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Complex-valued in-medium potential between heavy impurities in ultracold atoms
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We formulate the induced potential in a finite-temperature cold-atomic medium between two heavy impurities,
or polarons, which is shown to be complex valued in general. The imaginary part of the complex-valued potential
describes a decoherence effect, and thus the resulting Schrödinger equation for the two polarons acquires a
non-Hermitian term. We apply the developed formulation to two representative cases of polarons interacting
with medium particles through the s-wave contact interaction: (i) the normal phase of single-component (i.e.,
spin-polarized) fermions using the fermionic field theory and (ii) a superfluid phase using the superfluid effective
field theory, which is valid either for a Bose-Einstein condensate (BEC) of a single-component Bose gas or for
the BEC-BCS crossover in two-component fermions at a low-energy regime. Computing the leading-order term,
the imaginary part of the potential in both cases is found to show a universal r−2 behavior at long distance. We
propose three experimental ways to observe the effects of the universal imaginary potential in cold atoms.
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I. INTRODUCTION

The impurity problem is a paradigmatic quantum many-
body problem, providing us with a fundamental aspect on
the nature of strongly correlated quantum matters. Histor-
ically, the Anderson localization [1] and the Kondo effect
[2] are well-celebrated examples of the quantum impurity
problem. Another prototypical example of the impurity prob-
lem is the polaron; while it was originally proposed in the
solid-state physics [3], dressed quasiparticle states universally
appear around an impurity immersed in various quantum
matters. Unveiling the effective interactions between the im-
purities is pivotal to discovering and elucidating nontrivial
many-body phenomena. For instance, the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [4–6], acting between
localized spins in solids, gives rise to a spin-glass phase. In
subatomic physics, the impurity problem has been used to
distinguish different phases of matter. Quark confinement and
deconfinement are characterized by how gluon fields respond
to heavy quarks, regarded as impurities [7,8]. Despite the long
history of impurity physics, several longstanding problems are
often caused by the difficulty in finding a good basis to handle
the impurity states and in-medium interaction between them,
which is vital in the study of many-body physics of impurities.
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Recently, new and promising avenues have been opened
for exploring the impurity physics with unprecedented pre-
cision and degrees of control; in the field of cold atoms, a
few impurity atoms immersed in low-temperature Fermi and
Bose atomic gases have been successfully realized in cold
atoms, referred to as Fermi polarons [9–13] and Bose polarons
[14–18], respectively. The polaron problem has attracted
renewed interest [19–22], especially after its one-particle
properties, e.g., energies, lifetimes, residues, and effective
masses, have accurately been observed for variable interaction
strengths and temperatures in cold-atom experiments [9–18].

Beyond the one-particle properties, the exploration of
medium-induced interactions between polarons has been
an ongoing popular subject. On the experimental side, the
polaron-polaron interaction has been observed for a de-
generate Fermi gas in a perturbative regime [23], and its
signatures have also been observed in the nonperturbative
regime [9,12,24], in conjunction with a precursor of the
phase separation and the long-sought itinerant ferromag-
netism [12]. It is also notable that the polaron phenomena
have recently been achieved in semiconductor materials, in
which signatures of the polaron-polaron interaction have
been observed for bosonic [25] and fermionic [26] systems.
On the theoretical side, the induced potential is found to
show an oscillating behavior analogous to the RKKY inter-
action for the fermionic medium [27–30], while monotonic
attractive interactions appear for the bosonic one [31–39].
In particular, Ref. [38] has found that a superfluid medium,
irrespective of its microscopic details, should induce a uni-
versal long-range power-law potential between the polarons,
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showing a novel universal feature of the polaron-polaron
correlations.

Generally, however, such real-valued interaction potentials
cannot describe all of the relevant medium effects. Polaron
physics is inherently an open quantum system problem, pos-
sessing a non-Hermitian nature due to its environmental
medium effect. Recently, the open quantum system problem
has been believed to be relevant in broad fields of science,
ranging from quantum computations [40,41] and topological
quantum matters [42,43], to photosynthetic biological materi-
als [44,45]: coupling to an environment not only can lead to
decoherence and dissipation of the system, but also can bring
about entirely new emergent phenomena. To elucidate the
open-system nature of polaron physics, it is essential to recon-
sider the medium-induced interaction, which is a fundamental
building block of the many-body physics of polarons; due
to the non-Hermitian character, it is naturally expected that
the induced potential becomes complex valued. The complex-
valued potential between the heavy quarks [46–49] has also
been believed to be important in clarifying the quark dynamics
of quark-gluon plasmas—a hot nuclear matter created during
heavy-ion collision experiments.

As the real part of the polaron-polaron potential shows
a universal feature [38], it is natural to ask the following
question: “Does the imaginary part of the polaron-polaron
potential also show universality?” Answering this question not
only contributes to elucidating the dynamics of the polarons
in cold atoms and quarks in quark-gluon plasmas, but would
unveil a novel universal aspect of the open-quantum-system
problem, especially in a highly nontrivial interacting quantum
many-body setup.

To address this question, we study in this paper the
complex-valued in-medium potential between the two heavy
polarons in cold-atomic systems, especially focusing on its
imaginary part. Following the definition developed in the
context of hot QCD plasmas [46–49], we first lay out a
solid theoretical basis of the complex-valued in-medium po-
tential suited for the study of cold-atomic systems, which
is applicable even in the case with strong impurity-medium
coupling. We also present a practical formula for the complex-
valued potential when the impurity-medium coupling is weak,
which was first derived in [50] in the context of cold-atomic
gases using the influence functional formalism. We then
evaluate the imaginary part of the in-medium potential for
polarons immersed in two representative examples of the
finite-temperature quantum medium—a Fermi gas and a su-
perfluid gas. Analogous to the real part, we identify that it
reproduces an oscillating-decaying behavior for the Fermi
polarons at low temperatures [50], while it exhibits a mono-
tonic decay for the polarons in the superfluid. Notably, we
find that the long-range asymptotic behavior shows the same
power-law decay given by VIm(r) ∝ 1/r2 in both cases. We
stress that this is not a coincidence, but rather a universal
result: we show that the 1/r2 imaginary potential universally
appears for any physical system if the collision between the
polaron and an elementary excitation in the medium is almost
elastic. We also discuss three experimental manifestations of
the imaginary part of the complex-valued potential, that is, a
direct detection through radio-frequency interferometry, rela-
tively indirect methods via the spectral width of the bipolaron,

and relaxation of density fluctuation induced by the single
impurity.

The paper is organized as follows. In Sec. II, we provide
a general definition of the in-medium potential and formulas
to evaluate the real and imaginary parts applicable when the
impurity and medium is weakly coupled through an s-wave
channel. In Sec. III, we evaluate the imaginary part of the
in-medium potential acting on two polarons immersed in a
noninteracting Fermi gas and a superfluid gas and discuss
the physical origin of its universal r−2 behavior. In Sec. IV,
we discuss experimental protocols to observe the imaginary
potential. Section V is devoted to the conclusion and future
outlook. In Appendixes A–C, we provide detailed derivations
of some results in the main text, and the relation between our
work and the Langevin equation. Throughout this paper, a
natural unit h̄ = kB = 1 is used.

II. IN-MEDIUM POTENTIAL

In this section, we lay out the basis of the in-medium
potential between the two impurities immersed in a finite-
temperature medium relying on the real-time Green’s func-
tion, following Ref. [46]. After presenting a general definition
of the in-medium potential, we give a formula for the weakly
coupled impurity-medium case, reproducing the one derived
in Ref. [50], which will be used in the subsequent sections.

Consider two impurities with their masses M immersed
in a finite-temperature Fermi or Bose medium. To define the
medium-induced potential acting on the impurities, we rely
on an impurity two-body correlation function, which we can
regard as a generalization of the wave function for the relative
coordinates of the two impurities in the medium. Using the
impurity creation operator �̂†(x) at position x, we introduce
the following real-time correlation function:

�(r, t ) =
∫

d3R 〈Û †(t, 0)�̂(R − r/2)�̂(R + r/2)Û (t, 0)

× �̂†(x1)�̂†(x2)〉, (1)

where 〈·〉 denotes the average over the density operator ρ̂0 =
ρ̂med

eq ⊗ |0imp〉〈0imp| with an equilibrium density operator for
the medium ρ̂med

eq and the zero-particle state for the impurity
|0imp〉, and Û (t, 0) is a time-evolution operator of the total
system from 0 to t . We let the initial condition, or x1 and x2

dependence, of the wave function be implicit. One can then
confirm that �(r, t ) reduces to the usual wave function for the
relative motion of two impurities separated by a distance r in
the absence of the surrounding thermal medium.

Regarding �(r, t ) as a generalization of the wave function
motivates us to introduce an in-medium potential. In fact, one
finds that �(r, t ) effectively obeys the Schrödinger equation at
long time as

i
∂

∂t
�(r, t ) �

[
−∇2

r

M∗
+ V̄ (r,∇r )

]
�(r, t ), (2)

where we introduced the energy of two impurities in the
medium V̄ (r,∇r ) subtracted by the kinetic energy with an
in-medium effective impurity mass M∗. We note that V̄ (r,∇r )
generally contains spatial derivatives due to impurity motions.
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In the limit where the impurity is sufficiently heavy, we can
treat the impurity as a test particle almost fixed at a certain
position, and thus drop the derivative dependence of the ki-
netic term and V̄ (r,∇r ). As a result, the time derivative and
the potential only survive in Eq. (2). We can then define
the in-medium energy for two infinitely heavy impurities as
follows:

V̄ (r) ≡ lim
t→∞ lim

M→∞
i

�(r, t )

∂

∂t
�(r, t ). (3)

Equivalently, by matching the evaluated long-time behavior
of �(r, t ) with �(r, t ) � e−iV̄ (r)t�(r, 0), we can identify V̄ (r),
which we will adopt in the next section.

There is one small subtlety to regard Eq. (3) as a medium-
induced interaction potential between the impurities; V̄ (r)
does not vanish even when the two impurities are infinitely
separated as r ≡ |r| → ∞. This nonvanishing contribution
results from the complex-valued one-body energy of a single
heavy impurity immersed in the finite-temperature medium.
We thus define the in-medium genuine interaction potential
V (r) by subtracting this remaining contribution as

V (r) ≡ V̄ (r) − 2E (1) with 2E (1) ≡ lim
r→∞ V̄ (r). (4)

As shown later, the presence of the finite-temperature medium
makes the induced potential complex valued as

V (r) = VRe(r) + iVIm(r), (5)

whose imaginary part causes the dissipation and decoherence
in the impurities’ dynamics.

According to Eqs. (3) and (4), we need to evaluate the
long-time behavior of �(r, t ) to find the in-medium potential
V (r). While the definition presented so far works in gen-
eral, it is often difficult to accurately compute the impurity
correlation function (1), particularly in the case of strong
impurity-medium coupling. Thus, assuming that the impurity-
medium coupling is weak, here we provide a practically useful
formula for the complex-valued potential in terms of the re-
tarded Green’s function of the medium. This weak-coupling
assumption is usually valid for polaron physics in cold-atom
experiments, as long as the impurity and medium atoms are
away from any resonance and the impurity-medium s-wave
scattering length is small. We note that the interaction between
the medium particles is not required to be weak, but can be
strong, e.g., unitary gas (see Sec. III B).

We now specify the total Hamiltonian of the system as

Ĥtotal = Ĥmed + Ĥint + Ĥimp, (6)

where Ĥmed and Ĥimp give the Hamiltonian for the medium
and impurity, while Ĥint describes the interaction between the
impurity and the medium particles. Throughout this paper,
we assume that the medium and impurity particles interact
through the s-wave contact (or density-density) interaction, as
it can properly describe dominant low-energy scatterings in
cold atoms. The interaction Hamiltonian is then given by

Ĥint = g
∫

d3x �̂†(x)�̂(x)n̂(x), (7)

where g is the impurity-medium coupling constant. One can
relate g to the s-wave scattering length aIM between the impu-
rity and medium particles as g = 2πaIM( 1

m + 1
M ) with masses

m and M for the medium and impurity particles [51,52]. We
also introduced the particle number density operator for the
medium n̂(x).

For a weak impurity-medium coupling g, the real-time
correlation function �(r, t ) can be computed by the ladder
approximation. Using �(r, t ) � e−iV̄ (r)t�(r, 0) and Eq. (4),
we obtain the complex-valued potential as follows (see Ap-
pendix A for details):

VRe(r) = −g2 lim
ω→0

GR(r, ω), (8)

VIm(r) = −g2 lim
ω→0

2T

ω
Im GR(r, ω), (9)

where we introduced the retarded Green’s function of the
number density,

GR(r, ω) ≡ i
∫ ∞

−∞
dt eiωtθ (t )〈[n̂(r, t ), n̂(0, 0)]〉, (10)

with n̂(r, t ) ≡ eiĤmedt n̂(r)e−iĤmedt and the Heaviside step func-
tion θ (t ). We also find the r-independent one-body energy
E (1) = E (1)

Re + iE (1)
Im as

2E (1)
Re = 2g〈n̂(0)〉 + VRe(r = 0), (11)

2E (1)
Im = VIm(r = 0). (12)

We note that Eqs. (8) and (9) reproduce the formula given in
[50], whose main subject was the classical Langevin equation.
We provide a brief explanation in Appendix B of how the
complex potential and the classical Langevin equation are
related.

Some remarks are in order. First, in the weak impurity-
medium coupling regime, the in-medium potential V (r) is
determined by the dynamical properties of the medium with-
out the impurities [recall that the time evolution of n̂(x, t )
is controlled by Ĥmed]. We will later use this to propose
a way to experimentally investigate an imprint of the in-
medium potential on medium dynamics with a single impurity
(see Sec. IV C). Second, Eq. (9) is proportional to the tem-
perature T . As a result, the imaginary part representing
the dissipative effect is peculiar to finite-temperature media.
Finally, as we show in Appendix A, the derived formula
provides a natural generalization of the well-known formula
at T = 0.

III. EVALUATING IN-MEDIUM POTENTIAL

In this section, we consider two representative polaron
systems realized in ultracold-atom systems and evaluate the
in-medium potential (8) and (9) by computing (10): impurities
in a noninteracting Fermi gas in Sec. III A and those in a
superfluid in Sec. III B. They correspond to Fermi and Bose
polaron experiments realized in cold atoms [9–18]. These two
examples exhibit a common power-law decay (∝ r−2) in the
imaginary part of the in-medium potential over long distances.
In Sec. III C, we discuss the origin behind this novel universal
power-law decay, which is commonly shared by a wide class
of physical systems.
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FIG. 1. Feynman diagram representing the exchange of the
particle-hole fluctuation (solid lines), which induces the potential at
O(g2) between two impurities (amputated bold solid lines).

A. Polarons in Fermi gas

The polaron problem has attracted renewed interest
[19–22] As a warm-up, let us start from a simple fermionic
medium and show how the imaginary potential appears by
microscopic processes. An impurity immersed in a single-
component noninteracting Fermi gas is called the Fermi
polaron, which is realized as a single spin-up fermion in a
Fermi sea of spin-down atoms in ultracold atoms [9–13]. Let
ψ̂ f (x) be a field operator for a single-component fermion of
the medium. Then, the Hamiltonian of the system reads

Ĥ =
∫

d3x

[
1

2m
|∇ψ̂ f |2 − μ|ψ̂ f |2 + gψ̂†

f ψ̂ f �̂
†�̂

]
, (13)

where m and μ denote the mass and chemical potential of the
medium fermions.

For noninteracting fermions, we can exactly compute the
Green’s function from the diagram in Fig. 1 as

G
(
k, iωB

n

) = −
∫

q

nF (ξk+q) − nF (ξq)

iωB
n − ξk+q + ξq

, (14)

with the bosonic Matsubara frequency ωB
n = 2πnT at temper-

ature T , Fermi distribution nF (E ) ≡ 1/(eE/T + 1), the energy
measured from the Fermi sea, ξk = k2

2m − μ, and a shorthand
notations for the integral,

∫
k ≡ ∫

d3k/(2π )3. Performing the
analytic continuation and the Fourier transformation, the re-
tarded Green’s function is obtained as

GR(r, ω) = −
∫

k,q
ei(k−q)·r nF (ξk) − nF (ξq)

ω − ξk + ξq + i0
. (15)

Using Eqs. (8) and (9), we find

VRe(r) = −g2
∫

k,q
ei(k−q)·r nF (ξk) − nF (ξq)

−ξk + ξq
, (16)

VIm(r) = − 2g2T
∫

k,q
ei(k−q)·r2πδ(ξk − ξq)

× 1

T
nF (ξk)[1 − nF (ξk)]. (17)

VRe(r) gives a finite-temperature real potential, which reduces
to the RKKY interaction at T = 0. Our calculation reproduces
the complex-valued potential in the same setup obtained by
influence functional formalism [50].

Performing the integrals for VIm(r), we obtain

VIm(r) = −8(kF aIM)2

π
T f (2kF r, T/TF ), (18)

where we introduced the Fermi momentum kF ≡ √
2mμ,

Fermi temperature TF ≡ μ, and the function f (y, τ ) by

f (y, τ ) = 1

y

∫ ∞

0
ds

sin sy

e(s2−1)/τ + 1
. (19)

In Eq. (18), we also replaced the coupling constant g �
2πaIM/m relying on the heavy-impurity limit.

Expanding f (y, τ ) with respect to y, we can evaluate
asymptotic behaviors at kF r � 1 or kF r  1 as

VIm
(
r � k−1

F

)
TF

� −4(kF aIM)2

π

(
T

TF

)2

ln(1 + eTF /T ), (20)

VIm
(
r  k−1

F

)
TF

� −2(kF aIM)2

π

T/TF

1 + e−TF /T

1

(kF r)2
, (21)

where we neglected the higher-order correction with respect to
kF r or (kF r)−1. We note that the leading short-distance value
in Eq. (20) gives the imaginary part of the one-body energy
[recall Eq. (12)]. The same scaling with Eq. (21) is also found
in Ref. [53]. On the other hand, in the low-temperature limit,
we obtain

VIm(r)
T/TF �1−−−−→ −8(kF aIM)2

π
T f (2kF r, 0), (22)

with f (y, 0) = (1 − cos y)/y2. Similarly to the RKKY in-
teraction, the imaginary part of the potential shows an
oscillatory behavior in the low-temperature limit, whose pe-
riod is controlled by the Fermi momentum kF . VIm(r) vanishes
at T = 0 because it is proportional to T . Moreover, the
exponent of the power-law decay is VIm(r) ∝ r−2, which
contrasts a difference with that for the RKKY interaction,
VRe(r) ∝ r−4.

Figure 2 shows VIm(r) for several temperatures normalized
by either TF or T . The dashed curve in Fig. 2(a)—
corresponding to the zero-temperature limit—demonstrates
the oscillatory decay around T = 0 against the interpolaron
separation r. This oscillation is suppressed at higher temper-
ature. On the other hand, the magnitude of VIm(r) increases
linearly as T . This is because the imaginary part corresponds
to the dissipative effect associated with the finite-temperature
medium. Figure 2(b) also demonstrates the r−2 decay at long
distances specified in Eq. (21).

B. Polarons in superfluid gas

As a second example, we consider impurities in superflu-
ids. Such a system is realized as impurities immersed in a BEC
of the Bose gas [14–18] or a pair-condensed Fermi superfluid
including the unitary Fermi gas.

To clarify the long-range behavior of VIm(r) in a superfluid
medium, we rely on an effective Hamiltonian of a superfluid
phonon originally developed by Landau in describing the su-
perfluid 4He [54,55]. One advantage of this formulation is that
it captures a universal long-distance behavior—guaranteed by
the Nambu-Goldstone theorem [56–58]—without relying on
the perturbative treatment of the interaction between medium
particles. As a consequence, the following result covers not
only the weakly coupled Bose superfluid, but also the strongly
coupled Fermi superfluid across BEC-BCS crossover, includ-
ing the unitary regime, at the cost of the ability to describe
the short-distance behavior around, e.g., a healing length. Our
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(a) (b)

FIG. 2. (a) The imaginary part of the induced potential for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (solid blue, dashed-dotted green,
and dashed red curves), normalized by T . The dotted black curve shows the zero-temperature limit of the imaginary potential. (b) The imaginary
part of the induced potential at long distances for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (solid blue, dashed-dotted green, and dashed
red curves), normalized by TF . The dotted black curve shows the power-law decay r−2, which matches those of the induced potential.

formulation is thus complementary to more familiar formu-
lations for the Bose polarons such as the analysis based on
the so-called Fröhlich model [59,60] or the variational wave
functions [14,19,61,62].

In the superfluid phase, we have the number density and
phonon field as low-energy collective degrees of freedom,
as indicated by the spontaneously broken U(1) symmetry.
Let n̂(x) and ϕ̂(x) be such quantum operators, which satisfy
the canonical commutation relation [n̂(x), ϕ̂(x′)] = −iδ(3)

(x − x′). We then find the effective Hamiltonian of the super-
fluid phonon interacting with the impurity as follows [54,55]:

Ĥeff =
∫

d3x

[
n̂

2m
(∇ϕ̂)2 + ε(n̂) + gn̂�̂†�̂

]
, (23)

where m is the mass of medium particles and ε(n̂) denotes an
internal energy as a function of the number density.1

Considering the fluctuation around the global equilibrium,
we expand n̂(x) = n̄ + δn̂(x) and expand ε(n̂) at the quadratic
order. The effective Hamiltonian then reads

Ĥeff �
∫

d3x

[
n̄

2m
(∇ϕ̂)2 + 1

2χ
(δn̂)2 + 1

2m
δn̂(∇ϕ̂)2

+ gn̄�̂†�̂ + gδn̂�̂†�̂

]
, (24)

where we defined the inverse charge susceptibility χ−1 =
ε′′(n̄) and omit the constant term ε(n̄) and the higher-
order term with more than three δn̂. Since we are
interested in the long-distance behavior, we can re-
gard the interaction term appearing in the first line of
Eq. (24) as a perturbation. We emphasize that this treat-
ment follows from the derivative expansion [63] and does

1The effective Hamiltonian (23) is equivalent to the effective La-
grangian employed in [38], from which the real part of the in-medium
potential was derived. On the equivalence between these, we refer to
Ref. [63].

not require a small coupling constant among medium
particles.

To evaluate the retarded Green’s function for the number
density operator n̂(x), we again employ the imaginary-time
formalism,

(25)

where we defined Ek ≡ cs|k|. From Eq. (24), we also read
off the following three-point interaction vertex joining two
phonon and one number density fluctuations:

(26)

We now perform a perturbative expansion with respect
to the medium interaction term (26): the leading one-loop
diagram that contributes to the in-medium potential is given
in the left diagram of Fig. 3. Recalling Eqs. (8) and (9), we
evaluate the low-frequency behavior of the retarded Green’s
function. At vanishing frequencies, the propagation of the
density fluctuation δn̂(x) is suppressed as �nn(k, iωB

n = 0) =
χ . Thereby, the Green’s function of the number density di-
rectly connected to the impurity lines on the left diagram
of Fig. 3 can be replaced with �nn(k, ω) � χ after analytic
continuation to a low real frequency. The resulting diagram is
shown on the right of Fig. 3, which agrees with the diagram
computed in Ref. [38] to evaluate the real part of the potential.
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We thus find the corresponding Green’s function as

G
(
k, iωB

n

) � �nn
(
k, iωB

n

)+ χ2

2m2

∫
q
[q · (k + q)]2T

∑
l

�ϕϕ

(
iωB

n + iωB
l , k + q

)
�ϕϕ

(
iωB

l , q
)

� χ − 1

2m2

∫
q

[q · (k + q)]2

4Ek+qEq

{
[1 + nB(Ek+q) + nB(Eq)]

(
1

iωB
n − Ek+q − Eq

− 1

iωB
n + Ek+q + Eq

)

+ [nB(Ek+q) − nB(Eq)]

(
1

iωB
n + Ek+q − Eq

− 1

iωB
n − Ek+q + Eq

)}
, (27)

where we also added the tree-level contribution as the first
term. Here, nB(E ) ≡ 1/(eβE − 1) is the Bose distribution.
Performing the analytic continuation and the Fourier trans-
formation, we find the retarded Green’s function GR(r, ω),
from which the in-medium potential is obtained. The real part
agrees with that computed in Ref. [38] (except for the contact
interaction arising from the first term), while we identify the
imaginary part as

VIm(r) = −2πg2

m2

∫
k,q

ei(k−q)·r (q · k)2

4E2
k

δ(Ek − Eq)

× [1 + nB(Ek)]nB(Ek). (28)

Performing the angular integration with g � 2πaIM/m, we
obtain the following result (see Appendix C):

VIm(r) = − a2
IMT 7

2πm4c10
s

h(kT r), (29)

where kT ≡ T/cs is a thermal phonon momentum and

h(y) ≡
∫ ∞

0
ds

s6es

(es − 1)2

×
[

3 j1(sy)2

(sy)2
− 2 j1(sy) j2(sy)

sy
+ j2(sy)2

]
, (30)

with the spherical Bessel functions jn(x).
Using the asymptotic behavior of h(y) (see Appendix C),

we find that VIm(r) behaves at short and long distances (com-
pared to a thermal phonon length scale k−1

T = cs/T ) as

VIm
(
r � k−1

T

)
mc2

s

� −8π5a2
IMT 7

63m5c12
s

, (31)

VIm
(
r  k−1

T

)
mc2

s

� −π3a2
IMT 5

15m5c10
s

1

r2
. (32)

FIG. 3. Feynman diagram representing the exchange of the
phonon (solid lines), which induces the potential between two im-
purities (amputated bold solid lines) at O(g2). At low frequencies,
the left diagram can be effectively reduced to the right one (see the
main text).

According to Eq. (12), the leading short-distance value in
Eq. (31) gives the imaginary part of the energy of a single
polaron. Note that the imaginary part VIm(r  k−1]

T ) again
shows a power-law decay at long distances, VIm(r  k−1

T ) ∝
1/r2, which is slower than the decay of the real part, VRe(r 
k−1

T ) ∝ 1/r6, specified in Ref. [38].
Figure 4 shows VIm(r) in superfluids for several temper-

atures. In contrast to the Fermi polaron case, there is no
oscillatory behavior and the magnitude of the potential is more
sensitive to the temperature. One also explicitly confirms the
r−2 scaling at long distances, as clearly shown in the right
panel of Fig. 4.

C. Universal long-range power-law decay

In the previous sections, we have found that the imaginary
part of the in-medium potential between polarons in nonin-
teracting Fermi gases and superfluids both show a power-law
decay VIm(r) ∝ r−2 at long distances. The real part of the po-
tential similarly exhibits long-range power-law decay, which
is attributed to the gapless nature of the mediated excitations,
such as particle-hole excitations in Fermi gases and phonons
in superfluids. Accordingly, it is tempting to expect that the
long-range power-law behavior of VIm(r) is also due to the
presence of gapless excitations.

However, this statement is not true. Indeed, there is an
example in subatomic physics showing the same power-law
decay VIm(r) ∝ r−2 at long distances without gapless exci-
tations: the in-medium heavy-quark potential in hot QCD
plasmas shows the same power law [46–48], although the
(electric) gluon acquires Debye screening mass, bringing
about the exponential decay for the real potential. Namely, the
gapless nature of the medium excitations is unnecessary.

The power-law behavior originates from the common
structure of the low-energy scattering between the impurity
and the medium excitation. To clarify this origin, let us con-
sider the imaginary potential in momentum space,

Ṽ F
Im(k) ∝ −g2

∫
q
δ(ξq+k − ξq)nF (ξq)[1 − nF (ξq)], (33)

Ṽ SF
Im (k) ∝ − g2

m2

∫
q

(q2 + k · q)2

E2
q

δ(Eq+k − Eq)

× nB(Eq)[1 + nB(Eq)], (34)

which follow from Eqs. (17) and (28), respectively. The
asymptotic behavior at long distances is then specified by that
at low-momentum regions, k � 0.
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(a) (b)

FIG. 4. The imaginary part of the induced potential for polarons in the superfluid: (a) at short distances and (b) at long distances. Solid blue,
dash-dotted green, and dashed red curves show results for T/(mc2

s ) = 0.6, 0.8, and 1.0. In (b), the dotted black curve shows the power-law
decay r−2, which matches the asymptotic behaviors of the induced potential.

These equations allow a scattering interpretation: The
imaginary part is expressed in terms of the scattering am-
plitude of the medium excitation with the static impurity as
shown in Fig. 5 (see, e.g., Ref. [64] for the so-called cutting
rule). The integrand is composed of three parts: (a) the δ

function imposing the energy conservation of the on-shell
medium excitation, (b) the (properly normalized) scattering
cross-section part,2 and (c) thermal distributions for incoming
and outgoing excitations.

Let us now investigate the low-k behaviors of these
building blocks. Because the thermal distributions are k in-
dependent, the low-momentum behavior is controlled by the
δ function and cross section. At low momentum, k � 0, one
can approximate the δ functions as

δ(ξq+k − ξq) → δ(q · k/m) = m

qk
δ(cos θq), (35)

δ(Eq+k − Eq) → δ(csq · k/q) = 1

csk
δ(cos θq), (36)

yielding the k−1 factor (θq is the angle between q and k,
which is fixed θq = π/2 by performing the q integration). As
a result, if the low-energy scattering cross section approaches
to the nonvanishing constant, the above k−1 factor governs the
long-distance behavior, leading to r−2 behavior of VIm(r) in
coordinate space.

As the above discussion clarifies, the crucial point here
is whether the low-energy scattering cross section gives the
finite nonvanishing contributions at the vanishing momentum,
k → 0. The presence of nonzero contributions means that on-
shell medium excitation can scatter off an immobile impurity
with zero energy transfer, i.e., (Eq, q) → (Eq, q + k), at low
momentum, k � 0 (see the right panel of Fig. 5). Indeed,
the interaction vertices between the impurity and the medium
excitation investigated in previous sections have finite

2Note that E−2
q appears for the superfluid case from the proper

normalization with δ(Eq+k − Eq).

contributions in the limit of k → 0, allowing for such scat-
tering.

Therefore, when the impurity and the medium excitations
can collide elastically, the imaginary potential shows a uni-
versal power-law decay, VIm(r) ∝ r−2, at long distances. Such
a condition is expected to hold true not only for the Fermi
and Bose polaron systems presented above, but rather for
a wide variety of physical systems. In fact, the example
in subatomic physics—the in-medium heavy-quark potential
mentioned above—fits into this class. On the other hand, the
elastic scattering condition may be violated for not-so-heavy
impurity, where the recoil effects are relevant [65].

IV. EXPERIMENTAL MANIFESTATION

In this section, we discuss how the imaginary potential be-
tween the heavy polarons can be observed in the experiments.
Recently, the polaron has been realized in degenerate Fermi
[9,10,12,19] and Bose [14,15] environments in cold atoms.
With a high degree of controllability, the cold-atom systems
are expected to be the prime candidate to clearly observe
the polaron-polaron interaction. Indeed, some signatures of
the polaron-polaron interaction have already been observed in
the experiments [9,12,23,24]. We discuss below how to exper-
imentally observe the universal imaginary potentials between
the heavy polarons in cold atoms.

FIG. 5. Scattering interpretation of the imaginary part of the
induced potential. Taking the imaginary part results in cutting the
diagram with the dashed line in the left panel. The imaginary part
is thus given by the right panel, which gives a cross section of
the on-shell medium excitation (solid lines) scattered by the static
impurity (amputated bold lines).
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A. Radio-frequency interferometry signal

One way to directly probe the spatial dependence of the
polaron-polaron interaction V (r) is based on the spectroscopic
method used in Refs. [66,67] to observe and characterize
single polaron properties. In Refs. [66,67], two sequences
of radio-frequency pulses are applied to cold atoms, which
generate a quantum superposition between the noninteract-
ing and interacting states of the impurity particle with its
surrounding atoms. From the interference signal, we can
read off a real-time single-particle Green’s function of the
impurity.

A similar approach can be used to observe V (r) from the
real-time Green’s function (1): suppose that we have two
impurities at fixed positions R1 and R2 in the noninteracting
internal state with the surrounding atoms. If we apply two
sequences of radio-frequency pulses in the same manner as
above, each impurity realizes a superposition of interacting
and noninteracting states with its surroundings, and interfer-
ences occur between these states. The interference between
these states depends explicitly on |R1 − R2|, while the others
do not. Hence, from the |R1 − R2|-dependent signal, we can
obtain the real-time Green’s functions of the two impurities,
from which the in-medium potential V (R1 − R2) can be di-
rectly probed. The control of the impurity distance can be
achieved in cold atoms by pinning the positions of the im-
purity atoms either via focused optical tweezers [68,69] or via
a species-selected optical lattice [70,71] which strongly traps
the impurity atoms while leaving the surrounding environ-
ment atoms intact. Alternatively, if the observation sequence
is much faster than the timescale of the heavy polaron’s dy-
namics [23,66], we can essentially neglect the motion of the
impurity particles during the above observation sequence: in
this case, |R1 − R2| can be controlled by varying the density
of impurity atoms.

B. Spectral width of bipolaron at low temperature

The imaginary potential between the polarons affects the
spectral width of the bound state of two polarons, i.e., bipo-
laron. The imaginary part of the in-medium potential is
smaller than the real part at low temperatures because it is
proportional to the temperature as in Eq. (9). We can thus
essentially regard the relative wave function of the bipolaron
�b(r) created by the attractive VRe(r), and perturbatively esti-
mate its spectral width − 1

2� as (see Appendix B for a more
formal discussion)

1

2
� � −

∫
d3r|�b(r)|2V̄Im(r)

= −2E (1)
Im −

∫
d3r|�b(r)|2VIm(r). (37)

The width has contributions from both VIm(r) and the imagi-
nary part of the single-particle energy 2E (1)

Im (i.e., disconnected
diagrams), which are collectively expressed using V̄Im(r), as in
the first line.

Let us crudely evaluate the spectral width. Because VIm(r)
has its maximum absolute value at r = 0, the second term
in Eq. (37) achieves that maximum VIm(0) when the two
impurities get close. Using Eq. (12), the width at that time is

found as 1
2� � −4E (1)

Im . This result can be understood physi-
cally as follows: The medium recognizes the two polarons as a
single molecule with its coupling constant 2g. The imaginary
part of the self-energy of this single molecule is given by that
of one polaron with g2 replaced by (2g)2, resulting in the width
of one molecule being four times that of one polaron. In the
opposite case, where the two polarons are far apart, the second
term in Eq. (37) is negligible compared to the first term, and
thus the width is given by the sum of the contributions of
the two independent polarons as 1

2� � −2E (1)
Im . These two

extreme cases give crude upper and lower bounds for the
width as 2|E (1)

Im | < 1
2� < 4|E (1)

Im |, where the explicit form of
2E (1)

Im = VIm(0) is found in Eqs. (20) and (31). This inequal-
ity holds true as long as the imaginary part can be treated
perturbatively.

The width of the two polarons can be observed in cold
atoms by the radio-frequency spectroscopy [9,10,12,14,15],
with the rf pulse transferring the two impurities from a nonin-
teracting initial state to an interacting final state. It can also be
measured from the decay rate of its Rabi oscillation [10,12]
or via the width of a similar transition involving two polarons.
It can also be observed from the dynamical behavior of the
two impurities, although it may be more challenging than the
former.

C. Medium density fluctuation induced by a single impurity

Even with just a single impurity, we can also observe a
signature of the universal imaginary potential between two
polarons. The idea is similar to what we learn in electro-
magnetism: we can observe an electric field induced by a
single test charge, rather than a force acting from one test
charge to another test charge. In the present setup, as in
Eq. (7), the medium number density mediates the polaron-
polaron interaction. Thus, we can observe the complex-valued
potential as the change in the medium number density re-
sulting from the placement of a single test impurity in the
medium.

The fluctuation of the medium number density is evaluated
with the linear response theory, valid for our weak impurity-
medium coupling setup, as

〈δn(x, t )〉 = −
∫ ∞

−∞
dt ′
∫

d3x′ GR(x − x′, t − t ′)

× Aeff
0 (x′, t ′), (38)

where the conjugate field Aeff
0 (x, t ) coupled to the medium

number density is Aeff
0 (x, t ) = g(t )�̂†(x, t )�̂(x, t ), as read off

from Eq. (7). While the above formula can be applied to vari-
ous spatiotemporal dependence which may experimentally be
explored in cold atoms, here we focus on the simplest case of
a quench: we consider suddenly placing a heavy test impurity
at the origin x = 0 at time t = 0 as Aeff

0 (x, t ) = gθ (t )δ(3)(x).
This is experimentally achieved in cold-atom experiments by
transferring the impurity atom from a noninteracting state to
an interacting state with a rf pulse [10,12,14,15]. The long-
time behavior of the medium number density after the quench
is governed by the low-frequency behavior of GR(x − x′, ω).
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Recalling Eqs. (8) and (9), we find

GR(x, ω) = − 1

g2

[
VRe(x) + i

ω

2T
VIm(x) + O(ω2)

]
≈ − 1

g2

2iT VRe(x)2

VIm (x)

ω + 2iT VRe(x)
VIm (x)

. (39)

Extrapolating this low-frequency behavior and substituting it
into Eq. (38), we obtain

〈δn(x, t )〉 ≈ 1

g

[
1 − e−2T VRe (x)

VIm (x) t ]VRe(x). (40)

Thus, the medium number density shows an exponential
relaxation approaching VRe(x) at long time with a local re-
laxation time τx ≡ 1

2T VIm(x)/VRe(x). This indicates that we
can find signatures of the imaginary potential by measuring
the relaxation behavior of the medium density long after the
interaction quench. Notably, using Eq. (32) and the real-part
potential found in Ref. [38], we find scaling behaviors of the
local relaxation time as

τr � 2π3T 3

45c4
s

r4 (41)

at large distance for the superfluids. Similar scaling for τr

is also obtained for the Fermi case using Eq. (21), although
the large-distance Friedel oscillation at finite temperatures in
VRe(r) does not admit as simple a form as the superfluid one.

V. CONCLUSION AND OUTLOOK

We have studied the complex-valued in-medium potential
between two heavy impurities immersed in quantum envi-
ronments, with a particular focus on the Bose and Fermi
polarons in cold atoms. We provided a general definition
of the in-medium potential (3) and (4) from the long-time
behavior of the correlation function for two immobile impu-
rities immersed in the medium. When the impurity-medium
coupling is a weak s-wave contact coupling, the real and
imaginary parts of the complex-valued potential are expressed
by the low-frequency limit of the two-point retarded Green’s
functions of medium number density fluctuations, as given in
Eqs. (9) and (10).

We calculated the imaginary part in two setups relevant
for cold atoms: the polarons in the free Fermi gas and in the
superfluid gas. For the Fermi polaron case, using the fermionic
field theory, we found the analytic formulas in Eqs. (18) and
(19). As shown in Fig. 2, it shows an oscillatory decay at
low-temperature, while the oscillation is suppressed at higher
temperature. In the case of polarons in the superfluid gas, us-
ing the superfluid effective field theory, we found the analytic
formulas in Eqs. (29) and (30), which shows a monotonic
decay as shown in Fig. 4. Notably, the imaginary potential
in both cases shows a power-law decay VIm(r) ∝ r−2 at long
distance (see Figs. 2 and 4), which originates not from the
gapless nature of the medium excitations, but rather from
the elastic scattering nature of the medium excitation with
the heavy impurity. We also proposed three experimental
manifestations of the imaginary potential potentially accessi-
ble in cold-atomic systems—the rf interferometry signal, the

spectral width of the bipolaron, and the medium density dy-
namics after a quench of the impurity.

Understanding the correlations between the polarons can
lead to various interesting outlooks: with the imaginary part
of the polaron-polaron potential, supplemented with the real
part, we can formulate the full in-medium dynamics of the
two polarons. This will provide us with a better understanding
of the bipolaron problem, e.g., its binding, decoherence,
lifetime, and dissipative quantum dynamics. The correlation
between the polarons is also useful in understanding quantum
phases in population-imbalanced quantum mixtures, such
as the superfluid phase transitions [72–74] or itinerant
ferromagnetism [12,75].

More generally, our work paves the way toward an open-
quantum-system perspective of the polaron physics. As the
impurities are immersed in the quantum environment, the
polaron physics should generally be a non-Hermitian open
quantum problem. The imaginary part essentially captures its
non-Hermitian nature, such as the dissipative processes and
decoherences of the impurities. The complex-valued potential
may seem to violate the impurity number conservation, but
this can be resolved with a more sophisticated treatment of the
stochastic potential [76,77], in which the imaginary potential
is obtained from noise correlation. By generalizing further to
include the mobility of impurities, we can obtain additional
velocity-dependent forces such as the drag force, which take
into account the recoil of impurities. With these generaliza-
tions, we may understand the polarons as quantum Brownian
particles interacting with each other [78].

Our work is not only relevant for cold atoms, but also
provides a universal understanding of the quantum impu-
rity physics. The polaron phenomena not only appear in
condensed matter physics and cold atoms, but a similar
polaronlike phenomenon in subatomic physics has been ex-
perimentally realized in high-energy heavy-ion collisions, but
its physical property has not yet been understood, partly due
to the complex and uncontrolled experimental situation. For
example, the dynamics of a bottomonium in the quark-gluon
plasma (QGP) are analogous to the bipolaron problem [78]
and the dynamics of charm quarks and charmonia in the QGP
are similar to the many-body problems of impurities [79].
The universal aspect of the polaron physics explored in this
work provides us with an interdisciplinary understanding of
the polaron physics, ranging from QGP and condensed mat-
ter physics to cold atoms. Such a universal understanding,
together with a high degree of controllability in cold atoms,
will lay the basis for building a quantum simulator of the
polaronlike physics in QGP and condensed matter physics
with cold atoms.
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APPENDIX A: DERIVATION OF THE FORMULAS (8)–(12)
IN THE WEAK IMPURITY-MEDIUM COUPLING CASE

Here we provide a detailed derivation of the perturbative
formulas (8)–(12) for the complex-valued potential for the
interested readers. The derivation in this Appendix serves
as an alternative proof of those formulas based on the
operator formalism rather than the path-integral formalism
in Ref. [50].

For a system with weak impurity-medium coupling, de-
fined by Eqs. (6) and (7) in the main text, the interaction
picture with the choice of the unperturbed Hamiltonian,

Ĥ0 = Ĥmed + Ĥimp + g
∫

d3x �̂†(x)�̂(x)〈n̂(x)〉, (A1)

gives a useful basis. We then express the time-evolution oper-
ator Û (t, 0) = e−it Ĥtotal as

Û (t, 0) = e−itH0 T e−ig
∫ t

0 dt ′d3x �̂†(x,t ′ )�̂(x,t ′ )δn̂(x,t ′ ), (A2)

with T denoting the time-ordered product. Here, we intro-
duced Ô(t ) ≡ eit Ĥ0Ôe−it Ĥ0 for an arbitrary operator Ô, and
the number density fluctuation operator around its thermal
average as δn̂(x) = n̂(x) − 〈n̂(x)〉.

We take the heavy-impurity limit as the first step to evalu-
ate �(r, t ). In this limit, the large impurity mass M−1

∗ � M−1

suppresses its kinetic terms, i.e., the impurity is immobile and
can be treated as a test particle fixed at a certain position.
Then, the impurity density operator �̂†(x, t )�̂(x, t ) is time
independent and we obtain

�(r, t ) = e−itg[〈n̂(x1 )〉+〈n̂(x2 )〉]

×
〈
T exp

{
− ig

∫ t

0
dt ′ [δn̂(x1, t ′) + δn̂(x2, t ′)]

}〉
× �(r, 0). (A3)

To proceed further, we employ the weak-coupling expan-
sion with respect to the impurity-medium coupling g. In the
ladder approximation, we get

�(r, t ) � e−2itg〈n̂(0)〉 exp

{
− g2

∫ t

0
dt1

∫ t

0
dt2 [〈T δn̂(0, t1)δn̂(0, t2)〉 + 〈T δn̂(r, t1)δn̂(0, t2)〉]

}
�(r, 0), (A4)

where the translational and rotational invariance of the medium is used. Matching this expression with the aforementioned
long-time behavior �(r, t ) � e−iV̄ (r)t�(r, 0), we find V̄ (r) at O(g2) as

V̄ (r) = 2g〈n̂(0)〉 + lim
t→∞

g2

it

∫ t

0
dt1

∫ t

0
dt2 [〈T δn̂(0, t1)δn̂(0, t2)〉 + 〈T δn̂(r, t1)δn̂(0, t2)〉] + O(g3). (A5)

According to Eq. (4), subtracting the one-body energy, we
arrive at the expression of the in-medium interaction potential
V (r) for a weak impurity-medium coupling case as

V (r) � lim
t→∞

g2

it

∫ t

0
dt1

∫ t

0
dt2 〈T δn̂(r, t1)δn̂(0, t2)〉

= −2ig2
∫ ∞

0
ds 〈δn̂(r, s)δn̂(0, 0)〉, (A6)

where we dropped the O(g3) terms and assumed that
〈δn̂(r, s)δn̂(0, 0)〉 at fixed r decays in a finite duration
of time. Here we note that the zero-temperature limit of
Eq. (A6), expressed in terms of the time-ordered product,
reproduces a familiar formula of the induced potential at weak
coupling [80].

By separating the real and imaginary parts of Eq. (A6),
we can express them with the retarded Green’s function. For
instance, recalling 〈ÂB̂〉∗ = 〈B̂†Â†〉 and using the fluctuation-
dissipation relation, we find

VIm(r) = −g2

2

∫ ∞

−∞
ds 〈δn̂(r, s)δn̂(0, 0) + δn̂(0, 0)δn̂(r, s)〉

= −g2 lim
ω→0

2T

ω
Im GR(r, ω). (A7)

This completes the derivation of the perturbative formulas
(8)–(12) in the main text.

APPENDIX B: COMPLEX POTENTIAL IN OPEN SYSTEMS

To our knowledge, the in-medium complex potential for
heavy impurities was first applied to the cold-atomic physics
in Ref. [50], but the main subject was a classical Langevin
equation. In this Appendix, we explain how our work is
related to the formulation given in Ref. [50] by presenting
relations between the complex potential and several concepts
in quantum and classical open systems such as influence
functional, decoherence, and Langevin equation. From the
perspective of an open system, we gain a comprehensive
understanding of the complex potential, which allows us to
calculate physical quantities beyond the spectral density of
impurities.

The reduced density matrix of N impurities, ρ(Q, Q′, t )
with Q = (q1, q2, . . . , qN ), evolves from an initial condition
ρ(QI , Q′

I , tI ) to a final one ρ(QF , Q′
F , tF ) by an evolution

kernel K(QF , Q′
F , tF |QI , Q′

I , tI ),

ρ(QF , Q′
F , tF ) =

∫
dQI dQ′

IK(QF , Q′
F , tF |QI , Q′

I , tI )

× ρ(QI , Q′
I , tI ), (B1)
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where the kernel K is given by

K(QF , Q′
F , tF |QI , Q′

I , tI )

=
∫ QF ,Q′

F

QI ,Q
′
I

DQDQ′ exp

×
⎧⎨⎩i
∫

dt
M

2

∑
j

(
q̇2

j − q̇′2
j

)+ i�[Q, Q′]

⎫⎬⎭. (B2)

Here, �[Q, Q′] is called an influence functional [81,82].
When the impurity and medium are coupled weakly by the
contact interaction (7), the influence functional is given in
Ref. [50],

�[Q, Q′]

= −1

2

∫ tF

tI

dt
∑
i, j

VRe(qi − q j ) − VRe(q′
i − q′

j )

− i

2

∫ tF

tI

dt
∑
i, j

(
VIm(qi − q j ) − VIm(qi − q′

j )

− VIm(q′
i − q j ) + VIm(q′

i − q′
j )

)
+ O(Q̇, Q̇′), (B3)

where we use our notation for the medium correlation func-
tions. The higher-order terms in the derivative expansion
are omitted for simplicity. From this Markovian influence
functional, one can derive the quantum master equation for
N impurities. In Ref. [50], the authors take a classical
limit to obtain the Fokker-Planck equation, from which
they further get a generalized Langevin equation for the
impurities. For details, we refer to [83] as well as [50],
the latter of which uses the formalism developed in the
former.

In the influence functional in the recoilless limit, i.e., ig-
noring the O(Q̇, Q̇′) terms, the imaginary potential can be
expressed as an average over random phases,

exp

⎡⎣1

2

∫ tF

tI

dt
∑
i, j

(
VIm(qi − q j ) − VIm(qi − q′

j )

− VIm(q′
i − q j ) + VIm(q′

i − q′
j )

)⎤⎦
=
〈

exp

[
−i
∫ tF

tI

dt
∑

i

θ (qi, t ) − θ (q′
i, t )

]〉
θ

, (B4)

where θ (x, t ) is a Gaussian white noise with finite correlation
length [note that −VIm(x) is positive definite] satisfying

〈θ (x, t )θ (x′, t ′)〉θ = −VIm(x − x′)δ(t − t ′). (B5)

Therefore, in the recoilless limit, we can formulate the impu-
rity dynamics by a Hamiltonian with stochastic potential,

Hθ =
∑

i

p2
i

2M
+ 1

2

∑
i, j

VRe(qi − q j ) +
∑

i

θ (qi, t ). (B6)

The correlation length of θ (x, t ) determines the effective-
ness of wave-function decoherence. This stochastic picture
enables us to intuitively understand the origin of the imag-
inary part, which is derived using �(r, t ) in Eq. (1). The
real-time correlation function �(r, t ) is actually an averaged
wave function evolved in the presence of the noise and partial
cancellation of the amplitudes by the random phases results

in the imaginary potential. It also provides a simple derivation
of the generalized Langevin equation [50] with the help of
fluctuation-dissipation relation. Since the random force at the
position of a classical particle ri is given by the gradient of the
stochastic potential there,

f (ri, t ) = −∇θ (ri, t ), (B7)

the correlation of random force is

〈 fα (ri, t ) fβ (r j, t ′)〉 f = ∂α∂βVIm(ri − r j )δ(t − t ′). (B8)

The dissipative force is determined by the fluctuation-
dissipation relation. Note that the universal power-law decay
of VIm(r) ∝ 1/r2 at long distance suggests the random force
correlation decays ∝ 1/r4 at distant points.

Finally, let us apply the stochastic potential to the calcula-
tion of transition rate γ of a bound state �b. To calculate it,
let us first calculate the survival probability c(t ) after a short
time period t = �t ,

c(�t ) =
〈∣∣∣∣ ∫ d3r�∗

b (r)e−i�tHθ �b(r)

∣∣∣∣2〉
θ

. (B9)

After some algebra, we can get the transition rate,

γ ≡ −ċ(t = 0)

= � + 2
∫

d3rd3r′|�b(r)|2|�b(r′)|2[VIm(r+) + VIm(r−)],

(B10)

where r± = 1
2 (r ± r′) and � is given in Eq. (37). The second

term subtracts, from the total width �, the rate of staying in
�b after a collision, which approaches −� when the bound
state size is small. Therefore, the transition rate is actually
smaller than the spectral width. Similar calculation was done
in quarkonium in the quark-gluon plasma [77], but the total
width and the transition rate are equal (i.e., the second term
vanishes) because of the opposite charges of the heavy quark-
antiquark pair.

APPENDIX C: DERIVATION OF EQS. (29)–(32)

In this Appendix, we provide a derivation of Eqs. (29)–(32)
presented in the main text. We begin with Eq. (28) and, for
clarity, we will present it again here as

VIm(r) = − 2πg2

m2

∫
k,q

ei(k−q)·r (q · k)2

4E2
k

δ(Ek − Eq)

× [1 + nB(Ek)]nB(Ek). (C1)

We first decompose the momentum integral into the angular
parts as

VIm(r) = − 2πg2

m2

(
1

2π2

)2 ∫ ∞

0
dkk2

∫ ∞

0
dqq2

∫
d�k

4π

d�q

4π

× ei(k−q)·r (k · q)2

4c2
s k2

1

cs
δ(k − q)[1 + nB(csk)]nB(csk)

= − g2

8π3m2c3
s

∫ ∞

0
dk
∫ ∞

0
dqq2δ(k − q)

× [1 + nB(csk)]nB(csk)
∫

d�k

4π

d�q

4π
ei(k−q)·r(k · q)2,

(C2)
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where d�k denotes the angular integral for the momentum k.
We can perform the angular integrals as∫

d�k

4π

d�q

4π
ei(k−q)·r(k · q)2

=
(

∂2

∂ri∂r j

∫
d�k

4π
eik·r

)(
∂2

∂ri∂r j

∫
d�q

4π
e−iq·r

)
=
(

∂2

∂ri∂r j

sin kr

kr

)(
∂2

∂ri∂r j

sin qr

qr

)
, (C3)

where summation over repeated indices (i, j) is implied. After
performing the q-integral with the help of the δ function, we
obtain

VIm(r) = − g2

8π3m2c3
s

∫ ∞

0
dkk6[1 + nB(csk)]nB(csk)

×
(

∂2

∂zi∂z j

sin z

z

)(
∂2

∂zi∂z j

sin z

z

)∣∣∣∣
z=kr

. (C4)

To proceed further, it is crucial to recall the formula for the
spherical Bessel functions,

j0(z) = sin z

z
,

(
d

dz
− n

z

)
jn(z) = − jn+1(z), (C5)

which enables us to obtain

∂2

∂zi∂z j

sin z

z
= ∂2

∂zi∂z j
j0(z) = −δi j

j1(z)

z
+ ziz j

z2
j2(z), (C6)(

∂2

∂zi∂z j

sin z

z

)(
∂2

∂zi∂z j

sin z

z

)
= 3 j1(z)2

z2
− 2 j1(z) j2(z)

z
+ j2(z)2. (C7)

Substituting this result into Eq. (C4), we obtain

VIm(r) = − g2

8π3m2c3
s

∫ ∞

0
dkk6[1 + nB(csk)]nB(csk)

×
[

3 j1(kr)2

(kr)2
− 2 j1(kr) j2(kr)

kr
+ j2(kr)2

]
. (C8)

To make the integration variable dimensionless, we define
s ≡ csk/T = k/kT , which results in Eq. (29),

VIm(r) = − g2T 7

8π3m2c10
s

∫ ∞

0
ds

s6es

(es − 1)2

×
[

3 j1(skT r)2

(skT r)2
− 2 j1(skT r) j2(skT r)

skT r
+ j2(skT r)2

]
= − g2T 7

8π3m2c10
s

h(kT r), (C9)

with the function h(y) defined as in Eq. (30). Moreover, the
asymptotic behaviors of the spherical Bessel functions,

jn(x) ∼
{

xn

(2n+1)!! (x → 0)
1
x sin

(
x − nπ

2

)
(x → ∞),

(C10)

allows us to derive h(y) at y = 0 and y  1 as

h(y = 0) =
∫ ∞

0
ds

s6es

(es − 1)2

1

3
= 16π6

63
, (C11)

h(y  1) �
∫ ∞

0
ds

s6es

(es − 1)2

sin2(sy)

(sy)2

� 1

y2

∫ ∞

0
ds

s4es

(es − 1)2

1

2
= 2π4

15y2
. (C12)

Substituting these results into Eq. (C9), we obtain the asymp-
totic form of the imaginary potential given in Eqs. (31) and
(32) in the main text.
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