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Relativistic and spin-orbit dynamics at nonrelativistic intensities in strong-field ionization
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Spin-orbit dynamics and relativistic corrections to the kinetic energy in strong-field dynamics have long been
ignored for near- and mid-infrared fields with intensities 1013–1014 W/cm2, as the final photoelectron energies
are considered too low for these effects to play a role. However, using a precise and flexible path-integral
formalism, we include all correction terms from the fine-structure, Breit-Pauli Hamiltonian. This enables a
treatment of spin, through coherent spin states, which is the first model to use this approach in strong-field
physics. We are able to show that the most energetically rescattered wave packets are effected by relativistic
kinetic energy corrections during rescattering. We probe these effects and show that they yield notable differences
for a 1600-nm wavelength laser field on the dynamics and the photoelectron spectra. Furthermore, we find that
the dynamical spin-orbit coupling is strongly overestimated if relativistic corrections to kinetic energy are not
considered. Finally, we derive a new condition that demonstrates that relativistic effects begin to play a role
at intensities many orders of magnitude lower than expected for the case of rescatterering. Our findings may
have important implications for imaging processes such as laser-induced electron diffraction, which includes
high-energy photoelectron recollisions.
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I. INTRODUCTION

Electron spin is a canonical example of the departure of
the atomic scale world from our macroscopic one. The dis-
covery of spin [1] carried huge fundamental significance,
while also leading to a vast range of observable effects,
from fine-structure splitting and the Zeeman [2] effect, to the
Stern-Gerlach experiment and Mott scattering [3]. There are
a huge range of applications exploiting spin, including spin-
resonance imaging processes, atomic clocks, quantum sensors
for magnetic fields, spin qubits, and spintronics (spin transport
in solids) [3]. Despite its significance, until recently [4,5], the
role of spin was ignored in strong-field processes driven by
“nonrelativisitic” laser intensities. The argument given is that
at these intensities, the spin will not interact with the laser
field, and that the energies reached in laser-driven recollisions
(often taken to be ≈3.17Up [6], Up is the ponderomotive en-
ergy, i.e., the cycle-averaged kinetic energy of a free electron
in the laser field) are insufficient for spin-orbit coupling or
other relativistic effects to play a role.

Strong-field physics deals with the interaction of intense
and short laser fields with matter. Through the control of a
few recollision-based processes, this has enabled the measure-
ment and manipulation of matter on the scale of attoseconds
(10−18 s), giving birth to the field of attosecond physics [7–10]
and attosecond laser pulses [11,12] via high-harmonic gener-
ation (HHG) [6,13]. One of the primary processes involved
is above-threshold ionization (ATI) [14], which, in this con-
text, is the strong-field (or tunnel) removal of an electron
by the laser. After ionization, the continuum electron may

*Contact author: andrew.maxwell@ucl.ac.uk

undergo laser-driven elastic scattering off the residual ion,
sometimes referred to as high-order ATI (HATI) [15,16]. The
processes of ATI and HATI have found use in imaging pro-
cedures, laser-induced electron diffraction (LIED) [17–21],
and photoelectron holography [22–24]. In the former, the
recolliding electron is used to provide diffraction images of
its parent molecule. In photoelectron holography, the inter-
ference of electronic wave packets that recollide and those
that do not is used to image the parent atom or molecule.
In the case of LIED, long wavelengths, on the order of a
few microns, are used to achieve high electronic recollision
velocities. These hard recollisions closely probe the target, po-
tentially leading to large spin-orbit coupling and large kinetic
energies.

In the relativistic laser intensity regime (I > 1016 W/cm2)
(see, e.g., Refs. [25–34]), spin is often considered alongside
other relativistic effects, note we have neglected works on
high intensity and high frequency (in the so-called stabiliza-
tion regime), as we are focused on fields with near-infrared
and infrared frequencies. Popular ionization models such as
the strong-field approximation (SFA) [35–37] were gener-
alized to the relativistic regime [25,26], and many studies
have considered spin-related effects (see, e.g., Refs. [28,31]).
However, in order to estimate the intensity at which relativistic
effects become relevant, it is common to employ classical
Coulomb-free trajectories [27], which predicts that these ef-
fects should be negligible for intensities I < 1016 W/cm2.
This is a good approach for the direct ATI electrons, but in the
case of rescattered electrons, the Coulomb potential can allow
for much higher kinetic energies to be reached. In this work,
we will introduce a Coulomb adapted condition for backscat-
tered trajectories. Some relativistic models have extended the
relativistic SFA to account for the Coulomb potential (see,
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e.g., Refs. [33,34]) and derived cutoff limits for relativistic
rescattering [32].

In the nonrelativistic regime, the effect of spin and spin-
orbit coupling was found to play a role in atoms with
appreciable internal spin-orbit coupling. Early work demon-
strated spin-orbit effects in ion alignment with strong laser
fields [38]. Spin-orbit effects in particular cases in single-
photon [39] and multiphoton [40] ionization have long been
known, but in Ref. [4], this was theoretically described for
strong-field ionization with a circularly polarized laser field
(later extended to include additional Coulomb effects [41]),
where a general mechanism for producing spin-polarized
electrons was developed. This mechanism depends on the
preferential tunneling of “counter-rotating” electrons to the
circular laser field [42–44]. The spin-polarized electrons were
experimentally verified by Ref. [5], where Mott scattering
was used to measure the spin polarization of the photoelec-
trons. Later experiments revealed different spin polarization
across peaks in the photoelectron ATI spectra [45]. This ef-
fect has also been explored by a numerical solution of the
Pauli equation [46], while some studies have solved the Dirac
equation in the nonrelativistic regime [46–48]. Additional
theoretical work has focused on effects due to Pauli sym-
metrization given initial singlet or triplet states [49,50], or the
spin dynamics of the residual ion [51–56], related work using
attosecond pulses has demonstrated the possibility to reveal
time-resolved spin dynamics in the ion [57]. In a very recent
work [58], inelastic recollision of the photoelectron with the
ion was also considered, where tuning the evolution of the
ionic spin could allow a spin flip, which has implications for
recollision-based imaging process such as LIED.

Thus, the potential for spin and spin-orbit coupling to play
a role in the photoelectron recollision processes has only just
begun to be explored. In this work, we will explore the spin
and spin-orbit coupling of the recolliding photoelectron in
detail. In order to do this, we will extend the accurate and
flexible path-integral approach, the Coulomb quantum-orbit
strong-field approximation (CQSFA) [59–64]. This model has
been developed in the spirit of the quantum-orbit formalisms
of the SFA [65–67], that has enabled significant insight into
ATI and recollision processes [15,16]. In its original for-
mulation, the CQSFA was used extensively to understand
holographic interference patterns that occur in photoelectron
momentum distributions (PMDs) [68–71]. In these studies, a
good qualitative agreement with numerical solutions of the
time-dependent Schrödinger equation (TDSE) was possible
for medium photoelectron energies of up to around 3–4Up.
However, recent developments [72–74] have enabled excep-
tional quantitative agreement with the TDSE up to the highest
rescattering energies of 10Up. These developments include
the proper computation of the stability prefactor and Maslov
phases [72], an improved algorithm for finding saddle-point
solutions, the inclusion of a sin2 pulse envelope, and an im-
proved method for computing the bound-state prefactors; all
these improvements are combined in Ref. [74], and have been
used in this work.

The CQSFA provides the ideal platform for understanding
the spin-orbit effects of the recolliding photoelectron, pro-
viding an intuitive trajectory-based picture. In this work, we
demonstrate the high level of agreement of the CQSFA for the

nonrelativistic spinless, few-cycle case, via comparison with
a TDSE solver at a wavelength of 1600 nm for hydrogen at a
typical intensity of 5 × 1013 W/cm2. We demonstrate, even at
this stage, that relativistic corrections are required to correctly
describe the rescattered wave packet due to differences in the
probability amplitude when including relativistic corrections.
Thus, we present a derivation for the CQSFA that includes the
Breit-Pauli relativistic corrections, in particular, a spin-orbit
coupling term and corrections to the kinetic energy (or mass
correction term). The inclusion of coherent-spin states allows
for a dynamical description of spin with path integrals. We
derive analytic expressions that describe the spin dynamics
and evolution of the spin-orbit phase. We find that with the
kinetic energy corrections, the rescattering dynamics is prop-
erly described, with trajectories no longer traveling faster than
light. This leads to a noticeable change in the PMD probability
that can be explained in terms of the trajectories. Further-
more, we consider the effect of initial spin alignment vs no
spin alignment. If the relativistic kinetic energy corrections
are not included, this leads to considerable differences that
would be experimentally measurable. However, including the
kinetic energy corrections leads to very modest differences
for the two spin alignments. This demonstrates the impor-
tance of including the relativistic kinetic energy corrections
when computing the effect of spin-orbit coupling. Finally, we
derive analytical expressions to approximately identify the
(back)scattering angles for which a relativistic treatment is
required across a range of laser intensities.

The article is organized as follows. In Sec. II we briefly
describe the theory for the nonrelativistic spinless CQSFA and
TDSE solver. In Sec. III, we present the results of these mod-
els and investigate the rescattered trajectories. In Sec. IV, we
present an alternative formulation of the CQSFA, including
spin and other relativistic corrections. In Sec. V, analytical
results are presented regarding the weak-coupling approxima-
tion and spin-orbit phase. In Sec. VI, we present the results
with the newly derived theory, investigating the effect of the
relativistic kinetic energy corrections and spin-orbit coupling
terms. In Sec. VII, we derive limits to determine at which
scattering angles a relativistic treatment is required. Finally,
in Sec. VIII, we present our final conclusions. Atomic units
are used throughout unless stated otherwise.

II. THEORY

A. CQSFA

We begin by giving a brief description of the CQSFA,
which has been described in detail in its present accurate
form in Ref. [74], while its initial development is described
in Refs. [59,61,61,62].

We start from the nonrelativistic Hamiltonian for an atomic
target in a strong field under the single-active-electron approx-
imation, which may be written as

Ĥ (t ) = Ĥ0 + ĤI (t ). (1)

Here, Ĥ0 is the Hamiltonian atomic system, which, we write
as Ĥ0 = K (p̂) + U (r̂), where K (p̂) and U (r̂) are general
functions for the kinetic and potential energies, respec-
tively, while ĤI (t ) = r̂ · E(t ) describes the interaction with
the external laser field in the length gauge. We want to
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compute the momentum-dependent transition amplitude
M(p f ) = 〈ψp f |U (t, t0)|ψ0〉, where |ψ0〉 is the initial bound
state of the system, |ψp f 〉 is a scattering state with asymptotic
momentum p f , the final time t → ∞, and the initial time
t0 → −∞. The transition amplitude may be written, still in
an exact form [59,61], as

M(p f ) = −i
∫ t

−∞
dt ′ 〈ψp f |U (t, t ′)HI (t ′)|ψ0(t ′)〉 . (2)

Here, U (t, t ′) is the time-evolution operator given by

U (t, t ′) = T̂ exp

(
−i

∫ t

t ′
dτ Ĥ (τ )

)
, (3)

where T̂ exp denotes the time-ordered exponential. Including
the resolution of the identity operator before HI (t ′) in Eq. (2),
given by 1 = ∫

d3p0 |p̃0〉 〈p̃0|, where p̃0 = p0 + A(t ′), yields

M(p f ) = −i lim
t→∞

∫ t

−∞
dt

∫
d3p̃0eiIpt ′

d ( p̃0, t ′)

× 〈p̃ f |U (t, t ′)|p̃0〉 , (4)

where Ip is the ionization potential of the bound state. The
above equation allows for representation in path-integral form
via time slicing [74,75],

〈p̃ f |U (t, t ′)|p̃0〉 =
N∏

n=1

[∫
d3p̃n

] N+1∏
n=1

[∫
d3rn

(2π )3

]
eiAN ,

where

AN = −
N+1∑
n=1

[rn · (p̃n − p̃n−1) + �tH (p̃n, rn, tn)]. (5)

The limit N → ∞ is now taken in order to turn the product of
integrals into path integrals,

M(p f ) = −i
∫ ∞

−∞
dt ′

∫
r(t ′ )

D′r
(2π )3

∫ p(t )

D′p eiS[r,p,t ′]d (p̃0, t ′),

(6)

with d (p̃0, t ′) = 〈p0 + A(t ′)|HI (t ′)|ψ0〉,

S[r, p, t ′] = Ipt ′ − p(t ′) · r(t ′) −
∫ ∞

t ′
dτ (ṗ · r + H[r, p, t ′]),

(7)

and H[r, p, t ′] is the classical Hamiltonian.1 The action in
Eq. (7) results from enforcing an initial condition in position
space and a final limit in momentum space, giving rise to
the boundary term p(t ′) · r(t ′), i.e., we are in the mixed rep-
resentation. These restrictions are denoted by the primes on
D′s (full details are given in Ref. [74]). For atoms, the initial
position is the origin, hence, r(t ′) = 0, and p(t ′) · r(t ′) may
be dropped. Note, we define p0 = p(t ′) = p(Re[t ′]), which

1Technically, H [r, p, t ′] is the Weyl transformed quantum-
mechanical Hamiltonian [115], which differs from the classical
Hamiltonian H [p, r, t ′] = K[p] + U [r] + HI (t ′) by orders of h̄2;
however, these differences may be discarded given we will be
applying the saddle-point approximation that already neglects the
quadratic power of h̄.

results from taking momentum fixed during tunneling (this
approximation is explained in more detail in Appendix A).

The transition amplitude of Eq. (6) is then evaluated via the
saddle-point approximation

M(p) = −i
∑

s

√
2π i

∂2S/∂t ′2
e−iπν/2

√|J| d (p̃0s, ts)eiS[rs,ps,ts], (8)

where J = ∂p f

∂p0
, J = det(J ), and ν is the Maslov index, which

may be determined by computing J at all points in time and
counting the number of focal points (J = 0) [72,74]. The sum
runs over all solutions to the saddle-point equations, which are
given by

(p0s + A(ts))2 + 2Ip = 0, (9)

ṙs(t ) = ∇pK[ps + A(ts)] and ṗs(t ) = −∇rU [rs]. (10)

Equation (9) leads to complex ionization times ts meaning the
integral in Eq. (7) is done in two parts, first over imaginary
time from ts to Re[ts] associated with tunneling, then over real
time from Re[ts] to ∞, associated with real-space continuum
propagation (see Appendix A for more details).

The CQSFA solves a boundary value problem known as the
inverse problem, i.e., all solutions of Eqs. (9) and (10) (i.e.,
trajectories or quantum orbits) are found satisfying r(t ′) = 0
and p(t → ∞) = p f . There will be multiple solutions for
each final momentum point; each solution can be uniquely
determined by its initial momentum coordinate p0. Thus, the
inverse problem reduces to finding the set of initial momentum
coordinates p0, for each final momentum p f .

The approach just described is different from the majority
of models, which use a forward approach and bin trajectories
with similar final momenta, which requires small bins and
many trajectories to resolve interferences, while the inverse
approach allows for many fewer trajectories. Furthermore,
recent work [76] has identified that forward approaches do
not yield the correct sampling weight in terms of the Jacobian
J , leading to 1/|J| instead of the correct 1/

√|J| computed by
inverse approaches. The downside of the inverse approach is
that it is much harder to solve, and approaches can be less
general. In previous works [61–63], solutions were found by
“exploring” the manifold of solutions, i.e., changing param-
eters to find “connected” solutions. This method is very fast
but has two disadvantages: (i) it requires preknowledge of
the shape of the manifold and, where solutions lie, which
changes from system to system; (ii) it assumes all solutions
can be reached in this way, which is not the case. In this
work, we used an alternative method [74] where the solutions
are found by initial random sampling of p0, and adaptively
concentrating guesses in p0 regions where dense clusters of
solutions are found. This method is more general and allows
all solutions to be found regardless of the system.

The distinct solutions for each p f do not have an exhaustive
classification, however, in the case of linearly polarized fields,
four broad types of orbit can be defined that can helpfully
classify behavior. This classification uses the tunnel exit

z0 = Re

(∫ Re[ts]

ts

dτ Az(τ )

)
, (11)
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TABLE I. Orbit classification used in the CQSFA for monochro-
matic linearly polarized fields. The labeling 1 to 4 classifies the orbit
with two different conditions, the signs of �z = z0 pf z and �⊥ =
pf x p0x + pf y p0y, respectively. The behavior in the fourth column
indicates the expected dynamics of the specific types of orbits.

Orbit �z �⊥ Behavior

1 + + Direct
2 − + Laser-driven deflection
3 − − Forward scattered
4 + − Rescattered

and initial momentum perpendicular to the laser polarization
p0⊥, and compares their sign with p f z and p f ⊥, respectively.
Then we may define �z = z0 p f z and �⊥ = p f x p0x + p f y p0y.
This is the same definition as in Ref. [74], which generalizes
the commonly employed two-dimensional (2D) classification
[61,73,77] to three dimensional (3D). The classification, sum-
marized in Table I, is as follows: �z > 0 ∧ �⊥ > 0: orbit
1, associated with direct trajectories that do not return to the
parent atom; �z < 0 ∧ �⊥ > 0: orbit 2, describes trajec-
tories that undergo a laser-driven return but do not interact
strongly with the parent atom; �z < 0 ∧ �⊥ < 0: orbit
3, trajectories that forward scatter off the parent atom; and
�z < 0 ∧ �⊥ < 0: orbit 4, associated with trajectories that
backscatter off parent atom. Note that there may be more than
one valid solution of each type.

Examples typifying the classifications are given in
Fig. 1(a); laser parameters are given in the caption. Here, we
see typical examples of orbits 1–4, as well as an “atypical”
orbit 4 (labeled 4b), along with the corresponding ionization
times in the panel below. For this study, we are most interested
in the rescattered trajectories of orbit 4. The tunnel exit of
the “typical” orbit 4 lies at z0 ≈ −15 a.u.; from here the laser
drives the trajectory away and then back again, undergoing
a laser-driven return, as shown in Fig. 1(a). Thus, this solu-
tion belongs to a well-studied category of returning trajectory
known from HHG and ATI [13,15]. These orbits come in
pairs, long and short. Here, we have only plotted the long
trajectory, as the short’s path would be very similar. These
pairs can be seen in Fig. 1(b) in every half-cycle by the black
loops extending in opposite directions each half-cycle (located
at ∼2.1 cycles for negative p f z and ∼2.5 cycles for positive
p f z), where a black square marks the long orbit 4 solution of
interest. The solution pairs form loops because at a classical
boundary, they coalesce, forming the rescattering ridge in the
PMD (see Fig. 2). In contrast, the directly recolliding orbit 4b
has a tunnel exit of z0 ≈ −20 a.u. close to orbit 1′s tunnel exit.
Instead of undergoing a laser-driven recollision, the initial
conditions are such that the trajectory returns before the laser
has considerably changed sign. These trajectories also occur
every half-cycle and are connected to the “typical” recolliding
orbits via orbit 3 (in red) on a continuous manifold. Orbit 4b
ionizes far from the peak at near zero field, thus the probability
of these orbits is very low, however, they undergo a very
strong recollision, so provide an interesting case to study. If
the probability of these trajectories could be increased, they
could be used for probing targets very strongly.

FIG. 1. Example trajectories for all 4 orbits (a), and the times of
ionization for different final momenta pf z (b). In the case of orbit 4,
two solutions are shown, one “regular” laser-driven recollision, and
one “directly” recolliding, labeled 4b. The laser is linearly polarized
along the z axis. The tunnel exits are marked by circles for orbits 2
and 3, a square for 4 and a triangle for 4b. (a) Shows the four orbit
types, the y axis has been stretched to better show the detail. (b) Plots
the real time of ionization vs the pf z momentum over a single laser
cycle, with the six-cycle electric field superimposed. The ionization
target is hydrogen, the laser wavelength is λ = 1600 nm, and the
intensity is I0 = 5 × 1013 W/cm2. An inset showing the dynamics
of orbits 4 and 4b close to the core is given, with its region marked
by the rectangle (a). The final perpendicular momentum is chosen to
be pf x = 0.0 a.u., pf y = 0.05 a.u., while in (a) pf z = −2.704 a.u.,
which is denoted by the black dashed horizontal line in (b). Note the
ionization times for orbit 2 in (b) are almost the same as those for
orbit 3, and thus mostly obscured. The solutions corresponding to
the trajectories plotted in (a) are marked on (b) by circles for orbits 2
and 3, a square for 4 and a triangle for 4b on the dashed line.

B. TDSE

To benchmark the CQSFA results, we solve the TDSE
using the freely available QPROP [78] software. QPROP is a
single-active-electron TDSE solver, which implements a fast
and accurate method for the calculation of PMD using the
i-SURFF projection method. To model hydrogen, a Coulomb
potential is employed. In this computation, we considered
angular momenta up to l = 200, grid spacing �r = 0.1 a.u.,
and time step �t = 0.05 a.u, and we checked the results for
convergence.

In both the CQSFA and QPROP we consider a sin2 laser
field, where the vector potential is defined by

A(t ) = 2
√

Up sin2

(
ωt

2N

)
cos(ωt + φ)ẑ, (12)

with N being the number of laser cycles of the vector potential
envelope, while Up is the ponderomotive energy or quiver
energy of the free electron in the laser field, which is propor-
tional to the peak laser intensity I0 = 2Upcε0ω

2. The angular
frequency is given by ω and the carrier envelope phase (CEP)
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FIG. 2. Comparison of photoelectron momentum distributions (PMDs) for strong-field ionization of hydrogen computed using the TDSE
and CQSFA, for a four-cycle and six-cycle sin2 pulse, [(a) and (b), respectively]. The upper half of each panel is computed using the TDSE
solver QPROP, while the lower half is computed using the CQSFA. The insets show line-out plots of the TDSE and CQSFA PMDs. With the
horizontal lines showing the region plotted in the bottom insets, and the vertical lines showing the region plotted in the top insets. The intensity
is I0 = 5 × 1013 W/cm2 and wavelength λ = 1600 nm, the target is hydrogen with Ip = 0.5 a.u. The dots to the left in (b) correspond to final
momenta of the example trajectories plotted in Figs. 1 and 3.

is given by φ. We focus on a wavelength λ = 1600 nm, i.e.,
ω = 0.0285 a.u.

III. NONRELATIVISTIC RESULTS

In Fig. 2, we show a validation of the CQSFA vs the non-
relativistic TDSE with PMDs for hydrogen at a wavelength of
1600 nm for a four-cycle and six-cycle sin2 pulse [Figs. 2(a)
and 2(b), respectively]. Very good agreement is seen between
the two models across the whole momentum region. There is
some deviation across classical boundaries at higher energies,
seen in the line-out insets, where there is a more abrupt change
from higher signal to lower signal as the classical boundary
is crossed. Improved agreement here can only be achieved
by accounting for correctly treating the coalescing long and
short orbit 4 solutions, seen in Fig. 1, in a manner similar to
the uniform approximation [79] applied to the equivalent SFA
orbit (see, e.g., [80]).

The high-energy rings visible in Fig. 2(a) [around
(p f z, p f y ) = (−2.0, 0.0)] and Fig. 2(b) [around (p f z, p f y ) =
(−2.5, 0.0)] are particularly well captured. Previously, these
have not be very well described by the CQSFA, but now
additional orbit 4 contributions have been included that
lead to very good agreement. The high-energy rings can be
completely attributed to typical pairs of orbit 4, where the
interference between long and short pairs gives the ringlike
interference, previously only the long orbit was included in the
CQSFA. In Fig. 2(b), the leftmost high-energy rings [around
(p f z, p f y ) = (−2.5, 0.0)] can be attributed to the orbit 4 pairs
ionized near the peak at 2 cycles [Fig. 1(b)], while the right-
most high-energy rings [around (p f z, p f y ) = (3.0, 0.0)] can
be attributed to the orbit 4 pairs ionized near the peak at 2.5
cycles [see Fig. 1(b)].

The general high level of agreement seen in Fig. 2
validates the CQSFA approach, allowing the use of the
trajectory-based machinery for interpretation and to probe
the physics in detail. This also provides an easy plat-
form to extend the formalism to include additional effects,

such as the spin-orbit coupling during photoelectron
recollisions.

In Fig. 3, we plot metrics for five example high-energy
rescattered trajectories following ionization of hydrogen for
the six-cycle laser pulse, in preparation for including spin-
orbit coupling dynamics; this includes the evolution of the
velocity [Fig. 3(a)], distance from the origin [Fig. 3(b)], and
the kinetic energy, potential, and spin-orbit phase terms in
the action [Fig. 3(c)]. Here, Figs. 3(a)–3(c) correspond to
the nonrelativisitic CQSFA, while Figs. 3(d)–3(f) correspond
to the CQSFA with relativisitic corrections. We choose two
pairs of rescattered trajectories that are ionized near the field
peaks at 2 [labeled 4L2 and 4S2] and 3 [labeled 4L3 and
4S3] laser cycles [see ionization times marked on the laser
field in Fig. 3(a)] and recollide around field crossings after
2
3 to 3

4 of a cycle of propagation; note this differs from the
well-known 2

3 result [15] due to the inclusion of the Coulomb
field. These trajectories are the previously discussed orbit 4
long [4L] and short [4S] pairs, responsible for the high-energy
ringlike structures in Fig. 2. We also include orbit 4b in Fig. 3.
As previously mentioned orbit 4b has a low probability, so no
clear features are visible in the spectrum in Fig. 2, however,
it undergoes a very high-energy recollison, so is a useful test
case.

Despite employing nonrelativistic intensities and all final
photoelectron speeds being far from relativistic, the momen-
tum transfer during recollision is very high. This can be
seen in Fig. 3(a) by the large superluminal velocity spikes,
occurring during recollisions. The long and short orbit 4
trajectories consistently reach v ≈ 2c, while for the directly
recolliding orbit v ≈ 6c. These fast speeds are due to how
strongly the core is probed; Fig. 3(b) shows that the tra-
jectory’s distance from the origin goes below 10−5 a.u.
Note, that the trajectories and their velocity are not ob-
servable, and so care must be taken in interpreting these
dynamics. However, we note that for a sizable part of the
recolliding wave packet, these fast velocities are reached,
which motivates study of the effect of relativistic effects on
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FIG. 3. Examples of velocity transfer and resulting phases picked up by rescattered orbit 4 trajectories, following strong-field ionization
of hydrogen. Note that (a)–(c) correspond to the nonrelativistic CQSFA, while (d)–(f) correspond to the CQSFA with relativistic corrections.
All lines are labeled with the solutions type: “4LC” and “4SC” are used for the long and short solutions, respectively, where “C” is the number
of laser cycles that the ionization times occur at, being 2 or 3 for the solutions shown. The label “4b” denotes the 4b solution that is ionized
near the fifth laser cycle. Consistent colors are used for each solution. (a), (d) Velocity over time given by colored lines (with abrupt spikes at
recollisions) with the laser field plotted by a dashed line, where ionization times are marked on the field by colored circles, where the color
of the circle and velocity line corresponds to particular orbits. (b), (e) Distance over time given by colored lines, where the colors match the
same orbits as (a). (c), (f) The phase acquired from kinetic energy K (p) (solid lines), potential energy U (r) (dashed lines), and spin-orbit
coupling HSO [see Eqs. (50) and (51)] (dotted-dashed lines with an abrupt increase during recollision), which is given by the time integral of
these quantities over each trajectory. The approximation to the spin-orbit phase, given by Eq. (54), is plotted in (c) and (f) as colored circles,
as before the colors match the orbits in (a). The final momentum of all trajectories is the same as Fig. 1 p f = (0.0, 0.05, −2.704); this point is
indicated on Fig. 2.

the rescattered PMD. However, these high speeds are only
reached for very short time periods, within a single attosec-
ond. Thus, if it is for such short times, can it be simply
neglected?

The phases in Fig. 3(c), where we plot the time integral of
the kinetic energy K (t ), potential energy V (t ), and spin-orbit
interaction HSO(t ) [see Eq. (15)], help us to understand the
importance of these very fast speeds over very short time
periods. Given that the atomic core is probed so strongly,
a large phase due to spin-orbit coupling is acquired. In the
case of the directly recolliding trajectory, the spin-orbit phase
(dotted-dashed red line labeled 4b) actually exceeds the phase
picked up from the Coulomb potential (dashed red line la-
beled 4b). This is unexpected and requires careful analysis.
It seems likely that these results may be overestimated while
they include these fast trajectories. Crucially, the spin-orbit
phase only really appreciably changes in the attosecond time
period when superluminal velocities are reached. This can be
seen from the highly abrupt change in the dashed-dotted lines
in Fig. 3(c).

Overall, in Fig. 2, there is very good agreement with the
TDSE, which suggests that the CQSFA methodology is cor-
rect despite the unphysical trajectories. One way to address
this dichotomy is to include relativistic corrections that will
lead to relativistic equations of motion for the trajectories, thus
preventing superluminal velocities.

IV. FORMULATION OF RELATIVISTIC CQSFA

The results in Fig. 3 show that the trajectories in the
CQSFA corresponding to the rescattered part of the wave
packet gain unexpected large velocities, which warrants a rel-
ativistic treatment including spin-orbit coupling. The starting
point for this is the Dirac equation, but as we are not consider-
ing relativistic laser intensities we will consider the expansion
of the Dirac equations, up to terms of order (v/c)2 [81].
The laser field may be included through minimal coupling:
this gives what is sometimes referred to as the Breit-Pauli
Hamiltonian

Ĥ (t ) = 1

2
[p̂ + A(η̂)]2 + Ŝ · B(η̂) − 1

8c2
[p̂ + A(η̂)]4

+ V (r̂) − 1

8c2
∇2

r V (r̂) +
∂
∂r V (|r̂|)
2c2|r̂| L̂ · Ŝ, (13)

where η̂ = ωt − k · r̂, A(η̂) and B(η̂) are the magnetic vector
potential and magnetic field, respectively, while L̂ = r̂ × [p̂ +
A(η̂)] is the angular momenta, Ŝ = σ̂ /2 is the spin operator,
and σ̂ = σxx̂ + σyŷ + σzẑ is the Pauli vector, constructed from
the Pauli matrices.

Given that the wavelength of the laser field is not too long
(or too short) [82] we may apply the dipole approximation,
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which allows the velocity and length gauge forms of the
Hamiltonian

Ĥv (t ) = K ( ˆ̃p) + U (r̂) + CSO(r̂, ˆ̃p) · Ŝ, (14)

Ĥl (t ) = K (p̂) + U (r̂)︸ ︷︷ ︸
Ĥ0

+ CSO(r̂, p̂) · Ŝ︸ ︷︷ ︸
ĤSO

+ĤI (t ) (15)

with

K (p̂) = K0(p̂) + K1(p̂) = p̂2

2
− p̂4

8c2
, (16)

U (r̂) = U0(r̂) + U1(r̂) = V (r̂) − ∇2
r V (r̂)

8c2
, (17)

CSO(r̂, p̂) =
∂
∂r V (|r̂|)
2c2|r̂| r̂ × p̂, (18)

and ĤI (t ) = E(t ) · r̂ and ˆ̃p = p̂ + A(t ). The relativistic cor-
rection terms to the kinetic and potential energies (the Dyson
correction), K1(p̂) and U1(r̂), still permit the solution given
in Eq. (8), as here we assumed general forms for the kinetic
and potential energies. The spin and spin-orbit coupling can,
however, not be treated through the same path-integral ap-
proach that we used before, as we must consider the additional
spin degree of freedom and coupling between them. In fact,
historically a proper treatment of spin by path integrals took
some time to develop.

In order to describe spin in a path-integral framework, we
require a mapping of the spin to a continuous variable. The
treatment of spin in terms of so-called coherent spin states [an
irreducible representation for SU(2)] [83,84] does just this.
In its most general form an SU(2) coherent spin state can be
written as

|z; S〉 = ezS+ |S, ms = −S〉
(1 + |z|2)S

. (19)

For a spin- 1
2 (S = 1

2 ) system, dropping all the S′s, this may be
written as

|z〉 = |↓〉 + z |↑〉√
1 + |z|2

, (20)

where we use |↑〉 (|↓〉) to denote ms = 1
2 (ms = − 1

2 ). These
states map spin states to the complex plane (see Fig. 4). Some
key values are |z → 0〉 = |↓〉, |z → ∞〉 = |↑〉, |z → 1〉 =
|+〉 and |z → −1〉 = |−〉.

A vital step when deriving a path-integral representation
of a propagator is insertion of the resolution of the identity in
time-sliced amplitudes. For coherent spin states the resolution
of the identity may be written as

IS =
∫

dμS (z) |z; S〉 〈z; S| , dμS (z) = 2S + 1

π

d2Z

(1 + |z|2)2
.

(21)

It is useful to apply this formalism to building eigenstates
of the field-free system, i.e., Ĥ0,SO = Ĥ0 + ĤSO. Consider an
initial state with quantum numbers j and mj , built using the
standard angular momentum addition rules e.g., see Ref. [4])

|� jm j 〉 =
∑
m,ms

〈l, S; m, ms|l, S; j, mj〉 ⊗ |ψl,m〉 |S; ms〉 , (22)

Re

Im

FIG. 4. The mapping of the complex plane to coherent spin states
|z〉, given by Eq. (20). Some key values are marked by black filled
circles and their corresponding states are given by adjacent labels.

where |ψl,m〉 is an eigenstate of the square of the orbital
angular momentum and its projection on the quantization axis
L̂z. For S = 1

2 we can write |� jm j 〉 in terms of the coherent
spin state

|� jm j 〉 =
∑

m

f
jmj

lm

∣∣z jmj

lm

〉 ⊗ |ψlm〉 (23)

with f
jmj

lm = C
jmj

lm, 1
2 − 1

2

√
1 + |z jmj

lm |2, z
jmj

lm = C
jmj

lm, 1
2

1
2

/C
jmj

lm, 1
2 − 1

2

,

and C
jmj

lm,Sms
= 〈l, S; m, ms|l, S; j, mj〉 are Clebsch-Gordan co-

efficients. Thus, the initial spin state is represented through
a sum of coherent spin states. Thus, allowing an initial-fine-
structure state (|� jm j 〉) [85], with quantum numbers j, and mj ,
and energy Ejmj written in terms of coherent spin states.

The transition amplitude can be defined for ionization start-
ing in the bound state |� jm j 〉, and finishing in a continuum
spin state |ψp, z〉 = |ψp〉 ⊗ |z〉, at t → ∞. The amplitude is
then given by

M(p f , z) = 〈ψp f , z|U (t, t0)|� jm j 〉

= −i
∫ t

−∞
dt ′ 〈ψp, z|U (t, t ′)HI (t ′)|� jm j 〉 e−iE jm j t ′

.

(24)

As before, we insert the resolution of the identity 13 =∫
d3p̃0 |p̃0〉 〈p̃0|, where p̃0 = p0 + A(t ′):

M(p f , z f ) = −i
∫ t

t0

dt ′
∫

d3p̃0 〈ψp, z f |U (t, t ′)|p̃0〉

× 〈p̃0|ĤI (t ′)|� jm j 〉 e−iE jm j t ′
. (25)

To proceed, we must expand the spin state, so we can exploit
the fact that [ĤI(t ), Ŝ] = 0,

〈p̃0|ĤI(t
′)|� jm j 〉 =

∑
m

∣∣z jmj

lm

〉
dm(p̃0, t ′) (26)
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with dm(p0, t ′) = f
jmj

lm 〈p0|ĤI|ψl,m〉. Now the transition am-
plitude may be written

M(p f , z f ) = −i
∑

m

∫ t

−∞
dt ′Km(p f , z f )e−iE jm j t ′

, (27)

where

Km(p f , z f ) =
∫

d3p̃0 〈ψp f (t ), z f |U (t, t ′)
∣∣p̃0, z

jmj

lm

〉
dm(p̃0, t ′).

(28)

Now we are in a position to utilize the path-integral for-
malism for a particle with spin [84,86–88] and obtain

Km(p f , z f ) =
∫

r0

D′r
(2π )3

∫ p f

D′p

×
∫ z f

z
jm j
lm

Dμ(z)dm(p0, t ′)eiA[r,p,z,t ′], (29)

where

A[r, p, z, t ′] = −
∫ ∞

t ′
dτ

(
ṗ · r + iS

zż∗ − z∗ż

1 + |z|2

+ H[r, p + A(τ ), z]

)
(30)

and

H[r, p, z] = K[p] + U [r] + CSO[r, p] · n[z]

2
. (31)

Here, n[z] is a semiclassical representation of Ŝ, such
that n[z] = (n1, n2, n3), n1 + in2 = 2z∗/(1 + |z|2), and n3 =
−(1 − |z|2)/(1 + |z|2). The kernel, given by Eq. (28), may be
solved using the saddle-point approximation, however, a sim-
pler solution is possible via the so-called weak approximation.
The first step is to use the fact that the functional integral over
z may be solved analytically. Rewriting Eq. (29) as

Km(p f , z f ) =
∫

r0

D′r
(2π )3

∫ p f

D′pMm
SO[r, p, z f , t ′]

× dm(p0, t ′)eiA0,I [r,p,t ′], (32)

where all spin and spin-orbit terms are collected in

Mm
SO[r, p, z f , t ′] =

∫ z f

z
jm j
lm

Dμ(z)eiASO[r,p,z,t ′]. (33)

Here,

A0,I [r, p, t ′] = −
∫ ∞

t ′
dτ (ṗ · r + H0,I [r, p + A(τ )]) (34)

and

ASO[r, p, z, t ′] = −
∫ ∞

t ′
dτ

(
iS

zż∗ − z∗ż

1 + |z|2

+ HSO[r, p + A(τ ), z]

)
, (35)

where H0,I [r, p] = K[p] + U [r] and HSO[r, p, z] = CSO[r,
p] · n[z].

It is possible to solve Eq. (33) as [87]

Mm
SO[r, p, z f , t ′] = a∗(t ) − b∗(t )z jmj∗

lm + b(t )z + a(t )z∗z
jmj

lm√
1 + |z|2

√
1 + ∣∣z jmj

lm

∣∣2
,

(36)

where a(t ) and b(t ) may be obtained by solving the following
ordinary differential equation (ODE) [87]:

ȧ = − i

4c2r

dV

dr
{Lz(t )a − [Lx(t ) − iLy(t )]b∗},

ḃ = − i

4c2r

dV

dr
{Lz(t )b + [Lx(t ) − iLy(t )]a∗} (37)

with a(0) = 1, b(0) = 0, and L(t ) = r(t ) × [p(t ) + A(t )].
Now that we have a solution for Mm

SO[r, p, z f , t ′], we may
solve the remaining path integral with the saddle-point ap-
proximation, as in the spinless version. Here, we assume that
Mm

SO[r, p, z f , t ′] is a slowly varying function like dm(p, t ′)
and treat it as a prefactor in the semi-classical approximation.
This is a weak-coupling approximation, such as employed in
Ref. [87], assuming that there is an effect of the trajectory
motion on the spin but not vice versa, and will be valid if
the spin-orbit action [Eq. (34)] is appreciably lower than the
rest of the action. Thus, the final expression for the transition
amplitude is given by

M(p f , z f ) = − i
∑
m,s

Cm(rs, ps, ts)Mm
SO

× (rs, ps, z f , ts)eiS[rs,ps,ts] (38)

with

Cm(rs, ps, ts) =
√

2π i

∂2S/∂t ′2
e−iπν/2

√|J| dm(p̃0s, ts) (39)

and

S[r, p, t ′] = −Ejmj t
′ −

∫ t

t ′
dτ (ṗ · r + H0,I [r, p + A(τ )]).

(40)

Note that this formulation assumes that Mm
SO varies slowly

enough so that it does not affect the saddle-point equation for
rs and ps, which is the weak-coupling limit. For details of how
we may go beyond the weak approximation, see Appendix B.

V. OBSERVABLES AND ANALYTICAL CONSIDERATIONS

A. Spin measurement

So far we have only considered the case where the final
spin is measured and the initial spins are aligned. Now we
consider an ensemble of unaligned initial spins and the effect
of averaging over final spins. We will use the notation Pi; j (p f )
or Pi(p f ; | j〉) for the probability amplitude given initial spin
j ∈ [↑,↓] and final spin i ∈ [↑,↓] and momentum p f ∈ R3.
For averages over initial, final, and both spins, we will use
Pi;(p f ), P; j (p f ), and P;(p f ), respectively.

First, we will average incoherently over initial spin orienta-
tions, for simplicity we will continue with the case of hydro-
gen. In this case, the spin state |�0±1/2〉 = |z±1/2

00 〉 |ψ00(t ′)〉,
where either z−1/2

00 → 0 (spin down) or z+1/2
00 → ∞ (spin up).
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Spatial rotations of the initial state can cover all possible val-
ues of the initial z00. We can show this explicitly by integrating
over the Euler angles

P↑;(p f ) = 1

8π2

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ

× sin(β )P↑(p;Rαβγ |↑〉). (41)

This is a well-known result but in Appendix C we show how
to do this using coherent spin states, the result is

P↑;(p f ) = 1
2 [P↑;↑(p f ) + P↑;↓(p f )]. (42)

By the same logic P↓;(p f ) = 1
2 [P↓;↑(p f ) + P↓;↓(p f )].

If we do not measure spin, the positive operator-valued
measurement (POVM) is given by ρ = 1

2 (|↓〉 〈↓| + |↑〉 〈↑|).
This may be applied to a state where the spins are initially
prepared to give P;↑ = 1

2 (P↑;↑ + P↓;↑) and P;↓ = 1
2 (P↑;↓ +

P↓;↓). If we instead apply the POVM to unaligned spins,
we obtain the following probability: P;(p f ) = 1

2 [P↑;(p f ) +
P↓;(p f )] = 1

4 (P↑;↑ + P↑;↓ + P↓;↑ + P↓;↓).
To isolate the effect of spin, we define a parameter

that could feasibly be measured in an experiment. This is
�P;↑x (p f ), defined as the difference between spin initially
aligned in the x direction and unaligned spins given by the
difference between spins aligned in the x direction vs fully
unaligned spins, denoted P↑x (p f ) and P;(p f ), respectively. In
the z basis these probabilities may be written as

P;↑x (p f ) = 1
4 |M↑z ;↑z (p f ) + M↑z ;↓z (p f )|2

+ 1
4 |M↓z ;↑z (p f ) + M↓z ;↓z (p f )|2 (43)

and

P;(p f ) = 1
4 (|M↑z ;↑z |2 + |M↑z ;↓z |2 + |M↓z ;↑z |2 + |M↓z ;↓z |2).

(44)

Now the difference can be expressed as

�P;↑x (p f ) = P;↑x (p f ) − P;(p f )

= 1
2 Re[M↑z ;↑z (p f )M∗

↑z ;↓z
(p f )]

+ 1
2 Re[M↓z ;↑z (p f )M∗

↓z ;↓z
(p f )]. (45)

This provides an “interference” term due to the fact that spin
aligned in the x axis but we expressed in terms of the z basis.
This provides an observable that is linear in terms of the spin-
flip amplitude. The difference term in Eq. (45) may be written
more clearly by expanding the transition amplitudes in terms
of the sum over saddle points

M↑z ;↑z = −i
∑

s

Csase
iSs , (46)

M↑z ;↓z = −i
∑

s

Csbse
iSs , (47)

where the subscript s refers to the saddle-point solution being
summed over, the spin-orbit amplitude MSO [Eq. (36)] has
been replaced by the coefficient as or bs, while Cs is the
prefactor defined in Eq. (39). The arguments p, r, t , and z
have been dropped from as, bs, and Cs for simplicity. Thus,
the difference can be determined entirely by products of a and
b. In the next section, we will solve the equations for a and b
analytically to better understand the behavior of Eq. (45).

B. Analytical results

In this section we will consider some analytical results:
First, we will solve the equations of motion for the spin
dynamics and, second, derive an approximate analytic ap-
proximation to the spin-orbit action. As we are using the
weak approximation in this work (see Sec. IV), the electron
trajectories are unaffected by spin-orbit coupling and retain
cylindrical symmetry. Furthermore, we restrict our analysis
to the y-z plane, which means the trajectories will only have
angular momentum in the x direction, with Lz = Ly = 0, the
spin-orbit equations in the weak-coupling limit greatly sim-
plify. The coefficients a(t ) and b(t ), that enter Eq. (36) and
parametrize the spin dynamics [see Eq. (37)], can be found
analytically (see Appendix D for derivation). The parameter
responsible for spin-conserving transitions is given by

a(t ) = cos(SSO) and the parameter for spin flips,

b(t ) = −i sin(SSO), (48)

where the term SSO that we will refer to as the spin-orbit action
is given by

SSO =
∫ t

Re(t ′ )
dτ HSO(τ ) (49)

with

HSO(τ ) = CSO(r, p) · n(z)

2
(50)

and

CSO(r, p) =
∂
∂r V (|r|)
2c2|r| L. (51)

Here n(z) = (n1, n2, n3), n1 + in2 = 2z∗/(1 + |z|2), n3 =
−(1 − |z|2)/(1 + |z|2), and L = r × p.

The weak-coupling approximation requires that the spin-
orbit action SSO is much smaller than the remaining action S.
This means that a and b can be expanded in a power series
of SSO, such that a(t ) ≈ 1 and b(t ) ≈ −iSSO. Hence, spin-flip
probability will be quadratic in SSO and may be neglected
|M↑z ;↓z |2 ≈ 0 to linear order, which may be expected for the
small spin-orbit coupling of hydrogen. However, the differ-
ence term given by Eq. (45) has mixed terms like ab∗ and will
be of linear order in SSO and so some effect whereby different
alignment of spin affects the final probability distribution is
expected.

The spin-orbit action term SSO can be accurately ap-
proximated by assuming contributions only occur when the
trajectory is very close to the origin and undergoing Coulomb
dominated dynamics (see Fig. 3). Thus, during the recollision
it is an accurate approximation to neglect the laser field and
assume the trajectories follow Kepler hyperbola, or when
including relativistic corrections to the kinetic energy, the
trajectories will follow relativistic corrected Kepler hyperbola
[89], which for a −Z/r potential takes the form

1

r
= C̄0{1 + ē cos[κ̄ (θ − θc)]}, (52)

where C̄0 = (1 + 1
2ε)(Z/l2), κ̄ = 1 − 1

2ε, with the corrected
eccentricity ē = (1 + 1

2ε)e written in terms of the Kepler ec-

centricity e =
√

1 + 2El2/Z2, with E being the energy and l
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the magnitude of the angular momentum in the nonrelativis-
tic case. The relativistic correction parameter ε = 1/(l̄2c2),
where the magnitude of the relativistic angular momentum
l̄ ≈ l (1 + v2/c2). In the case without relativistic corrections
to the kinetic energy ε = 0. The spin-orbit action SSO, given
in Eq. (49), may be written more explicitly as

SSO = Z

2c2

∫ t

Re[t ′]

l̄dτ

r3
(53)

by substituting the integration variable from time t to the
orbital angle θ via r2dθ = l̄dτ and substituting in Eq. (52)
the spin-orbit action can be approximated as

SSO ≈ C̄0

2c2

[
arccos

(
−1

ē

)
+ ē

κ̄

√
1 − 1

ē2

]
. (54)

This equation is tested in Fig. 3, using the position and
velocity when the recolliding trajectory first reaches a distance
of 1 a.u. from the residual ion, the value of the spin-orbit
action phase SSO is computed and placed on the figure as the
circles in Figs. 3(c) and 3(f). This works exceptionally well
for the nonrelativisitic case [Fig. 3(c)], with no difference
visible between it (colored circle) and the numerical value
(dotted-dashed line). It also works well for the case includ-
ing relativistic correction to the kinetic energy [Fig. 3(f)],
however, the approximated value (represented by a circle) is
slightly off the numerical value (plotted as a dotted-dashed
line), indicating the analytical estimation slightly worsens in
the relativistic case.

VI. RELATIVISTIC RESULTS

The trajectories involved in the relativistic computation are
shown in the bottom row of Fig. 3. With relativistic correc-
tions to the kinetic energy, the velocity of the rescattered
trajectories [Fig. 3(d)] no longer exceeds the speed of light.
There is also a directly related effect on the minimum distance
to the core [Fig. 3(e)], which is increased by more than two
orders of magnitude compared to the nonrelativistic case in
Fig. 3(b). We can gain insight into why the core is probed
less strongly when relativistic corrections are included by
examining the problem from a nonrelativistic perspective. We
may imagine that there is an effective “repulsion” (dependent
on the velocity), which balances the attraction of the Coulomb
potential, meaning that the electron does not get so close to the
core, only reaching around 10−3 a.u. This effect can be seen
clearly by rearranging the saddle-point equations of motion
(neglecting the laser field) to give

r̈ =
(
13 − 1

2c2
M

)
F, (55)

where F = −∇V (r) is the classical nonrelativistic force due
to the potential and M is a matrix given by M = 13p2 + 2p ⊗
p. For a derivation of Eq. (55), see Appendix E. Now it is pos-
sible to see, following Appendix E, that for a trajectory with
momentum p confined to the z axis, the attractive force of the
potential is reduced by the factor 1 − 3

2
v2

c2 , while for circular

(a)

(b)
(c)

FIG. 5. The difference between momentum distributions with
and without relativistic corrections. Spin and spin-orbit effects have
been neglected by setting the MSO = 1 in Eq. (38). (a) Left is the
relativistic momentum distribution for a hydrogen target. (a) Right
is the difference between this and the distribution without relativistic
corrections to the kinetic energy. (b), (c) Include a line out of (a) left
(solid and dashed lines) and (a) right (dotted-dashed line), given by
the lower [labeled (1), (b)] and upper [labeled (2), (c)] white lines in
(a), respectively.

motion with momentum perpendicular to the origin this factor
becomes 1 − 1

2
v2

c2 . In both cases, this leads to trajectories that
do not probe the core as closely as in the nonrelativistic
case. The result of the significant increase in the minimal
distance from the core and the reduction in the velocity is
that the spin-orbit action phase term is greatly reduced by
an order of magnitude for the directly recolliding trajectory
and by over a factor of 5 for the long and short trajectory
pairs, and these phases for all trajectories are over an order
of magnitude below the phase due to the Coulomb potential.
Thus, without relativistic corrections to the kinetic energy, the
spin-orbit coupling phase is overestimated by around an order
of magnitude, while with relativistic corrections, spin-orbit
coupling is quite modest. The relatively small action phase of
the spin-orbit coupling, in this case, also validates the weak-
coupling approach used in the relativistic CQSFA of Sec. IV.

Another important observation that was already discussed
in Sec. V is that the analytical approximation for the spin-orbit
phase, given by Eq. (54), provides a very good approximation
when compared to the numerical value, in Figs. 3(c) and 3(f),
for the case without and with the kinetic energy corrections,
respectively.

In Fig. 5, we show the PMD for a linearly polarized
monochromatic laser field, where ionization is allowed only
during a single cycle. The target is hydrogen as before and
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the intensity and wavelength are again 5 × 1013 W/cm2 and
1600 nm, respectively. The consideration of a single cycle
provides a simple PMD, with fewer trajectories for an easier
analysis, while also maximizing the rescattered trajectories’
return energy, thus showing the largest relativistic effects.
Similar results can still be seen for relativistic computations
using a sin2 envelope (not shown). In this figure, we have
neglected the spin and spin-orbit effect to isolate the kinetic
energy corrections K1(p̂) in Eq. (16). The left side of Fig. 5(a)
plots the PMD including relativistic corrections to the ki-
netic energy, where the same high-energy rings (p f z, p f y ) ≈
(−3.0, 0.1) a.u. can be seen as in Fig. 2(a). The right side
of Fig. 5(b) shows the normalized difference between the
CQSFA with and without relativistic kinetic energy correc-
tions. We find that in the high-energy rescattering region near
the pz axis a series of peaks occur, which shows that the
CQSFA PMD signal with relativistic kinetic energy correc-
tions is larger than without. However, away from the pz axis
this situation reverses. In Figs. 5(b) and 5(c), we look at these
regions in more detail by plotting the line outs, marked on
Fig. 5(a). The first line out, near the axis Fig. 5(b), clearly
shows that the relativistic case exceeds the nonrelativistic
case, with the normalized difference exceeding 50%. While
the situation is reversed in Fig. 5(c) and the normalized differ-
ence approaches 20%.

The main driver of this effect is an overall change in prob-
ability for the pair of rescattered trajectories that contribute to
this region. This is because scattering with and without rela-
tivistic corrections only appreciably changes p0⊥, the initial
momentum perpendicular to the laser polarization direction,
while the ionization times and tunneling probability remain
almost the same. The case with relativistic corrections leads
to a larger value of initial perpendicular momentum |p0⊥|
than the nonrelativistic case. The perpendicular momentum
controls how close the electron trajectory gets to the ion, with
a higher value meaning the core gets probed less strongly, as
is the case with relativistic corrections.

These changes in initial conditions affect the so-called sta-
bility factor 1/

√|J|, determined from the Jacobian by J = ∂p f

∂p0

in Eq. (8) [see also Eq. (39)], which leads to the visible
changes in the PMDs. The stability factor is inversely pro-
portional to the sensitivity trajectories to initial conditions,
hence, it acts to suppress chaotic-style trajectories that are
very sensitive to initial conditions. In the case of backscatter-
ing, where the scattering angle is nearly 180◦, the trajectories
for the case including relativistic kinetic energy corrections
undergo a much smaller momentum change than those with-
out the kinetic energy corrections. This means they are less
sensitive to the initial conditions, hence, the relativistic case
is more probable. On the other hand, for scattering angles less
than approximately 175◦, the trajectories including relativistic
corrections have a comparable momentum transfer to those
without the corrections. However, in this case the relativistic
scattering leads to greater sensitivity to the initial conditions
than the case without corrections. Hence, for these scattering
angles the relativistic case is a lower in probability, as compare
to no kinetic energy corrections.

Now we will consider the effect of spin-orbit coupling. It is
important to note that in this article we only consider the final
electron momentum in the p f z-p f y plane, and the equations of

FIG. 6. The difference between momentum distributions with
initial spin aligned in the x direction and fully averaged spins, given
by �P;↑x (p) defined in Eq. (45). The left column [(a), (c), (e)]
neglects the corrections to the kinetic energy, the right column [(b),
(d), (e)] includes corrections to the kinetic energy. (a), (b) Show the
relative difference over the full momentum region. The line outs,
given by the two nearly horizontal black lines in (a) and (b), show
the signal of averaged spins P; (p f ) and x-aligned spins P;↑x (p f ),
and relative difference �P;↑x (p f ). As in Fig. 5, the lower line out in
(a) [(b)] corresponds to (c) [(d)], while the upper line out corresponds
to (e) [(f)]. Note, “sig. arb. units” (signal arbitrary) refers to the signal
of the momentum-based probability density; here the overall value
is arbitrary as we only interested in the relative difference between
�P;↑x (p) and P; (p f ).

motion for the electron are cylindrically symmetric.2 Thus,
the trajectories are restricted to the zy plane, and the angular
momentum is in the x direction and couples to spin in this
direction. For motion in rotated planes, e.g., the pz-px plane,
the angular momentum and spin-orbit coupling will be rotated
accordingly.

In Fig. 6, the effect of spin-orbit coupling is considered
on the initial alignment of the electronic spin. Figure 6(a)
shows the relative difference between electronic spin aligned
in the positive x direction vs unaligned spins, where rela-
tivistic kinetic energy corrections have been neglected. This
combination of spin alignment is considered, as it could be
feasibly done in experiment and measured, using a B field
for spin alignment. Line outs near the pz axis are shown in
Figs. 6(c) and 6(e) (the same as in Fig. 5, where the largest
effect, due to the backscattered trajectories, can be observed).
Here, the relative difference approaches 50%; this is surpris-
ing given the small degree of spin-orbit coupling expected for

2This is because, in the weak-coupling limit, the effect of spin-orbit
coupling on the electronic motion is neglected.
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a hydrogenic target, and this difference could foreseeably be
measured.

As argued above, a correct treatment requires that correc-
tions to the kinetic energy be taken into account, so we plot
the same in Figs. 6(b), 6(d), and 6(f) but include these correc-
tions. This leads to much weaker differences, demonstrating
the importance of including the relativistic kinetic energy
correction for the rescattered electron when considering spin-
orbit coupling. The difference with and without the relativistic
kinetic energy corrections can be explained by the behavior
of the spin-orbit phase, which is far too big if kinetic energy
corrections are not taken into account (see Fig. 3).

VII. NEW LIMIT ON NONRELATIVISTIC THEORIES

The results from Sec. VI highlight the importance of rel-
ativistic corrections for the rescattered portion of the wave
packet in strong-field ionization. However, commonly em-
ployed estimations for when relativistic effects should be
accounted for in the infrared regime rely on classical ar-
guments considering the motion of the free electron in the
continuum [27,82] and do not account for scattering. In this
section, limits will be derived that account for the scattering
behavior and we will compare to existing limits.

A commonly employed limit for relativistic behavior is
when the ponderomotive energy approaches the electron rest
mass energy, that is Up = mc2/2 [82]; this leads to a condition
on the intensity I0 = 2c2ω2 above which relativistic effects
are significant. This is plotted as dashed line in the upper left
corner of Fig. 7(b), and the dot, which indicates the parameters
used here, is well below this intensity. Another important con-
dition is the region where the dipole approximation is valid;
this is given by an “upper” and “lower” limit. The “upper”
limit is simply that the angular frequency needs to be small
enough and is given by ω = 1

2 [82]. The “lower” limit derives
from the requirement that the motion of the free electron
due to the laser magnetic field should be small and leads
to the following limit on intensity I0 = 8cω3, where higher
intensities mean the breakdown of the dipole approximation.
These upper and lower limits are given by the solid red lines
making a triangle in Fig. 7(b). A slightly smaller triangle
region, where tunneling models will hold, is also given by the
blue dotted lines in Fig. 7(b) (see [82]).

Here we derive a new condition, using the maximum ve-
locity that a classical rescattering trajectory would achieve
given specific laser parameters and particular scattering an-
gle. We will consider angles close to backscattered, as these
represent the most extreme cases. In the Coulomb-free case,
the most energetic rescattered trajectories gain around 3.17Up

kinetic energy from the laser field upon return. If we assume
once the electron is close enough, rB from the core, it un-
dergoes Coulomb dominated dynamics, and we may ignore
the field from this point, then an energy conservation argu-
ment may be used to approximate the maximum velocity. The
total energy entering this boundary may be approximated as
EB = 3.17Up − Z/r0, where the potential energy converted to
kinetic energy from the tunnel exit at r0 to the boundary (rB)
has also been accounted for. Equating EB with the energy
at closest approach rm gives an equation for the maximum

FIG. 7. The limits of a nonrelativistic theory for rescattered pho-
toelectrons. (a) The scattering angle �(vm ) for particular maximum
rescattering velocities (vm = c/4, c/2, c, and 2c, given by the dotted,
dashed, solid, and black dotted-dashed curves, respectively) across a
range of intensities, as given by Eq. (61). The shaded region below
the curve for vm = c/4 is the region where relativistic effects will not
play a role. The wavelength (angular frequency) is fixed to 1600 nm
(0.0285 a.u.), the upper (red) and lower (green) horizontal lines
denote a 179◦ and 175◦ scattering angle, respectively. The dashed
vertical line (in blue) denotes the intensity of I0 = 5 × 1013 W/cm2

(Up = 0.44 a.u.), used in this study. (b) For a range of angular
frequencies and intensities, the region where a nonrelativistic theory
holds for the rescattered photoelectrons is given by the shaded region,
as given by Eq. (61). This assumes a maximum scattering velocity
of 0.25c and a maximum scattering angle of 175◦. The dashed blue
line in the top left of the figure denotes the typical relativistic con-
dition I0 = 2c2ω2, while the solid triangle (red) denotes the dipole
conditions ω = 1

2 and I0 = 8cω3, outside of which the dipole ap-
proximation breaks down. Similarly, the inner dotted (blue) triangle
marks the region where a tunneling model will hold, ω = 1

4 and
I0 = 2cω3, as given in [82]. A solid (blue) circle is used to show the
parameters used in this study, which lies just outside of the shaded
region.

velocity

1

2
v2

m = EB + Z

rm
; (56)

assuming Coulomb dominated dynamics we may substitute
the equation for a Kepler hyperbola at the closest approach
[see Eq. (52)],

1

2
v2

m = EB + Z2

l2
(1 + e), (57)

where for nearly backscattered trajectories e ≈ 1

1

2
v2

m = EB + 2Z2

l2
. (58)

Now the angular momentum may be written in terms of the
maximal velocity

l2 = 4Z2

V 2
m − 2EB

. (59)

The dynamics will depend on the scattering angle, the closer
to backscattering the higher the maximum velocity will be.
Thus, we can use the scattering angle to help formulate the
condition. The scattering angle � = 2� − π , where � is
the asymptote angle, that is the angle between the direction
of the incoming asymptotic and closest approach (periapsis)
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direction, which is given by

cos � = − 1√
1 + 2EBl2

Z2

. (60)

Inserting Eq. (59) gives an equation for the scattering angle in
terms of the maximal velocity

�(vm) = 2 arccos

⎛
⎜⎝− 1√

1 + 8EB
v2

m−2EB

⎞
⎟⎠ − π. (61)

In Fig. 7(a), contours of Eq. (61) are given for different values
of vm in terms of c. For an increasing laser intensity, the
scattering angle (given a fixed maximal velocity) reduces. For
the curve �(c/4), this is used to denote a region (shaded in
blue), where relativistic effects may be neglected. As intensity
increases, this region reduces so that less of the rescattered
wave packet may be accurately described by a nonrelativistic
model, as higher velocities will be reached during rescat-
tering. The parameter region in this study (dashed vertical
line), crosses this boundary for scattering angle greater than
170◦, and crossed the �(2c) at around 179◦. This is con-
firmed by Fig. 3, where the long and short orbit 4 trajectories
scattered by 179◦ reach velocities just over 2c, when ne-
glecting corrections to the kinetic energy. Note that orbit
4b would actually require a stronger condition, as it has a
return energy of higher than EB and returns with a 6c ve-
locity. However, for these parameters, this solution has low
probability.

In Fig. 7(b), we use this condition to construct a modi-
fied region (shaded region) inside the dipole-allowed region,
where relativistic effects are not important for scattering an-
gles �(0.25c) < 175◦, given a maximal velocity of vm =
0.25c. This reduces the standard dipole allowed region by
around a factor of 2, and the dot representing the parameters
used in this study lies outside this region despite being in-
side the dipole-allowed region. Note, the typical relativistic
condition (blue dashed line in the upper left of the fig-
ure) lies more than six orders of magnitude in intensity
from our modified condition, demonstrating the huge differ-
ence that rescattering can make when considering relativistic
effects.

VIII. CONCLUSION AND OUTLOOK

Driving atomic and molecular systems with near-infrared
light at intensities up to around 1014 W/cm2 was thought
to be well described by nonrelativistic quantum mechanics
[82], aside from effects associated with large spin-orbit en-
ergy splitting in the cationic system [58]. In this study, we
have used the powerful machinery of the path-integral-based
CQSFA to investigate spin-orbit coupling and other relativis-
tic dynamics in more detail. For the parameter range explored,
we find the CQSFA provides an exceptional quantitative
agreement with the single-active electron TDSE. However,
upon close inspection, we have illustrated that the nonrel-
ativistic and relativistic treatments deviate for a significant
portion of the rescattered electron wave packet, at a laser
intensity orders of magnitude below that expected. The origin
of this deviation may be interpreted via the CQSFA, where

backscattered trajectories probe the core very closely and gain
significant kinetic energy.

We present an extended CQSFA to include all relativistic
correction terms from the Breit-Pauli Hamiltonian, includ-
ing spin-orbit coupling and corrections to the kinetic energy.
With this improved model we evaluate the effects of these
terms, and find the kinetic energy corrections to be significant
for the rescattered part of the electron, while the spin-orbit
coupling is massively overestimated if computed without the
former. Accordingly, the assessment of dynamical spin-orbit
effects by theory not accounting for relativistic kinetic energy
corrections (which is common given its inclusion is numer-
ically intensive) need to take care since such theory would
significantly overestimate the spin-orbit interaction effects. In
order to inform future work, we provide an expression for
where relativistic effects become important, which lies many
orders of magnitude below the typical limit for relativistic
effects.

The rescattered region in question is important for appli-
cation in attosecond physics and chemistry, through imaging
processes, such as LIED, where the diffraction pattern of the
rescattered electron is used to infer subfemtosecond nuclear
motion in molecules [90,91]. Clearly, an interpretation of
an experimental PMD with a model involving nonrelativistic
cross sections would lack the spin-orbit and kinetic energy
corrections of focus in this work, and could therefore lead,
e.g., to deviations between inferred and actual time-resolved
distances. Thus, the models used for LIED should incorporate
relativistic scattering cross sections. Work assessing quan-
titatively the implications of our findings for this kind of
investigation is currently in progress, including adapting the
CQSFA for LIED.

The conclusions and perspectives discussed above were
obtained from the theory developments of this work, where
an improved nonrelativistic quantum trajectory-based CQSFA
was used to reach greatly improved agreement with TDSE
simulations for PMDs. This agreement allowed us to proceed
with a relativistic extension of the CQSFA. The coherent spin
formalism and weak-coupling limits allowed such develop-
ment, including analytical elucidation of the dynamics. The
trajectory-based approach benefits from ease of interpretation
in terms of possibly interfering quantum paths. Furthermore,
the effects of the different coupling terms in the action can
easily be isolated. This separation into individual contribu-
tions was used here to show the reduction in the spin-orbit
action phase by the corrections to the relativistic energy. Such
methodologies could also be extended to describe the spin of
a residual ion. Furthermore, the coherent spin state formalism
opens up the possibility of including other degrees of freedom
supported by this description, such as the quantum state of the
laser, which has recently been found to lead to a broad range
of significant effects [92–98].

Looking into the future, it would be very interesting to con-
nect this work with recent work on orbital angular momentum
in strong-field ionization [99–101] and examine the role of to-
tal angular momentum in imaging, as well as the implications
for inelastic recollision and double-ionization processes [102]
demonstrating angular momentum entanglement. Another im-
portant direction is to extend the present studies to longer
mid-infrared wavelengths, say up to around 3000 nm. This is
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the wavelength regime of current LIED experiments [90,91].
The present CQSFA with relativistic corrections is scalable
to this wavelength domain, while TDSE-based approaches
would be severely challenged by numerical difficulties re-
lated to the increase in the required number of total angular
momenta, along with relativistic corrections. In this longer-
wavelength regime, nondipole corrections to the laser-matter
interaction would have to be included [82,103], and this
will affect the initial conditions for the trajectories [104], as
well as the shape of the PMD and ATI [105,106]. In fact,
nondipole effects have been shown to have some measurable
effects at wavelengths and intensities comparable to this study
[107–109].

In addition to the scaling with wavelength, our results
also show that the interval of backscattering angles, where
relativistic corrections are needed, increases with laser in-
tensity. Mid-infrared intense femtosecond laser pulses are
currently becoming more readily accessible, e.g. [110], so
we envision increased need for theory incorporating relativis-
tic effects in the future. If the rescattering energy becomes
sufficiently large, one could even contemplate laser-induced
time-resolved investigations of the structure of the atomic nu-
cleus, with an achievable timescale of less than an attosecond
made possible by the very brief electron transit, opening up a
new domain on subattosecond physics.
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APPENDIX A: CQSFA THEORY

In this Appendix, we discuss some additional approxima-
tions that are used in the CQSFA theory. We use the analytical
Kepler expression to extend the trajectories and action asymp-
totically to infinite time, once the laser pulse is over [74,111].
The tunnel integral over the binding potential is approximated
by the Coulomb factor [112,113],

exp

(
i
∫ Re(ts )

ts

V [rs(τ )]dτ

)
≈

(
4Ip

|E(ts)|
) Z√

2Ip

. (A1)

This approach has two advantages: it automatically regular-
izes the divergent integral, given by direct evaluation of the
integral in Eq. (A1), and avoids branch cuts that arise in this
integral, due to taking the square root of the complex-valued
position vector over the tunnel exit. As in previous works
[61–63], we take the position to be real for real-time propa-
gation, i.e., rs[Re(ts)] = Re(r0) and keep the momentum fixed
during tunneling, i.e., ps(t ) = p0s for t ∈ [ts, Re(ts)]. Here, the
tunnel exit is given by

r0 = Re

(∫ Re(ts )

ts

dτ [p0s + A(τ )]

)
. (A2)

Aside from these approximations specifying the initial con-
ditions for the trajectory propagation, all other parts of the
action, given by Eq. (7), are computed in full.

APPENDIX B: MODIFIED SADDLE-POINT
APPROXIMATION

In this Appendix we present a derivation of a modified
saddle-point approximation that could be used for cases of
strong spin-orbit coupling. We did not use the modified
saddle-point approximation in the main text because it is
significantly more complex than the weak-coupling approx-
imation, which is valid for the case of hydrogen.

The weak approximation requires that the action for spin-
orbit coupling is significantly less than the remaining action.
However, instead it is possible to apply the saddle-point ap-
proximation to the full path integral, which allows its use for
systems with higher spin-orbit coupling, e.g., for larger atoms.
This has been called the extended phase-space formulation
[87], as it treats the real and imaginary parts of the coher-
ent spin state coefficient like an extra component of position
and momentum. Although this formalism has the potential
to be quite powerful and descriptive, there were a number
of reasons that we did not use it in the main text. First, it
breaks the cylindrical symmetry of the equations of motion:
this means simplifications that exploit this can not be used,
making the calculation more numerically intensive. Second,
the computation of the fluctuation factor (B2) is nontrivial
and goes beyond the scope of this work. Finally, for strong-
field ionization of hydrogen, the weak approximation remains
valid and can be very simply expressed as a prefactor term.
Hence, to derive the modified saddle-point approximation, we
evaluate Eq. (29) directly via the saddle-point approximation,
leading to

M(p f , z f ) =
∑
m,s

√
2π i

∂2S/∂t ′2 F dm(p̃0s, ts)eiS[rs,ps,zs,ts]. (B1)

This expression is very similar to that in Eq. (33), except here
the saddle points are different, and the fluctuation factor F can
be determined by

F =
∫

D[η] exp(iA(2)[η]), (B2)

where η = (δr, δv, δp, δu) (given z = u − iv), which is
known as the extended phase-space vector of small variations
[84]. The second variation of the action is given by

A(2)[η] = 1

2

(
η · �η̇ − η · ∂2H

∂η∂η
η

)
, (B3)

where � = ( 0 14
−14 0 ) (known as the eight-dimensional unit

symplectic matrix), with 14 being the four-dimensional iden-
tity matrix. The saddle-point equations are given by

ṙ = ∂H

∂p
= p + A(τ ) + CSO[r, n[z]], (B4)

ṗ = −∂H

∂r
= −∇U (r) − 1

|r|CSO[|r|n[z], p], (B5)
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while the equations for ż use z = u − iu,

u̇ = (1 + |z|2)2 1

2

∂H

∂u
= CSO[r, p] ·

⎛
⎝1 − u2 + v2

−2uv

2u

⎞
⎠, (B6)

v̇ = (1 + |z|2)2 1

2

∂H

∂v
= CSO[r, p] ·

⎛
⎝ −2uv

1 + u2 − v2

2v

⎞
⎠, (B7)

which provides equations of motion for the spin. This is an
alternative to what was used in the main text, where the spin-
orbit coupling did not affect the equations of motion for the
electron trajectories. Now the position, momentum, and spin
are determined by coupled equations. This provides a very
flexible formalism to describing spin through a path integral
and connect it to semiclassical equations of motion, which can
provide crucial insight into the dynamics. This could also be
applied to describe the spin of the residual ion, where for a
multielectron description a higher-dimensional representation
of the coherent spin state can be used. Such a description is not
restricted to spin, and a similar formalism could potentially be
used to incorporate the quantum state of the light field via a
coherent state path integral.

APPENDIX C: SPIN AVERAGING

We may use the coherent spin state formalism to average
incoherently over initial spin orientations; for hydrogen, we
use the spin state |�1/2±1/2〉 = |z1/2±1/2

00 〉 |ψ00(t ′)〉, where ei-
ther z1/2±1/2 → 0 (spin down) or z1/2±1/2 → ∞ (spin up). The
state |ψ00(t ′)〉 indicates that the spatial part is initially in an s
state with l = m = 0. Spatial rotations to the initial state mean
that all possible values of initial z00 will be covered. We can
show this explicitly by integrating over the Euler angles [see
Eq. (41) of the main text]

P↑;(p f ) = 1

8π2

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ sin(β )

× P↑(p f ;Rαβγ |↑〉). (C1)

Parametrizing the rotating as Rαβγ =
exp(−iασz/2) exp(−iβσy/2) exp(−iγ σz/2), we may write
the rotation of the spin-up state as

Rαβγ |↑〉 = eiγ /2[e−iα/2 cos(β/2) |↑〉
+ eiα/2 sin(β ) |↓〉]. (C2)

This may be written in terms of coherent spin states

Rαβγ |↑〉 = eiα/2−iγ /2 |e−iα cot(β/2)〉 . (C3)

We may drop the phasor prefactors as these will not contribute
in the incoherent average, which may be written as

P↑;(p f ) = 1

8π2

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ

× sin(β )P↑[p f ; |e−iα cot(β/2)〉] (C4)

= 1

4π

∫ 2π

0
dα

∫ π

0
dβ sin(β )P↑

× [p f ; |e−iα cot(β/2)〉]. (C5)
As there is no γ dependence we could do the γ integral
directly. To continue, we make the variable transformation
φ0 = −α and u0 = cot(β/2). The u0 integration metric can be
written as du0 = − dβ

2 sin(β/2)2 , which means that dβ sin(β ) =
− 4u

(1+u2 )2 . This means the averaged probability may be written
as

P↑;(p f ) = 1

π

∫ 2π

0
dφ0

∫ ∞

0
u0du0

1

(1 + u2
0)2

P↑(p f ; |u0eiφ0〉)

(C6)

= 2

π

∫
C

d2z00
1

(1 + |z00|2)2
P↑(p f |z00), (C7)

where we have let z00 = u0eiφ0 with dz2
00 = dz00 ∧ dz∗

00 =
2iudu0 ∧ dφ0 leading to the integral over the coherent spin
states.

Now we can compute the spin average using Eq. (C7). We
may write the probability given an initial z00 and final spin up
using the weak-coupling formalism, but without actually ap-
plying any approximation, so it is still exact. The probability
is given by

P↑(p f ; z00) =
∣∣∣∣
∫ ∞

−∞
dt ′

∫
Dr

∫ D′p
(2π )3

M↑
SO[r, p, t ′; z00]

× d (p0, t ′)eiS0,I[r,p,t ′]∣∣2
. (C8)

Only the term M↑
SO[r, p, t ′; z00] contains dependence on z′

00
from Eq. (36) this term may be written as

M↑
SO[r, p, t ′; z00] = b + az00√

1 + |z00|2
, (C9)

similarly for M↓
SO we have

M↓
SO[r, p, t ′; z00] = a − b∗z∗

00√
1 + |z00|2

. (C10)

Here we took z f → ∞ for spin up and z f → 0 for spin down.
We proceed by writing in more compact notation: we collect
t ′, r, and p into x and set M0,I [x] = d[x]eiS0,I [x]. Now the spin-
averaged probability is

P↑(p f , z00) = 2

π

∫
C

d2z00
1

(1 + |z00|2)2

∣∣∣∣∣
∫

Dx
b[x] + a[x]z00√

1 + |z00|2
M0,I [x]

∣∣∣∣∣
2

(C11)

= 2

π

∫
Dx

∫
Dx′M0,I [x]M∗

0,I [x
′]

∫
C

d2z00
1

(1 + |z00|2)2

(
b[x] + a[x]z00√

1 + |z00|2

)(
b∗[x′] + a∗[x′]z∗

00√
1 + |z00|2

)
(C12)
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= 2

π

∫
Dx

∫
Dx′M0,I [x]M∗

0,I [x
′]

∫
C

d2z00
(b[x] + a[x]z00)(b∗[x′] + a∗[x′]z∗

00)

(1 + |z00|2)3︸ ︷︷ ︸
I

. (C13)

Here we pull out the integral over spin states and do this separately:

I =
∫

C
d2z00

(b[x] + a[x]z00)(b∗[x′] + a∗[x′]z∗
00)

(1 + |z00|2)3
(C14)

=
∫

C
d2z00

b[x]b∗[x′] + b[x]a∗[x′]z∗
00 + a[x]b∗[x′]z00 + a[x]a∗[x′]|z00|2
(1 + |z00|2)3

(C15)

= −2
∫ ∞

0
du0

∫ 2π

0
dφ0

b[x]b∗[x′] + b[x]a∗[x′]u0���e−iφ0 + a[x]b∗[x′]u0��eiφ0 + a[x]a∗[x′]u2
0

(1 + u2
0)3

(C16)

= −
∫ ∞

0
u0du0

4π
(
b[x]b∗[x′] + a[x]a∗[x′]u2

0

)
(1 + u2

0)3
(C17)

= π (b[x]b∗[x′] + a[x]a∗[x′]). (C18)

Inserting the integral back into Eq. (C13) gives

P↑;(p f ) =
∫

Dx
∫

Dx′M0,I [x]M∗
0,I

× [x′](b[x]b∗[x′] + a[x]a∗[x′]) (C19)

=
∣∣∣∣
∫

Dx a[x]M0,I [x]

∣∣∣∣2

+
∣∣∣∣
∫

Dx b[x]M0,I [x]

∣∣∣∣2

= P↑;↑(p f ) + P↑;↓(p f ). (C20)

Given that, M↑
SO[r, p, t ′; z00] → a as z00 → ∞ and M↑

SO
[r, p, t ′; z00] → b as z00 → 0. By the same logic P↓;(p f ) =
P↓;↑(p f ) + P↓;↓(p f ).

APPENDIX D: CHARACTERIZING THE DYNAMICAL
SPIN COEFFICIENTS a(t ) AND b(t )

Given that we restrict dynamics to the zy plane and the
orbital angular momentum consequently is in the x direction,
the ODE for a(t ) and b(t ) [Eq. (37)] may be written as

ȧ(t ) = − i

2c2r

dV

dr
Lx(t )b∗(t ),

ḃ(t ) = − i

2c2r

dV

dr
Lx(t )a∗(t ). (D1)

By writing a(t ) and b(t ) explicitly in terms of real
and imaginary parts, this set of ODEs may be writ-
ten as a 4-vector equation ẋ(t ) = HSO(t )ηx(t ) with x(t ) =
(Re[a(t )], Im[a(t )], Re[b(t )], Im[b(t )]) and

η =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠, (D2)

HSO(t ) = 1

2cr2

dV

dr
Lx(t ) (D3)

Thus, a(t ) and b(t ) may be solved (see [114]) as

a(t ) = xa ·
[

exp

(∫
dt HSO(t )η

)
x0

]
,

b(t ) = xb ·
[

exp

(∫
dt HSO(t )η

)
x0

]
, (D4)

where the dot product with xa(t ) = (1, i, 0, 0) selects the real
and imaginary components of a(t ) and xb = (0, 0, 1, i) se-
lects the real and imaginary components of b(t ). The initial
conditions are a(0) = 1 and b(0) = 0, which means x0 =
(1, 0, 0, 0), and this leads to the solutions

a(t ) = cos[SSO(t )], b(t ) = −i sin[SSO(t )], (D5)

which are the solutions used in the discussion in Sec. V B.

APPENDIX E: RELATIVISTIC FORCE CORRECTIONS

Here we consider the equations of motion with relativistic
correction to the kinetic energy to better understand why the
core gets less strongly probed with than without these correc-
tions. Hamilton’s equations of motion are given by

ṙ = ∇pK[p], ṗ = −∇rU [r]. (E1)

Considering only the relativistic corrections to kinetic energy
we have K[p] = 1

2 p2 − 1
8c2 p4, with ∇pK[p] = (1 − 1

2c2 p2)p.
Taking the derivative of ṙ with respect to time and writing
F = −∇rU , we obtain a Newtonian-style force equation

r̈ =
(

1 − 1

2c2
M

)
F, (E2)

where M is a matrix given by M = 13p2 + 2p ⊗ p. Thus, the
matrix M determines by how much the force is effectively
reduced from the classical case. For example, in the case the
electron is heading directly to the residual ion, p = (0, 0, v)
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and F = (0, 0, F ),

M =
⎛
⎝v2 0 0

0 v2 0
0 0 3v2

⎞
⎠ (E3)

leading to the equation

z̈ =
(

1 − 3v2

2c2

)
F. (E4)

While, in the case that the electron is traveling perpen-
dicular to force due to the residual ion, p = (0, v, 0) and
F = (0, 0, F ), M is the same as before, but a different com-
ponent is nonzero, leading to the equation

z̈ =
(

1 − v2

2c2

)
F. (E5)

This effective reduction of the central force will lead to the
orbital radius increasing, and thus the core is probed less
strongly. These aspects are discussed in Sec. VI of the main
text.
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