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Loop current states and their stability in small fractal lattices of Bose-Einstein condensates
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We consider a model of interacting Bose-Einstein condensates on small Sierpiński gaskets. We study
eigenstates which are characterized by cyclic supercurrents for each triangular plaquette (loop states). For
noninteracting systems we find at least three classes of loop eigenmodes: standard, chaotic, and periodic.
Standard modes are those inherited from the basic three-site ring of condensates with phase differences locked
to 2π/3. Standard modes become unstable in the interacting system but only when the interaction exceeds a
certain critical value uc. Chaotic modes are characterized by very different circular currents per plaquette, so
the usual symmetry of loop currents is broken. Circular supercurrents associated with chaotic modes become
chaotic for any finite interaction, signaling the loss of coherence between the condensates. Periodic modes are
described by alternating populations and two different phase differences. The modes are self-similar and are
present in all generations of Sierpiński gasket. When the interaction is included, the circular current of such
a mode becomes periodic in time with the amplitude growing linearly with the interaction. Above a critical
interaction the amplitude saturates, signaling a transition to a macroscopic self-trapping state originally known
from a usual Bose-Josephson junction. We perform a systematic analysis of this rich physics.
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I. INTRODUCTION

Fractal lattices are structures of noninteger dimension
which are characterized by scale invariance rather than trans-
lational invariance of a typical Euclidean lattice [1]. In the
context of solid-state physics, Sierpiński gasket lattices are
particularly popular because their statistical-mechanics prop-
erties and transport can be calculated analytically [2]. Their
one-particle spectrum and density of states can be found by
a relatively simple decimation procedure, resulting in dis-
crete, mostly degenerate eigenenergies with underlying fractal
properties [3,4]. Corresponding eigenstates are also nontrivial,
with many of them being localized just due to the gasket
geometry, i.e., in the absence of any disorder.

Recently, a number of experimental successes in realiza-
tion of fractal structures [5–10] have been achieved. This has
revived the interest in fractals, in particular, within the theoret-
ical condensed-matter community with the latest publications
covering a broad range of topics, including electron transport
[11–13], localization [14,15], topology [16–19], flat bands
[20], and quantum phase transitions [21,22], to mention a few.

In this work we consider a system of weakly linked inter-
acting Bose-Einstein condensates (BECs) placed on a small
fractal lattice, which is in essence a mean-field description
of the Bose-Hubbard model on the lattice. The advantage
of using BECs is their high tunability and unprecedented
quantum state control (see, for instance, [23] and references
therein). Since we study small systems, our goal is not only to
understand the system at hand, but also to answer the old but
still important question whether one can infer information on
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the physics of larger systems from a study of their finite-size
counterparts. We show that this is indeed possible to some
degree for given systems.

If two BECs are weakly linked, there is an oscillating
current between them due to the Josephson effect [24]. When
three condensates are joined in a ring, the Josephson effect
gives rise to a cyclic supercurrent along the ring, provided
phase differences between neighboring sites are fixed to 2π/3
and all site populations are the same [25,26]. An Ns-site ring
would need the phase differences equal to 2π/Ns in order to
maintain a cyclic supercurrent. Such cyclic currents are inter-
esting per se since they represent topological defects (vortices)
and are relevant for the Kibble-Zurek scenario and quantum
phase transitions [25–27]. Rings of condensates supporting
stable circular flows were recently realized experimentally
with polariton condensates [28].

When small rings of condensates are arranged into a regu-
lar lattice, one would expect under certain conditions circular
currents per plaquette, exemplifying loop current lattice states.
Loop current states are quite popular in strongly correlated
electron systems where they are related to orbital magnetism
and are signatures of exotic states of matter, e.g., exotic super-
conductivity [29–31]. In lattices of neutral bosonic systems
synthetic magnetic fields were realized giving rise to circular
plaquette currents corresponding to fluxes with tunable values
[32,33].

In our work we consider a simpler case of a lattice with
deep potential wells accommodating mini BECs with im-
printed phases. The fact that the lattice has a fractal geometry
makes the problem nontrivial, since it is not a priori clear
whether such a formation would support circular plaque-
tte currents due to a complicated discrete structure of the
single-particle spectrum. Another question is, when it does,
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FIG. 1. First three stages of the Sierpiński gasket fractal: (a) k =
0, (b) k = 1, and (c) k = 2. The wave functions on different nodes are
denoted by an upper index representing the subtriangle they belong
to and a lower index which differentiates between sites within the
subtriangle. (a) In the first stage of the mirrored gasket, since the
mirrored sites are set to be equal they have the same upper index.
(b) In the middle stage two subtriangles have been added and (c) for
the third stage another six have been inserted. The sites denoted by
the same wave functions are the same sites. This is a result of the
juxtaposition of the two largest triangles in order to secure periodic
boundary conditions.

whether those currents remain stable in an interacting system.
In the following we aim to answer these questions in detail
for the first three generations of the Sierpiński fractal. The
Sierpiński fractal is generated from an equilateral triangle,
recursively subdivided into smaller equilateral triangles. The
first three stages of such subdivisions, taking into account
periodic boundary conditions, are shown in Fig. 1.

With the help of a decimation procedure developed previ-
ously by the authors of Refs. [3,4], we show that loop states
can indeed be realized in Sierpiński gaskets of BECs and in
several different ways. For clarity, we divide them into three
classes, all associated with various excited states. The ground
state can only be described by equal site populations and zero
phase differences between all sites and is therefore not looped.

The three classes differ not only in realization of loop
modes, but also in the way the looped state dynamics changes
in the presence of an interaction. For example, standard modes
are in many ways similar to the aforementioned modes of
three-site condensate rings. Specifically, there is a critical
interaction uc at which the corresponding fixed point in the
phase space changes from stable to unstable. The circular
current stays the same after the interaction is turned on but
for u > uc becomes chaotic upon a tiny perturbation. Interest-
ingly, the critical interaction uc is different in each generation
and decreases with increasing fractal size.

The other class of loop eigenstates is termed by us chaotic.
Chaotic eigenmodes are characterized by broadly distributed
phase differences as well as population differences. All pla-
quettes have different circular currents, so the usual symmetry
of loop currents is broken. These modes do not survive in
an interacting system, because any circular current associated
with such a mode immediately acquires chaotic dynamics.

Another class of modes, which we refer to as periodic,
comprises states deep inside the largest gap of the spectrum.
In contrast to chaotic modes, periodic states are represented
by only two phase differences and only two population

differences at any stage. As a result, the phase portrait of the
multidimensional noninteracting fixed point has effectively
only two subspaces: stable and unstable. This fixed point
changes when the interaction is on, but the fundamental struc-
ture of the phase portrait remains the same.

When the interacting system is initially at the noninteract-
ing fixed point, circular currents begin to oscillate in time.
The character of these oscillations depends on the interaction.
For sufficiently small interaction the amplitudes of the oscil-
lations grow linearly with time. When the interaction exceeds
a certain value uST, the amplitude saturates. The interaction
uST marks thus a transition of the system to a macroscopically
self-trapped state similar to the one well known from the usual
bosonic Josephson junctions [24].

We also find loop states at the gap edge, which have another
unusual property: They only have supercurrents along their
inner edges, effectively dividing the system into two indepen-
dent subsystems. Their basic structure remains the same with
further generations, as we explain in Appendix B.

The paper is organized as follows. In Sec. II we briefly
discuss the model and equations of motion. In Sec. III we
consider noninteracting fractals and their loop eigenstates. For
convenience of the reader, we divide this section into three
subsections: Sec. III A briefly outlines known results of an
infinite Sierpiński gasket, Sec. III B details loop eigenmodes
of stages k = 0 and k = 1, and Sec. III C deals with all the
loop modes of stage k = 2. Many analytical details are in
Appendix B. In Sec. IV we scrutinize the dynamics of the
found eigenstates once the interaction between bosons in con-
densates is taken into account. We subdivide this section into
four subsections depending on the class of loop modes, since
they exhibit very different dynamics. We summarize our work
and discuss our conclusions in Sec. V.

II. MODEL AND EQUATIONS OF MOTION

We consider a system of N interacting bosons which are
trapped in a fractal-shaped potential with the number of sites
Nk depending on the generation k (specifically, we consider
the first three generations of the Sierpiński gasket shown in
Fig. 1). Generally, bosons on a lattice are described by the
Bose-Hubbard Hamiltonian [34]. For a weak on-site interac-
tion between bosons U and macroscopic site occupancies ρ =
N/Nk , a mean-field approximation can be justified [35–38].
The system is then described semiclassically by a condensate
wave function � = (�1, �2, . . . , �Nk ), where the �i obey the
discrete nonlinear Schrödinger equation

ih̄
∂

∂t
�i(t ) = U |�i(t )|2�i(t ) − K

∑
〈 j〉

� j (t ), (1)

where K describes tunneling between nearest neighbors. This
is equivalent to Gross-Pitaevskii equations with spatial depen-
dences integrated out, which works surprisingly well even for
a two-well potential [39].

Note that in the description of equations we use a one-index
site notation for simplicity, where possible. The sum in (1)
goes over four nearest neighbors of site i. Condensate wave
functions are time-dependent complex functions

�i(t ) =
√

Ni(t )eiθi (t ), (2)
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where Ni is the number of particles in the condensate on site i
and θi is the local phase. Since the system under consideration
is closed, the total particle number N = ∑

i Ni(t ) is conserved.
It is convenient to normalize the wave functions (2) by the root
of the filling factor ρ as

ψi = �i√
ρ

=
√

ni(t )eiθi (t ). (3)

In this case
∑

i ni = Nk .
Assuming h̄ ≡ 1 and introducing a dimensionless interac-

tion constant

u = Uρ

K
, (4)

we get from (1) the discrete nonlinear Schrödinger (DNLS)
equation

i
∂

∂t
ψi(t ) = u|ψi(t )|2ψi(t ) −

∑
〈 j〉

ψ j (t ). (5)

We should mention here that DNLS equations have a long
history, with many examples of nontrivial as well as chaotic
behavior already in one-dimensional systems (see, e.g.,
works in the 1980s–1990s [40–43]) and also many recent
achievements summarized in Ref. [44]. Here we essentially
investigate the complex domain of DNLS equations on fractal
lattices.

We make use of periodic boundary conditions, employed
in [3], in order to calculate the spectrum of the one-particle
Schrödinger equation on such lattices. The boundary condi-
tions utilize a mirrored gasket obtained by the juxtaposition
of two identical generation k gaskets at their corresponding
external sites. In this way each site has exactly four neighbor-
ing sites.

Instead of complex equations (5), we can also solve a set
of real equations for conjugated variables ni and θi,

ṅi = −2
∑
〈 j〉

√
nin j sin (θ j − θi ),

θ̇i = −uni +
∑
〈 j〉

√
n j

ni
cos (θ j − θi ). (6)

We numerically evaluate the following quantities: pairwise
phase differences between condensates on neighboring sites,
pairwise population imbalances between condensates on
neighboring sites, and circular currents. We first define the
Josephson supercurrent between two adjacent condensates in
the standard way

Im,l
i,i+1 = 2 Im

(
ψm∗

i ψ l
i+1

)
. (7)

Here we had to revert to our double-indexed notation ex-
plained in Fig. 1, for clarity. The circular current per chosen
subsystem is defined as a sum over the Josephson subcurrents
over all the structure divided by their number NI ,

I = 1

NI

NI∑
i=1

∑
m,l

Im,l
i,i+1. (8)

Generally, we consider only the total circular current of the
lower half fractal (summed over all the nodes). When the

system under consideration is in one of its eigenstates, this
circular current is constant, as well as all the phase differences
and population imbalances. We derive eigenstates analytically
in Sec. III and verify numerically that circular currents remain
indeed constant with time.

This time-independent behavior changes however, if we
add nonzero u in our analysis while using the eigenmodes
as initial conditions. The resulting dynamics can be evaluated
only numerically and reveals very different behavior depend-
ing on the initial conditions, i.e., on eigenstate classes. The
detailed study of interacting systems is presented in Sec. IV.

III. LOOP CURRENT STATES OF THE NONINTERACTING
SYSTEM

A. Loop eigenmodes of stages k = 0 and k = 1

In this section we derive eigenmodes of the noninteracting
system for stages k = 0 and k = 1, which are characterized
by loop currents. Eigenvalues for any stage are well known
and were derived by a decimation procedure in Refs. [3,4]
(see also a brief reminder in Appendix A with density of
states shown in Fig. 15 of the Appendix). Note that periodic
boundary conditions (see Fig. 1) were crucial for development
of the decimation procedure and are therefore employed in our
work as well.

The decimation procedure implies that some eigenvalues
are derived from the others, and since this information is
important for our derivations, Fig. 2 demonstrates a flowchart
where we present all eigenvalues of the first three generations
and the relations between them. We also mark eigenvalues
whose eigenstates we are not going to analyze since they
cannot maintain loop currents.

For stage k = 0 the Hamiltonian (expressed in the units of
the coupling constant K) is trivial,

Hk=0 =
⎛
⎝ 0 −2 −2

−2 0 −2
−2 −2 0

⎞
⎠, (9)

with eigenvalues εk=0 ∈ {−4, 2, 2}. The eigenmodes
|�k=0(εk=0)〉 are also readily found,

|�k=0(−4)〉 =
⎛
⎝1

1
1

⎞
⎠, (10)

|�k=0(2)〉± =
⎛
⎝ 1

e±i2π/3

e±i4π/3

⎞
⎠, (11)

where the loop eigenmodes correspond to the doubly degen-
erate level εk=0 = 2. These kinds of states are well known
from studies of rings of condensates [25,26,45]. The state
|�k=0(−4)〉 corresponds to the ground state and is the same
in all generations of the Sierpiński gasket (with the size
increasing correspondingly). Since we use one of the loop
eigenvectors for the derivation of loop states on stages k = 1
and k = 2, we introduce the shortened notation

V ≡ |�k=0(2)〉+. (12)
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FIG. 2. Flowchart of all eigenenergies (in units of K) for the
first three generations of the Sierpiński gasket. Values that have
been generated by the recursion procedure (A1) are connected by
arrows with their ancestors. Those that are added on at a given stage
without having direct predecessors are colored differently, e.g., the
green values for k = 1. Thick black frames mark eigenvalues whose
eigenvectors will not have any loop currents; hence such states will
not be considered in this work

At the next stage k = 1 the system Hamiltonian still has a
rather simple structure

Hk=1 =
⎛
⎝0̂ Ŝ Ŝ

Ŝ Ŝ 0̂
Ŝ 0̂ Ŝ

⎞
⎠, Ŝ =

⎛
⎝ 0 −1 −1

−1 0 −1
−1 −1 0

⎞
⎠, (13)

FIG. 3. Schematic representation of the loop current eigenstates
of stage k = 1 at (a) ε = 2, (b) ε = −1, and (c) ε = 1. A circle
represents a Bose-Einstein condensate. Circles of the same size cor-
respond to the same filling ρ such that the filling of all sites in (a) is
the same; however, in (b) some of the sites have larger filling factors,
shown by larger circles; in (c) some sites are not filled at all. Different
colors refer to different phases of condensates, for example, white
means phase 0; gray, phase 2π/3; bright blue, phase π ; etc.

with eigenvalues εk=1 ∈ {−4, 2, 2, 2,−1,−1,−2, 1, 1}.
Since we are only interested in loop eigenstates and they
always come in conjugated pairs, we only explore states
corresponding to the degenerate eigenvalues {2,±1}.

Now we notice that V is an eigenstate of Ŝ with eigenvalue
λs = 1. We can use this fact for finding loop eigenmodes of
the Hamiltonian Hk=1. We notice that the simplest 3 × 3 anti-
circulant matrix representing the structure of the Hamiltonian
reads ⎛

⎝0 1 1
1 1 0
1 0 1

⎞
⎠, (14)

and eigenvectors of this matrix are readily found: (1, 1, 1)T ,
(−2, 1, 1)T , and (0,−1, 1)T . Hence the loop eigenmodes of
Hk=1 are

|�k=1(2)〉 =
⎛
⎝V

V
V

⎞
⎠, |�k=1(−1)〉 =

⎛
⎝−2V

V
V

⎞
⎠,

|�k=1(1)〉 =
⎛
⎝ 0

−V
V

⎞
⎠. (15)

The first eigenvector corresponds to εk=1 = 2λs = 2, the
second to εk=1 = −λs = −1, and the third one to εk=1 =
λs = 1. The sequencing of condensate wave functions inside
eigenvectors proceeds according to the following notation:
(ψ0

1 ψ0
2 ψ0

3 ψ1
1 ψ1

2 ψ1
3 ψ2

1 ψ2
2 ψ2

3 )T . The eigenmodes (15) along
with their complex conjugates constitute the six loop eigen-
vectors of the k = 1 system. The remaining three eigenvectors
can be obtained in the same way with V replaced by
|�k=0(−4)〉, but they do not maintain loop supercurrents and
we do not consider them here.

Before proceeding to the k = 2 case, we briefly discuss
the results (15), schematically presented in Fig. 3. The first
eigenvector |�k=1(2)〉 corresponds to the upper bound of the
spectrum ε = 2, the energy value with the largest multiplicity
[3] (see Fig. 15). It is a trivial eigenvector since all triangles
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(large and small) in Fig. 3(a) are equivalent to the three-site
ring with circulant current per triangle readily evaluated I =√

3. We also expect similar stability behavior as in three-site
rings once the interaction is turned on (to be discussed in
Sec. IV). We refer to these modes as standard hereafter.

The next loop state |�k=1(−1)〉 is schematically displayed
in Fig. 3(b) and corresponds to the isolated energy state within
the largest gap in the spectrum (see Fig. 15). This mode is
different from the standard mode in two ways: The inner
triangles have smaller filling factors, expressed by smaller
circles, and phases of the BECs on the inner triangles are
shifted by π with respect to the standard configuration in
Fig. 3(a). We show later that this kind of mode will be present
in all generations and we will refer to them as periodic for
reasons explained in Sec. IV.

Finally, we discuss states corresponding to the gap edge
at ε = 1. In this case the Sierpiński gasket is only partially
filled, as is seen in Fig. 3(c). The two inner triangles are
then essentially uncoupled, but the phases in the upper inner
triangle are shifted by π with respect to the phases of the lower
triangle. This is a partially looped state.

B. Loop eigenmodes of stage k = 2

The elegant way of deriving eigenvalues and eigenvectors
presented in Sec. III A cannot be applied here due to the
changed structure of the Hamiltonian; specifically, the Hamil-
tonian cannot any longer be expressed solely in terms of Ŝ
matrices. For this reason we resume with either the hierarchi-
cal derivation procedure [3], briefly outlined in Appendix B,
or with numerical calculations for special values.

We start with the discussion of states corresponding to the
spectrum’s upper boundary ε = 2. Out of the nine new cases
(see the flowchart in Fig. 2), eight can be potentially looped,
which means only four states are of interest since loop eigen-
modes come in conjugated pairs. One of the four vectors will
be a standard eigenmode of the type shown in Fig. 3(a). This
is easy to demonstrate from the structure of the Hamiltonian
(see Appendix B for details). The standard modes will hence
be present in all generations of the Sierpiński gasket for ε = 2.

The remaining three eigenmodes for ε = 2 are quite con-
voluted (see Appendix B). We refer to such modes as chaotic
and choose to represent them in state space for clarity. In
Figs. 4(a) and 4(b) we show the associated state spaces for two
out of three chaotic modes (this is essentially a representation
of the multidimensional fixed point). We color coded them ac-
cording to triangles the fixed points (or rather components of
the multidimensional fixed point) belong to. The color coding
was motivated by the fact that at this stage the blue, red, and
orange subtriangles are not equivalent any more in terms of
their fixed points and as a consequence circular currents will
be also different. This kind of behavior was not observed in
stage k = 1. Note also that the mode in Fig. 4(b), if complex
conjugated, has the same structure as the one in Fig. 4(a).

The last eigenvector from this series |ψ2(ε = 2)〉4 is the
same as the one in Fig. 4(a) but with colors interchanged:
Blue points turn red, orange ones turn blue, and red ones turn
orange. We remark that it is possible to retrieve a symmetric
eigenmode by a linear combination of the three chaotic

FIG. 4. State-space representation of chaotic eigenvectors in
generation k = 2 for different eigenenergies: (a) and (b) ε = 2,
(c) ε ≈ 0.302, and (d) ε ≈ −3.302, corresponding to (a) |ψ2(ε =
2)〉2, (b) |ψ2(ε = 2)〉3, (c) |ψ2(ε ≈ −3.302)〉, and (d) |ψ2(ε ≈
0.302)〉 (see Appendix B). All phase differences of all nearest
neighbors are plotted versus all population differences of all nearest
neighbors. The blue plus signs refer to the lower left third of the
fractal, the red diamonds to the upper third, and the orange crosses
to the right third for (a) and (b). The blue, red, and orange (here only
dots) fixed points coincide for (c) and (d).

modes. The resulting state space can be seen in Fig. 16 in
Appendix B.

Associated state spaces for chaotic modes are quite “busy”
with fixed points distributed all over the space and population
differences ni − n j taking values between 0 and approxi-
mately 2. In contrast, standard eigenmodes have just one fixed
point, because all population differences are the same and
equal to zero, whereas all phase differences are equal to 2π/3
[see Fig. 3(a)].

We now proceed to modes derived from gap states of the
previous stage, i.e., states corresponding to εk=1 = −1. Al-
though the asymmetry between the subtriangles is not present
for them, i.e., fixed points for blue, orange, and red triangles
coincide, the modes are very similar to the chaotic modes
for ε = 2 in that there is a rather broad distribution of phase
differences as well as populations differences [see Figs. 4(c)
and 4(d)]. We hence place the modes in the chaotic class.

Periodic modes in generation k = 2 are derived from the
standard modes of generation k = 1. It turns out (see Ap-
pendix B) that in terms of state-space representation, the new
periodic modes are not different from the old ones: Each
new triangle will represent a standard ring but with smaller
occupation numbers compared to the triangle it is inserted
in. The phases of the new triangle will be shifted by π with
respect to its hosting triangle as in Fig. 3(b) and so on. As
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FIG. 5. State-space representation of periodic eigenvectors, stage
independent (k = 1, 2, . . .). All phase differences of all nearest
neighbors are plotted versus all population differences of all nearest
neighbors.

a result, the state-space representation of such modes is very
simple and remains the same for any generation k � 1 (see
Fig. 5).

Finally, the partially filled modes of generation k = 1 give
rise to partially filled modes of generation k = 2 with effec-
tively separated subsystems with loop currents as we show
in Appendix B. Since the dimensionless energies of these
two new modes are irrational numbers (see the flowchart in
Fig. 2), the modes acquire many broadly distributed fixed
points within their corresponding subspaces. Since this picture
is not principally different from the chaotic modes, we do not
elaborate on such modes in the following.

All loop modes are characterized by constant circular cur-
rent per plaquette, which can be calculated analytically or
numerically. The values of the current can be very different;
we give a number of examples for the total current in Table I.

We should also discuss edge states, i.e., states for ε = 1.
They cannot be derived by the decimation procedure and
should be derived by other means. Naively, one would think
that at each stage only the new subspace, i.e., only the small-
est triangles, will be filled in such a way that a circular
current will flow within. For example, at stage k = 2 there
will be six circular currents since there are six new trian-
gles [see Fig. 1(c)]. It turns out that this is only partially
true [see Appendix B, after Eq. (B17)]. In fact, only four
out of six triangles will be characterized by circular cur-
rents, whereas the remaining two will have only two sites out
of three filled, e.g., (ψ3

1 , ψ3
2 , ψ3

3 ) = (e−i2π/3, ei2π/3, 1) (loop
current), (ψ4

1 , ψ4
2 , ψ4

3 ) = (eiπ , 0, e−iπ ) (no loop current), and
(ψ5

1 , ψ5
2 , ψ5

3 ) = −(1, ei2π/3, e−i2π/3) (loop current).

TABLE I. Total circular current I (in units of ρK) of the lower
half fractal for stage k = 2 and different energies ε (in units of K).

ε I

2 (standard)
√

3
2 (chaotic) 0
≈0.302 (chaotic) 0.184
≈−3.302 (chaotic) 0.104
−1 (periodic) −

√
3

2

FIG. 6. Schematic representation of all eigenstates of the first
three generations of Sierpiński gasket (a) k = 0, (b) k = 1, and
(c) k = 2 depending on energy (in units of K). (d) A few examples
(not all eigenstates) are shown for k = 3. Below the density of states
is appended so that one can see whether a state is within the gap,
at the gap edge, or elsewhere. Red vertical vectors represent real
eigenstates. Tilted vectors represent loop current eigenstates. Here
S stands for standard mode, P for periodic, and E for edge modes.
Letters with stars mean complex conjugation. Dashed vectors indi-
cate chaotic modes.

We thus derived all loop current states for stage k = 2. For
convenience, we summarize our results schematically in the
next section.

C. Schematic summary

In Fig. 6 we show a resulting schematic diagram of all
modes in generations k = 0, 1, 2 and some of the modes in
generation k = 3. Modes that cannot carry loop currents are
marked by red vectors. Standard modes are colored gray and
are present for all generations for ε = 2. With a degeneracy of
ε = 2 increasing from generation to generation, the standard
modes will be accompanied by chaotic modes, depicted by
dashed vectors.

Edge modes (these are the modes for ε = 1) are colored
in green and are special, since they cannot be derived by the
decimation procedure; however, we managed to derive them
by other means for k = 1 and k = 2. We assume their basic
structure will be preserved for k > 2. Edge modes in genera-
tion k = 1 are ancestors of the pairs of chaotic modes (shown
in green) in generation k = 2. Note that these pairs also cor-
respond to band edges. The quadruple-degenerate edge mode
in generation k = 2 will give rise to chaotic (green) modes in
generation 3 and so on.
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Periodic modes (these are gap states for ε = −1) are de-
rived from standard modes of the previous generation and
are present for all k � 1. For this reason they structurally
resemble their ancestors. Periodic modes of generation k = 1
give rise to pairs of gap modes in generation k = 2, shown as
blue dashed vectors.

This procedure will continue ad infinitum. Gap states will
give rise to gap states and partially filled edge states will give
rise to partially filled edge states in the new generation. Inside
each gap there will always be a real state, for example, the red
state for ε = −2. Such states will appear only once for each
gap and therefore are not visible in the density of states plot.
Nice, i.e., not chaotic, loop current states will only be present
in each generation for ε ∈ {−1, 1, 2}.

IV. INCLUSION OF INTERACTION AND CHAOS ONSET

In this section we investigate the role of interaction u in the
behavior of circular currents and stability of noninteracting
fixed points representing loop eigenmodes discussed in the
preceding section. The analysis is mostly done numerically
by solving Eq. (5) with the Runge-Kutta method.

A. Standard modes

Standard modes are different from all the other modes
in that they remain fixed points of the DNLS equation (5)
even when interaction is turned on. This means that a circular
current calculated along any triangular plaquette remains con-
stant in time for u 	= 0. This interesting property is inherited
from a standard three-site ring mode with equal populations
and phase difference equal to 2π/3 between all pairs of
neighboring sites [26,45]. The stability of the standard mode,
however, depends on the interaction. In a ring the mode
changes from stable to unstable at a critical value u = uc =
1.5, which can be derived analytically from linear stability
analysis. In the unstable regime the system can be forced out
of the stationary state by the smallest perturbation and circular
current plunges into chaotic dynamics, albeit not immediately,
but after a period of time tc which depends on perturbation and
interaction [45]. We see this kind of behavior in Sierpiński
gaskets as well, exemplified in Fig. 7. Figure 7(a) displays
the circular current I becoming chaotic with time depending
on the interaction, whereas Fig. 7(b) displays phase-space
chaotic trajectories associated with this behavior.

To understand better this dynamics and to find uc, we per-
form linear stability analysis of the standard modes for k = 1
and k = 2. It is useful to convert to canonical coordinates first.
All ni remain the same except for the one being eliminated
though particle conservation, for example, the N th coordi-
nate nN = N − ∑N−1

i=1 ni. The corresponding phase variables
are Pi = θN − θi, with i = 1, . . . , N − 1. The canonical vari-
ables satisfy the Hamilton equations of motion ṅi = − ∂H

∂Pi
and

Ṗi = ∂H
∂ni

. The initial condition remains a fixed point in these
variables. The Jacobian J of the size 2(N − 1) then reads

J =

⎛
⎜⎜⎝

∂ ṅ1
∂n1

· · · ∂ṖN−1

∂n1
...

. . .
...

∂ ṅ1
∂PN−1

· · · ∂ṖN−1

∂PN−1

⎞
⎟⎟⎠. (16)

FIG. 7. (a) Circular current I (in units of ρK) of the lower half
fractal versus time (in units of 1/K) for a standard mode of gener-
ation k = 1 for different interaction values u. Random deviations of
phases and occupations from their eigenmode values of the order of
10−8 are introduced. (b) Phase-space trajectories for the same mode
after runtime trun = 20. For u = 0 the mode is represented by fixed
points shown by blue dots. For u 	= 0 the system becomes chaotic
with trajectories covering all the phase space available.

Calculation of its eigenvalues λi is carried out numerically
and the results for generations k = 1 and k = 2 are shown in
Fig. 8. We see that indeed, for small u, all eigenvalues are
purely imaginary and the system is stable, i.e., remains in its
fixed point. However, once at least one eigenvalue acquires

FIG. 8. Real Reλi and imaginary Imλi parts of all Jacobian
eigenvalues in units of K versus the dimensionless interaction param-
eter u, for the standard mode in generations (a) k = 1 and (b) k = 2.
Here uc is determined by the first λi acquiring a nonzero real part.
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FIG. 9. Critical time tc (in units 1/K) dependent on interaction u
for the standard mode of generations (a) k = 1 and (b) k = 2. The
scaling parameter δ of the initial phase and occupation displacement
is varied from 10−2 to 10−14. The critical interaction derived from
linear stability analysis is shown by the vertical dashed line for
convenience. For comparison, tc of a periodic mode, i.e., a mode for
ε = −1, is shown with blue dots.

a nonzero real part, the stability is violated. We numerically
identify the critical values of u when this happens: uc(k =
1) 
 0.51 and uc(k = 2) 
 0.30. We see that uc indeed de-
pends on the generation. This is not very surprising since
the Jacobian is getting larger with each generation, which
amounts to a broader distribution of its eigenvalues and there-
fore more complicated equations for uc. We expect that in the
thermodynamic limit uc will be tending to zero.

As discussed, the sliding into chaotic dynamics does not
necessary happen immediately, so there is a certain timescale
tc associated with that. In order to evaluate the timescale, we
introduce small random deviations of the phases and occupa-
tion numbers of condensates according to

θi → θi + δri,

ni → ni + δr j, (17)

where ri, j are random numbers within [−1, 1] and δ is a
parameter. We then numerically analyze tc dependent on u
for different values of δ. The results are presented in Fig. 9.
As expected, tc diverges in the vicinity of uc, found from
linear stability analysis, and decreases with the growth of u.

(a)

(b)

FIG. 10. Double logarithmic representation of Fig. 8. The inter-
action parameter was shifted by uc. Linear segments (before and after
the kink) were fitted, with the resulting slopes presented in Tables II
and III of Appendix C.

If we fix u, then the characteristic time rapidly decreases as
the deviation δ from the stationary value becomes larger.

Interestingly, tc for the standard mode of generation k = 2
has a kink at about u ≈ 0.7. In order to better understand
the tc behavior, we show a doubly logarithmic plot of Fig. 9
in Fig. 10. We see that for both fractal stages there are two
separate linear segments with different slopes (before the kink
and after it). The kink is now identifiable even for k = 1
around u − uc ≈ 1. The two-stage behavior can also be seen
in the ε = −1 case, although less so for low values of u at
k = 2. In general, this shows the power-law behavior of tc with
respect to the interaction strength according to

tc = exp(b)(u − uc)a. (18)

Here a is the slope and b the intercept in the respective seg-
ments. Tabulated values for the slope a deduced from linear
fitting of logarithmic plots can be found in Appendix C.

B. Chaotic modes

Chaotic modes shown in Fig. 4 appear only in the second
generation of the Sierpiński fractal and are characterized by
components of their fixed point distributed all over the phase
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FIG. 11. Chaotic modes for u 	= 0: (a) and (c) phase-space tra-
jectories and (b) and (d) circular currents in units of ρK , for energy
(a) and (b) ε = 2 (in units of K) and (c) and (d) ε ≈ −3.302. The
runtime (in units of 1/K) and interaction parameter are trun = 10 and
u = 5.0 for both cases. In (b) only total current I is shown. In (d),
apart from the total current (lower curve), also the current along outer
triangle I0 only (upper curve) is presented.

space. Since these modes are not fixed points of the interacting
system, circular currents associated with them become imme-
diately chaotic once the interaction is on. This behavior is
demonstrated in Fig. 11, where we show one of the chaotic
modes for ε = 2 [Figs. 11(a) and 11(b)] and a mode for
ε = −3.302 [Figs. 11(c) and 11(d)].

Figures 11(a) and 11(c) depict phase-space trajectories
for u = 5 after a certain runtime trun = 10. We see that in
Fig. 11(a) the system evolves all over the phase space, a
behavior characteristic of chaotic dynamics. In Fig. 11(b) the
total current turns indeed chaotic for the interacting system,
signaling the immediate loss of coherence between BECs.

Figures 11(c) and 11(d) demonstrate that, interestingly, the
ε = −3.302 mode first undergoes a weakly chaotic regime
characterized by the circular currents oscillating around their
stationary values. In the projected phase portrait this is re-
flected in semielliptic trajectories of the system close to some
of the components of the fixed point [see Fig. 11(c)]. Re-
markably, this weak chaotic regime does not last forever but
is associated with a timescale, similar to the standard mode
behavior in that it decreases with the growth of u. We attribute
this fascinating behavior to the nonhomogeneous distribution
of the fixed-point components in such a mode. Specifically, we
mean the quasi-isolated bunch of components concentrated
in the narrow interval around (θi − θ j )/π = 0 and rather
broadly distributed in ni − n j . The timescale tc is an effective
time period necessary for this quasi-isolated subspace to get
connected with other subspaces, which inevitably happens

FIG. 12. Periodic modes for u 	= 0. (b) Phase-space trajectories
for different values of u: u = 3 (dark blue crosses), u = 10 (light
blue pluses), u = 12 (black stars), u = 13 (light green diamonds),
and u = 20 (dark green squares). Dots of the same color represent
corresponding fixed points calculated from Eq. (20). The bright blue
dots are the same as in Fig. 5. The currents associated with these
interaction values are shown for (a) u < 12.0 and (c) u > 12.0. There
is a qualitative change at the self-trapping critical interaction uST =
12.0. All currents (in units of ρK) exclusively oscillate above the
noninteracting value. The runtime for (a) is set to trun = 5 (in units of
1/K) in order to not include the chaotic regime.

when a system is chaotic. For example, for the case in
Fig. 11(d), tc ≈ 30. This time period gets shorter with in-
creased interaction, as one would expect.

C. Periodic modes

Finally, we discuss the periodic modes, i.e., modes cor-
responding to ε = −1, which have the same state-space
representation in all generations for u = 0. Similar to chaotic
modes, these eigenstates do not remain fixed points in inter-
acting system. However, cyclic supercurrents associated with
these modes do not turn chaotic immediately either when
u 	= 0. Instead, they undergo a temporary regime, where all
supercurrents manifest periodic behavior.

We first examine this periodic dynamics for different val-
ues of u. In Figs. 12(a) and 12(c) we show how the total
current oscillations change with increasing u. Interestingly, in
all cases the current oscillates exactly above its noninteracting
value, indicated by the straight blue line. The oscillations con-
tain more than one frequency, which prompted us to perform
Fourier analysis of the dynamics, which will be considered
later in the text.

In Fig. 12(b) we demonstrate the phase portrait of our sys-
tem prior to chaos onset. This is the plot for k = 1; however,
we obtained an identical graph for k = 2 and hence assume
this behavior is typical of such modes in any generation. In
Fig. 12(b) one can notice that the dynamics crucially changes
when u exceeds a certain value uST = 12. One can observe
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(a)

(b)

FIG. 13. (a) Maximum and minimum values of the total current
(in units of ρK) during trun = 10 (in units of 1/K) versus interaction
(for a periodic mode). Signs of chaotic behavior are present for
u > 7.5. (b) Biggest frequency contributions to the circular current
of periodic modes dependent on the interaction. For the latter the
frequencies of the largest detectable contributions to the Fourier
transform are shown. Only values above u = 1.75 are considered
since the oscillations of the current below this value are very small
and difficult to detect. Above u = 5.0 two more frequency contribu-
tions can be detected. Around uST there is noise due to difficulty in
properly detecting frequencies.

that for u < uST the system progresses along closed almost
elliptic trajectories. Closed trajectories mean that both phase
differences and population differences oscillate around some
values. This ceases to be the case when u exceeds uST. Al-
though population differences continue to oscillate around
some nonzero values, the phase differences stop oscillating
and turn instead into running phases. The transition to the run-
ning phase regime is termed self-trapping and is known from
general systems of discrete nonlinear Schrödinger equations,
as in, for example, Refs. [41,42]. In a system of two coupled
Bose-Einstein condensates, the macroscopic self-trapped state
was introduced in Ref. [24] and experimentally verified in
Ref. [46].

The transition to self-trapping at u = uST = 12 is also
evident from Fourier analysis of the total circular current
presented in Fig. 13. Prior to uST the current is charac-
terized by a multifrequency dynamics with the frequencies
only weakly dependent on u. Above uST one can clearly
distinguish three frequencies, which rapidly increase with u.
Figure 13(a) shows the minimum and maximum values of
the total current dependent on u in the time window t ∈
[0, 10]. Although the minimum value stays interaction in-
dependent unless the system enters the chaotic regime, the
maximum value is linearly dependent on u in the non-self-

trapped case and almost constant or slightly decreasing in the
self-trapped regime. Qualitative differences in oscillations and
their Fourier transforms before and after self-trapping were
also found in bosonic Josephson junctions [47].

In addition to this analysis, we also find fixed points
of the system when interaction u is finite. As can be seen
from the phase portrait in Fig. 12(b), there are two types of
contributions to these fixed points: along the ni − n j = 0 line
and ni − n j 	= 0 with θi − θ j = −π/3 ± 2πk. The ni − n j =
0 lines do not depend on the interaction, whereas the latter
do. Thus this multidimensional fixed point is characterized
just by two occupancies n and n′ (n 	= n′). The n are the
occupancies of the outer triangles shown in white, gray, and
black in Fig. 3(b) and the n′ are populations of the remaining
sites. An equation that relates n, n′, and u at stable fixed points
can be readily found:

−u(n − n′) + 2

√
n′

n
−

√
n

n′ + 1 = 0. (19)

Using the normalization condition n + 2n′ = 3, we can ex-
press the interaction at the fixed point u∗ in terms of n′,

1

3(1 − n′)

(
1 + 4n′ − 3√

(3 − 2n′)n′

)
= u∗. (20)

The analysis of this equation shows that

lim
u∗→∞

n′ = 1−, lim
u∗→∞

n = 1+, (21)

with the noninteracting values being n′(u = 0) = 1/2 and
n(u = 0) = 2. This means that with increasing u the fixed
point is moving towards ni − n j = 0 but never reaches it
[we added some of the interaction-dependent fixed points to
Fig. 12(b) for u = 3, 10, and 13]. Due to these peculiarities,
the trajectories around the fixed points in Fig. 12(b) are never
perfect ellipses but rather egg shaped.

We note that in a bosonic Josephson junction of cold atoms
all fixed points are stable for u = 0. This is due to a supercriti-
cal pitchfork bifurcation occurring for certain values of u, that
one of the fixed points changes its character to unstable [47].
This change eventually leads to self-trapping. In contrast, our
system is characterized by a multidimensional unstable fixed
point, whose number of components does not change with
the interaction. This fixed point can be effectively described
with two components, one stable and one unstable, as can be
clearly seen in the projected phase portrait in Fig. 12. It is the
tendency of the stable component of the fixed point to align
with the unstable one along ni − n j = 0, a line with increasing
interaction, which eventually causes the self-trapping.

Another difference with a bosonic Josephson junction is
that the oscillating dynamics of the periodic modes transforms
after a while into chaotic. This is exemplified in Fig. 14, where
the total cyclic current is shown versus time for u = 3. The
characteristic timescale associated with chaotic dynamics tc
is not easy to evaluate numerically due to obstructing oscilla-
tions. We therefore define a condition for the onset of chaos
by first fitting the linear rise in amplitude from Fig. 13(a),
resulting in

Imax = 0.220(±0.000)u − 0.878(±0.001). (22)
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FIG. 14. Total circular current I (in units of ρK) over time (in
units of 1/K) of a periodic mode for u = 3.0 and k = 2. The dynam-
ics changes from periodic to chaotic at tc ≈ 25.

The value of the intercept should be the current value for
the noninteracting case, −√

3/2 ≈ −0.866; the discrepancy
could be attributed to the first few Imax values deviating from
the linear curve more than any others.

From these findings, a condition for estimating tc can be
formulated: If the current either exceeds the Imax curve or goes
below the minimum value by a certain margin (in this case
0.05), the time is taken as the critical one for that u. This
of course only applies to interaction values below u = 12.0.
The corresponding graph is presented in Fig. 9 (see the data
for ε = −1), where once again tc falls with rising interaction
parameter; however, the k = 1 case shows a pronounced kink.
Since linear stability analysis is not applicable in this case, we
cannot make a conclusion about the origins of the kink.

D. Discussion of modes in higher generations

In general, all of the discussed energy levels will be present
at any fractal stage k � 2. For this reason we can predict how
the modes with the same energies will behave at k = 3 and
other stages. For example, standard modes with ε = 2 will
become unstable for u > uc and will be characterized by the
timescale tc as well. However, uc as well as tc will depend on
generation, with uc eventually tending to zero in the thermo-
dynamic limit. As before, tc will be characterized by a kink;
however, the number of those kinks in higher generations may
be different from one, which is however difficult to predict at
this stage of work.

We believe that periodic modes will show the same behav-
ior dependent on u in all generations as we saw no differences
at least between the dynamics of k = 1 and k = 2 periodic
modes for u 	= 0.

We assume that edge modes which are characterized by
isolated rings of circular current should have chaotic dynamics
similar to that of a simple three-site ring. However, we did not
check that and this could be studied in future projects.

Modes with ε ≈ −3.302 at k = 2 are generated by periodic
modes with ε = −1 at k = 1, which in turn are generated by
an ε = 2 state at k = 0. Due to the recursion, all these states
will be present at all other stages, thus starting such a chain on
all levels anew (one can also see this pattern from the schemat-
ics in Fig. 6). Therefore, the chaotic mode with quasilocalized
bunches of points as in Fig. 11(c) will be present for all k � 2.
Modes with ε ≈ 0.302 are also gap states; however, they have
differently structured state spaces, so quasilocalized orbits do
not appear in this modes for a finite interaction, contrary to
the ε ≈ −3.302 gap states.

We suppose that for higher generations more and more
chaotic modes will appear with so-called nice nonchaotic
states being present only for energies ε ∈ {−1, 1, 2}.

V. CONCLUSIONS AND DISCUSSION

In this work we provided a detailed and systematic analysis
of eigenmodes carrying loop currents in a system of weakly
interacting condensed bosons in Sierpiński gaskets. Essen-
tially, we explored the complex domain of discrete nonlinear
Schrödinger equations in fractal lattices. In a noninteracting
system, we identified energy levels which can accommodate
such eigenstates and found those states analytically where
possible, or numerically. It turned out that the loop states can
be very different in the distribution of their site populations
as well as phase differences between nearest neighbors, often
counterintuitive. To make our main results more transparent,
we divided the discovered modes into three main classes:
standard, chaotic, and periodic.

Standard modes correspond to the spectrum’s upper bound-
ary and are very similar in behavior to the dynamics of the
basic unit of the Sierpiński gasket, a simple three-site ring.
They appear in all generations of the Sierpiński gasket and
become unstable for certain finite values of u for small gaskets
with uc → 0 for larger systems.

Chaotic loop modes can appear for a highly degenerate
spectrum’s upper boundary, as well for irrational eigenener-
gies (all energies expressed in units of coupling constant K).
These modes appear first at the stage k = 2 and we assume
them to be typical of fractal lattices. One would not expect
such modes in a regular lattice.

We also identified modes that we refer to as periodic. These
modes are stationary states which are characterized by two
contributions to the fixed point (due to symmetric phase space,
this suffices). One of them has zero occupation difference and
remains where it is in the phase space even when the interac-
tion is turned on. The other (for a different phase difference
and nonzero population imbalance) changes the occupation
difference with interaction strength. Thus the u = 0 initial
condition is no longer a fixed point and undergoes periodic
dynamics. As we know from a simple pendulum, this kind of
constellation of fixed points in phase space can lead to running
phase modes, termed macroscopic self-trapping in the context
of Bose-Josephson junctions. This is indeed what happens for
the periodic modes with increasing interaction. Interestingly,
this behavior due to self-similarity of the modes is expected at
all generations k � 1 of the Sierpiński gasket.

All in all, these are unexpected results, which should
motivate further studies of these intriguing systems. For ex-
ample, modes for k = 1 and ε = 1 resemble edge modes
in fractal photonic insulators [5] and deserve further
exploration.

Another line of research could be a generalization to
driven lattices, which is important because the driving force
could account for the effect of gravitational field. At least
for quasi-one-dimensional lattices of condensates, the mean-
field dynamics was in excellent agreement with experiments
probing full quantum many-body behavior [48]. Since chaotic
dynamics seems to be a natural attribute of systems of cou-
pled condensates, it would be instructive to measure its
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characteristics experimentally, for example, by Loschmidt
echo methods, as suggested in [49].

Finally, the role of quantum fluctuations and the study of
possible thermalization of bosons in fractal lattices could give
researchers further clues about the role of chaos and eigenstate
thermalization hypothesis [50–52], as well as dynamical heat
bath generation mechanisms [53,54].

APPENDIX A: SPECTRUM OF THE
NONINTERACTING SYSTEM

Here we briefly outline the main results for the single-
particle spectrum derived in Refs. [3,4]. The spectrum was
calculated with the help of a decimation procedure according
to which the Hamiltonian of generation k is mapped onto
the Hamiltonian of the previous generation k − 1. The pro-
cedure works consistently provided each site of a lattice is
connected to the same number of nearest neighbors, in our
case to the four nearest sites. In this case the basic structure
of the effective Hamiltonian (the one defined on a subspace of
old sites) does not change with on-site energies and effective
coupling being renormalized in a simple way. To secure this
requirement, periodic boundary conditions were suggested in
[3], also shown in Fig. 1. This allowed us to calculate the
spectrum of the infinite Sierpiński gasket. The spectrum is
bounded, discrete, and highly degenerate.

As a result of the renormalization procedure, eigenenergies
of generation k fractal can be expressed recursively in terms
of eigenenergies of the previous generation k − 1 (in units
of K),

εk,± = −3 ± √
(9 − 4εk−1)

2
. (A1)

This recursion does not however account for all values of
possible eigenenergies. There are three exceptional values
ε∗ = ±2; 1, which should be treated separately (for these
values, the renormalization scheme fails, leading to either
singularities or zeros in renormalized effective energies [3]).
If we disregard the special values ε∗ for the moment, we
can analyze the stability of the recursive relation (A1) and
show that a sequence of spectral gaps is generated out of
it in a regular manner. This sequence of gaps is in turn
a fractal described by a Cantor set of Lebesgue measure
zero [3,4].

The whole spectrum as a result contains three parts: the
special values, values inside the gap intervals, and values
directly at the edges of the gaps. Values inside the gaps
originate from ε = 2. Values at the gap edges descend from
ε = 1. The entire spectrum is then a point set of Lebesgue
measure zero. [3]. The multiplicities of all values, special or
not, are not difficult to calculate and as a result the density
of states for the Sierpiński gasket of any size can be pro-
duced [3]. For convenience, we reproduce here the density
of states (DOS) for the first ten generations of the Sierpiński
gasket (see Fig. 15). We will refer to this DOS later in the
text. Note that the DOS exhibits self-similarity properties as
well [3].

FIG. 15. Density of states for the first ten generations of the
Sierpiński gasket. Such a DOS was first presented in [3]. The peak at
ε = 2 is very high due to the large degeneracy of the eigenvalue; we
cut it at 0.18.

APPENDIX B: DETAILS OF HIERARCHICAL
DERIVATION OF EIGENVECTORS

FOR STAGES k = 1 AND k = 2

The idea of hierarchical derivation was outlined in Ref. [3].
Here we provide examples to show how the decimation pro-
cedure works for stages k = 1 and k = 2.

The eigenvalue problem for an eigenstate |�〉 in genera-
tion k is formulated in a two-dimensional space {|�1〉, |�2〉},
where |�1〉 is the projection of |�〉 onto the old subspace,
i.e., the subspace of generation k − 1, whereas |�2〉 is the
projection of |�〉 onto the new subspace, i.e., the one com-
prising all the new sites which were added in generation k.
The Schrödinger equation can then be written in a convenient
block form (

H11 H12

H21 H22

)(|ψ1〉
|ψ2〉

)
= ε

(|ψ1〉
|ψ2〉

)
. (B1)

Here H11 is a block of zeros in the old subspace and H22 is a
block-diagonal matrix of the size of the new subspace with Ŝ
matrices along the diagonal

Ĥ22 =

⎛
⎜⎜⎝

Ŝ 0 0 · · · 0
0 Ŝ 0 · · · 0
· · ·
0 0 0 · · · Ŝ

⎞
⎟⎟⎠, Ŝ =

⎛
⎝ 0 −1 −1

−1 0 −1
−1 −1 0

⎞
⎠.

(B2)

What changes from stage to stage is the form of connecting
block H12 (H21 = HT

12). For example, for stage k = 1,

H12 = (H21)T = (ŜŜ). (B3)

In the next stages H12 will contain similar matrices, whose
sum per row will be equal to 2Ŝ, and so on [see Eq. (B9)].
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We can now express the new eigenvectors |ψ2〉 in terms of
the old states |ψ1〉,

|ψ2〉 = (εÎ − H22)−1H21|ψ1〉, (B4)

provided εÎ − H22 is invertible. Since H22 is block diagonal,
it is easy to invert the matrix (εÎ − H22) just by inverting each
block

(εÎ − Ŝ)−1 = 1

ε2 + ε − 2

⎛
⎝1 + ε −1 −1

−1 1 + ε −1
−1 −1 1 + ε

⎞
⎠

= 1

ε2 + ε − 2
[(1 + ε)Î + Ŝ] ≡ B̂. (B5)

We see that inversion does not work for ε = 1 and ε = −2.
These cases are to be treated separately. However, ε = −2 is
not a loop current state and will not be considered here.

Consider, for example, k = 1. In this generation we can
calculate an eigenvector, generated by |ψ1〉 = V , defined in
Eq. (12). Here V corresponds to the eigenvalue ε = 2 in
generation k = 0. In generation k = 1 this eigenvalue will
generate ε = −1 (see the flowchart in Fig. 2); therefore, we
insert ε = −1 and V instead of |ψ1〉 in Eqs. (B4) and (B5).
After some algebra we get

(εÎ − H22)−1H21 = −

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B6)

Now from Eq. (B4) we get

|ψ2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/2
(−i

√
3 + 1)/4

(i
√

3 + 1)/4
−1/2

(−i
√

3 + 1)/4
(i
√

3 + 1)/4

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.5
0.5e−iπ/3

0.5eiπ/3

−0.5
0.5e−iπ/3

0.5eiπ/3

⎞
⎟⎟⎟⎟⎟⎟⎠

(B7)

so that

|�〉 =
(|ψ1〉

|ψ2〉
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ei2π/3

ei4π/3

−0.5
0.5e−iπ/3

0.5eiπ/3

−0.5
0.5e−iπ/3

0.5eiπ/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

which up to a factor is the eigenvector |�k=1(−1)〉 in Eq. (15).
Thus, in generation k = 1 only one loop current state can
be generated from the previous stage. The other two are for
special values ε = 1 and ε = 2 and should be found directly
from the Schrödinger equation.

In the next stage k = 2 the partitioned Hamiltonian has
the following blocks: H11 is a 9 × 9 matrix of zeros and H22

is a 6 × 6 block-diagonal matrix with blocks Ŝ on its main
diagonal so that (εÎ − H22)−1 is a block-diagonal matrix with

each block equal to B̂ from Eq. (B5). For H21 we get

H21 = −

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂1 B̂2 0̂
B̂3 B̂4 0̂
B̂5 B̂6 0̂
B̂1 0̂ B̂2

B̂3 0̂ B̂4

B̂5 0̂ B̂6

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B9)

where

B̂1 =
⎛
⎝0 0 0

1 0 0
1 0 0

⎞
⎠, B̂2 =

⎛
⎝0 1 1

0 0 1
0 1 0

⎞
⎠,

B̂3 =
⎛
⎝0 1 0

0 0 0
0 1 0

⎞
⎠, B̂4 =

⎛
⎝0 0 1

1 0 1
1 0 0

⎞
⎠,

B̂5 =
⎛
⎝0 0 1

0 0 1
0 0 0

⎞
⎠, B̂6 =

⎛
⎝0 1 0

1 0 0
1 1 0

⎞
⎠, (B10)

with properties −B̂1 − B̂3 − B̂5 = Ŝ and −B̂2 − B̂4 − B̂6 =
2Ŝ. We get then

(εÎ − H22)−1H21 = −

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂B̂1 B̂B̂2 0
B̂B̂3 B̂B̂4 0
B̂B̂5 B̂B̂6 0
B̂B̂1 0 B̂B̂2

B̂B̂3 0 B̂B̂4

B̂B̂5 0 B̂B̂6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B11)

Now we can plug |ψ1〉 = (V,V,V )T and ε = 2 in Eqs. (B4)
and (B5) and derive |�2〉 = (V,V,V,V,V,V )T . This is to say
that the standard eigenvector of the type depicted in Fig. 3(a)
will be present in generation k = 2 and in fact in all gen-
erations for ε = 2. However, ε = 2 is a highly degenerate
state and the remaining three eigenvectors can be calculated
only numerically. Here we present only the |�2〉 part of them
in order to save space (the vectors are then appended by
|�1〉 = (VVV )T ):

|ψ2(ε = 2)〉2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.440
0.5 + 0.342i

−0.5 − 0.342i
−0.163 + 0.283i
1.103 + 0.059i

−0.603 − 0.925i
0.133 − 0.230i

−0.307 − 0.754i
0.807 − 0.112i
0.030 + 0.814i

−0.796 − 0.171i
−0.204 + 0.171i
−1.016 − 0.433i

0.25 + 1.076i
0.25 − 0.210i

−0.424 − 0.433i
0.25 − 0.552i
0.25 + 1.418i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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|ψ2(ε = 2)〉3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.266
−0.5 − 0.643i
−0.5 + 0.643i

−0.720 − 1.247i
−0.046 + 0.604i
0.546 + 0.262i

−0.163 − 0.283i
1.103 − 0.059i

−0.603 + 0.925i
0.883 + 0.663i

−1.057 + 0.321i
0.057 − 0.321i

−0.424 + 0.433i
0.25 + 0.552i
0.25 − 1.418i

0.690 + 0.433i
0.25 − 0.775i
0.25 − 0.091i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|ψ2(ε = 2)〉4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.326
−0.5 − 0.985i
−0.5 + 0.985i
0.133 − 0.230i

−0.307 − 0.754i
0.807 − 0.112i

−0.720 + 1.247i
−0.046 − 0.604i
0.546 − 0.262i
0.587 − 0.150i
0.353 + 0.492i

−1.353 − 0.492i
0.690 − 0.433i
0.25 + 0.775i
0.25 + 0.091i

−1.016 − 0.433i
0.25 + 1.076i
0.25 − 0.210i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Their state-space representation looks chaotic. A linear
combination of them (|ψ2〉2 + |ψ2〉∗3 + |ψ2〉4) results in a
symmetric state space, shown in Fig. 16.

We now discuss periodic modes of stage k = 2. These
are loop current eigenstates for ε = −1, which are generated

FIG. 16. Resulting state space from a linear combination of all
the discussed chaotic modes (ε = 2 and k = 2). For the one seen
in Fig. 4(b), the complex conjugation was applied beforehand. The
mode is now single colored, because the three subtriangles are equiv-
alent, in contrast to Figs. 4(a) and 4(b).

from the standard modes of the previous generation shown in
Fig. 3(a). In order to calculate the new modes we put ε = −1
and |ψ1〉 = (V,V,V )T in Eq. (B4). When we multiply the
matrix of Eq. (B11) with |ψ1〉 = (V,V,V )T we get a very
simple result

|ψ2〉 = − 1
2 (V,V,V,V,V,V )T (B12)

because

B̂B̂1 + B̂B̂2 = B̂B̂3 + B̂B̂4 = B̂B̂5 + B̂B̂6

= − 1
2 Ŝ(B̂1 + B̂2) = 1

2 Ŝ2. (B13)

These eigenmodes hence preserve the structure of the periodic
modes in Fig. 3(b) with old subspace having larger occupation
numbers and phase shifted by π with respect to triangles of
the new subspace. These structure will be preserved in all
generations.

We proceed to loop states for the eigenvalues ε ≈ −0.381
and −2.618. According to the flowchart in Fig. 2, they are
derived from partially filled states of generation k = 1, which
means from |ψ1〉 = (0,−V,V )T . This leads to

|�2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂B̂2V
B̂B̂4V
B̂B̂6V

−B̂B̂2V
−B̂B̂4V
−B̂B̂6V

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B14)

Since, for example,

B̂B̂2V =
⎛
⎝ −ε

−2ei2π/3 + εe−i2π/3

−2e−i2π/3 + εei2π/3

⎞
⎠ (B15)

and ε is an irrational number, the entries of this vector cannot
be simplified to a nice Euler form, with argument being just a
rational fraction of π . What we see is that the sites which were
unfilled in Fig. 3(c) remain unfilled, thus effectively splitting
the fractal into two independent subspaces.

Next loop current states, corresponding to ε ≈ 0.302 and
−3.302, are derived from |ψ1〉 = (−2V,V,V )T so that

|�2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(2B̂B̂1 − B̂B̂2)V
(2B̂B̂3 − B̂B̂4)V
(2B̂B̂5 − B̂B̂6)V
(2B̂B̂1 − B̂B̂2)V
(2B̂B̂3 − B̂B̂4)V
(2B̂B̂5 − B̂B̂6)V

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B16)

which is again difficult to simplify due to irrational character
of the eigenenergies (blocks B̂ are all ε dependent). We there-
fore resume to numerics and get [we only present the upper
halves of the vectors, since the lower parts are the same, as is
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clear from Eq. (B16)]

|ψ2(ε ≈ −3.302)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.651
0.826 + 0.101i
0.826 − 0.101i

−0.326 + 0.765i
−0.326 + 0.564i
−0.5 + 0.665i

−0.326 − 0.765i
−0.5 − 0.665i

−0.326 − 0.564i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|ψ2(ε ≈ 0.302)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.151
−0.076 + 0.621i
−0.076 − 0.621i
0.576 + 0.245i
0.576 − 0.997i
−0.5 − 0.376i
0.576 − 0.245i
−0.5 + 0.376i
0.576 + 0.997i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B17)

The last loop current states for generation k = 2 to
be discussed are the edge states, corresponding to ε = 1,
the band-edge energy. These states are not possible to derive
from Eqs. (B4) and (B5). However, one can see that the
global structure of the states (0,−V,V ) will be preserved in
all generations. For example, in generation k = 2 this vector
will be

(0̂, 0̂, 0̂, v̂1, v̂2, v̂3,−v̂1,−v̂2,−v̂3)T . (B18)

This means that the old subspace will be empty in each gener-
ation, whereas the new subspace will be filled (albeit partially,
as we see below).

The three vectors v̂i, which we need to find, are three-
dimensional vectors, which satisfy the equation

−B̂T
2 v̂1 − B̂T

4 v̂2 − B̂T
6 v̂3 = 0̂. (B19)

This equation follows from Eq. (B1). Moreover, another prop-
erty of v̂i vectors, which also follows from Eq. (B1), is that
they are all eigenvectors of the Ŝ matrix, corresponding to
eigenvalue ε = 1. These eigenvectors of Ŝ can be expressed
in many different ways, e.g., the three real ones can be
found as

v̂r
1 =

⎛
⎝ 0

−1
1

⎞
⎠, v̂r

2 =
⎛
⎝ 1

0
−1

⎞
⎠, v̂r

3 =
⎛
⎝−1

1
0

⎞
⎠. (B20)

Since B̂2, B̂4, and B̂6 are similar matrices, they all share an
eigenvalue ε = 1. Eigenvectors corresponding to this eigen-
value are of course different, but they happen to coincide
with the vectors in (B20). In this case the condition (B18)
is trivially satisfied. This is unfortunately not the case for
complex eigenvectors, because matrices B̂2,4,6 do not share
complex eigenvectors with Ŝ.

TABLE II. Slopes a from the linear fittings of the doubly loga-
rithmic plots in Fig. 10 for k = 1.

a in segment I a in segment II − log ε

−0.303(±0.004) −0.745(±0.001) 0
−0.367(±0.004) −0.697(±0.002) 1
−0.396(±0.004) −0.778(±0.004) 2
−0.412(±0.004) −0.802(±0.002) 3
−0.422(±0.004) −0.750(±0.001) 4
−0.429(±0.004) −0.705(±0.002) 5
−0.409(±0.005) −0.714(±0.004) 6
−0.413(±0.005) −0.746(±0.004) 7
−0.395(±0.006) −0.760(±0.003) 8
−0.397(±0.006) −0.759(±0.002) 9
−0.382(±0.006) −0.751(±0.002) 10
−0.383(±0.006) −0.747(±0.002) 11
−0.369(±0.007) −0.741(±0.002) 12

After some effort we get

v̂1 =
⎛
⎝e−i2π/3

ei2π/3

1

⎞
⎠, v̂2 = v̂r

2, v̂3 = −
⎛
⎝ 1

ei2π/3

e−i2π/3

⎞
⎠, (B21)

which means only two (per subspace) loop currents can be
maintained.

APPENDIX C: LINEAR FITS OF THE LOGARITHMIC
PLOT IN FIG. 10

Tables II and III contain the slopes [the values of a from
Eq. (18)] from the linear fit of ln(tc) versus ln(u − uc). It is
difficult to rigorously determine the position of the kink in
the graphs. For k = 1 the kink is around ln(u − uc) ≈ 0. For
k = 2 it is shifted to smaller values of ln(u − uc) ≈ −1. In
Tables II and III we present the tabulated values of a for two
linear segments: segment I before the kink and segment II
after the kink.

TABLE III. Slopes a from the linear regression of the doubly
logarithmic plots in Fig. 10 for k = 2.

a in segment I a in segment II − log ε

−0.372(±0.021) −0.950(±0.005) 0
−0.360(±0.010) −0.942(±0.003) 1
−0.358(±0.005) −0.924(±0.003) 2
−0.330(±0.006) −0.907(±0.003) 3
−0.302(±0.007) −0.892(±0.002) 4
−0.278(±0.007) −0.882(±0.002) 5
−0.259(±0.007) −0.872(±0.002) 6
−0.243(±0.008) −0.860(±0.002) 7
−0.215(±0.008) −0.840(±0.001) 8
−0.196(±0.009) −0.821(±0.001) 9
−0.185(±0.011) −0.805(±0.001) 10
−0.179(±0.013) −0.791(±0.001) 11
−0.178(±0.016) −0.777(±0.001) 12
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