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Generation of vortex electrons in tunneling ionization of polyatomic molecules:
Exact results in the zero-range potential model
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The theory of molecular Siegert states in a static electric field in the zero-range potential model is developed.
The model admits extended analytical and accurate numerical treatments, which enables one to study tunnel-
ing ionization of large polyatomic molecules with complex geometry in strong fields beyond the weak-field
approximation. The theory is illustrated by calculations for three model molecules reproducing the geometry of
the real water, benzene, and leucine molecules. The field and orientation dependence of two major ionization
observables, the ionization rate and the transverse momentum distribution of liberated electrons, is analyzed.
The calculations reveal a number of strong-field effects not accounted for by the weak-field asymptotic theory. In
particular, it is shown that vortex electrons are efficiently generated in tunneling ionization of large molecules at
sufficiently strong fields, which opens a perspective for enantiosensitive rescattering photoelectron spectroscopy.
The mechanism of tunneling-induced electron diffraction and its manifestation in the transverse momentum
distribution are discussed.
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I. INTRODUCTION

Tunneling ionization is the first step for a variety of pro-
cesses in strong-field physics [1]. In the adiabatic regime
ionization in a time-dependent laser field proceeds as if the
field were static and equal to the instantaneous laser field [2].
In view of numerous applications in strong-field physics, the
theory of tunneling ionization of molecules in a static electric
field continues to attract much interest.

The key ionization observable needed for applications is
the ionization rate as a function of the ionizing field strength
F and the orientation of the molecule with respect to the field.
Without attempting to comprehensively review the literature,
we indicate three approaches to accurately calculate ioniza-
tion rates of molecules at different levels of approximation.
The simplest is an approach based on the single-active-
electron approximation (SAEA) in which only one electron
bound by a given potential modeling the parent molecular
ion is treated [3–9]. The major drawback of this approach is
the neglect of core polarization effects. In a more involved
antisymmetrized coupled channels approach the multielectron
molecular wave function is composed of Gaussian orbitals
for bound electrons and finite-element basis functions for
the liberated electron [10]. An important achievement of this
approach is the demonstration that in some cases, particu-
larly for the CO molecule, accounting for core polarization
is essential for obtaining correct orientation dependence of
the ionization rate. Finally, there exists an ab initio coupled-
cluster method with complex-scaled basis functions capable
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of producing converged fully correlated results [11]. Calcula-
tions by this method for few-atomic molecules CO, O2, H2O,
and CH4 revealed the importance of taking into account elec-
tronic correlations. With some simplifications, the ability of
the method to treat polyatomic molecules was demonstrated
by calculations for benzene and naphthalene [12] and several
polyacenes [13]. Although the usefulness of such computa-
tional approaches as a source of reliable results is difficult to
overestimate, the calculations for polyatomic molecules are
very laborious and feasible for only a few field strengths and
molecular orientations.

The weak-field asymptotic theory (WFAT) of tunneling
ionization of one-electron [14] and many-electron [15] sys-
tems based on the asymptotic expansion of the ionization
observables in F presents an attractive alternative to com-
putational approaches. Within the WFAT, the ionization rate
and other observables needed for applications in strong-field
physics are expressed analytically in terms of properties of
the electronic state of the unperturbed system. Several general
implementations of the WFAT for arbitrary molecules on the
basis of different molecular electronic structure codes are
available [16–18]. The feasibility of WFAT calculations of the
orientation dependence of the ionization rate of polyatomic
molecules was demonstrated, e.g., by a theoretical analysis
of torsional effects in strong-field ionization of biphenyl [19]
and a recent joint experimental and theoretical study on high-
harmonic spectroscopy of 1,3-cyclohexadiene and benzene
[20]. However, the applicability of the WFAT is limited to
relatively weak fields corresponding to deep tunneling regime.

In this paper, we treat molecules in the SAEA using the
zero-range potential (ZRP) model [21,22]. On the one hand,
the ZRP model is not only computationally more tractable
than realistic molecular potentials [4,5,8,9], but also admits
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an extended analytical treatment. This makes virtually exact
calculations for polyatomic molecules with arbitrary geom-
etry and orientation feasible. On the other hand, this model
allows one to analyze tunneling ionization of molecules in
strong fields beyond the WFAT [14]. So far, the model was
used to study tunneling ionization in a static electric field
from one ZRP [23], two identical [24] and different [25] ZRPs
modeling atoms, homonuclear and heteronuclear diatomics,
respectively. It is widely used in strong-field physics for the
analysis of both strong-field ionization and high-order har-
monic generation processes [26–41] (see also review articles
[42,43]).

We employ the ZRP model to investigate the effect of
molecular size and geometry on the ionization observables.
More specifically, we are interested in the generation of vortex
electrons in tunneling ionization of large molecules in strong
fields. Recently, a theory of generation and rescattering of vor-
tex photoelectrons in strong-field ionization by intense laser
pulses based on the adiabatic theory [2] has been developed
[44,45]. The results show that extending rescattering photo-
electron spectroscopy [46–53] to vortex electrons will open a
new window for molecular structure imaging in strong-field
physics. In Refs. [44,45] a specific configuration was consid-
ered in which ionization occurs from a vortex bound orbital in
an atom or a linear molecule aligned along the laser polariza-
tion axis having a nonzero projection of the electron angular
momentum on this axis. One of the goals of this study is to
demonstrate that vortex electrons are efficiently generated in
tunneling ionization of large polyatomic molecules without
any symmetry at sufficiently strong fields.

The paper is organized as follows. Section II summa-
rizes basic equations of the model. Section III introduces
the outgoing-wave Green’s function for an electron in a ho-
mogeneous static electric field which is essential for this
study. Section IV outlines a procedure to accurately calcu-
late ionization observables in the ZRP model. The weak-field
asymptotics of the observables is discussed in Sec. V. Results
of illustrative calculations for three model molecules repro-
ducing the geometry of the real water, benzene, and leucine
molecules and their discussion are presented in Sec. VI.
Section VII concludes the paper.

II. BASIC EQUATIONS

We consider a molecule treated in the SAEA interacting
with an external static electric field. The interaction of an ac-
tive electron with the molecular ion is described by a potential
V (r). The field F = Fez, F � 0, is assumed to be directed
along the z axis of the laboratory coordinate frame. It causes
ionization of the molecule. All the ionization observables can
be expressed in terms of Siegert states (SSs) in an electric field
[3–5,14] which are solutions to the stationary Schrödinger
equation (atomic units h̄ = m = |e| = 1 are used throughout)[− 1

2� + V (r) + Fz − E
]
φ(r) = 0 (1)

satisfying the outgoing-wave boundary condition

φ(r)|z→−∞ =
∫

A(k⊥)eik⊥r⊥g(z, k⊥)
dk⊥

(2π )2
, (2)

where

g(z, k⊥) = 1

|2Fz|1/4
exp

[
iF 1/2|2z|3/2

3
− i(k2

⊥ − 2E )|z|1/2

(2F )1/2

]
.

(3)

Here and in the following, the subscript ⊥ denotes the com-
ponent of a vector perpendicular to the z axis. Equations (2)
and (3) describe the outgoing flux of electrons liberated from
the molecule by the field, with A(k⊥) giving the amplitude
of the transverse momentum distribution (TMD) in the flux.
Equation (1) supplemented by the boundary condition (2) con-
stitute an eigenvalue problem, and the SSs are the solutions
to this problem. These states depend on the field strength F
as a parameter, but we omit this dependence in the notation.
Let in the absence of the field the system has a bound state
with energy E0 and real normalized wave function φ0(r) sat-
isfying Eq. (1) with F = 0. This state models the unperturbed
ionizing molecular orbital. We are interested in the SS which
originates from this bound state as the field is turned on, that
is, in the solution to Eq. (1) satisfying

E |F→0 = E0, φ(r)|F→0 = φ0(r). (4)

The SS eigenvalue presented in the form

E = E − i

2
� (5)

defines the field-shifted energy E and ionization rate � of the
state. The SS eigenfunction normalized by∫

φ2(r) dr = 1 (6)

defines the TMD amplitude A(k⊥). The TMD is then given by

P(k⊥) = |A(k⊥)|2 (7)

and the total ionization flux is

P =
∫

P(k⊥)
dk⊥

(2π )2
. (8)

Note that in the weak-field limit it coincides with the ioniza-
tion rate [14]

�|F→0 = P|F→0. (9)

The complex energy eigenvalue E and the TMD amplitude
A(k⊥) are two major observables characterizing the system.
They are needed, e.g., for implementing the adiabatic theory
[2], where A(k⊥) determines the structure of the photoelectron
momentum distribution in the transverse with respect to the
polarization axis plane.

In studying tunneling ionization of molecules one usually
focuses on the dependence of the ionization rate on the ori-
entation of the molecule with respect to the field. We will
additionally discuss the TMD. In general, it should be noted
that while for a given orientation of the molecule the rate �

is just a number characterizing the system, the TMD P(k⊥)
is a function of two variables containing additional informa-
tion on its structure and ionization dynamics. In particular,
the TMD describes vortex electrons generated in tunneling
ionization. Indeed, let us introduce polar coordinates in the
transverse coordinate r⊥ = (x, y) = r⊥(cos ϕ, sin ϕ) and mo-
mentum k⊥ = (kx, ky) = k⊥(cos ϕk, sin ϕk ) planes. The TMD
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amplitude can be expanded in a Fourier series

A(k⊥) =
∞∑

m=−∞
Am(k⊥)eimϕk , (10)

where

Am(k⊥) =
∫ 2π

0
A(k⊥)e−imϕk

dϕk

2π
. (11)

Substituting this into Eq. (2) gives

φ(r)|z→−∞ = 1

2π

∞∑
m=−∞

eimϕ+i|m|π/2

×
∫ ∞

0
Am(k⊥)J|m|(k⊥r⊥)g(z, k⊥)k⊥dk⊥.

(12)

This equation decomposes the outgoing wave into a sum of
terms with different projections m of the electron angular
momentum on the z axis. The transverse structure of the term
with a given m at r⊥ → 0 is determined by a factor r|m|

⊥ eimϕ .
The term with m = 0 represents a locally plane outgoing
wave, while terms with |m| > 0 describe vortex electrons.
Substituting Eq. (10) into (8), the total ionization flux can be
presented in the form

P =
∞∑

m=−∞
Pm, (13)

where

Pm = 1

2π

∫ ∞

0
|Am(k⊥)|2k⊥dk⊥ (14)

are partial ionization fluxes characterizing the rate of gener-
ation of plane-wave (m = 0) or vortex (|m| > 0) electrons.
Thus, the presence of vortex electrons can be seen from the
very fact that the TMD P(k⊥) depends on ϕk .

A method to accurately calculate the ionization observ-
ables by solving Eq. (1) capable of treating general molecular
potentials in a wide range of field strengths was developed
in Refs. [3–5]. However, calculations using this method for
polyatomic molecules are rather time-consuming and become
prohibitively laborious if results for many orientations of the
molecule with respect to the field are needed. On the other
hand, the WFAT [14] provides an approximate asymptotic
solution of the problem in the limit F → 0. The calculations
based on the WFAT are feasible for any molecule [16–18], but
their results are limited to weak fields.

To explore strong-field effects in tunneling ionization of
polyatomic molecules beyond the WFAT, in this paper we
employ the ZRP model [21]. The potential for an N-atomic
molecule is modeled by a sum of N ZRPs,

V (r) =
N∑

i=1

VZRP(r − Ri; κi ), (15)

where

VZRP(r; κ) = 2π

κ

δ(r)
∂

∂r
r. (16)

The vectors Ri give the positions of the nuclei and are deter-
mined by the molecular geometry and its orientation in the
laboratory frame, while κi are considered as free parameters
which can be chosen to reproduce some characteristics of a
real molecule affecting its ionization properties. The presence
of such an operator potential in Eq. (1) is equivalent to the re-
quirement that the SS eigenfunction must satisfy the boundary
conditions [21]

φ(r)|r→Ri = ci

2π

[
1

|r − Ri| − κi + O(|r − Ri|)
]
, (17)

where

ci = 2π |r − Ri|φ(r)|r→Ri . (18)

The action of this potential on the eigenfunction is thus given
by

V (r)φ(r) = −
N∑

i=1

ciδ(r − Ri ). (19)

As shown below, the ionization observables in this model can
be calculated without any approximations, even for relatively
large N .

III. GREEN’S FUNCTION

The present model is most conveniently analyzed using
the outgoing-wave Green’s function for an electron in a static
electric field F. In this section the field may have an arbitrary
direction. The Green’s function satisfies(− 1

2� + Fr − E
)
G(r, r′; E ) = δ(r − r′). (20)

It is usually obtained as the Fourier transform of the cor-
responding retarded Green’s function, which can be found
analytically [54], and presented in the form [2]

G(r, r′; E ) = e−iπ/4

(2π )3/2

∫ ∞

0
exp

[
iEt + i(r − r′)2

2t

− i

2
F(r + r′)t − i

24
F2t3

]
dt

t3/2
. (21)

Recently it has been realized that a similar integral appears
in integral representations for products of two solutions of
the Airy equation with shifted arguments, which makes it
possible to obtain the Green’s function in a closed analytic
form [55,56]. Using the notation of Ref. [56], the result reads
as

G(r, r′; E ) = −eiπ/6

|r − r′|
d

dη
Ai(ξ + η)Ai

[
e2iπ/3(ξ − η)

]
, (22)

where

ξ = F(r + r′) − 2E

(2F )2/3
, η = F 1/3

22/3
|r − r′|, (23)

and Ai(z) is the Airy function [57]. It can be seen that in the
absence of the field Eq. (22) reduces to the outgoing-wave
Green’s function for a free electron,

G(r, r′; E )|F→0 = eik|r−r′ |

2π |r − r′| , (24)
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where k = √
2E and the branch of the square-root function is

determined by a branch cut at real positive E , as in scattering
theory [58]. The availability of a closed-form expression (22)
for the Green’s function greatly facilitates this study.

The function (22) diverges as its spatial arguments r and r′
coalesce. For the following we need its regular part defined by

G(r, r′; E )|r′→r = 1

2π |r − r′| + Greg(r; E ). (25)

From Eq. (22) we obtain

Greg(r; E ) = − (2F )1/3
[
e−iπ/6Ai′(ξ )Ai′

(
e2iπ/3ξ

)
+ eiπ/6ξAi(ξ )Ai

(
e2iπ/3ξ

)]
, (26)

where primes denote differentiation with respect to the argu-
ment of the Airy function. We also need the derivatives of
these functions with respect to E given by

∂G(r, r′; E )

∂E
= 22/3eiπ/6

F 1/3
Ai(ξ + η)Ai

[
e2iπ/3(ξ − η)

]
(27)

and

∂Greg(r; E )

∂E
= 22/3eiπ/6

F 1/3
Ai(ξ )Ai

(
e2iπ/3ξ

)
. (28)

The limiting forms of Eqs. (26), (27), and (28) for F → 0 can
be easily obtained from Eq. (24).

IV. SIEGERT STATES: EXACT TREATMENT

From here on we restore the convention F = Fez. Using
the Green’s function (22), we rewrite Eq. (1) in the form of a
homogeneous integral equation

φ(r) = −
∫

G(r, r′; E )V (r′)φ(r′)dr′. (29)

This equation is the basis for the exact calculation of SSs in
the ZRP model.

A. Eigenvalue and eigenfunction

We begin with a procedure for calculating the SS eigen-
value and eigenfunction. Our approach generalizes that of
Ref. [21], where bound states for F = 0 were treated, to SSs
in the case F > 0. Substituting Eq. (19) into (29) gives

φ(r) =
N∑

i=1

ciG(r, Ri; E ), (30)

where the coefficients ci are defined by Eq. (18). From this
using Eq. (25) we find

φ(r)|r→Ri = ci

2π |r − Ri| + ciGreg(Ri; E )

+
N∑

j �=i

c jG(Ri, R j ; E ). (31)

Comparing this with Eq. (17), we obtain N coupled equations
for the coefficients ci,

N∑
j=1

Mi j (E )c j = 0, i = 1, . . . , N (32)

where

Mi j (E ) =
⎧⎨
⎩

κi

2π
+ Greg(Ri; E ), i = j

G(Ri, R j ; E ), i �= j.
(33)

In order for Eq. (32) to have a nontrivial solution, the determi-
nant of the matrix (33) must turn to zero,

det Mi j (E ) = 0. (34)

This equation defines the SS eigenvalues. The corresponding
sets of coefficients ci solving Eq. (32) define the SS eigenfunc-
tions (30). The normalization condition for the coefficients
follows from Eq. (6). Substituting Eq. (30) into (6) gives

N∑
i, j=1

cic j

∫
G(r, Ri; E )G(r, R j ; E )dr = 1. (35)

This can be simplified using Hilbert’s identity [59]∫
G(r, r′′; E )G(r′′, r′; E ′)dr′′ = G(r, r′; E ) − G(r, r′; E ′)

E − E ′ .

(36)
Setting here E ′ → E and taking into account that the Green’s
function (22) is symmetric with respect to r and r′, we obtain

N∑
i, j=1

cic j
∂Mi j (E )

∂E
= 1. (37)

The derivative of the matrix (33) with respect to E can be
calculated using Eqs. (27) and (28). The normalization con-
dition (37) determines the coefficients ci, and hence the SS
eigenfunction (30), up to a common sign.

For any F > 0, Eq. (34) has infinitely many generally
complex solutions because elements of the matrix (33) are
transcendental functions of E . Thus, there are infinitely many
SSs. Note that all equations in this subsection remain valid for
F = 0, with the Green’s function given by Eq. (24). In this
case Eq. (34) has a finite number Nb � N of real solutions
corresponding to bound states of the field-free system [21].
Let En and φn(r), n = 1, . . . , Nb, denote energies and real
normalized wave functions of these states. The bound state
in Eqs. (4), whose energy and wave function are alternatively
denoted by E0 and φ0(r), belongs to this set. As the field is
turned on, F > 0, bound states turn into tunneling SSs while
all the other solutions to Eq. (34) correspond to static-field-
induced states [60].

We are interested in one particular SS originating from
the bound state of the field-free system modeling the ion-
izing molecular orbital. Let us summarize the procedure for
calculating this SS. We begin with F = 0, find all Nb bound
states, and select among them the one meant in Eqs. (4). The
coefficients solving Eq. (32) for this state are denoted by c(0)

i .
Then we increment F by small steps, and at each step find
the solution to Eqs. (34) and (32) closest to that found at the
previous step, which amounts to the analytic continuation of
the SS in F . In this way the SS can be continued to arbitrary
values of F .
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B. Transverse momentum distribution amplitude

We now turn to the calculation of the TMD amplitude.
We first discuss the case of an arbitrary potential V (r),
which contributes to the development of the general theory
of SSs in an electric field [3–5,14,61–63], and then spec-
ify the result for the ZRP model. From the definition (2),
we have [14]

A(k⊥) = 1

g(z, k⊥)

∫
e−ik⊥r⊥φ(r)dr⊥

∣∣∣∣
z→−∞

. (38)

This formula expresses the TMD amplitude as a surface inte-
gral involving the values of the SS eigenfunction only in the
asymptotics region z → −∞. Substituting here Eq. (29) gives

A(k⊥) = −1

g(z, k⊥)

∫
e−ik⊥r⊥G(r, r′; E )V (r′)

×φ(r′)dr′dr⊥
∣∣
z→−∞. (39)

The asymptotics of the Green’s function (22) at z → −∞ de-
pends on the value of |r⊥ − r′

⊥|. As will become clear shortly,
for substituting into Eq. (39) we need the asymptotics in the
region |r⊥ − r′

⊥| = O(|z|1/2). In this region [see Eqs. (23)]

ξ = −F 1/3|z|
22/3

+ Fz′ − 2E

(2F )2/3
, (40a)

η = F 1/3

22/3

[
|z| + z′ + (r⊥ − r′

⊥)2

2|z| + O(|z|−1)

]
. (40b)

The asymptotics we need is given by

G(r, r′; E )|z→−∞ =e−iπ/4(2F )1/12

2π1/2|z|3/4
Ai(ξ + η)

× exp

[
iF 1/2|2z|3/2

3
+ iE |2z|1/2

F 1/2

+ iF 1/2(r⊥ − r′
⊥)2

23/2|z|1/2

]
. (41)

The last term in the exponent here scales as O(|z|1/2). There-
fore, the exponential is a rapidly oscillating function of r⊥ at
z → −∞, and in this limit the integral over r⊥ in Eq. (39) can
be calculated using the saddle-point method. The only saddle
point is given by

r⊥ = r′
⊥ + |2z|1/2

F 1/2
k⊥. (42)

This equation has a simple physical meaning. Let an elec-
tron interacting with the field F = Fez begin its motion at
r′ = (r′

⊥, z′) with the initial velocity k = (k⊥, kz ). Then its
coordinate r = (r⊥, z) as a function of time t is given by
r⊥ = r′

⊥ + k⊥t and z = z′ + kzt − Ft2/2. The limit z → −∞
corresponds to t → ∞. In this limit t = (2|z|/F )1/2, which
leads to Eq. (42). The asymptotics (41) must hold in the region
of r⊥ including the saddle point (42), which explains the
values of |r⊥ − r′

⊥| considered. Calculating the integral, we
obtain

A(k⊥) = − eiπ/42π1/2

(2F )1/6

∫
e−ik⊥r⊥Ai

(
2Fz + k2

⊥ − 2E

(2F )2/3

)

× V (r)φ(r)dr. (43)

This formula is a new result in the theory of SSs. It expresses
the TMD amplitude in the form of a volume integral or a
matrix element involving the SS eigenfunction values in the
region of localization of the potential V (r). We emphasize that
Eqs. (38) and (43) are equally exact, but for their implemen-
tation one needs to know the SS eigenfunction in different
regions of space. Similar exact integral representations for
partial amplitudes of ionization into the different parabolic
channels were obtained in Ref. [62]. It is well known that inte-
gral representations for observables appearing as coefficients
in the asymptotic tail of the corresponding wave function,
such as the elastic scattering amplitude [58], play an important
role in the theory.

The usefulness of Eq. (43), in particular, is illustrated by
the fact that the TMD amplitude in the ZRP model immedi-
ately follows from this formula upon substituting Eq. (19):

A(k⊥) = eiπ/42π1/2

(2F )1/6

N∑
i=1

cie
−ik⊥Ri⊥Ai

(
2FRiz + k2

⊥ − 2E

(2F )2/3

)
.

(44)
This is an exact result which holds for any field strength.
The dependence of this TMD amplitude on F , including that
hidden in the eigenvalue E and the coefficients ci, is nontrivial.
But for a given F , hence given E and ci, its dependence on k⊥
is explicit and can be explored analytically. From Eq. (44) we
obtain partial TMD amplitudes (11) in the ZRP model

Am(k⊥) = eiπ/4−i|m|π/22π1/2

(2F )1/6

N∑
i=1

cie
−im�i J|m|(k⊥Ri⊥)

× Ai

(
2FRiz + k2

⊥ − 2E

(2F )2/3

)
, (45)

where we introduced the notation Ri⊥ = (Rix, Riy ) =
Ri⊥(cos �i, sin �i ). The partial ionization fluxes (14)
can be obtained using Eq. (45) by integrating over k⊥
numerically. Note that if the SS eigenfunction has a plane of
mirror symmetry passing through the z axis, then the TMD
amplitude (38) has a line of mirror symmetry passing through
the origin in the k⊥ plane. In this case A|m|(k⊥) and A−|m|(k⊥)
differ only by a phase factor, and therefore P|m| = P−|m|.

C. Rotation of the molecule

Here we discuss the dependence of the SS on the orien-
tation of the molecule with respect to the field. In the ZRP
model, this dependence enters the theory only through the
nuclear coordinates Ri in the laboratory frame (LF). Let R′

i
denote the nuclear coordinates in a molecular frame (MF);
these vectors are determined by the geometry of the molecule
and assumed to be given. The orientation of the molecule
is specified by the three Euler angles (α, β, γ ) defining a
rotation from the LF to the MF [64]. The SS eigenvalue E
does not depend on α. The TMD amplitude does depend on
α, but this dependence is rather simple. Considering A(k⊥) at
a given orientation as a function of polar coordinates (k⊥, ϕk ),
it can be seen that

A(k⊥, ϕk )|α,β,γ = A(k⊥, ϕk − α)|α=0,β,γ . (46)
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Thus, without loss of generality, we can set α = 0. In this case

Rix = R′
ix cos β cos γ − R′

iy cos β sin γ + R′
iz sin β, (47a)

Riy = R′
ix sin γ + R′

iy cos γ , (47b)

Riz = −R′
ix sin β cos γ + R′

iy sin β sin γ + R′
iz cos β. (47c)

Substituting this into the above equations makes the SS de-
pendent on the orientation angles β and γ .

V. WEAK-FIELD ASYMPTOTICS

In the WFAT [14], the solution to Eqs. (1), (2), and (4)
is obtained in the form of an asymptotic expansion in F
for F → 0. This asymptotics provides a reference helpful
for comparison with exact calculations. Here we summarize
the leading-order WFAT results for the ZRP model. We be-
gin with the field-shifted energy E of the state. Tunneling
ionization is exponentially suppressed at F → 0 and can be
neglected in obtaining E . This leads to the perturbation-theory
expansion

E = E0 − μzF + O(F 2), (48)

where μz is the z component of the dipole moment in the
unperturbed bound state in the LF,

μ = −
∫

rφ2
0 (r)dr. (49)

Using Eq. (30) and taking into account that the field-free
Green’s function (24) depends only on the distance |r − r′|
between its spatial arguments, in the ZRP model we obtain

μ = −1

2

N∑
i, j=1

(Ri + R j )c
(0)
i c(0)

j

∂Mi j (E )

∂E

∣∣∣∣∣∣
F=0,E=E0

. (50)

In practice, it is more convenient to calculate the dipole mo-
ment μ′ in the MF once and then use

μz = (−μ′
x cos γ + μ′

y sin γ ) sin β + μ′
z cos β (51)

to find μz for different orientations of the molecule. Neglect-
ing ionization in the ZRP model amounts to projecting Eq. (1)
onto the subspace of Nb unperturbed bound states. This leads
to an algebraic eigenvalue problem

det[(En − E )δnm + Fznm] = 0, (52)

where

znm =
∫

φn(r)zφm(r)dr. (53)

In the limit F → 0 this equation reproduces the expansion
(48). Note, however, that as F grows the expansion holds
up to the first encounter of a point of nonanalyticity of the
SS eigenvalue E as a function of F . In the ZRP model
such nonanalyticities correspond to branch points connecting
different sheets of the Riemann surface of E considered as
a multivalued analytic function of complex F . Meanwhile,
Eq. (52) holds as long as ionization can be neglected, which
may remain valid far beyond the range of applicability of
Eq. (48). The eigenvalues of Eq. (52) are real and we denote
them by En, n = 1, . . . , Nb. We will see that they provide a

very good approximation for real parts of the SS eigenvalues
originating from bound states of the system.

The ionization observables are obtained in the WFAT
by expanding the outgoing flux in parabolic channels
ν = (nξ , m), where nξ = 0, 1, . . . and m = 0,±1, . . . are
parabolic quantum numbers [14]. Channels with m = 0 and
|m| > 0 correspond to plane-wave and vortex electrons,
respectively. The leading-order contribution to a partial ion-
ization flux Pm comes from the channel ν = (0, m),

Pm|F→0 = |G0m|2W0m, (54)

where

G0m = e−κμz g0m (55)

is the structure factor and

W0m = κ

2

(
F

4κ
2

)1+|m|
exp

[
−2κ

3

3F

]
(56)

is the field factor [14,65]. Here κ = √
2|E0| and g0m is an

asymptotic coefficient characterizing the ionizing orbital. Us-
ing the integral representation for gν obtained in Ref. [62], we
find that in the ZRP model

g0m = 2κ
(|m|−1)/2

√
2π |m|!

N∑
i=1

c(0)
i R|m|

i⊥ e−im�i e−κRiz . (57)

Channels with nξ > 0 contribute to Pm terms with increasingly
higher powers of the small parameter F . It can be seen from
Eqs. (9), (13), and (56) that the leading-order contribution
to the ionization rate comes from the channel ν = (0, 0) and
coincides with P0,

�|F→0 = |G00|2W00. (58)

This asymptotics holds provided that G00 �= 0. The asymp-
totic coefficient g00 can be alternatively represented by

g00 =
√

2π

κ

|2z|e−κzφ0(r)

∣∣∣∣∣
x=y=0, z→−∞

. (59)

This shows that the structure factor for the dominant ion-
ization channel G00 reflects the shape of the ionizing orbital
φ0(r). In particular, it turns to zero at orientations where
the negative z semiaxis either belongs to or asymptotically
approaches a nodal surface of φ0(r). At such orientations
the leading-order contribution to � comes from channels
ν = (0,±1).

We now turn to the TMD amplitude. In the present model
we have the exact expression (44), so the weak-field asymp-
totics can be derived directly from it. Substituting there E
from Eq. (48) and c(0)

i for ci gives

A(k⊥)|F→0 = eiπ/4

(κ2 + k2
⊥)1/4

exp

[
− (κ2 + k2

⊥)3/2

3F

]

×
N∑

i=1

c(0)
i e−ik⊥Ri⊥e−

√
κ

2+k2
⊥ (μz+Riz ). (60)
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This asymptotics holds for F → 0 uniformly in k⊥. In the
region k⊥ � (κF )1/4 we obtain

A(k⊥)|F→0 = eiπ/4

√
π

2
exp

[
− κ

3

3F
− κk2

⊥
2F

]

×
[

G00 − ik⊥√
κ

|G01| cos(ϕk + γ01)

]
, (61)

where γ01 = arg G01 and we have taken into account that
G0,−m = G∗

0m. We retained in Eq. (61) only the leading-order
terms for channels ν = (0, 0) and (0,±1). This asymptotics
agrees with the WFAT result [14]. If G00 �= 0, the TMD (7) as
a function of k⊥ has a Gaussian shape,

P(k⊥)|F→0 ∝ exp

[
−κk2

⊥
F

]
. (62)

This is the basic shape of the TMD in the limit F → 0 for any
one-electron system. The only information about the ionizing
orbital contained in Eq. (62) is represented by the parameter
κ. At orientations where G00 = 0 but G0±1 �= 0, the shape of
the TMD is described by

P(k⊥) ∝ k2
⊥ cos2(ϕk + γ01) exp

[
−κk2

⊥
F

]
. (63)

Here an additional characteristic γ01 of the orbital appears.
In general, one can expect that contributions to the TMD
from vortex electrons with larger |m| contain more structural
information. We will see shortly that this is indeed the case.

VI. ILLUSTRATIVE RESULTS AND DISCUSSION

The main advantage of the ZRP model stems from the fact
that it allows one to accurately calculate tunneling ionization
observables for polyatomic molecules with complex geom-
etry. However, before discussing the results, let us indicate
some drawbacks of the model which should be kept in mind
in the following. The most important drawback is that each
individual ZRP supports only one bound state of s symmetry.
As a result, molecular orbitals have a grapelike shape (see
Figs. 1, 6, 12 below). Orbitals with, e.g., p-like behavior at
atomic nuclei are not reproduced by the model, which limits
the variety of shapes of the ionizing orbital that can be treated.
Another specific feature of the ZRP model is that there is
not a distinct transition from tunneling to over-the-barrier
ionization regime as the field strength grows. Finally, this
model inherits the major drawback of the SAEA, namely, the
one-electron binding potential is assumed to be unaffected by
the ionizing field.

In the illustrative calculations we consider three molecules
whose geometries reproduce that of the real water, benzene,
and leucine molecules. The parameters κi are chosen as ex-
plained below. In all the cases the number of bound states
coincides with the number of atoms, Nb = N . We consider
ionization from the highest bound state. The shape of this
orbital differs from that of the highest occupied molecular
orbital (HOMO) in the real water molecule, etc. To emphasize
the difference, we will call our model molecules a water like
molecule, etc.

FIG. 1. The unperturbed ionizing orbital of the waterlike
molecule at the orientation (β, γ ) = (0◦, 0◦). An isosurface of
|φ0(r)| is shown, with the different colors encoding the sign of φ0(r).

A. Simplest nonlinear waterlike molecule

To begin with, we discuss a waterlike molecule, that is, a
model of H2O described by N = 3 ZRPs. This is a nonlinear
molecule, the first nontrivial in terms of geometry example
on the way from atoms [23] through diatomics [24,25] to
polyatomic molecules, and it is instructive to analyze how
its structure is reflected in the ionization observables. At the
same time, this is still a rather simple molecule which admits a
detailed analysis. We mention that calculations of the ioniza-
tion rate from the HOMO of the real water molecule within
the WFAT were reported in Ref. [66]. Ionization rates for this
molecule obtained in the SAEA with a more realistic potential
[8] and in ab initio coupled-cluster calculations [11] were also
reported.

To define the model, we need to specify the nuclear
coordinates R′

i in the MF and the parameters κi. We use
the same coordinates as in Ref. [66], namely, R′

H1,2
=

(0,±1.431,−0.887), where the subscripts H1 and H2 refer to
the two hydrogen nuclei, and R′

O = (0, 0, 0.222). The energy
of the HOMO in H2O and its dipole moment in the MF cal-
culated using the density functional theory are E0 = −0.464
and μ′ = (0, 0,−0.135) [66]. The parameters κH = 1.276
and κO = 1.019 are chosen so that the highest bound state
in the ZRP model reproduces these characteristics of the real
water molecule. With these parameters, the energies of the
other two lower-lying bound states are E1 = −0.850 and E2 =
−0.803 and their dipole moments are μ′

1 = (0, 0, 0.789) and
μ′

2 = (0, 0, 0.887).
The ionizing orbital of the waterlike molecule is shown in

Fig. 1. This figure corresponds to the orientation (β, γ ) =
(0◦, 0◦) at which the LF and MF coincide. It illustrates a
drawback of the ZRP model mentioned above. The molecule
has a mirror symmetry plane passing through the nuclei, thus,
all molecular orbitals are either even or odd functions under
reflection with respect to this plane. The HOMO of the real
molecule is an odd function, which means that it has zero am-
plitudes at all nuclei. However, such an orbital would not feel
the presence of the ZRPs and therefore cannot be reproduced
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FIG. 2. The ratio �/W00 of the ionization rate to the field factor for the waterlike molecule as a function of the orientation angles (β, γ ).
(a) The WFAT results given by the structure factor squared |G00|2 [see Eq. (58)]. The white line shows the zero of G00 reflecting the nodal
surface of the unperturbed ionizing orbital φ0(r). (b)–(d) Exact results for field strengths F = 0.02, 0.1, and 0.5. The corresponding values of
the field factor are W00 = 2.9×10−16, 3.3×10−5, and 2.0×10−2, respectively.

by the ZRP model. The shape of the orbital shown in Fig. 1
is qualitatively similar to that of HOMO-1 in the real water
molecule.

Figure 2 shows the ionization rate as a function of the
orientation angles (β, γ ). To eliminate the very strong de-
pendence on the field strength, the rate is divided by the
field factor W00 for the dominant ionization channel [see
Eq. (56)]. In the weak-field limit the ratio does not de-
pend on F and is given by |G00|2 [see Eq. (58)]. These
leading-order WFAT results are shown in Fig. 2(a). The white
line shows the zero of G00 which reflects the nodal sur-
face of the ionizing orbital passing between the O and H
nuclei (see Fig. 1). The main maximum of |G00|2 at β =
180◦ corresponds to the major lobe of the orbital centered
at the O nucleus. The two lower maxima at (45◦, 90◦) and
(45◦, 270◦) correspond to the lobes located at the H nu-
clei. All this confirms the general belief that the orientation
dependence of the ionization rate reflects the shape of the ion-
izing orbital [67–72]. Equation (59) justifies this belief in the
weak-field limit.

The other panels in Fig. 2 show exact results calculated
for three representative field strengths. Figure 2(b) shows
results for a relatively weak field F = 0.02 (corresponding
to intensity 1.4×1013 W/cm2). In this case the exact results
quantitatively agree with the prediction of the WFAT. They
reproduce the valley surrounding the nodal line of |G00|2 and
all three of its maxima. It should be noted, however, that
the exact ionization rate does not turn to zero where |G00|2
does because there are contributions from the ν = (0,±1)
and higher channels not included in Eq. (58). Furthermore,
one can notice that the two lower maxima become slightly
less pronounced compared to the WFAT results. This can be
explained by a distortion of the ionizing orbital caused by
the field. Such a distortion was found in time-dependent cal-
culations [73–78] and within the strong-field approximation
[79]. It is accounted for by the first-order correction terms

in the WFAT [61], as was demonstrated by the analysis of
tunneling ionization of H+

2 in Ref. [80]. Figure 2(c) shows
results for a typical field F = 0.1 used in strong-field physics
(corresponding to intensity 3.5×1014 W/cm2). One can see
that although there remains similarity with the WFAT results,
both in the absolute values of the ionization rate and its
dependence on the orientation angles, the overall picture is
much more distorted. The situation changes dramatically as
the field grows further. Figure 2(d) shows results for a rather
strong but realistic field F = 0.5 (corresponding to intensity
8.8×1015 W/cm2). The shape of the orientation dependence
of the ionization rate in this case qualitatively differs from that
at weaker fields. If the variation of the shape in Figs. 2(a)–2(c)
can be attributed to the distortion of the ionizing orbital caused
by the field, then a qualitative restructuring of the orbital
should occur somewhere in the interval between F = 0.1 and
0.5.

To explain this effect, let us consider real parts of the
energy eigenvalues for three SSs originating from the three
bound states of the system as functions of F shown by solid
lines in Fig. 3. At sufficiently weak fields all the energies
behave linearly in F , in agreement with Eq. (48). Their be-
havior in this region is determined by the z component of
the dipole moment of the corresponding unperturbed orbital
in the LF. At the orientation (0◦, 0◦) shown in the top panel
the MF and LF coincide. The dipole moment of the highest
state, ionization from which we consider, is negative, there-
fore, its energy goes up, while the dipole moments of the two
lower states are positive, so their energies go down. At this
orientation the states do not cross. However, the signs of the
dipoles change to the opposite as the molecule is rotated to
the orientation (180◦, 0◦) shown in the bottom panel. Now the
energy of the highest state goes down and the energies of the
lower states go up. This results in an avoided crossing between
the highest and the lowest states near F = 0.25; the middle
state is not coupled to them by the field at this orientation.
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FIG. 3. Real parts of the energy eigenvalues (5) for three SSs
originating from the three bound states of the waterlike molecule as
functions of the field strength F at two orientations (β, γ ). Solid
lines show the exact results obtained by solving Eq. (34), dashed
lines show approximate results obtained from Eq. (52). Top (red)
lines correspond to the ionizing orbital.

This avoided crossing is a manifestation of a branch point
connecting the states in the complex F plane. When the states
pass through the avoided crossing as F grows, they inter-
change their identities, so the shape of the ionizing orbital
changes qualitatively, and this is reflected in Fig. 2(d). The
dashed lines in Fig. 3 show real energies En obtained by
neglecting ionization from Eq. (52). They are in very good
agreement with the real parts of the exact SS eigenvalues.
The matrix in Eq. (52) is Hermitian, and avoided crossings of
eigenvalues of such a matrix as functions of some parameter is
a well-known phenomena in the theory of nonadiabatic tran-
sitions [81]. Note that the matrix znm in Eq. (52) depends on
the orientation of the molecule, and hence so do the positions
of avoided crossings in F .

Figure 4 shows TMDs calculated for two stronger fields of
those considered in Fig. 2 at four representative orientations of
the molecule illustrated in the top row. To bring all panels for
the same value of F to a common scale, the TMDs are divided
by the ionization rate. Figure 5 helps to understand the results
shown in Fig. 4. Solid lines in this figure show partial ioniza-
tion fluxes, also divided by the ionization rate, calculated for
the same orientations as in Fig. 4 as functions of F . For the
present molecule at all the orientations considered we have
P|m| = P−|m|, for the reason explained below Eq. (45), so the
lines with |m| > 0 in Fig. 5 show the sum (P|m| + P−|m|)/�.
The sum of all Pm gives the total ionization flux [see Eqs. (8)
and (13)], which in the weak-field limit coincides with the

FIG. 4. The ratio P(k⊥)/� of the TMD to the ionization rate for the waterlike molecule as a function of the transverse momentum k⊥ =
(kx, ky ) at four representative orientations (β, γ ) of the molecule indicated and illustrated in the top row. The middle and bottom rows show
the exact results for field strengths F = 0.1 and 0.5, respectively.
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FIG. 5. Ratios Pm/� of partial ionization fluxes to the ionization
rate for the waterlike molecule as functions of the field strength F for
the same four orientations (β, γ ) as in Fig. 4. Solid lines show the
exact results calculated using Eqs. (14) and (45), dashed lines show
the WFAT results obtained from Eq. (54). In all the cases P−|m| =
P|m|, so the lines with |m| > 0 show the sum (P|m| + P−|m|)/�. In the
top and bottom panels P1 = P−1 = 0.

ionization rate [see Eq. (9)]. Our calculations confirm that
this equality holds very well: the difference between � and
P grows with F , but remains within 0.16% for the strongest
field F = 0.5 considered. Partial fluxes for only three smallest
values of |m| are shown in Fig. 5; the higher vortex fluxes are
not visible on the scale of the figure. Note that for orientations
corresponding to the top and bottom panels P1 = P−1 = 0
because the SS eigenfunction in this case is even with respect
to two reflections x → −x and y → −y simultaneously.

We first discuss the TMDs shown in Fig. 4 for the weaker
field F = 0.1. As can be expected from Fig. 2, their shapes
can be understood, at least qualitatively, using the WFAT.

Indeed, consider the left and right panels. These orientations
are far from the nodal line of G00 [see Fig. 2(a)]. Therefore,
the ionization flux is dominated by the plane-wave electrons
with m = 0, as can be seen from the top and bottom panels
in Fig. 5. As a result, the TMDs have more or less Gaussian
shapes, in agreement with Eq. (62). Consider now the two
middle panels. These orientations are close to the nodal line
of G00. In this case the ionization flux is dominated by vortex
electrons with |m| = 1, as is confirmed by the two middle
panels in Fig. 5. Taking into account that for these orienta-
tions γ01 = 0, the shapes of the TMDs agree with Eq. (63).
The radius of the TMDs in the k⊥ plane estimated from the
exponential factor in Eqs. (62) and (63) is k⊥ ∼ √

F/κ ≈ 0.3,
which agrees with the calculations. Note that in all the cases
the TMDs are dominated by a single |m|. This is a generic
feature of TMDs in the weak-field limit explained by the
fact that channels with different |m| have different powers of
the small parameter F in the field factor (56). Dashed lines
in Fig. 5 show partial ionization fluxes calculated using the
leading-order WFAT [Eq. (54)]. This asymptotics correctly re-
produces the behavior of Pm at F → 0. The relative difference
between the WFAT and exact results grows as O(F ) and is
accounted for by the first-order WFAT [61].

We now turn to the TMDs for the stronger field F = 0.5.
Their radii in k⊥ are slightly larger than

√
F/κ ≈ 0.7 pre-

dicted by the WFAT. More importantly, they demonstrate a
greater variety of shapes. This is explained by the growing
role of the contribution from vortex electrons with |m| > 0 to
the total ionization flux at stronger fields (see Fig. 5). The left
and right panels in Fig. 4 show the result of the interference of
contributions from the m = 0 and |m| = 2 channels, as can be
seen from the top and bottom panels in Fig. 5. The shapes
shown in the two middle panels in Fig. 4 result from the
interference of channels with m = 0 and |m| = 1, as can be
seen from the two middle panels in Fig. 5. Thus, the inter-
ference of several channels with different |m| and comparable
amplitudes becomes a generic feature of TMDs at stronger
fields.

Let us show that the interference pattern in such TMDs en-
codes information on the structure of the molecule. Consider,
for example, the TMD for the field strength F = 0.5 at the ori-
entation (0◦, 0◦) (see Fig. 4). It is described by an analytically
known function (44). For the present orientation cH1 = cH2 =
cH and RH1,2 = (0,±RHy, RHz ). Thus, the TMD obtained from
Eq. (44) contains four complex cH, cO, E − RHz, and E − ROz

and one real RHy parameters. Note that the difference between
E − RHz and E − ROz equal to ROz − RHz and RHy determine
the molecular geometry. It is possible to find these parameters
by fitting a given TMD by Eq. (44). Since the exact TMD was
obtained from Eq. (44), the fit should return the exact values
of the parameters. To mimic some uncertainty in the fitting
data, we fit the exact TMD by Eq. (44) assuming that all the
parameters are real. The geometrical parameters obtained in
this way are (ROz − RHz )fit = 1.20 and (RHy)fit = 0.738, while
their exact values are ROz − RHz = 1.11 and RHy = 0.715.
This example demonstrates that the TMD encodes structural
information and, in principle, the geometry of a molecule can
be extracted from the TMD measured at a single orientation.
We mention that a similar procedure applied for F = 0.1
at the same orientation is less stable because the TMD in
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FIG. 6. The unperturbed ionizing orbital, similar to Fig. 1, but
for the benzenelike molecule.

this case has less structure and the fit is less sensitive to the
parameters.

Summarizing this subsection, we conclude the following.
First, because of avoided crossings, the ionizing orbital may
undergo a qualitative restructuring as the field grows, and this
is reflected in the orientation dependence of the ionization
rate. Second, the relative contribution of vortex electrons with
|m| > 0 to the total ionization flux grows with F , that is,
vortex electrons are generated in tunneling ionization more
efficiently. Third, this leads to the appearance of a rich inter-
ference structure in the TMD which contains information on
the geometry of the molecule.

B. Aromatic benzenelike molecule

We next discuss a more complex benzenelike molecule,
a model of C6H6 described by N = 12 ZRPs. This is a

highly symmetric molecule and it is interesting to see how
its symmetries are reflected in the ionization observables. The
internuclear distances are taken from the NIST Chemistry
WebBook [82]. We place all nuclei in the (y, z) plane sym-
metrically with respect to the origin, as shown in Fig. 6. The
energy of the HOMO in the real benzene is E0 = −0.340
[82,83] and its dipole moment is zero. In this case, we define
the parameters κi by

κi = c
√

2Ii, (64)
where Ii is the ionization potential of the corresponding iso-
lated atom. The common for all nuclei coefficient c = 1.023
is chosen such that the energy of the highest bound state coin-
cides with E0; its dipole moment is automatically zero because
of the symmetry. This gives κC = 0.931 and κH = 1.023.
Figure 6 shows the ionizing orbital in this model. Again,
its shape differs from that of the HOMO in the real ben-
zene molecule which is odd with respect to reflection in the
molecular plane and cannot be reproduced by the ZRP model.
Recently, the ionization rates from several highest orbitals of
the real benzene molecule have been calculated within the
WFAT and used for the analysis of an experiment [20]. Ab
initio coupled-cluster calculations for benzene were reported
in Ref. [13].

Figure 7 shows the orientation dependence of the ion-
ization rate. It is organized similarly to Fig. 2. The WFAT
results shown in Fig. 7(a) reflect the shape of the ionizing
orbital. The orbital has three nodal planes: the (x, z) plane
and two planes obtained from it by rotations about the x axis
by ±60◦ (see Fig. 6). The nodal lines of G00 reflect these
planes. The six maxima of |G00|2 correspond to orientations at
which one of the hydrogen nuclei is located at the negative-z
semiaxis and thus reflects the outer lobes of the orbital. The
exact results for F = 0.02 shown in Fig. 7(b) qualitatively
reproduce the maxima in the WFAT results, but do not fully
reproduce valleys along the nodal lines of G00. Moreover,
their absolute values are by two orders of magnitude smaller
than the WFAT results. Our calculations show that the WFAT

FIG. 7. The ratio �/W00, similar to Fig. 2, but for the benzenelike molecule. The structure factor G00 turns to zero along the white lines in
panel (a) and at its boundary. The values of the field factor are W00 = 2.4×10−11, 3.6×10−4, and 3.6×10−2 for field strengths F = 0.02, 0.1,
and 0.5, respectively.
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FIG. 8. Real parts of the energy eigenvalues (5) for 12 SSs origi-
nating from the bound states of the benzenelike molecule as functions
of the field strength F at the orientation (β, γ ) = (0◦, 0◦). The top
(red) line corresponds to the ionizing orbital.

does work quantitatively for the present molecule, but only
at much weaker fields F � 0.001. The shapes of the results
for stronger fields shown in Figs. 7(c) and 7(d) qualitatively
differ not only from the predictions of the WFAT, but also
from each other. In particular, each maximum in Figs. 7(a) and
7(b) is split into two maxima in Fig. 7(c) and then turns into
a minimum in Fig. 7(d). This indicates that the restructuring
of the ionizing orbital is happening more rapidly as the field
grows than it was the case for the waterlike molecule.

Figure 8 explains this behavior. It shows the real parts of
the exact energy eigenvalues for the SSs originating from the
bound states of the system as functions of F at the orientation
(0◦, 0◦), similarly to the top panel in Fig. 3. The energies
obtained from Eq. (52) are indistinguishable by eye from
the exact results, so we use this equation to understand the
dependence on F . The energies of the 12 unperturbed bound
states at F = 0 lie in a narrow interval from E1 = −0.571 to
E12 = −0.340. States 2 and 3, 4 and 5, 8 and 9, and 10 and
11 are pairwise degenerate. This degeneracy is removed at
F > 0. At weak fields the energies behave quadratically in
F because all unperturbed states have zero dipoles. As the
field grows, the term Fznm in Eq. (52) becomes dominant, and
the energies begin to vary linearly in F . This results in many
avoided crossings between the different states. The elements
of the matrix znm are roughly speaking proportional to the
size of the molecule. The present molecule is larger than the
previous one, therefore, avoided crossings begin to appear at
weaker fields. Note that the interval of F shown in Fig. 8 is
smaller than that in Fig. 3. Although the ionizing state does not
seem to pass through sharp avoided crossings in this interval
at the orientation considered, it is strongly coupled to and
mixed with the other states, and this results in the variation
of the orientation dependence of the ionization rate seen in
Fig. 7.

Figure 9 shows TMDs for two field strengths at four orien-
tations of the molecule, similarly to Fig. 4. At orientations
with γ = 0◦ the SS eigenfunction is even with respect to

FIG. 9. The ratio P(k⊥)/�, similar to Fig. 3, but for the benzenelike molecule. The orientations (β, γ ) of the molecule are indicated and
illustrated in the top row.
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FIG. 10. Ratios Pm/� of partial ionization fluxes with |m| > 0 to
the ionization rate for the benzenelike molecule as functions of the
field strength F for three of the four orientations (β, γ ) shown in
Fig. 9. In all the cases P0 = 0 and P−|m| = P|m| for |m| > 0, so the
lines show the sum (P|m| + P−|m|)/�.

reflection y → −y, therefore, the TMDs are symmetric with
respect to ky → −ky and P|m| = P−|m|. Partial ionization fluxes
for three such orientations from Fig. 9 as functions of F
are shown in Fig. 10. In this case P0 = 0 and the lines with
|m| > 0 show the sum (P|m| + P−|m|)/�. At the orientation
(β, γ ) = (60◦, 60◦) this symmetry is broken, so P0 �= 0 and
P|m| �= P−|m|. Partial ionization fluxes for this orientation are
shown in Fig. 11. In all the cases all fluxes visible on the scale
of the figure are shown and Eq. (9) holds with an error less
than 2.3%.

Consider the TMDs shown in Fig. 9 for the weaker field
F = 0.1. In contrast to the case of the waterlike molecule, they
do not have one of those basic shapes (62) or (63) predicted
by the WFAT. Even the simplest of them, the TMD at the
orientation (0◦, 0◦), is formed by interfering contributions
from four (taking into account the sign of m) channels with
|m| = 1 and 3, as can be seen from the top panel in Fig. 10.
The TMDs at orientations (45◦, 0◦) and (60◦, 60◦) reflect the
interference of several channels with |m| � 4 (see the middle
panel in Figs. 10 and 11). The most interesting is the TMD at
the orientation (90◦, 0◦). Here, because of the high symmetry
of the SS eigenfunction, partial ionization fluxes with |m| < 3
are zero (see the bottom panel in Fig. 10). The TMD in this

FIG. 11. Ratios Pm/� of partial ionization fluxes to the ionization
rate for the benzenelike molecule as functions of the field strength F
for the third orientation (β, γ ) = (60◦, 60◦) from Fig. 9. Solid and
dashed lines show the results for m � 0 and m < 0, respectively.

case is formed almost exclusively by channels with |m| = 3.
For the stronger field F = 0.5, the number of channels giving
comparable contributions to the total ionization flux becomes
larger. As a result, the shapes of the TMDs become more
complex, reflecting an interference of many channels with
different m. Such TMDs encode structural information.

To illustrate the last point for the present molecule, let us
analyze in more detail the shapes of the TMDs at the orienta-
tion (90◦, 0◦) (see Fig. 9). In this case Riz = 0 for all nuclei.
Furthermore, the coefficients ci for any two neighboring C or
H nuclei differ only in sign (see Fig. 6), so there are only
two independent coefficients cC and cH. Then Eq. (44) can
be presented in the form

A(k⊥) = eiπ/42π1/2

(2F )1/6
Ai

(
k2
⊥ − 2E

(2F )2/3

) 6∑
n=1

(−1)n

× (cCe−ik⊥RCn + cHe−ik⊥RHn ), (65)

where

RAn = RA(cos[(1/2 + n)π/3], sin[(1/2 + n)π/3], 0), (66)

and the subscript A stands for either C or H. Substituting the
expansion

e−ik⊥RAn =
∞∑

m=−∞
e−im(2+n)π/3Jm(k⊥RA)eimϕk (67)

and calculating the sum over n in Eq. (65), we obtain

A(k⊥) = 24e3iπ/4π1/2

(2F )1/6
Ai

(
k2
⊥ − 2E

(2F )2/3

) ∞∑
M=0

[cCJ3+6M (k⊥RC)

+ cHJ3+6M (k⊥RH)] sin[(3 + 6M )ϕk]. (68)
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This representation of the TMD amplitude explains the shapes
of P(k⊥) for both field strengths at the present orientation
shown in Fig. 9. In particular, the TMDs are invariant under
the rotation ϕk → ϕk + π/3. The Airy function in Eq. (68)
decays as k⊥ grows, so this factor acts as a window function
determining the radius of the TMD in the k⊥ plane. In the
weak-field limit this radius is k⊥ ∼ √

F/κ [see Eqs. (62) and
(63)]; at stronger fields its dependence on F is less trivial, but
it continues to grow with F . As follows from the bottom panel
in Fig. 10, the main contribution to Eq. (68) comes from the
term M = 0 which corresponds to |m| = 3 in Eq. (10). The
next nonzero contribution comes from channels with M = 1,
that is |m| = 9, which are not visible in Fig. 10. The number of
maxima of the TMDs in the radial direction is determined by
the interplay between the Airy factor and the Bessel functions.
For the weaker field F = 0.1 the radius of the TMD is small,
the Bessel functions can be replaced by their asymptotics at
k⊥ → 0, and hence there is only one radial maximum. For
the stronger field F = 0.5 the radius becomes larger and the
first oscillation of the Bessel functions becomes visible, which
reveals the second radial maximum. Having thus decoded the
structure of the TMD, we can extract from it the geometry
of the molecule. We fit the exact TMD for F = 0.5 taken
along the ray ϕk = π/6 by Eq. (68), where only one term
with M = 0 is retained. In the fitting procedure we treat cC,
cH, RC, and RH as free parameters. To introduce some addi-
tional uncertainty, we assume that the coefficients cC and cH

are real. The geometrical parameters found from the fit are
(RC)fit = 2.477 and (RH)fit = 4.693, which is very close to
their exact values RC = 2.640 and RH = 4.694.

Summarizing, the size of the molecule matters, and for
larger molecules all features noted in the conclusions of
the previous subsection become more pronounced. Namely,
avoided crossings causing qualitative modifications of the ori-
entation dependence of the ionization rate begin to appear at
weaker fields. The relative amount of vortex electrons with
|m| > 0 generated in tunneling ionization and the largest |m|
contributing to the ionization flux at a given field grow. As a
result, the interference structure of the TMD becomes richer.

C. Amino acid leucinelike molecule

As a final example we discuss a model of the leucine
molecule C6H13NO2 described by N = 22 ZRPs. This is a
truly polyatomic molecule having no symmetry. The nuclear
coordinates are taken from Ref. [82] and shifted by a common
vector a = (−2,−2, 0) to place the geometric center of the
molecule closer to the origin. The energy of the HOMO in
the real leucine is E0 = −0.313 [82,84]. The parameters κi

are defined by Eq. (64), in the same way as in the previous
subsection. The energy of the highest bound state in the ZRP
model coincides with E0 for c = 0.999, which gives κC =
0.909, κH = 0.999, κN = 1.033, and κO = 1.000. With these
parameters the energy of the ground state is E1 = −0.617.

Figure 12 shows the unperturbed ionizing orbital. Its shape
indeed resembles a bunch of grapes. At zero field the coeffi-
cients ci in Eq. (30) for several nuclei in the top part of the
figure (including the nitrogen nucleus shown by the blue ball
and both oxygen nuclei shown by red balls) are small, so the

FIG. 12. The unperturbed ionizing orbital, similar to Figs. 1 and
6, but for the leucinelike molecule.

radii of the corresponding “grapes” are also small and they are
not visible.

Figure 13 shows the orientation dependence of the ioniza-
tion rate. The WFAT results are expected to reflect the shape
of the ionizing orbital. Note, however, that here the shape in
the asymptotic region is meant [see Eq. (59)], that is, the shape
of an isosurface of φ0(r) at an amplitude tending to zero. For
the present molecule this shape differs considerably from that
at a finite amplitude shown in Fig. 12. In particular, φ0(r) has
fewer nodal surfaces in the asymptotic region shown by white
lines in Fig. 13(a) than would be expected from Fig. 12, which
means that some nodal surfaces are closed. In contrast to
previous molecules, WFAT reproduces neither the shape nor
the absolute values of the exact results even for the weakest
field considered F = 0.02. A new feature compared to Figs. 2
and 13 is the appearance of lines across which the ionization
rate varies very rapidly, almost discontinuously. As seen from
Figs. 13(b)–13(d), the density of such lines in the (β, γ ) plane
grows with the field.

Figure 14 explains the origin of the apparent disconti-
nuities. It shows the difference E22 − E21 between the two
highest eigenvalues of Eq. (52) as a function of the orientation
angles (β, γ ) for two stronger fields from Fig. 13. The net of
blue lines in the figure indicates the locations of sharp avoided
crossings. These avoided crossings cause the rapid variation of
� seen in Fig. 13. The present molecule illustrates that such
avoided crossings can be encountered not only when changing
the field strength, but also the molecular orientation. The fact
that they are distributed more densely for stronger fields is
explained by large values of the elements of the dipole matrix
(53) reflecting the large size of the molecule.

Figure 15 shows TMDs for two field strengths at four
representative orientations. Even for the weaker field F = 0.1
the shapes of the TMDs are far from the basic shapes (62) and
(63) predicted by the WFAT. For the stronger field F = 0.5
the TMDs show a very rich interference structure. Partial
ionization fluxes for the same orientations as functions of F
are shown in Fig. 16 for plane-wave electrons with m = 0
and Fig. 17 for vortex electrons with |m| > 0. The present
molecule does not have any symmetry, so P|m| and P−|m| are
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FIG. 13. The ratio �/W00, similar to Figs. 2 and 7, but for the leucinelike molecule. The values of the field factor are W00 = 2.2×10−10,
5.9×10−4, and 4.1×10−2 for field strengths F = 0.02, 0.1, and 0.5, respectively.

different and the difference is seen to grow with F . These
results confirm previous conclusions: for larger molecules the
relative role of the contributions from channels with |m| > 0
to the total ionization flux as well as the maximum |m| present
in the flux become larger, and this abundance of vortex elec-
trons results in the complex structure of the TMD.

D. Tunneling-induced electron diffraction

It is instructive to look at the TMD from a different per-
spective. Suppose an electron is localized in the top part
of a large molecule extended along the field. If the field is
sufficiently strong, so that the tunneling exit is located inside
the molecule, then before leaving the molecule the electron
can be scattered by nuclei in its bottom part. We call this
process tunneling-induced electron diffraction. It is similar
to the x-ray photoelectron diffraction [85], but the diffracting

FIG. 14. The difference between the two highest eigenvalues of
Eq. (52) for the leucinelike molecule as a function of the orientation
angles (β, γ ) for two field strengths F indicated in the figure. The
blue lines indicate the locations of sharp avoided crossings.

electron is released by tunneling rather than absorption of a
photon. Let us show that the TMD encodes information about
such diffraction.

Consider tunneling ionization from the upper state in a
homonuclear diatomic molecule described by two ZRPs lo-
cated at R± = (0, 0,±R) characterized by a parameter κ. To
simplify the analysis and make its result most transparent, we
consider the asymptotics

F → 0, R = O(F−1). (69)

In this case the ionizing state is localized near the upper
nucleus at R+. Its energy can be obtained from Eq. (34) by
neglecting the presence of the lower nucleus at R−,

κ

2π
+ Greg(R+; E ) = 0 → E ≈ −κ

2

2
+ FR + O(F 2).

(70)
The SS eigenfunction (30) has the form

φ(r) = c+G(r, R+; E ) + c−G(r, R−; E ). (71)

Using Eq. (32), the coefficient c− can be expressed in terms
of c+,

c− ≈ − G(R−, R+; E )
κ

2π
+ Greg(R−; E )

c+. (72)

Consider the function (71) in the region r′ = O(F 0), where
r′ = r − R−. We substitute E from Eq. (70). In the same
approximation c+ = √

2πκ. By expanding in F we obtain

φ(r) = eiπ/4

4R

κ − ikin√
2πkin

exp

(
ik3

in − κ
3

3F

)

×
[

e−ikinz′ + f (kin)
eikinr′

r′

]
, (73)
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FIG. 15. The ratio P(k⊥)/�, similar to Figs. 3 and 8, but for the leucinelike molecule. The orientations (β, γ ) of the molecule are indicated
and illustrated in the top row.

where kin = √
4FR − κ

2 and

f (k) = −1

κ + ik
. (74)

The function in the square brackets in Eq. (73) is the scat-
tering state in the lower ZRP with the incident momentum
kin = (0, 0,−kin ) and f (kin) is the corresponding elastic scat-
tering amplitude [21]. The incident and scattered waves in this
function originate from the first and second terms in Eq. (71),
respectively. Under the same approximations the TMD ampli-
tude (44) is given by

A(k⊥) = eiπ/4
√

2π exp

(
− κ

3

3F

)[
exp

(
−κk2

⊥
2F

)

+eik3
in/3F+iπ/4π1/2(κ − ikin)

2R(2F )1/6k1/2
in

f (kin)Ai

(
k2
⊥ − k2

in

(2F )2/3

)]
,

(75)

where the two terms in the square brackets originate from
the corresponding terms in Eqs. (71) and (73). Equation (73)
supports the following picture of the ionization dynamics in
the present model. The tunneling exit is defined by E = Fzt ,
thus zt = R − κ

2/2F . It is located above the lower nucleus
if zt > −R, that is, 4FR > κ

2. In this case the electron after
tunneling is accelerated by the field and arrives at the lower
nucleus with momentum kin. Thus, the maximum value of its
transverse momentum after scattering is kin. This agrees with

Eq. (75). Indeed, the first term in this equation is the TMD
amplitude for electrons liberated from the upper center, as if
there was no lower nucleus [compare with the first term in
Eq. (61)]. The second term originates from scattering by the
lower nucleus. The Airy function in this term rapidly decays
at k⊥ > kin, which confirms the above picture.

Figure 18 shows the exact TMD for the present model with
R = 3.5 and κ = 1 calculated for F = 0.5 using Eq. (44).
In this case kin = 2.45. The present potential is axially sym-
metric about the z axis, so the TMD does not depend on ϕk

and is denoted by P(k⊥). The solid black line shows the total
TMD. Dashed red and blue lines are obtained by retaining in
Eq. (44) only one term corresponding to the upper and lower
nucleus, respectively. The contribution from the upper nucleus
P+(k⊥) monotonically decays, while that from the lower nu-
cleus P−(k⊥) oscillates at k⊥ < kin and decays at k⊥ > kin. All
this qualitatively agrees with the behavior predicted by the
asymptotics (75).

Let us use this model to identify traces of tunneling-
induced electron diffraction in TMDs discussed above.
Consider the TMD for the leucinelike molecule at F = 0.5
and (β, γ ) = (30◦, 180◦) shown in Fig. 15. At this orientation
the molecule is aligned along the field and we expect that it
can be approximately described by the model. The dashed-
dotted green line in Fig. 18 shows the TMD averaged over ϕk .
One can clearly see a maximum at k⊥ ≈ 2.25 corresponding
to the concentric circular structures in Fig. 15 whose position
and height are well reproduced by the model. Note that the
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FIG. 16. Ratios P0/� of partial ionization fluxes with m = 0 to
the ionization rate for the leucinelike molecule as functions of the
field strength F for the same four orientations (β, γ ) as in Fig. 15.

distance between the top and bottom nuclei in the leucinelike
molecule at this orientation is about 11, which gives R ≈ 5.5.
The difference between this value and R = 3.5 used in the
model as well as that between the solid and dashed-dotted
lines in Fig. 18 at smaller k⊥ are explained by the fact that
the ionizing state is not perfectly localized at one nucleus
in the top part of the molecule and there is more than one
nucleus in its bottom part on which tunneled electrons can
scatter. Nevertheless, in spite of the differences, this compari-
son suggests that circular structures in the outer part of TMDs
for the leucinelike molecule shown in Fig. 15 result from the
tunneling-induced diffraction mechanism.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have extended the zero-range potential
model for molecules from studies of bound states [21,22]

FIG. 17. Ratios Pm/� for the leucinelike molecule, similar to
Fig. 16, but for |m| > 0. Solid and dashed lines show the results for
m > 0 and m < 0, respectively.

to the analysis of Siegert states in an electric field [3–5,14].
The recently derived closed-form expression for the outgoing-
wave Green’s function for an electron in a homogeneous static
electric field [55,56] greatly facilitates the analysis. Simple
analytical equations defining the Siegert states are obtained,
which makes virtually exact calculation of tunneling ioniza-
tion observables for large polyatomic molecules with complex
geometry in strong fields possible. The theory is illustrated
by calculations for three model molecules reproducing the
geometry of the real water, benzene, and leucine molecules.
The exact results are compared with the predictions of the
weak-field asymptotic theory [14]. We have discussed the
field and orientation dependence of not only the ionization
rate, which is usually of main interest for applications in
strong-filed physics [1], but also the transverse momentum
distribution of liberated electrons, which defines the photo-
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FIG. 18. The solid black line shows the total TMD for a di-
atomic molecule with R = 3.5 and κ = 1 calculated for F = 0.5
using Eq. (44). Dashed red (P+) and blue (P−) lines are obtained by
retaining in Eq. (44) only one term corresponding to the upper and
lower nucleus, respectively. The dashed-dotted green line is obtained
by averaging the TMD for the leucinelike molecule at F = 0.5 and
(β, γ ) = (30◦, 180◦) (see Fig. 15) over ϕk .

electron momentum distribution resulting from strong-field
ionization in the adiabatic regime [2], with a focus on the gen-
eration of vortex electrons. Our main conclusions supported
by the calculations can be summarized as follows. First, it
is well known that in the weak-field limit the orientation
dependence of the ionization rate reproduces the shape of the
unperturbed ionizing orbital [67–72]. It is also known that
the orbital is distorted as the field grows and this distortion
is reflected in the ionization rate [73–80]. The present results
show that as the field grows further, the ionizing orbital may
undergo restructuring due to avoided crossings with other
states, which leads to a qualitative modification of the ori-
entation dependence of the ionization rate. Second, while at
weak fields tunneling ionization is dominated by plane-wave
electrons having zero projection m of their angular momen-
tum on the field [14], at stronger fields contributions from
vortex electrons with |m| > 0 grow and become comparable
to that from m = 0 and the largest |m| present in the ionization
flux also grows. In other words, vortex electrons are effi-
ciently generated in the tunneling ionization process. Third,
the transverse momentum distribution, which at weak fields

has a simple Gaussian shape [14], at stronger fields acquires
a complex structure resulting from the interference of many
vortex channels. We have shown that this structure encodes
information about the geometry of the molecule. Furthermore,
we have described tunneling-induced electron diffraction and
showed that under certain conditions it is manifested in the
shape of the transverse momentum distribution. Finally, for
large polyatomic molecules such as amino acids all the effects
indicated above become more pronounced and begin to appear
at weaker fields.

Let us mention one of the most promising prospects opened
by this study. Recently, the adiabatic theory of generation
and rescattering of vortex electrons by strong-field ionization
from a vortex orbital in a linear molecule aligned along the
laser field has been developed [44,45]. Since scattering of
vortex electrons by a chiral molecular ion is an enantiosen-
sitive process, this theory suggests that extending rescattering
photoelectron spectroscopy [46–53] to vortex electrons will
provide access to probing molecular chirality. The present
results show that vortex electrons are generated in abundance
in tunneling ionization of large molecules without any sym-
metry at sufficiently strong fields, which is a prerequisite for
enantiosensitive rescattering spectroscopy. At the same time,
the present model enables one to implement the theory of
Refs. [44,45] for large chiral molecules and thus to quantita-
tively analyze the enantiosensitivity. A work in this direction
is in progress.

Although in this paper we treated tunneling ionization in a
static electric field, the results obtained are of main interest
for the analysis of strong-field ionization by intense laser
pulses on the basis of the adiabatic theory [2]. This theory
becomes exact as the laser wavelength tends to infinity. Its
good quantitative performance for realistic laser pulses was
demonstrated by comparison with numerical solution of the
time-dependent Schrödinger equation [2,44,49]. In particular,
for laser wavelength ∼800 nm and intensity ∼3×1014 W/cm2

its error in predicting photoelectron momentum distribution
near a backward rescattering caustic, which is measured in
rescattering photoelectron spectroscopy, does not exceed a
few percent [44,49].
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