∑

i′�′ �=IL

〈
ψ

(0)
i�

∣∣V̂dd

∣∣ψ (0)
i′�′
〉〈
ψ

(0)
i′�′
∣∣V̂dd

∣∣ψ (0)
IL

〉
(
E (0)

i� − E (0)
IL

)(
E (0)

i′�′ − E (0)
IL

) . (C7)

The unperturbed state is |ψ (0)
i� 〉 = ui�(r)

r Y�m(θ, φ), where ui� is
the solution of the unperturbed Hamiltonian [see Eq. (3)](

− 1

M

d2

dr2
+ s2

� − 1
4

Mr2
− C6

r6

)
ui�(r) = E (0)

i� ui�(r), (C8)

satisfying the ortho-normalization condition
∫

dru∗
i�(r)

ui′�(r) = δii′ . As explained in Sec. II B and Appendix A, ui�

can be obtained with the QDT.
The matrix element can be evaluated as〈
ψ

(0)
i�

∣∣V̂dd

∣∣ψ (0)
IL

〉
= 3add

M

∫
dr

u∗
i�(r)uIL(r)

r3

∫
d�Y m∗

� (1 − 3 cos2 θ )Y m
L

= 3add

M

∫ ∞

Rmin

dr
u∗

i�(r)uIL(r)

r3

×2(−1)m+1
√

(2L + 1)(2� + 1)

×
(

� 2 L
−m 0 m

)(
� 2 L
0 0 0

)
, (C9)

where the bracket in the last line is the Wigner’s 3 j symbol.
We note that the azimuthal number m around the z axis is
conserved even in the presence of the dipole interaction and
thus unchanged. As the 3 j symbol only takes nonzero values
for � = L, L ± 2, the perturbation couples only +2, 0,−2 an-
gular momentum states. Introducing the matrix element of the
radial part

〈i, �|vr |I, L〉 =
∫ ∞

Rmin

dr
u∗

i�(r)uIL(r)

r3
(C10)

for the L = 0 state corresponding to bosonic heavy atoms, we
obtain

EI,L=0 = E (0)
I,L=0 − 4

5

(
3add

M

)2

×
∑

i

|〈i, � = 2|vr |I, L = 0〉|2
E (0)

i,�=2 − E (0)
I,L=0

, (C11)

|ψI,L=0〉 = ∣∣ψ (0)
I,L=0

〉+ 2√
5

3add

M

×
∑

i

〈i, � = 2|vr |I, L = 0〉
E (0)

i,�=2 − E (0)
I,L=0

∣∣ψ (0)
i,�=2

〉
, (C12)

while for the L = 1 state corresponding to fermionic heavy
atoms, we obtain

EI,L=1 = E (0)
I,L=1 − 4

5

3add

M
〈I, L = 1|vr |I, L = 1〉, (C13)

|ψI,L=1〉=
∣∣ψ (0)

I,L=1

〉+ 3add

M

⎡
⎣4

5

∑
i �=I

〈i, �=1|vr |I, L=1〉
E (0)

i,�=1 − E (0)
I,L=1

∣∣ψ (0)
i,�=1

〉

+
√

108

175

∑
i

〈i, � = 3|vr |I, L = 1〉
E (0)

i,�=3 − E (0)
I,L=1

∣∣ψ (0)
i,�=3

〉]
.

(C14)
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Notably, the effect of the dipole interaction is qualita-
tively different for the bosons and fermions: they appear in
the second order in add for the bosons, and the first order for
the fermions. This difference originates from the difference in
the matrix element of the dipole interaction: 〈LM|V̂dd |LM〉=0
for L = 0 state, while it can take a nonzero value for
L = 1.

APPENDIX D: DIMER ENERGY SPECTRA

Here we show the binding energies of the dimers composed
of two heavy atoms calculated from Eq. (17). The numerical
parameters and grid points are taken to be the same values as
those adopted in Sec. III.

For a moderate dipole interaction strength add ∼ rvdw. the
dimer energies for the bosonic system are shown as green
points in Fig. 11. While the dimer energies plotted against

FIG. 11. Binding energy of the bosonic dimers of two heavy
atoms (green triangles) and trimers (blue circles). The physical pa-
rameter in each row is the same as Fig. 5. The left panels are
plotted against ano−dd, and the right panels are against a(HH)

with−dd, both
in their positive scattering length side. The others are the same as
Fig. 5.

FIG. 12. Binding energy of the fermionic dimers of two heavy
atoms (green triangles) and trimers (orange squares). The physical
parameter in each row is the same as Fig. 8.

a(HH)
no−dd seem to differ significantly from those in the pure van

der Waals system (green dashed curve in Fig. 2(b), they can
be converted into a more universal form by introducing the
s-wave scattering length incorporating the channel couplings
a(HH)

with−dd, in the same manner as Sec. III C. This universal
behavior of the two-body dipolar scattering is consistent with
Refs. [59,60]: the energy of the dimer of s-wave dominant
character is universally described by the s-wave scattering
length E ∝ a−2. There also appear dimers of higher angular
momentum, adjacent to the s-wave one; they behave uni-
versally with respect to different values of Rmin, but not as
much as compared to the s-wave one. We have found that the
spreading of the data points decrease as Rmin is decreased, sug-
gesting that this higher-angular-momentum dimer gradually
converges to a universal behavior, with a slowness of conver-
gence similar to that of the trimers in the avoided crossing
region. We also show the trimer energies (the same data points
in Fig. 5) for comparison. As in Fig. 2(b), some of the trimers’
energies lie above those of the dimers, so that the trimers
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are embedded in the dimer+atom continuum. We note that
the trimers appear as bound states in our Born-Oppenheimer
calculation because the continuum channels are neglected.
There are two notable dimer curves; one of them is the s-wave
dominant dimer, which behaves in the same manner as that in
Fig. 11 when plotted via a(HH)

with−dd. The other one is of d-wave
dominant nature, which appears at around a(HH)

no−dd/rvdw � 1,
and seems to lie more or less besides the trimers in the avoided
crossing region if plotted via a(HH)

with−dd.
In Fig. 12 dimer energies for the fermionic system are

shown, for the parameters corresponding to Fig. 8. As it
is impossible to introduce the p-wave scattering volume, it
is not easy to present it in an analogous way to Fig. 2(d).
Still, most of the dimer energies show universal behaviors
with respect to K (3D)

c,F , together with some other stray points
which we suspect to be of high-angular-momentum character
� � 3. Similarly to Fig. 2(d), some of the trimers lie above
the dimer energy and are thus embedded in the dimer-atom
continuum.

The dimer energies for the strong dipole interaction
strength add � rvdw are shown in Fig. 13. The parameters
are taken to be the same as those in Figs. 9(a) and 9(b), and
the trimer data are also presented for comparison. While the
overall features become more complicated than the moderate
one in Figs. 11 and 12, possibly due to strong admixture
of various angular momentum channels, the overall rela-
tive features between the dimers and trimers share similar
features.

FIG. 13. Binding energy of the dimers (green triangles) of two
heavy atoms for strong dipole interaction add/rvdw = 50 (corre-
sponding to the top row of Fig. 9). (a), (b) Bosonic system’s dimer
(green triangles) and trimers (blue circles) in the even parity state,
and (c), (d) fermionic system’s dimer (green triangles) and trimer
(orange squares) in odd parity state. The trimer energies are the same
as those in Figs. 9(a) and 9(b).
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