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Partial confinement in a quantum-link simulator
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Confinement and deconfinement, captivating attributes of high-energy elementary particles, have recently gar-
nered wide attention in quantum simulations based on cold atoms. However, partial confinement, an intermediate
state between the confinement and deconfinement, remains underexplored. The partial confinement encapsulates
the phenomenon that the confining behavior of charged particles is contingent upon their relative positions. In this
paper we demonstrate that the spin-1 quantum-link model provides an excellent platform for exploring partial
confinement. We conduct a comprehensive investigation of the physics emerging from partial confinement in the
context of both equilibrium and nonequilibrium dynamics. Potential experimental setups using cold atoms are
also discussed. Our work offers a simple and feasible routine for the study of confinement-related physics in the
state-of-the-art artificial quantum systems subject to gauge symmetries.
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I. INTRODUCTION

Confinement is a fundamental property prominently ob-
served in quantum chromodynamics (QCD), where the
interquark potential increases with their distance [1–3]. This
prevents the existence of isolated quarks due to energetic
instability; instead, they tend to bind together into hadrons,
either as mesons (quark-antiquark pairs) or baryons (triplets of
quarks). Although the concept originated in QCD, analogous
phenomena can also manifest in strongly coupled charges in
quantum electrodynamics (QED) [4,5], i.e., the charge con-
finement. Dimensional analysis indicates that the dimension-
ality of the coupling constant is determined by the dimensions
of the system. Specifically for 3 + 1 dimensions, the coupling
constant is dimensionless, leading to a deconfined Coulomb
potential of approximately 1/r, where r is the distance be-
tween two charges. The deconfinement-confinement phase
transition can occur by tuning the coupling strength and the
temperature [6]. However, for (1 + 1)-dimensional QED, also
known as the Schwinger model, the dimensionality of the cou-
pling constant scales linearly with r. Consequently, apart from
certain exceptional cases, the confining phase becomes quite
prevalent. Furthermore, confinement and deconfinement phe-
nomena also appear in emergent gauge theories from strongly
correlated electrons and recently developed Rydberg atomic
arrays [7–11]. For instance, transition between a valence bond
solid to spin liquid phase can be understood in a picture
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of confinement-deconfinement transition of spinons [12,13].
However, large-scale numerical investigation of the real time
dynamics of confinement or deconfinement on classical com-
puters is challenging.

Recently, much effort has been made to overcome this
barrier through quantum simulation [14–24], which lever-
ages systems with discrete degrees of freedom. This includes
analog simulations using optical lattices [25–46] or trapped
ions [47–50] and digital simulations realized on various quan-
tum computing platforms [51–63]. The quantum-link model
(QLM) [64] serves as one of the most commonly used ap-
proaches to simulate lattice gauge theories, which are based
on the Hamiltonian formalism with space discretized while
time remains continuous. In QLMs, matter particles are placed
on lattice sites, while gauge spins with a finite local Hilbert
space are located on the links connecting neighboring sites.
The realization of the QLM is considered a powerful approach
for exploring strongly coupled QED, as strong coupling ren-
ders perturbative field theory ineffective, and hence quantum
simulation can essentially circumvent the issues encountered
by classical simulations, such as the sign problem in quantum
Monte Carlo methods [65]. In these quantum-link simulators,
both confinement and deconfinement have been extensively
studied, encompassing theoretical [44,45,66–73] and experi-
mental [30,74] contexts. Particularly for the spin-1/2 QLM,
the confinement-deconfinement transition has been experi-
mentally signified in dynamics through tuning the topological
angle [30].

In this paper we delve into an intermediate phe-
nomenon between confinement and deconfinement in (1 +
1)-dimensional QED, called partial confinement, within the
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context of quantum simulation. It refers to the situation
where the confining or deconfining status between charges
depends on their relative positions. Our study draws inspira-
tion from the seminal work of Coleman [5], which studied
half-asymptotic particles in the continuum Schwinger model.
Here we demonstrate that the one-dimensional spin-1 QLM
can serve as an excellent platform for observing partial con-
finement: It retains the essential physics while being simple
enough to be realized within the scope of current experimental
capabilities. Taking the spin-1 QLM as a background, we
introduce the basic concept of partial confinement and dis-
cuss the associated emergent physics in both equilibrium and
nonequilibrium dynamics.

It is worth clarifying that the terminology of par-
tial (de)confinement has already been introduced in QCD
[75–77]. Therein, partial confinement refers to a phase where
color degrees of freedom split into confined and deconfined
sectors, with a subgroup of the SU(N ) gauge group becoming
deconfined while the remainder stays confined. This is typi-
cally characterized by a nonuniform distribution of Polyakov
loop phases and the N dependence of thermodynamic quan-
tities. As such, this notion of partial confinement carries a
different physical meaning compared to ours defined above.

The rest of this paper is structured as follows. Section II
provides a review of the spin-1 quantum-link model, detail-
ing its essential physical features. In Sec. III we delve into
the equilibrium properties of partial confinement within the
spin-1 QLM. Section IV discusses how partial confinement
manifests in nonequilibrium dynamics. In Sec. V we explore
the feasibility of experimental realizations using cold atoms
trapped in optical superlattices. A brief summary is provided
in Sec. VI.

II. SPIN-1 QUANTUM-LINK MODEL

The spin-1 quantum-link chain is characterized by the
Hamiltonian [44,64,78]

H = −J
N−1∑
j=1

(
1√
2
ψ jS

+
j ψ j+1 + H.c.

)

+ m
N∑

j=1

ψ
†
j ψ j + g

N−1∑
j=1

(
(−1) j+1Sz

j + θ

2π

)2

, (1)

where ψ j denotes the local matter fields of fermions and Sz,±
j

are the spin-1 Pauli operators representing the gauge spins
existing on the link between two neighboring sites j and
j + 1. The number of sites N must be even, allowing for the
division of fermions into electrons and positrons, yielding the
particle-antiparticle picture: For j ∈ odd, the unoccupied and
occupied statuses of electrons are denoted by white circles and
blue circles, respectively, in Fig. 1, whereas for j ∈ even, the
corresponding occupation status of positrons are illustrated by
white circles and red circles.

The last two terms in H represent the fermion mass with
m � 0 and the electric-field energy g

∑
j E2

j with g � 0 and

Ej = (−1) j+1Sz
j + θ

2π
, (2)

FIG. 1. Shown on top is the schematic representation of a spin-1
quantum-link model in the particle-antiparticle picture. Circles de-
note matter fields residing on lattice sites; links between neighboring
sites represent electric fields Ej realized by gauge spins Sz

j . Two
adjacent gauge spins with a matter field in between constitute a
building block. Shown on the bottom is the notation convention for
matter-field occupations and electric spin states.

respectively. A local Ej consists of two parts. The Sz
j rep-

resents the quantized electric field capable of adopting three
states |s j = −1〉, |0〉, and |1〉. The factor (−1) j indicates that
the electric field Ej depends on the gauge spins in an alternat-
ing manner: Ej aligns with Sz

j for j ∈ odd, while they differ
by a minus sign for j ∈ even. The c-number θ is called the
topological angle [5,79–81], which reflects the influence of an
external static electric field. Thereby, the eigenvalues of Ej

can also take three real values, i.e., ε j = (−1) j+1sz
j + θ/2π .

Restricting Ej within a finite status is a key advantage of
the QLM, as it facilitates experimental simulation of electric
fields using a finite number of discrete degrees of freedom
(such as cold atoms with internal spins). In Fig. 1 the black
arrows on links represent the electric-field state ε j in the
case of θ = 0, where each left- (right-)pointing arrow denotes
ε = −1/2 (1/2). Orange arrows depict the background field
of ±1/2, corresponding to the cases of θ = ±π , respectively.
A pair of opposing arrows on the same link can mutually
cancel each other out.

The first term in Eq. (1) characterizes the matter-gauge
interaction. This term provides the Schwinger mechanism,
i.e., a pair of an electron and a positron merge together ac-
companied by the emission of gauge photons, as well as its
reverse process. Photon creation and annihilation are reflected
in the change of spin states via S±

j .
The spin-1 QLM exhibits a U(1) local gauge symmetry

generated by the local Gauss operator

Gj = Ej − Ej−1 − (−1) jψ
†
j ψ j

= (−1) j+1
(
Sz

j + Sz
j−1 + ψ

†
j ψ j

)
, (3)

satisfying [Gj, H] = [Gj, Gk �= j] = 0. This ensures the in-
variance of the Hamiltonian under arbitrary U(1) gauge
transformations Uj = exp(iφ jG j ). As per Eq. (3), Gj is de-
fined within a building block consisting of two gauge fields
{Ej−1, Ej} and a matter field ψ j in the middle (see the box
with dashed lines in Fig. 1). The quantum number of Gj ,
denoted by q j , is called the static gauge charge, which is
apparently a good quantum number. The q j characterizes the
difference between the net electric flux Ej − Ej−1 and the
matter charge ψ

†
j ψ j . The additional factor (−1) j arises from

the opposite matter charges carried by electrons and positrons.
The U(1) gauge symmetry divides the total Hilbert space into
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several gauge sectors, each labeled by a unique set of gauge
charges q = {q1, q2, . . . , qN−1}. Notably, the sector with q =
0 is called the physical sector, as now Eq. (3) aligns with the
traditional Gauss law in the classical electrodynamics.

In some literature [44,48,82,83], the QLM [Eq. (1)] is
presented in an alternative form within the particle picture,
described by the Hamiltonian with staggered mass [84,85]

H̃ = −J
N−1∑
j=1

(
1√
2
ψ

†
j S+

j ψ j+1 + H.c.

)

+ m
N∑

j=1

(−1) jψ
†
j ψ j + g

N−1∑
j

(
Sz

j + θ

2π

)2

, (4)

which relates to the particle-antiparticle Hamiltonian H
[Eq. (1)] through a particle-hole transformation on odd sites,
i.e., ψ j∈odd �→ ψ

†
j∈odd, as well as a transformation on even

gauge spin S+
j∈even �→ −S−

j∈even and Sz
j∈even �→ −Sz

j∈even. In

this framework, ψ
†
j ψ j at odd sites represents the occupation

below the Dirac sea, thereby exhibiting a negative energy
(mass) −m. The creation of a hole ψ j in the particle pic-
ture is equivalent to the creation of an electron ψ

†
j in the

particle-antiparticle picture. Note that both Hamiltonians H
and H̃ are mathematically equivalent for calculation purposes.
Therefore, we proceed with our following analysis using the
particle-antiparticle picture.

III. PARTIAL CONFINEMENT IN EQUILIBRIUM

The confining effects can be clearly demonstrated by the
properties of equilibrium states in the physical sector q = 0.
We first focus on the simplest case of J = 0, where the matter
and gauge fields are decoupled, thereby ψ

†
j ψ j and Sz

j being
conserved. We insert a pair of a test electron and a positron
into the vacuum, separated by a distance d , as schematically
shown in Fig. 2(a). The d can be positive or negative, with
d > 0 indicating the electron is to the left of the positron
and vice versa. The case of d = 0 is excluded by the Pauli
exclusion principle. According to Gauss’s law [Eq. (3)], the
system is in the string state

|ψstr〉 =
{| · · · 001−1010 · · · 010−1100 · · · 〉 for d > 0
| · · · 1−1010−10 · · · 0−110000 · · · 〉 for d < 0,

(5)
where an electric string exists between the matter charges
[see Fig. 2(a)]. The notation convention in a building block
is |s j−1 , n j, s j 〉, with s j and n j being the quantum numbers
of Sz

j and ψ
†
j ψ j , respectively. For a sufficiently large m, the

string state is the ground state, as m > 0 does not favor matter-
particle excitations.

The confining property is determined by the variance of the
state energy E = 〈ψ |H |ψ〉 on d , where the topological angle
θ plays a crucial role. To be more specific, the string state has
energy

Estr = 2m+g|d|
(

−sgn(d )+ θ

2π

)2

+g(N − |d| − 1)

(
θ

2π

)2

,

(6)
where sgn(x) is the sign function being defined as sgn(x >

0) = 1 and sgn(x < 0) = −1. When θ = 0, Estr = 2m + g|d|,

FIG. 2. Configuration of states at J = 0. (a) For the case θ = 0,
the first and second rows depict the string states with d > 0 and d <

0, respectively. The third and fourth rows illustrate the corresponding
configurations of the meson states. Also shown are the cases (b) θ =
−π and (c) θ = π , where only the configurations of the string states
are shown.

which is linearly proportional to |d|, irrelevant to the sign of
d , which is the typical nature of confinement. The dependence
of Estr on d is numerically confirmed by the line with circles
in Fig. 3(a). Pictorially, as depicted in Fig. 2(a), confinement
manifests as an increase in the length of the string with local
|ε j | = 1, leading to an increment in the total electric energy.
The string tension is defined as ρ = ∂E/∂|d|, which evaluates
to ρstr = g for the string state. The energy instability of the
string state manifests in a possible decay into the meson state
with lower energy. The meson configuration is

|ψmeson〉 =
{| · · · 001−1100 · · · 001−1100 · · · 〉 for d > 0
| · · · 1−110000 · · · 1−110000 · · · 〉 for d < 0,

(7)
as illustrated in Fig. 2(a), which results from the binding of
test charges to their nearest antiparticles, with the interparticle
electric string being screened. Hence, the decay process is also
called the string breaking. The meson state has an energy

Emeson = 4m + 2g

(
−sgn(d ) + θ

2π

)2

+ g(N − 3)

(
θ

2π

)2

,

(8)
which is notably independent of the distance |d|. For θ = 0,
the energy simplifies to Emeson = 4m + 2g, as indicated by the
line with triangles in Fig. 3(a). This implies a transition point

dc = 2 + 2m

g
[
1 − sgn(d ) θ

π

] . (9)

For |d| < |dc|, the string state |ψstr〉 has lower energy, as it
involves fewer matter particles compared to the meson state;
however, for |d| > |dc|, the meson state becomes more en-
ergetically favored. For θ = 0, the transition point is where
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FIG. 3. Equilibrium states’ energy E and string tension ρ in the case of J = 0, with N = 16, g = 1, and m = 6g being fixed. (a) Dependence
of the string-state energy Estr and the meson state energy Emeson on d for θ = 0. (b) Behavior of Estr and Emeson for θ = ±π . (c) String-state
energy Estr for different values of θ . (d) String tension ρ as a function of the topological angle θ for fixed d = ±12.

the two curves converge with |dc| = 2 + 2m/g, as shown in
Fig. 3(a).

Partial confinement occurs at θ = −π , where the string-
state energy simplifies to

Eθ=−π
str =

{
2m + g[2d + (N − 1)/4] for d > 0
2m + g[(N − 1)/4] for d < 0.

(10)

Accordingly, the string tension is ρstr = 2g for d > 0 and
ρstr = 0 otherwise. It is clearly indicated that the confining ef-
fect only occurs for d > 0. For d < 0, Estr is independent of d ,
suggesting a deconfinement with dc = ∞. This phenomenon,
that the confining property depends on the relative positions of
the opposite charges, is termed partial confinement. Visually,
as illustrated in Fig. 2(b), the string states for d > 0 and d < 0
are subjected to different electric potentials. For the former,
the energy density within the string is g(3/2)2, while that
of the vacuum is g(1/2)2, resulting in a nonvanishing string
tension ρstr = 2g, which is twice the value corresponding to
the θ = 0 case. For the latter, the electric fields inside and
outside the string have opposite signs but with the same
energy density g(1/2)2, thus making E be |d| invariant. In
Fig. 3(b), the line with squares depicts the variation of the
string-state energy Eθ=−π

str as a function of d , while the line
with left-pointing triangles represents the meson state energy
Eθ=−π

meson . It is evident that the string breaking can only occur
in the confined regime d > 0, with dc = 2 + m/g. The value
of dc is smaller compared to the θ = 0 case, as shown in
Fig. 2(b), due to the larger string tension.

Partial confinement also occurs at θ = π , but the depen-
dence of quantities (such as E and ρ) on the sign of d is
opposite to the case of θ = −π , as illustrated in Figs. 2(c) and
3(b) (see lines with diamonds and squares). The underlying
mechanism can be understood in the following way. For the
Hamiltonian (1), θ → −θ is equivalent to S+

j → S+
j+1, Sz

j →
Sz

j+1, and ψ j → ψ j+1, with the latter corresponding to the
charge conjugation C. As a result, the physics under θ = −π

with a given d is reproduced by θ = π with −d . This suggests
that reversing θ alone can switch between confinement and
deconfinement scenarios without the need to adjust the spatial
ordering of charges. It would facilitate experimental observa-
tion of partial confinement since tuning the topological angle
(namely, tuning the external field) is generally more accessible
than manipulating the particle positions in practice.

For other cases with θ ∈ (−π, π ) and θ �= |π |, the string
state is generally confined according to Eq. (6), with Estr for
various θ being shown in Fig. 3(c). The Estr is asymmet-
ric about d = 0, with the corresponding string tension being
given by ρstr = g[1 − (θ/π )sgn(d )]. The asymmetry of E (d )
and ρstr(d ) for θ �= 0 originates from the breaking of both C
and P symmetry due to the topological angle θ , where P is
the parity operator acting as S+

j → S+
− j−1, Sz

j → Sz
− j−1, and

ψ j → (−1) jψ− j on the Hamiltonian (1). In Fig. 3(d) we set
d = ±12 and display the dependence of ρ on θ . One can
clearly observe that the partial confinement begins to occur
at θ = ±π , where ρstr = 0. For a larger θ , i.e., |θ | > π , the
string state becomes deconfined with a negative string tension.
This is also intuitive, as a strong background electric field
would polarize the charging pair and yield a large dipole
moment.

The above results for J = 0 will not be qualitatively altered
when we turn on the matter-gauge interaction J . When J is
finite, the system lacks integrability, causing us to resort to
numerical calculations. By setting J = g = 1 and m = 6g, we
numerically calculate the energy spectrum of the system. Al-
though quantum fluctuations render sz

j and n j no longer good
quantum numbers, we can still identify low-energy stringlike
and mesonlike states, with the averaged local observables,
such as 〈Sz

j〉 and 〈ψ†
j ψ j〉, resembling the configurations of

string and meson states shown in Fig. 3(b). Intuitively, the
string remains but is thickened by quantum fluctuations. In
Fig. 4(a) we present the energy variance of these two eigen-
states E on d for various θ . Additionally, Fig. 4(b) shows
the corresponding string tension ρ as a function of θ for a
fixed d = ±12. A comparison between Figs. 3(b) and 4(a),
as well as Figs. 3(d) and 4(b), clearly demonstrates that the
main physical results, such as partial confinement and string
breaking, are qualitatively preserved for a nonvanishing J .

It may also be necessary to elucidate the differences be-
tween the spin-1 QLM discussed here and the spin-1/2 QLM
which has been extensively studied both theoretically and
experimentally [10,27–30,44,66,67,86,87]. The Hamiltonian
of the spin-1/2 QLM has the same form as Eq. (1), but with
the spin operators S j being spin-1/2 Pauli operators (up to a
constant factor). In this case, even without an external electric
field, the string state is no longer well defined, as there always
exist electric strings between the charges (inner string) and
outside the charges (outer string). Commonly, the spin-1/2
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FIG. 4. Equilibrium states’ energy E and string tension ρ in the
case of J = 1, with all other parameters the same as in Fig. 3.
(a) Stringlike eigenstate energy Estr and mesonlike eigenstate energy
Emeson for θ = ±π . (b) String tension as a function of the topological
angle θ for fixed d = ±12.

QLM with the outer string pointing to the right (left) is con-
sidered to have an inherent topological angle θ = π (θ = −π )
[10,30,66,67]. In contrast to the spin-1 case, the charge con-
jugation C now would simultaneously change the order of
the charges and the sign of θ , rendering the total energy E
irrelevant to the sign of d . In this sense, the spin-1 QLM may
serve as a better platform for the study of partial confinement,
as it allows for independently changing the charge ordering
and θ .

IV. PARTIAL CONFINEMENT IN DYNAMICS

A. String-state dynamics

After discussing equilibrium physics in depth, we now
turn to nonequilibrium dynamics. Our objective is to explore
whether the physics of partial confinement can be signified
by the quantum dynamics out of equilibrium. To this end, we
first consider the initial state |ψ0〉 to be a string state with the
electron and positron residing on the two edges of the chain
with d > 0, i.e.,

|ψ0〉 = |ψstr〉 = |1−1010 · · · 010−11〉. (11)

Notably, this state is an eigenstate of the Hamiltonian H when
J = 0. We then allow the system to evolve under the gov-
ernment of H with J = g = 1. In our numerical simulations,
N = 16 and m = 2g are fixed. We primarily focus on the three
cases of θ = {−π, 0, π}. According to the previous discus-
sion, for such a string configuration |ψ0〉 with the electron
situated to the left of the positron, both θ = 0 and θ = −π

are confining, while θ = π is deconfining. Since flipping the
sign of θ is equivalent to changing the sign of charge ordering
d , as discussed in Sec. III, comparing the dynamics at ±θ for
a fixed string state can directly signify the partial confinement.

We begin by examining the expectation values of fermion
occupations 〈nj〉 = 〈ψ†

j ψ j〉 within the time frame t � 30g−1,
as shown in Fig. 5 for the cases of θ = −π [Fig. 5(a)],
θ = 0 [Fig. 5(b)], and θ = π [Fig. 5(c)]. In the figures, the
occupations of positrons and electrons are labeled by red and
blue bars, respectively. A prominent feature is that, for the
first two confining cases, i.e., θ = −π and 0, the edge charges
are locked at the boundaries with almost no movement. In the
bulk of the chain, 〈nj〉 overall exhibits a periodic oscillation,

FIG. 5. Density dynamics of the string state. The dynamics of
fermion occupations 〈nj〉 are shown for (a) θ = −π , (b) θ = 0, and
(c) θ = π , where the occupation status of the positrons and electrons
are labeled by the red and blue bars, respectively, the white boxes
indicate the Schwinger mechanism. (d) Top ten projection proba-
bilities |cn|2 of the initial state |ψ0〉 on the eigenstates |n〉 of H for
different values of θ . In the calculation, we take N = 16, m = 2g,
and J = g = 1.

which is indicative of the Schwinger mechanism, as labeled
by the white boxes: Electron-positron pairs are spontaneously
created from the vacuum and then rapidly annihilated with
each other. The confinement effect is also evidenced by the
small lifetime of the emerged particles (antiparticles) and the
fact that they cannot propagate to a wider range on the chain.

On the other hand, the case with θ = π [Fig. 5(c)] exhibits
a strikingly different behavior. The two edge charges move
towards each other until they meet at the center of the chain
at about t ≈ 12g−1; after that, they reverse their directions
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and retreat to the boundaries. Unlike the traditional scattering
process for free fermions where transmitted waves continue
to propagate forward after the scattering event, here we do not
observe a clear signal of transmitted wave propagation. Addi-
tionally, it can be also notable from the figure that the particle
occupation 〈n j〉 at the boundaries is significantly decreased
compared to the initial state after one round-trip. Unlike the
Schwinger oscillations in the former two cases, the back-and-
forth motion of particles can now only sustain for a few cycles
and lacks robust periodicity.

To quantitatively explain the periodicity of 〈nj〉 in Fig. 5,
we calculate the projection probabilities of the initial state,
defined as |cn|2 = |〈n|ψ0〉|2, where |n〉 is the eigenstate of H
with energy En. In Fig. 5(d), the ten largest values of |cn|2 are
plotted against En, with different θ values indicated using dif-
ferent markers. For comparison, we have aligned the ground
state energy E0 of different θ values by shifting the spectra.
From the data, it is evident that for θ = 0 and θ = −π , the
initial state |ψ0〉 is primarily composed of three high-energy
eigenstates. These eigenstates exhibit a definite energy gap
	E , which determines the oscillating period of 〈n j〉 in the way
of T = 2π/	E . Specifically, for θ = 0, 	E ≈ 3.78g and T ≈
1.66g−1, whereas for θ = −π , 	E ≈ 2.95g and T ≈ 2.13g−1.
On the other hand, for the case of θ = π , |ψ0〉 consists of a
broader spectrum of low-energy eigenstates. These states lack
a consistent energy gap, which dictates the aperiodic behavior
of 〈n j〉.

The confining and deconfining characteristics can also be
distinguished from the dynamics of the bipartite entanglement
entropy

S = −TrρR ln ρR, (12)

where ρR is the reduced density matrix obtained by tracing out
the degrees of freedom in one half of the chain. The evolution
of S is displayed in Fig. 6(a), where the dotted, dashed, and
solid lines correspond to θ = {−π, 0, π}, respectively. The
data reveal that, for the confining cases with θ = {−π, 0}, S
exhibits periodic oscillations and grows slowly in the time do-
main t > 1; until tc ∼ 100g−1, S tends to approach saturation.
In contrast, for the deconfining case with θ = π , S undergoes
a rapid increase in the interval t ∈ [1, 10], following an ap-
proximate power-law scaling. It reaches equilibration at tc ∼
10g−1, which is an order of magnitude smaller compared to
the two former cases. The time tc coincides with the moment
when the edge charges propagate to the center of the chain
[see Fig. 5(c)].

We also calculate the dynamics of the connected density
correlation, defined by

〈n1nN 〉con = |〈ψ†
1 ψ1ψ

†
NψN 〉 − 〈ψ†

1 ψ1〉〈ψ†
NψN 〉|, (13)

with the results being presented in Fig. 6(b). Here 〈n1nN 〉con

quantifies the density-density correlation between the mat-
ter charges on the edges of the chain. Again, various line
styles correspond to different cases of θ . It is anticipated that
〈n1nN 〉con = 0 at t = 0, since the initial state is a product
state. The weak correlation can persist for a considerable du-
ration until tc, beyond which significant correlations between
the edge particles begin to develop. For the confining cases
with θ = {0,−π}, tc is larger than 102g−1. However, for the
deconfining case θ = −π , tc ∼ 10g−1, being one order of

FIG. 6. Dynamics of the entanglement and the correlator for the
string state. (a) Dynamics of the bipartite entanglement entropy S for
various cases of θ . For the confining cases, S exhibits periodic oscil-
lations and grows slowly due to Schwinger oscillation. In contrast,
for the deconfining case, S presents a rapid increase. (b) Dynamics
of the density-density correlator 〈n1nN 〉con between the two boundary
fermions. For the confining cases, only weak correlation persisted. In
contrast, for the deconfining case, correlation can grow rapidly. The
parameters are N = 16, m = 2J , and J = g = 1.

magnitude smaller than in the previous cases. Therefore, the
evolution of edge correlations provides a valuable metric for
discerning different confinement statuses.

B. Meson-state dynamics

Up to now, our discussion has focused on the quench
dynamics of the string state. Here we additionally consider
a scenario where the initial state exhibits a single meson
excitation with d > 0 at the center of the ground state, i.e.,

|ψ0〉 = |ψmeson〉 = ψ
†
N/2S−

N/2ψ
†
N/2+1|ψg〉, (14)

where the |ψg〉 is the ground state of the Hamiltonian H
[Eq. (1)] for m = 4g and J = g = 1. The additional gauge-
spin flip S−

N/2 ensures that |ψ0〉 remains within the physical
gauge sector. Since d > 0, the particle-antiparticle pair is con-
fined for θ = {−π, 0} and deconfined for θ = π . We simulate
the dynamics of |ψ0〉, with the results of the fermion occupa-
tions 〈n j〉 presented in Fig. 7 for the cases θ = −π [Fig. 7(a)],
θ = 0 [Fig. 7(b)], and θ = π [Fig. 7(c)].

One can observe that 〈nj〉 exhibits distinct behaviors for
different values of θ . Specifically, in the case of strong con-
finement at θ = −π , the meson state remains stuck in the
center of the chain without movement. For the relatively weak
confining case with θ = 0, the meson simultaneously moves
towards both ends of the chain, ensuring conservation of mo-
mentum. Thus, for these two confining cases, the positron and
electron are bound together. In contrast, for the deconfining
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FIG. 7. Density dynamics of the meson state in the cases (a) θ =
−π , (b) θ = 0, and (c) θ = π , where the occupation statuses of the
positrons and electrons are labeled by the red and blue bars, respec-
tively. In the calculation, we set N = 14, m = 4g, and J = g = 1.

case of θ = π , the meson dissociates into an isolated positron
and electron, which then independently move away from each
other.

The distinction between the confining and deconfining
cases can also manifest in the correlation function [66]

G(r, t ) =
N∑

j=1

〈ψ0(t )|(n j − n̄ j )(n j+r − n̄ j+r )|ψ0(t )〉, (15)

where nj = ψ
†
j ψ j and n̄ j = 〈ψg|n j |ψg〉. Here G(r, t ) quanti-

fies the spatial correlation of density fluctuations between any
two arbitrary lattice sites separated by a distance r. The nu-
merical results of G(r, t ) for various values of θ are shown in
Fig. 8. Specifically, for the confining cases with θ = {0,−π},
the correlation function G(r, t ) remains localized and does not
diffuse as t increases. In contrast, for the deconfining case
with θ = π , the correlation function between the positron and
electron can propagate at a considerable speed and eventually
spread throughout the entire space.

V. EXPERIMENTAL CONSIDERATION

We finally discuss the potential experimental realization
using ultracold atoms. The spin-1 QLM has been theoretically
proposed to be engineered from a generalized Bose-Hubbard
model (BHM) [88], which can be implemented with ultra-
cold bosonic gases confined in a superlattice, as illustrated

FIG. 8. Dynamics of the correlation function for the meson state
in the cases (a) θ = −π , (b) θ = 0, and (c) θ = π , with all the
parameters the same as in Fig. 7.

in Fig. 9(a). Specifically, the atomic gas is governed by the
Hamiltonian

HBHM = −J̃
L−1∑
l=1

(b†
l bl+1 + H.c.) + U

2

L∑
l=1

nl (nl − 1)

+
L∑

l=1

(
(−1)l δ

2
+ lγ + χl

2

)
nl + V

L−1∑
l=1

nlnl+1

+ W
L/2−1∑

l=1

n2l−1n2l+1, (16)

where L = 2N is the total number of lattice sites, bl and b†
l

are local bosonic operators satisfying [bk, b†
l ] = δk,l , and nl =

b†
l bl . In addition, J̃ is the hopping between neighboring sites,

δ creates energy offsets between matter sites and gauge spins,
and γ serves as a tilted potential. The δ and γ help to eliminate
gauge-breaking hoppings. Further, χl is a four-site periodic
term employed to realize the topological angle [67], i.e.,

χl =
⎧⎨
⎩

0 if l mod2 = 0
χ if l mod4 = 1
−χ if l mod4 = 3,

(17)

where χ = gθ/π . In the second line of Eq. (16), U is the
on-site interaction and V and W are the nearest-neighbor and
next-nearest-neighbor interactions, respectively.
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(c i)

(c ii)

(c iii)

FIG. 9. (a) Schematics of BHM simulator on a one-dimensional
superlattice, where the tilted potential γ is not shown. (b) Mapping
relations between the particle representation of the BHM occupation
and the particle-antiparticle picture of the QLM. (c) Preparation of
the string state, with only the left boundary shown. (c i) Extreme
vacuum state. (c ii) Local particle-antiparticle pairs are generated
using single-site addressing techniques. (c iii) The string state is
obtained by removing the outer particles. Blue and red boxes indicate
the physical and nonphysical gauge sectors, respectively, with the
latter providing a hard-wall boundary for the former.

The generalized Bose-Hubbard model [Eq. (16)] serves
as the foundation for realizing the spin-1 QLM [Eq. (1)] of
length N . In this setup, the even lattice sites with l ∈ even
can only be singly occupied or empty, representing matter
particles, whereas the occupancies at odd sites are restricted
to nl∈odd = {0, 2, 4} to realize the three gauge-spin states.
The detailed mapping relations between the two models are
presented in Fig. 9(b). To realize the gauge invariance in the
q = 0 sector, we focus on the three configurations

|C1〉 = |0400〉BHM ↔|010−1〉QLM,

|C2〉 = |1210〉BHM ↔|101−1〉QLM,

|C3〉 = |0202〉BHM ↔|0000〉QLM, (18)

where |nl , nl+1, nl+2, nl+3〉BHM denotes the particle number
representation of the BHM occupation status of four consecu-
tive sites for l ∈ even and |n j, s j+1 , n j+2, s j+3〉QLM represents
the corresponding matter and gauge configuration in the

QLM, where j = l/2. When J̃ = 0, the bare energies of the
three configurations |C1,2,3〉 are

E1 = 6U − 2δ ± 2χ, E2 = U + 4V ± χ,

E3 = 2U + 8W − 2δ, (19)

where the ± determined by the bosonic lattice site index l
according to Eq. (17). Based on this, all head-to-tail combina-
tions of the three configurations span the entire Hilbert space
in the physical sector.

Notably, there exist configurations that do not preserve
gauge invariance. To circumvent these states, it is necessary
to ensure that the bare energies of gauge-invariant configura-
tions are nearly resonant, while those of the gauge-violating
configurations are far detuned from resonance. In the case of
U,V,W, γ  J̃ , it requires that

V ≈ 5U

4
− δ

2
, W ≈ −U

2
+ δ + 2V ≈ 2U . (20)

By applying the Schrieffer-Wolff transformation, we can de-
rive the effective Hamiltonian of the Bose-Hubbard model
within the gauge-invariant subspace, which takes the form of
Eq. (1). The detailed coefficient relations are given by

g = 2U − 4W, (21a)

m = −3

2
U + δ + 2V − 2W, (21b)

J = 8
√

12J̃2(2δ − 3U )

(2δ − 3U )2 − 16γ 2
, (21c)

where we have omitted the term proportional to J̃2 in
Eqs. (21a) and (21b) due to the perturbative nature of J .
Additionally, χ is considered negligible in the expression of
Eq. (21c) as |δ ± γ |  |χ | is satisfied [67].

The extreme vacuum state |ψev〉 forms the basis for prepar-
ing string states, which is defined by

|ψev〉 = | · · · 0400 · · · 〉BHM ↔ | · · · 010−1 · · · 〉QLM. (22)

This state, as shown in Fig. 9(c i), can be prepared sys-
tematically following a well-defined protocol [26,67,89]. The
protocol begins with the system in a uniform superfluid (SF)
state. The lattice potential is then gradually modified to estab-
lish the desired staggered structure by ramping the parameters
γ and χ . Following this, the ratio U/J̃ is tuned to induce a
phase transition from the SF to a Mott insulator state, where
deep lattice sites achieve a four-particle occupancy, shallow
sites remain vacant, and even sites have an average occu-
pancy satisfying 0 < 〈nl∈even〉 < 4. Thereafter, spin-selective
techniques [89] are applied to selectively remove particles
from the even sites, resulting in the formation of the extreme
vacuum state.

The string state |ψstr〉 [Eq. (11)] is distinguished from
|ψev〉 by modifications only at the boundaries. Employing
single-site addressing techniques [26,67,90] enables the gen-
eration of particle-antiparticle pairs at the boundaries of the
vacuum state, as depicted in Fig. 9(c ii). Subsequently, by
locally removing the outer particles through a laser-induced
resonant excitation, the string state can ultimately be ob-
tained, as shown in Fig. 9(c iii). At the left end of the chain,
the left outer gauge sector (enclosed by the red box), with
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configuration |012 · · · 〉BHM ↔ |−100 · · · 〉QLM, does not be-
long to the physical sector q = 0. This ensures that the rest
of the chain (marked by the blue frame) operates consistently
within the physical sector and experiences a hard-wall bound-
ary. A similar strategy is also employed at the right end of
the chain to achieve the complete particle distribution and
boundary condition required for the string state.

VI. CONCLUSION

We have presented a comprehensive investigation of par-
tial confinement on the platform of the spin-1 quantum-link
model, a promising platform realizable with cold atoms
in optical superlattices. The partial confinement is charac-
terized by a dependence of confinement properties on the
spatial arrangement of charged particles, manifested by the
asymmetry of the equilibrium energy and the string tension
of the string state with respect to the charge ordering. In
the nonequilibrium dynamics, both string and meson states
exhibit strikingly distinct dynamical features depending on
their (de)confining status, as reflected in quantities such as

local fermion occupations, bipartite entanglement entropy,
and edge charge correlations. We have also elucidated that
manipulating the topological angle can be an effective proxy
for controlling charge ordering, thereby simplifying experi-
mental procedures by obviating the need for direct charge
manipulation. Given that the quantum-link model is amenable
to current experimental capabilities, our study offers a strate-
gic avenue for exploring novel physics in gauge theories
using state-of-the-art quantum simulators. Furthermore, it
may also be interesting to discuss the partial confinement in
other forms of lattice gauge theories such as the improved
Hamiltonian [91,92].

ACKNOWLEDGMENTS

L.C. acknowledges supports from the NSF of China (Grant
No. 12174236) and from the fund for the Shanxi 1331 Project.
W.Z. acknowledges support from the NSF of China (Grants
No. GG2030007011 and No. GG2030040453) and Innovation
Program for Quantum Science and Technology (Grant No.
2021ZD0302004).

[1] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445
(1974).

[2] C. G. Allan, R. Dashen, and D. J. Gross, A mechanism for quark
confinement, Phys. Lett. 66B, 375 (1977).

[3] J. Greensite, An Introduction to the Confinement Problem, Lec-
ture Notes in Physics Vol. 821 (Springer, Berlin, 2011).

[4] J. Schwinger, Gauge invariance and mass, Phys. Rev. 125, 397
(1962).

[5] S. Coleman, More about the massive Schwinger model, Ann.
Phys. (NY) 101, 239 (1976).

[6] B. Svetitsky, Symmetry aspects of finite-temperature confine-
ment transitions, Phys. Rep. 132, 1 (1986).

[7] Y. Cheng and H. Zhai, Emergent U(1) lattice gauge the-
ory in Rydberg atom arrays, Nat. Rev. Phys. (2024),
doi:10.1038/s42254-024-00749-6.

[8] Y. Cheng, C. Li, and H. Zhai, Variational approach to quantum
spin liquid in a Rydberg atom simulator, New J. Phys. 25,
033010 (2023).

[9] L. Pan and H. Zhai, Composite spin approach to the blockade
effect in Rydberg atom arrays, Phys. Rev. Res. 4, L032037
(2022).

[10] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi,
and M. Dalmonte, Lattice gauge theories and string dynamics
in Rydberg atom quantum simulators, Phys. Rev. X 10, 021041
(2020).

[11] D. Malz and J. I. Cirac, Few-body analog quantum simulation
with Rydberg-dressed atoms in optical lattices, PRX Quantum
4, 020301 (2023).

[12] S. Sachdev, Colloquium: Order and quantum phase transitions
in the cuprate superconductors, Rev. Mod. Phys. 75, 913 (2003).

[13] Z. Alpichshev, F. Mahmood, G. Cao, and N. Gedik,
Confinement-deconfinement transition as an indication of spin-
liquid-type behavior in Na2IrO3, Phys. Rev. Lett. 114, 017203
(2015).

[14] U. Wiese, Ultracold quantum gases and lattice systems: Quan-
tum simulation of lattice gauge theories, Ann. Phys. (Berlin)
525, 777 (2013).

[15] M. C. Bañuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac,
M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S.
Montangero, C. A. Muschik, B. Reznik, E. Rico, L.
Tagliacozzo, K. Van Acoleyen, F. Verstraete, U.-J. Wiese, M.
Wingate, J. Zakrzewski, and P. Zoller, Simulating lattice gauge
theories within quantum technologies, Eur. Phys. J. D 74, 165
(2020).

[16] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of
lattice gauge theories using ultracold atoms in optical lattices,
Rep. Prog. Phys. 79, 014401 (2016).

[17] L. Chen, F. Zhu, Z. Tang, and C. Gao, Ultracold quan-
tum simulation of high-energy physics: Lattice gauge theory
and its realization in cold atoms, Emerging Sci. Tech. 2, 49
(2023).

[18] C. W. Bauer, Z. Davoudi, A. B. Balantekin, T. Bhattacharya, M.
Carena, W. A. de Jong, P. Draper, A. El-Khadra, N. Gemelke,
M. Hanada et al., Quantum simulation for high-energy physics,
PRX Quantum 4, 027001 (2023).

[19] E. Zohar, Quantum simulation of lattice gauge theories in more
than one space dimension—requirements, challenges and meth-
ods, Philos. Trans. R. Soc. A 380, 20210069 (2022).

[20] J. C. Halimeh and P. Hauke, Reliability of lattice gauge theories,
Phys. Rev. Lett. 125, 030503 (2020).

[21] J. C. Halimeh, V. Kasper, and P. Hauke, Fate of lattice gauge
theories under decoherence, arXiv:2009.07848.

[22] J. Bender, P. Emonts, and J. I. Cirac, Variational Monte Carlo
algorithm for lattice gauge theories with continuous gauge
groups: A study of (2 + 1)-dimensional compact QED with
dynamical fermions at finite density, Phys. Rev. Res. 5, 043128
(2023).

[23] M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda, A.
Dauphin, D. González-Cuadra, P. R. Grzybowski, S. Hands,
F. Jendrzejewski, J. Jünemann et al., Cold atoms meet lattice
gauge theory, Philos. Trans. R. Soc. A 380, 20210064 (2022).

[24] N. Klco, A. Roggero, and M. J. Savage, Standard model physics
and the digital quantum revolution: thoughts about the interface,
Rep. Prog. Phys. 85, 064301 (2022).

033302-9

https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0370-2693(77)90019-3
https://doi.org/10.1103/PhysRev.125.397
https://doi.org/10.1016/0003-4916(76)90280-3
https://doi.org/10.1016/0370-1573(86)90014-1
https://doi.org/10.1038/s42254-024-00749-6
https://doi.org/10.1038/s42254-024-00749-6
https://doi.org/10.1088/1367-2630/acc125
https://doi.org/10.1103/PhysRevResearch.4.L032037
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1103/PRXQuantum.4.020301
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/PhysRevLett.114.017203
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.12405/j.issn.2097-1486.2023.01.007
https://doi.org/10.1103/PRXQuantum.4.027001
https://doi.org/10.1098/rsta.2021.0069
https://doi.org/10.1103/PhysRevLett.125.030503
https://arxiv.org/abs/2009.07848
https://doi.org/10.1103/PhysRevResearch.5.043128
https://doi.org/10.1098/rsta.2021.0064
https://doi.org/10.1088/1361-6633/ac58a4


TANG, ZHU, LUO, ZHENG, AND CHEN PHYSICAL REVIEW A 110, 033302 (2024)

[25] F. M. Surace, P. Fromholz, N. D. Oppong, M. Dalmonte, and
M. Aidelsburger, Ab initio derivation of lattice-gauge-theory
dynamics for cold gases in optical lattices, PRX Quantum 4,
020330 (2023).

[26] B. Yang, H. Sun, R. Ott, H.-Y. Wang, T. V. Zache, J. C. Halimeh,
Z.-S. Yuan, P. Hauke, and J.-W. Pan, Observation of gauge in-
variance in a 71-site Bose–Hubbard quantum simulator, Nature
(London) 587, 392 (2020).

[27] A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K.
Oberthaler, P. Hauke, J. Berges, and F. Jendrzejewski, A scal-
able realization of local U(1) gauge invariance in cold atomic
mixtures, Science 367, 1128 (2020).

[28] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P. Hauke,
B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan, Thermalization
dynamics of a gauge theory on a quantum simulator, Science
377, 311 (2022).

[29] H.-Y. Wang, W.-Y. Zhang, Z. Yao, Y. Liu, Z.-H. Zhu, Y.-
G. Zheng, X.-K. Wang, H. Zhai, Z.-S. Yuan, and J.-W.
Pan, Interrelated thermalization and quantum criticality in
a lattice gauge simulator, Phys. Rev. Lett. 131, 050401
(2023).

[30] W.-Y. Zhang, Y. Liu, Y. Cheng, M.-G. He, H.-Y. Wang, T.-Y.
Wang, Z.-H. Zhu, G.-X. Su, Z.-Y. Zhou, Y.-G. Zheng, H. Sun,
B. Yang, P. Hauke, W. Zheng, J. C. Halimeh, Z.-S. Yuan, and
J.-W. Pan, Observation of microscopic confinement dynamics
by a tunable topological θ -angle, arXiv:2306.11794.

[31] D. González-Cuadra, E. Zohar, and J. I. Cirac, Quantum simu-
lation of the Abelian-Higgs lattice gauge theory with ultracold
atoms, New J. Phys. 19, 063038 (2017).

[32] L. Homeier, A. Bohrdt, S. Linsel, E. Demler, J. C. Halimeh, and
F. Grusdt, Realistic scheme for quantum simulation of Z2 lattice
gauge theories with dynamical matter in (2 + 1)D, Commun.
Phys. 6, 127 (2023).

[33] L. Tagliacozzo, A. Celi, P. Orland, M. W. Mitchell, and M.
Lewenstein, Simulation of non-Abelian gauge theories with
optical lattices, Nat. Commun. 4, 2615 (2013).

[34] J. C. Halimeh, M. Aidelsburger, F. Grusdt, P. Hauke, and
B. Yang, Cold-atom quantum simulators of gauge theories,
arXiv:2310.12201.

[35] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler,
J. Berges, and P. Hauke, Quantum simulation of lattice gauge
theories using Wilson fermions, Quantum Sci. Technol. 3,
034010 (2018).

[36] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M.
Dalmonte, and P. Zoller, Constrained dynamics via the Zeno
effect in quantum simulation: Implementing non-Abelian lattice
gauge theories with cold atoms, Phys. Rev. Lett. 112, 120406
(2014).

[37] W. Zheng and P. Zhang, Floquet engineering of a dynamical Z2

lattice gauge field with ultracold atoms, arXiv:2011.01500.
[38] E. Zohar, J. I. Cirac, and B. Reznik, Cold-atom quantum simu-

lator for SU(2) Yang-Mills lattice gauge theory, Phys. Rev. Lett.
110, 125304 (2013).

[39] R. Dasgupta and I. Raychowdhury, Cold-atom quantum simula-
tor for string and hadron dynamics in non-Abelian lattice gauge
theory, Phys. Rev. A 105, 023322 (2022).

[40] L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N.
Goldman, and F. Grusdt, Coupling ultracold matter to dynami-
cal gauge fields in optical lattices: From flux attachment to Z2

lattice gauge theories, Sci. Adv. 5, eaav7444 (2019).

[41] Y. Kuno, K. Kasamatsu, Y. Takahashi, I. Ichinose, and T.
Matsui, Real-time dynamics and proposal for feasible experi-
ments of lattice gauge–Higgs model simulated by cold atoms,
New J. Phys. 17, 063005 (2015).

[42] J. C. Halimeh, R. Ott, I. P. McCulloch, B. Yang, and P.
Hauke, Robustness of gauge-invariant dynamics against defects
in ultracold-atom gauge theories, Phys. Rev. Res. 2, 033361
(2020).
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