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Josephson dynamics and localization revivals in ultradilute quantum liquids
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We study the Josephson junction made of a one-dimensional ultradilute quantum liquid in a double-well po-
tential. We analyze the dynamics as a function of the interaction strength and compare the results to the standard
bosonic Josephson junction. It is found that the beyond-mean-field effects alter the dynamics, particularly in the
regime, where the beyond-mean-field corrections dominate over the residual mean-field interaction. In that case,
we observe nonlinear dynamics describing localization revivals instead of regular Josephson oscillations. In the
regime where the ultradilute quantum liquids perform the regular Josephson oscillations, their frequency is also
significantly changed in comparison with the regular Josephson junction. These results provide experimental
characteristics of the ultradilute quantum liquids that contrast with the Josephson oscillations of a regular
Bose-Einstein condensate.
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I. INTRODUCTION

Ultracold neutral atoms have proven to be a perfect setup
for studying fundamental quantum phenomena as well as
a promising platform for near-term quantum devices [1,2].
Low temperatures make quantum effects more prominent by
reducing thermal fluctuations and extending the system’s co-
herence time. A prominent and paradigmatic example is the
creation of a Bose-Einstein condensate (BEC) in ultracold
atomic gases [3,4]. Quantum degenerate bosonic gases allow
for a remarkably simple description in terms of a macroscopic
wave function which follows the nonlinear Gross-Pitaevskii
equation (GPE) [5,6]. However, the properties of the system
can be far from trivial. For instance, in binary mixtures with
balanced repulsive and attractive interactions near the border
of stability, the beyond-mean-field (BMF) effects described
by the Lee-Huang-Yang (LHY) term [7,8] become compara-
ble in strength with the mean-field interaction. As a result,
the formation of a novel state of matter corresponding to an
ultradilute quantum liquid rather than a gas was predicted
[9]. Such states differ from the usual liquids in two key
aspects, as quantum liquids (i) possess equilibrium density
which is, by many orders of magnitude, more dilute than
that of typical liquids, and (ii) are fully coherent, meaning
they are still described by a single condensate function. This
latter feature makes quantum liquids qualitatively different,
as they possess a well-defined phase that is absent in classical
liquids. This phase coherence can potentially manifest itself in
phase-related properties such as interference and the Joseph-
son effect.

In finite-size systems, there is an interplay between bulk
and surface energies, leading to a formation of quantum
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droplets, which can be formed in one-, two- and three-
dimensional geometries [9–12]. Experimental realization of
quantum droplets in binary mixtures was achieved shortly
after their theoretical proposal [13–17]. Due to a near can-
cellation of the repulsion and attraction, a separation of scales
exists, describing soft and hard modes. As a result, the en-
ergy contribution that is relevant for short scales can be
incorporated as a local term in the Gross-Pitaevskii equa-
tion for the liquid. Furthermore, within the GPE approach,
the interaction regime of a one-dimensional (1D) quantum
droplet can also be parametrized by a single control param-
eter, i.e., the rescaled number of particles and its excitation
spectrum and dynamics has nontrivial properties, as stud-
ied in Refs. [18,19]. Quantum droplets can also arise in
bosonic systems with dipolar interactions, close to the regime
in which contact repulsion is balanced by dipolar attrac-
tion, as studied extensively in recent years both theoretically
and experimentally [20–26]. Studying the stationary states
of quantum systems provides important insight into their
properties. However, examining their dynamics allows for
a deeper understanding of not only small amplitude exci-
tations, but also the rich landscape of out-of-equilibrium
phenomena, such as dynamical phase transitions [27]. One of
the fundamental examples, characteristic of quantum super-
fluid systems, is the Josephson junction (JJ). The dynamics
of Josephson junctions has been extensively studied in the
context of ultracold atomic gases both in theory [28–30]
and in experiment [31–34]. Josephson oscillations can occur
between two weakly coupled superfluid systems. A simple
implementation requires a double-well external trapping po-
tential which creates two superfluid pools with weak tunneling
between them. Such systems are easily achievable in exper-
iments with ultracold gases due to the precise control over
the interactions and external potentials. A small imbalance in
the population of the two wells leads to oscillations in both
particle number and relative phase with a frequency much
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smaller than the trap frequency, which is closely related to the
excitation spectrum of the system. However, for a large initial
imbalance, the system enters a nonlinear dynamical regime
known as a self-trapping characterized by small oscillations
around a nonzero average imbalance. The mechanism behind
oscillatory dynamics in JJs can be understood in terms of the
two-mode model (TMM), which simplifies the description of
the system to considering only two spatial modes correspond-
ing to occupations of either of the wells [29]. Its validity has
been the subject of detailed studies [35,36]. A more detailed
description of Josephson oscillations can be inferred from the
Bogoliubov excitation spectrum, where the Josephson oscil-
lations are related to the first antisymmetric mode [37–39].
In addition, there were numerous numerical studies of the
Josephson dynamics and the dynamical phase diagram both
in bosonic and in fermionic systems [40–42].

A renewed interest in Josephson dynamics has been
brought by the recent experimental realization of the self-
assembled JJ, in which two or more weakly coupled
superfluids are spontaneously formed by the periodic den-
sity modulation of a supersolid [43,44]. In this system, the
Josephson effect provides an opportunity to directly estimate
the superfluid fraction. This calls for a better understanding of
the dynamics of the Josephson oscillations in the context of
quantum liquids and the role played by the BMF corrections.

In this work, we consider a simple scenario of a junction
based on a one-dimensional ultracold dilute quantum liquid
formed by an unpolarized binary Bose mixture, where two
bosonic species are close to the balance of attractive and
repulsive contact interactions. In this regime, a liquid droplet
would emerge without the presence of a potential barrier. An
analogous three-dimensional system has been recently studied
in Ref. [45] within the TMM approximation. Here we focus
on understanding how the BMF effects affect the nature of
the small-amplitude oscillations dynamics and the frequency
of the oscillations in the Josephson regime; such shift in the
frequencies would be a clear and experimentally measurable
sign of the BMF character of the interactions.

This work is organized as follows. In Sec. II, we present
the mean-field model of a 1D quantum liquid and discuss the
pertinent approximations, introduce the double-well external
potential defining the JJ, and arrive at the extended GPE which
we subsequently solve in different interaction regimes. In
Sec. III, we introduce the TMM as the simplest approximation
of the Josephson dynamics and derive the ordinary differential
equations of the dynamical system governing the two-mode
dynamics for the case of our extended GPE. In Sec. IV, we
introduce the Bogoliubov approximation for the excitations
in our model and, in Sec. V, we present and discuss the
numerical results in the repulsive and attractive mean-field
regime, respectively. Finally, we discuss and summarize the
results in Sec. VI.

II. MODEL AND METHODS

We study a 1D binary Bose mixture in a double-well po-
tential,

V (x) = 1
2 mω2

hox2 + V0e−2x2/w2
, (1)

FIG. 1. Characteristic examples of the condensate function �(x)
of a system in a double-well potential considering the case with δg >

0. The dashed line represents the gas described solely by the mean-
field terms, given by Eq. (4), while the solid line includes the beyond-
mean-field (BMF) correction, given by Eq. (2). Although the addition
of the Lee-Huang-Yang (LHY) term leads only to a slight change in
the density profile, it significantly affects the dynamics within the
double well. The dotted line shows the potential (scale on the right).

where ωho is the frequency of the harmonic trap and V0 is
the height of the potential barrier; see Fig. 1. We describe
the two fully coherent condensates by mean-field condensate
wave functions ψσ (x, t ) with the two species labeled as σ =
↑,↓. The densities are given by nσ = |ψσ |2 and the coupling
constants are denoted as gσσ and g↑↓ for the intraspecies
and interspecies interactions respectively. In order to include
the BMF correction, we follow the procedure outlined in
Ref. [19].

We assume that the mixture always remains in the misci-
ble phase. It is further assumed that the residual mean-field
interaction δg = g↑↓ + √

g↑↑g↓↓ is weak. In the regime of
low-energy excitations, where n↑/n↓ = √

g↓↓/g↑↑, the sys-
tem is described by a single GPE for the mixture, which takes
a dimensionless form [19],

i∂t� = [ − 1
2∂2

x + V (x) + s|�|2 − |�|]�, (2)

where we used the healing length as a unit of length, ξ =
π h̄2√2|δg|/[m

√
g↑↑g↓↓(

√
g↑↑ + √

g↓↓)], and τ = mξ 2/h̄ as
a unit of time. The sign of the residual interaction is denoted
as s = sgn(δg). The dimensionless form for the external po-
tential is V (x) = 1

2ωhox2 + V0e−2x2/w2
, while the frequencies

are expressed in units of 1/τ , the potential barrier in units
of mξ 2/h̄2, and the condensate wave function � in units of
(
√

g↑↑ + √
g↓↓)3/2/[

√
πξ (2|δg|)3/4]. The rescaled normaliza-

tion plays the role of a dimensionless control parameter, which
depends on the interactions and the number of particles,

N =
∫

|�(x)|2dx. (3)

For large values of N , the mean-field term dominates over the
LHY correction and Eq. (2) reduces to the standard GPE,

i∂t� = [ − 1
2∂2

x + V (x) + s|�|2]�, (4)

with the same normalization condition, which parametrizes
the interaction strength. We therefore compare the solutions
of Eq. (2) with the dynamics of a standard BEC, described by
Eq. (4). We show the example of the condensate ground states
for the cases with and without the LHY term in Fig. 1.
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We use characteristic values of the parameters, ωho = 1 and
w = 0.5, for solving Eqs. (2) and (4), similarly to parameters
commonly used to describe the standard JJ (see, for example,
Ref. [38]). The initial configuration for the subsequent evolu-
tion in time is obtained as the ground state of the system either
with a small offset for the barrier’s position or by adding a
slight linear tilt to the potential (we check our results with both
methods) in order to introduce the initial imbalance z0 = z(0).
The imbalance between the two wells is defined as

z(t ) = NL(t ) − NR(t )

NL(t ) + NR(t )
, (5)

and the number of particles in the left (right) well is calculated
as NL(t ) = ∫ 0

−∞ |�(x, t )|2dx, (NR(t ) = ∫ ∞
0 |�(x, t )|2dx). We

also calculate the relative phase defined as

ϕ(t ) = ϕL(t ) − ϕR(t ) mod 2π, (6)

where the phases in the left (right) well are measured at the
center of the corresponding well. We vary the imbalance in
the entire possible range in order to scan across all dynam-
ical regimes, from small plasma oscillations to self-trapping
phenomena. The relation between the potential tilt (or the
offset) and the imbalance is highly nonlinear and does not
allow for a control of z0 with arbitrary precision. Nevertheless,
we can choose the values of z0 from all dynamical regimes.
However, in this article, we specifically focus on the dynamics
of small-amplitude oscillations. The initial state is obtained
from the imaginary-time evolution of Eq. (2). Afterwards, the
perturbation is removed and the real-time evolution is studied.

III. TWO-MODE APPROXIMATION

The simplest approach to model the dynamics of Joseph-
son oscillations with the potential given by Eq. (1) is to use
the celebrated two-mode approximation [29], where the wave
function is represented as

�(x, t ) = �L(x)cL(t ) + �R(x)cR(t ), (7)

with �L/R functions corresponding to the modes localized in
the left and right well, respectively, and the complex coeffi-
cients ci(t ) which, in general, vary with time. We determine
the mode functions numerically as �L/R = (�0 ± �1)/

√
2,

where �0, (�1) are the lowest symmetric (antisymmetric)
stationary solutions of the GPE (2). The ansatz in Eq. (7)
leads to

i∂t cL = E0cL − JcR + sU |cL|2cL − α|cL|cL, (8)

where

J = −
∫

dx �L(x)

[
−1

2
∂2

x + V (x)

]
�R(x)

is the tunneling coefficient,

E0 = −
∫

dx �L(x)

[
−1

2
∂2

x + V (x)

]
�L(x)

is the on-site energy, U = ∫
dx |�L(x)|4 describes the inter-

actions, α = ∫
dx |�L(x)|3 stems from the beyond-mean-field

correction, and we neglected all interaction terms between
different modes. The equation for cR is analogous to Eq. (8).
We express ci in terms of its phase and absolute value,

ci(t ) = √
Ni(t ) exp[iϕi(t )], and calculate the imbalance z(t )

as in Eq. (5) and the relative phase ϕ(t ) as in Eq. (6). Lin-
earization of the resulting equations, i.e., assuming z � 1 and
ϕ � 1, leads to

∂t z = 2Jϕ(t ), (9a)

∂tϕ = −(2J + sNU − α
√

N/2)z(t ). (9b)

The imbalance z(t ), given by Eq. (5), obeys the harmonic
oscillator equation, z̈(t ) + ω2

J z(t ) = 0, and should therefore
perform harmonic oscillations with the Josephson frequency,
which yields

ωJ =
√

2J (2J + sNU − α
√

N/2). (10)

The above result reduces to the well-known formula

ωJ =
√

2J (2J + sNU ), (11)

when the LHY correction is absent. The immediate obser-
vation is that the presence of the LHY correction makes
the Josephson frequency in Eq. (10) slightly smaller than
the mean-field prediction given in Eq. (11), provided the
same barrier height is used. Indeed, it is known that for the
Josephson junction in the mean-field BEC, the threshold for
observing the self-trapped regime zc decreases with N and is
given by zc = 2

√
2JNU − 4J2/(NU ) [39].

IV. BOGOLIUBOV EXCITATIONS

A more precise estimation of the Josephson frequency can
be obtained through the analysis of the Bogoliubov excitation
spectrum. We consider a small perturbation δ�(x, t ) of the
symmetric (i.e., unpolarized) lowest-energy state �0(x) and
expand the wave function as �(x, t ) = e−iμt�0(x) + δ�(x, t )
up to linear terms in δ�.

Then, expanding the perturbation into modes as

δ�(x, t ) =
∑

η

[uη(x)e−i(μ+ωη )t + v∗
η (x)e−i(μ−ωη )t ] (12)

leads to the Bogoliubov–de Gennes (BdG) equations in the
form (

K − ωη L
L K + ωη

)(
u(x)
v(x)

)
= 0, (13)

where uη(x) and vη(x) are the wave functions of the Bogoli-
ubov modes. The operators in the BdG matrix take the form

K = − 1
2∂2

x − μ + 2s�2
0 − 3

2�0, (14a)

L = s�2
0 − 1

2�0, (14b)

when the LHY term is included [19]. When the LHY cor-
rection is absent, these expressions simplify as K = −∂2

x /2 −
μ + 2s�2

0 and L = s�2
0 .

The Josephson frequency ωJ is given by the first nonzero
excitation frequency above the lowest energy mode, i.e., ωJ =
ω1, as the first antisymmetric mode corresponds to the os-
cillatory motion between the two wells. It is well known
that the Bogoliubov spectrum gives a better estimation of the
Josephson frequency than the TMM [38]. The appearance of
imaginary frequencies in the spectrum is a hallmark of an
instability of the underlying state around which the expansion
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FIG. 2. Time-dependent GPE simulations in the repulsive regime, δg > 0, with the LHY correction (V0 = 10μ in all plots). The first column
reports the results for a large normalization, N = 52.05. (a) z(t ) for two cases of Josephson oscillations (blue dotted and red solid lines) and
self-trapping (thick cyan line). (b) ϕ(t ) in the Josephson regime and (c) ϕ(t ) for the self-trapped dynamics; same colors apply. Here, for
small initial imbalance, we observe the regular plasma oscillations and the self-trapped regime is easily accessible when the imbalance grows
above a certain threshold. The second column shows (d) the imbalance z(t ) and (e) relative phase ϕ(t ) for small normalization, N = 0.28.
The localization-revival dynamics is observed for small initial imbalance z0 (red solid and dotted blue lines). For large z0, the system enters
the self-trapped regime (thick cyan line). The corresponding phase dynamics is shown with the same colors. The normalization of the two
examples corresponds to representative data points from Figs. 4(a), 4(b), and 4(d). The initial imbalance is chosen arbitrarily to represent
different dynamical regimes.

is performed and the presence of a true ground state with
a lower energy. In this case, the dynamics is analyzed with
respect to the false ground state.

V. RESULTS

A. Repulsive interactions

We first analyze the dynamics of Eq. (2) with repulsive
overall mean-field interactions, i.e., δg > 0, which is the
regime where the Josephson dynamics is typically considered,
and we study the role played by the BMF fluctuations. In
the standard JJ, for a small initial imbalance z0, the system
performs plasma oscillations, i.e., the imbalance oscillates
symmetrically around zero, and the phase difference between
the wells shows the same behavior. This regime is well under-
stood in terms of small-amplitude oscillations, as is clear from
the Bogoliubov analysis (see, also, subsequent paragraphs).
When the initial z0 grows above a certain threshold, the system
enters the dynamical regime of highly nonlinear oscillations,
where the average occupation of one well is larger than the
occupation of the other, and the system performs oscillations
around this average imbalance. This regime is known as a
self-trapping; a characteristic feature of this regime is that the
relative phase ϕ(t ) grows linearly with time.

The inclusion of the BMF correction shows that for in-
termediate to large (rescaled) particle number, the system
follows the behavior described above with only quantitative
corrections. We plot the time dependence of z(t ) in Fig. 2(a)
for two cases in the Josephson regime (dotted blue and solid
red lines) and one in the self-trapping regime (solid cyan line).
The dynamics of the relative phase is shown in Figs. 2(b) and
2(c), with the same colors as in Fig. 2(a). The choice of nor-
malization in these examples, i.e., N = 0.28 and N = 52.05,
is consistent with the data presented in subsequent plots, i.e.,
Figs. 4(a), 4(b), and 4(d), where we vary the normalization
uniformly on a logarithmic scale. We also present the time
evolution of the entire density distribution by plotting the

deviation from the unpolarized density, |�(x, t )|2 − |�0(x)|2,
where �0(x) = �0(−x) is the lowest-energy symmetric wave
function, in Figs. 3(b) and 3(c), respectively, for the Josephson
dynamics for intermediate N and for the self-trapped dynam-
ics for large N . The retrieval of these two regimes, present in
the standard bosonic JJ, is explained by the large N , which
leads to a strong mean-field interaction term that dominates
over the BMF correction.

The difference between the dynamics of a quantum liquid
and a mean-field condensate becomes evident for small N ,
where, instead, it is the LHY term that dominates over the
mean-field interaction. In this regime, for small initial im-
balance, we observe a completely different dynamics, which
consists of a periodic recurrence of large-amplitude imbalance
between the two wells intermitted with intervals of nearly
symmetric occupations. Note that the revivals take place on

FIG. 3. Space-time plot showing the dynamics in three different
regimes for the repulsive interactions, δg > 0, with the LHY term: (a)
N = 0.28, (b) N = 2.28, (c) N = 52.05, and for z0 ≈ 1 %. The color
scale represents the deviation from the equilibrium density during
the time evolution, i.e., |�(x, t )|2 − |�0(x)|2, where �0 is the lowest-
energy symmetric solution of the GPE.
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FIG. 4. Josephson frequencies for the overall repulsive mean-field interaction δg > 0 for two barrier heights: (a) V0 = 4μ and (b) V0 = 10μ.
In both panels, we show the solutions for the pure mean-field case (MF), given by Eq. (4), the case with the LHY correction (LHY), given
by Eq. (2), and the case with the LHY correction but with the barrier that is the same as for the mean-field case (LHY2), in the units of
Eq. (2). Empty markers correspond to fits to the solutions of time-dependent GPE (2): blue circles (MF), red squares (LHY), and cyan triangles
(LHY2). Lines correspond to the Bogoliubov frequencies: blue solid (MF), red dashed (LHY), and cyan dotted (LHY2), respectively. The
results of the TMM, that is, with the LHY term, given by Eq. (10), and without the LHY term, given by Eq. (11), are shown with blue pluses
(+), red crosses (×), and cyan ’s, respectively, for MF, LHY, and LHY2. Note that in the regime of localization-revival dynamics, marked as
a gray-shaded area, the Bogoliubov spectrum gives ωJ = 0. (c) Two generic examples of time evolution of the imbalance rescaled to its initial
value: z(t )/z0 for the Josephson (blue) and self-trapped (red thick line) regimes, both with (solid lines) and without (dashed lines) the BMF
interaction. The simulation parameters correspond to those from (b), that is, V0 = 10μ. (d) The imaginary part of the first (i.e., symmetric)
excitation frequency corresponding to V0 = 10μ that becomes purely imaginary in the regime of localization-revival dynamics for the quantum
liquid (LHY and LHY2). The border between the Josephson and localization-revival (shaded area) regimes is shown as a dotted vertical line.
When the BMF interaction is absent, the frequencies are real across the entire interaction regime (MF).

a different timescale as compared to the regular Josephson
oscillations. This localization-revival dynamics resembles the
dynamics of the Jaynes-Cummings model. Using the two-
mode approximation and expanding the wave function into
components with varying population imbalance, i.e., |n, N −
n〉 with n bosons in the left and N − n in the right well,
would indeed lead to similar time evolution equations with
revivals stemming from the interference of different occupa-
tion numbers. Similar dynamics has been studied for a weakly
attractive BEC in a double-well potential [46]. Note that here
the LHY attraction indeed overcomes the weakly repulsive
mean-field term, which makes a formation of a bright soliton
possible. We plot the time dependence of the imbalance, z(t ),
for a trap with the barrier height of V0 = 10μ in Fig. 2(d) for
three different z0, and the corresponding phase difference in
Fig. 2(e). It becomes clear that when the initial imbalance is
small, its subsequent dynamics undergoes periodic localiza-
tion in one of the wells. However, when the initial imbalance
exceeds a certain threshold, it enters the self-trapped regime
with visibly different dynamics. To clearly visualize the time
evolution of the entire density distribution, we plot the devi-
ation of the density from its symmetric equilibrium in color
in Fig. 3(a). One can clearly see the periodic but nonlinear
dynamics of localization revivals.

Next, we focus on the Josephson regime, studying the role
of the BMF corrections on the Josephson plasma oscillations.
To this end, we extract the frequencies of Josephson oscil-
lations from our time-dependent simulations of Eq. (2) and
compare the results obtained both with and without the LHY
term. With the growing normalization, the system becomes

ever less sensitive to the presence of the barrier because the
chemical potential also grows. Since the latter sets the en-
ergy scale for the system, in order to make our comparison
comprehensive and reliably compare the results with different
N , which we vary in a wide range between N = 10−1 and
N = 102, we decide to first measure the barrier height against
the chemical potential. Then, we also perform the third series
of simulations, for which we evolve Eq. (2), but we fix the
barrier height to that from the simulation of Eq. (4) with the
same N . These results are shown in Fig. 4(a) for a relatively
low barrier, V0 = 4μ, and in Fig. 4(b) for a larger barrier,
V0 = 10μ.

For low barrier heights, in our example for V0 = 4μ, we
observe Josephson oscillations across the entire range of par-
ticle number N , regardless of whether we deal with a quantum
liquid or a regular BEC. In Fig. 4(a), we show the results of the
evolution of the GPE for a liquid, given by Eq. (2), with red
squares (labeled as LHY) and the standard mean-field GPE,
given by Eq. (4), with blue circles (labeled as MF), and the
result of Eq. (2) but for the same barrier height that we had
for Eq. (4) with cyan triangles (labeled as LHY2). It becomes
clear that the presence of the LHY term, although moder-
ately manifested in the density profiles (see Fig. 1 for the
wave-function profiles), significantly modifies the Josephson
frequencies. For the sake of completeness, we also calculate
the Josephson frequencies from the TMM with the LHY
term, given by Eq. (10), and without the LHY term, given by
Eq. (11), and we show the results with markers: blue pluses
(+), red crosses (×), and cyan Y’s ( ) for the same three
cases, respectively. Finally, we compare the results with the
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FIG. 5. The difference between the energy of an unpolarized
solution and the ground-state energy per particle, (Esymm − EGS)/N ,
for the same parameters as in Fig. 4(b), that is, V0 = 10μ and δg > 0
(blue squares and line). The corresponding polarization (imbalance)
of the ground state is shown as a gray shade with a scale on the
right axis. Below the critical N , the ground state becomes highly
polarized (localization) and the unpolarized state is unstable. These
results remain in agreement with the Bogoliubov spectrum and time
dynamics. The insets show (a) the wave functions of the polarized
ground state (blue solid line) and unpolarized unstable state for the
localization regime and (b) the unpolarized ground state (blue solid
line) for the Josephson regime. For clarity, the shape of the potential
is also shown (gray line, not in scale).

calculation of the Bogoliubov spectrum, which we mark with
blue solid, red dashed, and cyan dotted lines, respectively, for
the three cases. It is clear that for small to intermediate N , all
three methods give the same frequencies, and the discrepan-
cies between the TMM and the two other methods appear for
large N , where the nonlinearities start playing an important
role and in agreement with the observations of Ref. [38] for a
regular GPE.

For larger barriers, such as V0 = 10μ in our example, the
effect of the LHY term becomes more pronounced and might
result in a qualitatively different behavior. For intermediate
and large N , we observe regular Josephson dynamics as we
did for the lower barrier, and all three methods of calculat-
ing the Josephson frequencies give similar results [see, also,
Fig. 4(c) for z(t ) as a function of time]. However, the differ-
ence becomes dramatic in the small interaction regime, N �
1, where the presence of the LHY correction has a profound
effect on the oscillation dynamics. In that case, the system
enters the localization-revival regime shown as a gray area in
Fig. 4(b). It is remarkable that in this regime, the Bogoliubov
analysis gives a zero frequency corresponding to the first an-
tisymmetric mode (oscillations); see the red dashed and cyan
dotted lines in Fig. 4(b). Moreover, the frequency of the lowest
mode acquires a finite value and becomes imaginary, clearly
showing the instability of this state, as shown in Fig. 4(d).
Note that this is another striking difference between the na-
ture of the localization-revival dynamics and the self-trapping.
Such behavior can be further explained by studying how the
actual ground state changes when N decreases below this
threshold value. It turns out that in agreement with the Bogoli-
ubov analysis, the symmetric, unpolarized solution no longer
corresponds to a stable energy minimum, but the true ground

FIG. 6. Results for the overall attractive mean-field interac-
tion, δg < 0. (a) The wave functions for three different N for the
case of the standard mean-field GPE (4) without the LHY term.
(b) Phase diagram corresponding to GPE without the LHY terms,
given by Eq. (4), in the small-amplitude oscillations regime, i.e., the
Josephson dynamics vs the localization-revival dynamics. Crosses
correspond to the parameters we chose for (c) and (d). (c) Calculated
frequencies of the Josephson oscillations of Eq. (4) as a function of
N : GPE (circles), TMM (crosses), and Bogoliubov frequency (lines).
The scale is on the left. The orange dashed line shows the imaginary
part of the lowest (symmetric) mode frequency, where a nonzero
value signifies the presence of the instability (scale on the right).
(d) Same as in (c), but for the case with the BMF correction, i.e.,
Eq. (2).

state becomes polarized, as shown in Fig. 5. The energy of the
unpolarized state is larger than the ground-state energy exactly
below the same value of N for which we observe the transition
to the localization-revival dynamics. The ground states are
shown in the insets of Fig. 5(a) for the polarized phase (small
N) and Fig. 5(b) for the unpolarized phase (large N).

B. Attractive interactions

Finally, we analyze the dynamics of the oscillations for
the attractive mean-field interaction, i.e., δg < 0. In contrast
to the procedure used in the repulsive case studied in the
previous section, we maintain a constant barrier height in
units of Eq. (2), rather than keeping the V0/μ ratio fixed
(but in a wide range corresponding to V0/μ ≈ 10), as the
chemical potential changes very rapidly in the attractive case.
In the absence of the BMF correction and for sufficiently low
particle numbers, the dynamics of the system is characterized
by low-frequency Josephson oscillations. Again, we calculate
the Josephson frequencies solving the time-dependent GPE
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(4) and from the TMM, given by Eq. (11), and, finally, as
the first antisymmetric Bogoliubov excitation. We find a very
good agreement between all three approaches and the results
are presented in Fig. 6(c) with a blue line for the Bogoliubov
frequency, circles for the GPE solution, and red crosses for
the TMM (the scale is given by the vertical axis on the
left). We also plot the imaginary part of the frequency of
the lowest symmetric mode frequency with a dashed orange
line (scale on the right). Since in that case the mean-field
interaction is attractive, the transition to localization occurs
even in the absence of the BMF correction [47]. The mecha-
nism resembles that of the repulsive mean-field case: above a
certain threshold, the attraction becomes sufficiently strong to
destabilize the unpolarized state towards the true ground state,
which becomes polarized [see Fig. 6(a) for the wave-function
profiles]. This effect does not strongly depend on V0, as shown
in the phase diagram in Fig. 6(b).

The presence of the LHY term makes the ultradilute
quantum liquid with attractive interactions always localize,
regardless of the interaction regime. In this case, the LHY
correction is strong enough to compensate for the weak mean-
field attraction in the small-N regime. The results of the
Bogoliubov spectrum calculation are depicted in Fig. 6(d).
As shown, the Josephson frequency remains zero across the
entire range of N (solid blue line, scale on the left), while
the imaginary part of the frequency of the lowest symmet-
ric mode is nonzero everywhere (dashed orange line, scale
on the right). In the regime of small interactions, where the
LHY term dominates, the system asymptotically approaches
the pure LHY liquid obtained in Ref. [48]; therefore, the JJ
under these conditions can be another way to test the LHY
quantum liquid experimentally, and the physics governed by
corrections beyond the LHY term.

VI. CONCLUSIONS

In conclusion, we analyzed the small-amplitude oscilla-
tions of the one-dimensional bosonic JJ for an ultradilute

quantum liquid and compared the results with that of the usual
BEC governed by the GPE. This allowed us to investigate
the role of the BMF corrections on the Josephson dynamics.
The results indicate that apart from the regular Josephson
oscillations, there is a highly nonlinear regime correspond-
ing to localization-revival dynamics. This regime emerges in
quantum liquids either when the overall mean-field interaction
is repulsive for weak interactions or when it is attractive for
any interaction strength.

When an ultradilute liquid stays in the regime of regu-
lar Josephson oscillations, its frequencies significantly differ
from those of a regular BEC, providing, in principle, yet
another way to characterize the ultradilute liquids in the exper-
iment. Note that our model is strictly one dimensional and its
direct experimental realization is challenging. In fact, recent
experimental realizations of binary quantum droplets [13,14]
and pure LHY quantum liquid [48] remained in the confined
three-dimensional regime where local density approximation
works well, resulting in a different type of nonlinearity than
we consider here [49,50]. Studying Josephson dynamics in
quasi-1D ultradilute liquids across the dimensional crossover
[11,12] would constitute a valuable extension of this work,
which we leave as an outlook for the future.

Our study, despite being limited to one dimension, sets the
stage for more complex scenarios, such as the aforementioned
quasi-1D geometries or those involving dipolar gases, where
a self-organized JJ was recently observed [44].
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