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Coulomb effects on strong-field ionization of stretched H2
+
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We numerically and analytically study ionization of H2
+ with large internuclear distances R in strong ellip-

tically polarized laser fields. Numerical simulations show that the offset angle in the photoelectron momentum
distribution (PMD) is larger for cases of large R than for cases of H2

+ with small R and model atoms with similar
ionization potentials. In addition, the PMDs for cases of large R show clear interference patterns which disappear
for cases of small R. By developing a strong-field model which includes the contributions of the first excited state
and the Coulomb potential, we reproduce the phenomena for large R. Tunneling ionization of H2

+ with large
R involves a complex four-body interaction between the laser, the electron, and the two nuclei. Our model can
approximate the four-body interaction as the three-body one and clearly identify the effects of charge resonance
and different nuclei on tunneling ionization. Our work suggests a manner for probing complex interactions in
strong-field ionization of stretched molecules with high time resolution.
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I. INTRODUCTION

Due to advancements in laser technology, the study of
interactions between strong lasers and atoms [1–3], molecules
[4,5], and solids [6] has become increasingly popular in
strong-field physics. When the intensity of the laser field
matches the Coulomb potential of the system, many interest-
ing processes occur, such as high-order harmonic generation
[7–11], above-threshold ionization [12–18], and nonsequen-
tial double ionization [19–21]. These processes have wide
applications in attosecond-resolved ultrafast measurements
[22–24]. The first step in these processes is the ionization of
electrons through tunneling [25]. Systematic and comprehen-
sive research has been conducted on tunneling ionization of
atoms and molecules with small internuclear distances R. For
example, in the well-known attoclock experiment [26,27], the
tunneling dynamics of atoms has been studied using the off-
set angle in the photoelectron momentum distribution (PMD)
measured in a strong elliptically polarized laser field and the
main impact of the long-range Coulomb potential on ioniza-
tion has been revealed [28–30]. In addition, for molecules
with small R such as H2

+ at the equilibrium separation, it has
been shown that the multicenter Coulomb potential also plays
an important role in the strong-field tunneling dynamics of the
system [31].

By comparison, studies on tunneling ionization of
molecules with large R are less common. For H2

+ with large
R, it has been shown that the ground state and the first excited
state are nearly degenerate. As a result, besides the ground
state, the excited state also plays a nontrivial role in tunneling
ionization of the stretched system [32–35]. In this case, it
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is not clear how the interplay of the excited state and the
Coulomb potential affects the dynamics of tunneling ioniza-
tion. Specifically, the strong-field approximation (SFA) [36],
which is often used for studying laser-induced ionization of
atoms and molecules, assumes that, except for the ground
state, the contributions of other bound states to ionization can
be ignored [3,36]. This assumption is applicable for atoms and
molecules with small R, for which the energy gap between
the ground state and the first excited state of the system is
usually far larger than the laser frequency used in experiments
[37]. For symmetric molecular ions such as H2

+ with large R,
however, the situation is very different. It has been shown that
at large R, a degeneracy between these two lowest states of
the H2

+ system occurs [38], which are well separated from
higher excited states of the system. In intense laser fields,
these two degenerate states will be strongly coupled together,
resulting in the important contribution of the excited state to
ionization [33,34,38]. In addition, a great deal of studies have
shown that the Coulomb potential plays an important role in
the strong-field ionization process, remarkably affecting the
photoelectron momentum [26], angular distributions [39], and
energy spectra [23]. One can anticipate that the interaction
of the excited state and the Coulomb potential will induce
complex effects in strong-field ionization. To understand these
effects, a theoretical model that considers the influences of
both the excited state and the Coulomb potential is needed.
In this paper, through numerically solving the time-dependent
Schrödinger equation (TDSE) and developing a strong-field
model applicable for molecular ions with large R, we study the
ionization dynamics of the H2

+-like model ion with different
internuclear distances R but similar ionization potential Ip for
various laser parameters.

The TDSE results show two typical phenomena. First, the
PMDs of H2

+ with large R show remarkable interference
fringes. This interference phenomenon disappears for cases
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of small R. Second, the offset angle θ in the PMD for H2
+

with large R is larger than that for model atoms and molecules
with small R. With the developed model, we show that (i)
for molecules with large R, the strong coupling between the
ground state and the first excited state of the system plays
an important role in the formation of interference patterns
in tunneling ionization and (ii) the laser-dressed potential for
H2

+ with large R shows two barriers: one dressed up and an-
other dressed down. The dressed-up potential barrier near one
nucleus is significantly influenced by another nucleus, mak-
ing it narrower. As a result, electrons tend to tunnel through
the dressed-up potential barrier with a smaller exit position.
This tendency leads to a larger offset angle θ and ionization
probability compared to model atoms and molecules with
small R. Our results suggest a method for studying tunneling-
ionization dynamics of electrons within stretched molecules.

II. NUMERICAL AND ANALYTICAL METHODS

A. Numerical method

We choose the simplest diatomic molecule H2
+ as the

target molecule. In the length gauge, the Hamiltonian of the
model H2

+ system interacting with a strong laser field can be
written as

H (t ) = H0 + E(t ) · r (1)

(in atomic units of h̄ = e = me = 1). Here H0 = p2/2 +
V (r) is the field-free Hamiltonian. The potential V (r) has
the form of V (r) = −Z/

√
r2

1 + ξ − Z/
√

r2
2 + ξ , with r2

1,2 =
(x ± R/2 cosθ ′)2 + (y ± R/2 sinθ ′)2 in two-dimensional (2D)
cases. The term ξ = 0.5 is the smoothing parameter which is
used to avoid the Coulomb singularity. Here θ ′ is the angle
between the molecular axis and the major axis of the laser
polarization ellipse and we consider the parallel orientation
with θ ′ = 0◦. The term Z is the effective charge, which is
adjusted so that the model molecules with different inter-
nuclear distances R studied here have the same ionization
energy Ip = 1.11 a.u. Specifically, in our simulations, Z = 1
for R = 2 a.u., Z = 1.55 for R = 12 a.u., Z = 1.57 for R = 14
a.u., Z = 1.585 for R = 16 a.u., Z = 1.597 for R = 18 a.u.,
and Z = 1.607 for R = 20 a.u.

The strong elliptically polarized laser field used in
the paper is expressed as E(t ) = f (t )[�exEx(t ) + �eyEy(t )],
where Ex(t ) = E0 sin(ωt ) and Ey(t ) = E1 cos(ωt ), with E0 =
EL/

√
1 + ε2 and E1 = εEL/

√
1 + ε2. Here �ex (�ey) is the unit

vector along the x (y) axis, EL is the maximal laser ampli-
tude corresponding to the peak intensity I , ε = 0.87 is the
ellipticity, ω is the laser frequency, and f (t ) is the envelope
function. In numerical calculations, we use trapezoid-shaped
laser pulses with a total duration of 15 optical cycles and linear
ramps of three optical cycles. The spectral method [40] is used
to solve the time-dependent Schrödinger equation with a time
step of �t = 0.05 a.u., a grid size of Lx×Ly = 409.6×409.6
a.u., and space steps of �x = �y = 0.4 a.u.

In order to avoid the reflection of the electron wave
packet from the boundary and obtain the momentum-space
wave function, the coordinate space is split into the inner
and outer regions with �(r, t ) = �in(r, t ) + �out(r, t ), by
multiplication using a mask function, which has the form

FIG. 1. Potential function curves obtained at different laser and
molecular parameters. (a) Sketch of the laser-dressed potential
V ′(r) = V (r) − E0x (solid curves) and laser-free potential V (r)
(dash-dotted line) for 2D H2

+ with R = 2 a.u. (red curves) and the
model atom (black curves) at y = 0. The horizontal line indicates the
energy of −Ip = −1.11 a.u. The inset shows a close-up of the results
for the difference in exit position between the molecule and the
atom. (b) Sketch of the laser-dressed potential V ′(r) = V (r) − E0x
(solid curves) and laser-free potential V (r) (dash-dotted lines) for
2D H2

+ with R = 16 a.u. at y = 0. Two horizontal lines repre-
sent the energy E ′

1 ≈ −[Ip − E0(R/2)] = −0.09 a.u. and the energy
E ′

2 ≈ −[Ip + E0(R/2)] = −2.13 a.u., respectively. The coordinate x2

(x4) corresponds to the exit position of electrons tunneling out of
the dressed-up (down) potential barrier neighboring the left (right)
nucleus. The coordinates x1 and x3 represent the positions of the
left and right nuclei of the molecule. The horizontal pink arrows
indicate the direction of tunneling and r′′

0 = |x2 − x1| (r′′
0 = |x4 − x3|)

represents the absolute value of the exit position relative to the po-
sition of the left (right) nucleus. The laser amplitude E0 used here is
E0 = 0.13 a.u.

F (r) = F (x, y) = cos1/2[π (rb − r f )/(Lr − 2r f )] for rb � r f

and F (r) = F (x, y) = 1 for rb � r f . Here rb =
√

x2 + y2/ε2,
r f = 2.1xq with xq = E0/ω

2, and Lr/2 = r f + 50 a.u. with
Lr � Lx. In the inner region, the wave function �in(r, t )
propagates with the complete Hamiltonian H (t ). In the outer
region, the time evolution of the wave function �out(r, t ) is
carried out in momentum space with the Hamiltonian of the
free electron in the laser field. The mask function is applied at
each time interval of 0.5 a.u. and the new fractions of the outer
wave function obtained are added to the momentum-space
wave function �̃out(r, t ) from which we obtain the PMD.
Then the offset angle θ is obtained with a Gaussian fit of
the angle distribution. Relevant 2D results are presented in
Figs. 1–7.
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FIG. 2. PMDs of (a)–(c) the model atom, (d)–(f) 2D H2
+ with R = 2 a.u., and (g)–(i) 2D H2

+ with R = 16 a.u., obtained with different
methods: (a), (d), and (g) the TDSE, (b) and (e) the SFA, (h) the DSFA, (c) the TRCM method, (f) the S-TRCM method, and (i) the L-TRCM
method. The nonzero offset angle θ of the PMD is also indicated in each panel. The laser parameters are I = 1×1015 W/cm2, λ = 800 nm,
and ε = 0.87.

FIG. 3. Comparison of ionization probabilities for the model
atom (black squares), 2D H2

+ with R = 2 a.u. (red circles), and
2D H2

+ with R = 16 a.u. (blue triangles), obtained by the TDSE at
different laser intensities. The laser wavelength is λ = 800 nm and
the ellipticity is ε = 0.87.

We also extend our TDSE simulations to three-dimensional
(3D) cases for H2

+ with different internuclear distances. In 3D
cases, we also assume that the laser polarization is along the x
axis and the molecular axis is located in the xy plane with an
angle θ ′ to the x axis, as in 2D cases. The 3D potential used
here has the form V (r) = −Z/

√
r2

1 + ξ − Z/
√

r2
2 + ξ , with

r2
1,2 = (x ± R/2 cosθ ′)2 + (y ± R/2 sinθ ′)2 + z2 and ξ = 0.5.

For different cases of R, we also fix the value of the ionization
potential at Ip = 1.11 a.u. with adjusting the effective charge
Z . For example, Z = 2.068 for R = 16 a.u., Z = 2.085 for
R = 18 a.u., and Z = 2.101 for R = 20 a.u. The grid size
in three dimensions is Lx×Ly×Lz = 358.4×358.4×51.2 a.u.
with �x = �y = 0.7 a.u. and �z = 0.8 a.u. The mask func-
tion used here is similar to that introduced in Ref. [41]. The
PMD with respect to (px, py) is obtained with the integral of
the 3D momentum distribution for the component of pz [42].
Relevant 3D results are presented in Fig. 8.

B. Strong-field models

1. SFA

According to the SFA [36], the time-dependent wave func-
tion |�(t )〉 for an atom or a molecule with small R interacting
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FIG. 4. PMDs of 2D H2
+ with (a) and (b) R = 12 a.u., (c) and

(d) R = 14 a.u., (e) and (f) R = 18 a.u., and (g) and (h) R = 20 a.u.,
obtained with the TDSE (left column) and the L-TRCM model (right
column). The offset angle θ of the PMD is also indicated in each
panel. The laser parameters are I = 1×1015 W/cm2, λ = 800 nm,
and ε = 0.87.

with a strong laser field can be written as

|�(t )〉 = eiIpt

(
a(t )|0〉 +

∫
d3p c(p, t )|p〉

)
, (2)

where |0〉 and |p〉 denote the field-free ground state and con-
tinuum state of the system, respectively, Ip is the ionization
potential of the ground state, the term a(t ) is the ground-
state amplitude, and the term c(p, t ) is the amplitude of the
continuum state. Assuming a(t ) 	 1, the amplitude c(p, t ) at
t → ∞ can be expressed as [36]

c(p) = i
∫ Tp

0
dt ′E(t ′) · di[p + A(t ′)]e−iS(p,t ′ ), (3)

with c(p) ≡ c(p, t → ∞). Here the term S(p, t ′) =∫
t ′ {[p + A(t ′′)]2/2 + Ip}dt ′′ is the semiclassical action and Tp

is the length of the total pulse. The term di(v) = 〈v|r|0〉

FIG. 5. Comparison of the offset angle and time lag predicted by
different methods for different internuclear distances R. (a) Offset
angles of 2D H2

+ predicted by the TDSE, the L-TRCM model, and
the L-TRCM model neglecting the cos term in Eq. (16) (L-TRCM-N
model) for different R. (b) Time lags calculated with the expression
of τ = εθ/ω for the angles of the TDSE and the L-TRCM model in
(a) and with the expression of Eq. (29) corresponding to the angles of
the L-TRCM-N model in (a). (c) Sketch of the laser-dressed potential
V ′(r) = V (r) − E0x (solid curves) for 2D H2

+ with different R at
y = 0. The horizontal dashed lines represent the dressed-up energy
E ′

1 for 2D H2
+ with R = 14 a.u. (black curves), R = 16 a.u. (red

curves), R = 18 a.u. (blue curves), and R = 20 a.u. (green curves).
The inset in (c) shows the enlarged results of the exit positions r′′

0 of
2D H2

+ with different R [also see Fig. 1(b) for the specific definition
of r′′

0 ]. The laser parameters are I = 1×1015 W/cm2, λ = 800 nm,
and ε = 0.87.

denotes the dipole matrix element for the bound-free
transition. The term A(t ) = − ∫ t E(t ′)dt ′ is the vector
potential of the electromagnetic field.

For the laser field with high intensity and low frequency,
the temporal integral in Eq. (3) can be evaluated by the saddle-
point method [25,36] with solving the following equation:

[p + A(ts)]2/2 = −Ip. (4)

The solution ts of Eq. (4) is complex and can be written as
ts = t0 + itx. The real part t0 of the saddle-point time ts is
considered as the tunneling-out time at which the electron ex-
its the laser-Coulomb-formed barrier through tunneling. The
corresponding momentum-time pair (p, t0) is referred to as
the electron trajectory. The corresponding amplitude of the
trajectory (p, t0) can be expressed as

F (p, t0) ≡ F (p, ts) ∝ {βE(ts) · di[p + A(ts)]e−iS}, (5)
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L-TRCM-N L-TRCM-N

FIG. 6. Comparison of the offset angle and time lag predicted by
different methods for different laser intensities I . (a) Offset angles
of 2D H2

+ predicted by the TDSE, the L-TRCM model, and the
L-TRCM-N model for different I . (b) Time lags calculated with the
expression of τ = εθ/ω for the angles of the TDSE and the L-TRCM
model in (a) and with the expression (29) corresponding to the angles
of the L-TRCM-N model in (a). (c) Sketch of the laser-dressed
potential V ′(r) = V (r) − E0x (solid curves) for 2D H2

+ at different
laser intensities with y = 0. The horizontal dashed lines represent the
dressed-up energy E ′

1 for 2D H2
+ at I = 0.6×1015 W/cm2 (black

curves), I = 0.8×1015 W/cm2 (red curves), I = 1.0×1015 W/cm2

(blue curves), and I = 1.2×1015 W/cm2 (green curves). The inset
in (c) shows a close-up of the results of the exit positions r′′

0 of 2D
H2

+ at different I [also see Fig. 1(b) for the specific definition of
r′′

0 ]. The internuclear distance is R = 16 a.u., the laser wavelength is
λ = 800 nm, and the ellipticity is ε = 0.87.

FIG. 7. Comparison of the ratios of the difference between the
offset angle θ ′′ predicted by the TDSE and the offset angle θ ′ pre-
dicted by the L-TRCM model to θ ′′ at different internuclear distances
R and laser intensities I for 2D H2

+. The laser wavelength is λ = 800
nm and the ellipticity is ε = 0.87.

FIG. 8. PMDs of 3D H2
+ with (a) and (b) R = 16 a.u., (c) and

(d) R = 18 a.u., and (e) and (f) R = 20 a.u., obtained with the
TDSE (left column) and the L-TRCM model (right column). The
offset angle θ of the PMD is also indicated in each panel. The laser
parameters are I = 1×1015 W/cm2, λ = 800 nm, and ε = 0.87.

with S ≡ S(p, ts) and β ≡ [1/det(ts)]1/2. The term det(ts) in
the definition of β is the determinant of the matrix formed by
the second derivatives of the action [36]. The whole amplitude
for a photoelectron with a momentum p can be written as

c(p) ∝
∑

ts

F (p, ts). (6)

The sum runs over all possible saddle points.
For cases of molecules with small R, the specific form of

the dipole matrix element in Eq. (5) can be written as

di(v) = cos

(
v · R

2

)
da(v), (7)

with v = p + A(ts). The term da(v) = 〈v|r|φa(r)〉 denotes the
atomic dipole moment and |φa(r)〉 is the atomic ground-state
wave function. By solving Eq. (4) we have v = p + A(ts) ≈
±i

√
2Ip. This imaginary momentum in the cos term in Eq. (7)

does not cause interference [43]. For 1s orbits related to long-
range Coulomb potentials, the dipole |da(v)| with imaginary
momentum v can be considered close to a constant factor for
different p. Then the amplitude F (p, t0) of Eq. (5) can be fur-
ther approximated as F (p, t0) ∼ cos{[p + A(ts)] · R/2}e−iS

[44,45]. In this paper we evaluate the SFA amplitude with
this expression. For molecules with large R, the situation is
different, as will be discussed below.

033106-5



SHEN, CHEN, WANG, CHE, AND CHEN PHYSICAL REVIEW A 110, 033106 (2024)

2. Developed SFA

For the case of large R, due to the strong coupling between
the ground state and the first excited state, the contribution
of the first excited state also needs to be considered in the
SFA [46]. In this case the assumptions in the developed SFA
(DSFA) are as follows. (i) Except for the ground state |0〉 and
the first excited state |1〉, the contribution of other bound states
can be neglected. (ii) The depletion of these two lowest states
can be neglected. (iii) In the continuum, the electron can be
described using the plane wave |p〉, with the omission of the
Coulomb effect. Then the time-dependent wave function can
be approximated as [47]

|�(t )〉 = eiIpt

(
a(t )|0〉 + b(t )|1〉 +

∫
d3p c(p, t )|p〉

)
. (8)

Inserting Eq. (8) into the Schrödinger equation i�̇(t ) =
H (t )�(t ), one obtains the amplitude c(p, t ) of the corre-
sponding continuum state at t → ∞, which can be expressed
as [32,34]

c(p) = i
∫ Tp

0
dt ′E(t ′) · d f [p + A(t ′)]e−iS(p,t ′ ), (9)

where c(p) ≡ c(p, t → ∞) and

d f (v) = a(t ′)d0(v) + b(t ′)d1(v), (10)

with dm(v) = 〈v|r|m〉 and m = 0, 1. Assuming that the ion-
ization potential of the ground state is equal to that of the first
excited state and that a(0) = 1 and b(0) = 0, the solutions for
the amplitude a(t ) of the ground state and the amplitude b(t )
of the first excited state under the two-level approximation can
be written as [34]

a(t ) = 1
2 (eiA(t )·d01 + e−iA(t )·d01 ), (11)

b(t ) = 1
2 (eiA(t )·d01 − e−iA(t )·d01 ). (12)

Here the term d01 = 〈0|r|1〉 denotes the dipole transition
matrix element between the ground state and the first ex-
cited state. As the internuclear distance R is large enough,
d01 ≈ R/2, where R is the vector between these two cores
of the molecule. Then the temporal integral in Eq. (9) can
also be evaluated by the saddle-point method with solving
Eq. (4). The corresponding complex amplitude F (p, t0) for
the electron trajectory (p, t0) can be expressed as

F (p, t0) ≡ F (p, ts) ∝ {βE(ts) · d f [p + A(ts)]e−iS}. (13)

A simple comparison between Eqs. (5) and (13) shows that
they differ only for the dipole matrix element.

Under the approximation of the linear combination of
atomic orbitals and molecular orbitals, the wave functions of
the ground state |0〉 and the first excited state |1〉 of H2

+ with
large R can be written as [37]

|0〉 = c0[|φa(r − R/2)〉 + |φa(r + R/2)〉], (14)

|1〉 = c0[|φa(r − R/2)〉 − |φa(r + R/2)〉]. (15)

Here the term c0 = √
2/2 is the normalization factor. Then the

dipole matrix element in Eq. (13) can be written as

d f (v) = cos

(
p · R

2

)
da(v). (16)

Instead of the instantaneous velocity v = p + A(ts), only the
drift momentum p appears in the cos term in Eq. (16). This
is different from Eq. (7) for molecules with small R. It is
worth noting that because the drift momentum p is a real
number, the term cos(p · R/2) in Eq. (16) will cause interfer-
ence in the process of tunneling ionization. Considering the
interference effect, the amplitude F (p, t0) of Eq. (13) can be
further approximated as F (p, t0) ∼ cos(pk · R/2)e−iS , with
pk/|pk| = p/|p| and pk = |pk| = √

p2 + 2Ip, which takes into
consideration the Coulomb correction [42]. In this paper we
use cos(pk · R/2)e−iS to evaluate the DSFA amplitude.

By inserting the expressions of a(t ), b(t ), |0〉, and |1〉 into
Eq. (8), the wave function can be written as

|�(t )〉 =
√

2

2
ei[Ipt+A(t )·(R/2)]|φa(r − R/2)〉

+
√

2

2
ei[Ipt−A(t )·(R/2)]|φa(r + R/2)〉

+ eiIpt
∫

d3p c(p, t )|p〉. (17)

Equation (17) shows that for the stretched system with large R,
bound electrons can be considered to be located at these two
laser-dressed states |φa(r − R/2)〉 and |φa(r + R/2)〉. They
correspond to the states of two atoms which both have the
ionization potential Ip and are placed at positions ±R/2 de-
viated from the coordinate origin. This deviation gives rise to
the dressed phases of Ipt + A(t ) · R/2 and Ipt − A(t ) · R/2,
respectively [32,34]. Tunneling ionization events occur from
these two states along their respective dressed energies, and
the two ionization channels interfere with each other. Besides
interference, these two channels can also be coupled together
by the Coulomb effect, as will be discussed below.

Let us consider the time region around the peak time tp

of the laser field with Ex(tp) ≈ E0 at which the tunnel event
mainly occurs. Around the peak time tp, we have Ax(t ) ≈
−E0t . In this paper we assume that the molecular axis is
parallel to the major axis of the laser polarization ellipse with
θ ′ = 0o. Then the dressed energies E ′

1 and E ′
2 can be written

as

E ′
1 ≈ −

(
Ip − E0

R

2

)
, (18)

E ′
2 ≈ −

(
Ip + E0

R

2

)
. (19)

In Fig. 1(b) we use Eqs. (18) and (19) to analyze the mech-
anism of tunneling ionization related to dressed states for
molecules with large R. One of the limitations in the SFA
and DSFA is that the Coulomb potential is neglected. Next we
further discuss strong-field models that consider the Coulomb
effect.

C. Coulomb-included strong-field models

A Coulomb-included strong-field model has been devel-
oped to describe tunneling ionization of electrons in atoms and
molecules with small R; this model is called the tunneling-
response classical-motion (TRCM) model [41]. According
to the TRCM model, the process of strong-field ionization
can be divided into three steps of tunneling, response, and
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classic motion. These steps can be described with saddle-point
[25,36], semiclassical [41], and simple-man [7,48] theories,
respectively. This model arises from the SFA [36] but consid-
ers the Coulomb effect [39,49,50]. The SFA mapping relation
between the drift momentum p and the tunneling-out time t0
can be written as

p ≡ p(t0) = v(t0) − A(t0). (20)

The term v(t0) = p + A(t0) denotes the exit velocity of the
photoelectron at the exit position [50]

r0 ≡ r(t0) = Re

(∫ t0

t0+itx

[p + A(t ′)]dt ′
)

. (21)

To consider the influence of the Coulomb potential on ioniza-
tion, the TRCM model assumes that at the tunnel exit r(t0), the
tunneling electron with the drift momentum p is still located
at a quasibound state, which approximately agrees with the
virial theorem. A small period of time τ is needed for the
tunneling electron to evolve from the quasibound state into
an ionized state. Then it is free at the time ti = t0 + τ with
the Coulomb-included drift momentum p′. This time τ can
be understood as the response time of the electron to light
in laser-induced photoelectric effects and manifests as the
Coulomb-induced ionization time lag in strong-field ioniza-
tion [51,52]. The mapping between the drift momentum p′ and
the ionization time ti in the TRCM model can be expressed as

p′ ≡ p′(ti ) = v(t0) − A(ti ). (22)

Below we will introduce the expressions of lag τ for atoms
and molecules with small R and explore the expression of lag
τ for the case of large R.

1. Expressions of τ for atoms

According to the TRCM model for atoms, at the tunneling-
out time t0, the tunneling electron is still located in a
quasibound state ψb, which approximately agrees with the
virial theorem [41]. The average potential energy of this
state is 〈V (r)〉 ≈ V (r(t0)) and the average kinetic energy is
〈v2/2〉 = n f 〈v2

x /2〉 ≈ −V (r(t0))/2. Semiclassical treatment
of the quasibound state gives a velocity |vi| = √〈v2

x 〉 ≈√|V (r(t0))|/n f , which is opposite to the direction of the posi-
tion vector r(t0) and reflects the basic symmetry requirement
of the Coulomb potential on the electronic bound state. This
state implies a bound wave packet composed of a series of
high-energy bound eigenstates of field-free Hamiltonian H0

here. A small period of time τ is needed for the tunneling
electron to obtain the opposite velocity −vi from the laser field
in order to break this symmetry. This implies |E(t0)|τ ≈ |vi|.
In the elliptically polarized laser field, the time lag τ can be
evaluated with the expression

τ ≈ √|Va(r(t0))|/n f /|E(t0)|. (23)

Here |E(t0)| =
√

(E0 sin ωt0)2 + (E1 cos ωt0)2 is the ampli-
tude of the laser electric field E(t ) at time t0. The exit position
r0 ≡ r(t0) can be evaluated using Eq. (21). The term n f is
the dimension of the system studied. For 2D cases stud-
ied we have n f = 2, and for 3D cases we have n f = 3. In
single-active electron approximation, the potential V (r) of a
hydrogenlike atom at the exit position r0 can be considered

to have the form Va(r(t0)) ≡ Va(r0) = −Z ′/r0. Here Z ′ is the
effective charge. For comparison with TDSE simulations, the
effective charge Z ′ can be chosen as that used in simulations.
For comparison with experiments, the value of Z ′ can be
evaluated with Z ′

a ≈
√

2Ip. Once the lag τ is obtained, using
Eq. (22), one can obtain the Coulomb-included drift momen-
tum p′ = v(t0) − A(ti), with ti = t0 + τ . Assuming that the
amplitude F (p′, ti ) for the Coulomb-included electron tra-
jectory (p′, ti ) is equivalent to the corresponding amplitude
F (p, t0) for the SFA trajectory (p, t0), the amplitude F (p′, ti )
can be written as

F (p′, ti ) ≡ F (p, t0) ∝ {βE(ts) · da[p + A(ts)]e−iS}, (24)

with S ≡ S(p, ts) and β ≡ [1/det(ts)]1/2. The amplitude
F (p′, ti ) of Eq. (24) can be further approximated as F (p′, ti ) ∼
e−iS . In this paper we use e−iS to evaluate the TRCM model
amplitude for atoms. In this way, we can obtain the Coulomb-
included PMD directly from the SFA without needing to solve
the Newton equation including both the electric force and
the Coulomb force. Then the offset angle θ is obtained with
a Gaussian fit of the angle distribution. Below, the TRCM
model with the lag τ calculated by Eq. (23) is referred to as
the A-TRCM model.

2. Expressions of τ for molecules with small R

For molecules with small R, the situation is different. In
Fig. 1(a) we plot the laser-dressed and laser-free potential
function curves for 2D H2

+ with R = 2 a.u. and a model atom
with similar Ip to H2

+ at the peak time tp of the laser field.
One can see from Fig. 1(a) that the barrier formed by the laser
field and the two-center Coulomb potential of H2

+ is lower
and narrower than the atomic single-center one. Accordingly,
the tunnel exit for the molecule is nearer to the nuclei than the
atomic one and the tunneling electron of the molecule feels a
stronger Coulomb force. To overcome this stronger Coulomb
force remaining at the tunnel exit, a longer response time τ is
required for the tunneling electron of the molecule to obtain
enough impulse from the laser field [53]. Next we discuss the
expression of time lag τ for molecules with small R in detail.

First, at the tunnel exit, which is of the order of
10 a.u. for general laser parameters used in experiments, one
can consider that the tunneling electron of the molecule is
still located in a quasibound state, which consists of high-
energy bound eigenstates of the molecule and also agrees
approximately with the virial theorem. This implies that the
expression |E(t0)|τ ≈ |vi| ≈ √|V (r(t0))|/n f still holds for
molecules. The remaining question is how the form of the
potential V (r(t0)) can be determined for molecules. Second,
as seen in Fig. 1(a), the atom and the molecule have different
forms of Coulomb potential. Therefore, (i) the exit positions
of the atom and the molecule differ from each other. The
exit position is about 0.75 a.u. (approximately R/2) smaller
for the molecule with R = 2 a.u. than for the atom. (ii) The
left part of the molecular potential is dressed up by the laser
field, with an energy shift of Ed = E0(R/2). This potential-
dressed phenomenon around the nucleus disappears for the
atom. This phenomenon implies that the molecule with the
dressed ionization potential I ′

p = Ip − Ed is somewhat easier
to ionize than the atom. With the above discussion of (i) and
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(ii), the exit position of the molecule with small R at the peak
time tp can be approximated as r′

0 ≈ I ′
p/E0 − R/2 ≈ rp − R

[53]. Here rp ≈ Ip/E0 denotes the classic estimation of the
exit position of the electron within an atom which ionizes in
the time region around the peak time tp of the laser funda-
mental field Ex(t ) [8]. We assume that the correction R to this
exit position is applicable for any time t0, and the two-center
Coulomb potential of the molecule at the tunnel exit can also
be approximated with a single-center one corresponding to a
model atom. The expression of the time lag τ for molecules
with small R can be written as

τ ≈ √|Vs(r′(t0))|/n f /|E(t0)|. (25)

Here |r′(t0)| ≡ r′
0 = |r0| − rd is the corrected exit position

at time t0, with a correction of rd = R and where r0 is the
SFA prediction of the exit position which can be evaluated by
Eq. (21). The potential V (r) for the case of small R at the exit
position r′(t0) has the form Vs(r′(t0)) = −Z ′/|r′(t0)|. Here Z ′
is the whole effective charge of the molecule. For comparison
with TDSE simulations, the whole effective charge Z ′ can be
chosen as that used in simulations. For example, for the 2D
H2

+ case with R = 2 a.u. that we study in the present paper,
we have Z ′ = 2. For comparison with experiments, the value
of Z ′ can be evaluated with Z ′

m ≈ Ip

√
(R/2)2 + Z ′2

a /I2
p for

molecules with the internuclear distance R. The expression of
Z ′

m is obtained assuming that Ip ≈ Z ′
a/

√
ζ 2

0 for the companion

atom and Ip ≈ Z ′
m/

√
(R/2)2 + ζ 2

0 for the molecule. Here ζ0

is a constant factor. For convenience, in the following, the
TRCM model with the lag τ calculated by Eq. (25) is called
the S-TRCM model.

In the S-TRCM model, it is still considered that the am-
plitude F (p′, ti ) for the Coulomb-included electron trajectory
(p′, ti ) is equivalent to the corresponding amplitude F (p, t0)
for the SFA trajectory (p, t0). Then the amplitude F (p′, ti ) can
be written as

F (p′, ti ) ≡ F (p, t0) ∝ {βE(ts) · di[p + A(ts)]e−iS}. (26)

The dipole matrix element di(v) is represented by Eq. (7). The
amplitude F (p′, ti ) of Eq. (26) can be further approximated
as F (p′, ti ) ∼ cos{[p + A(ts)] · R/2}e−iS with p + A(ts) ≈
±i

√
2Ip. In this paper we use cos{[p + A(ts)] · R/2}e−iS to

evaluate the TRCM model amplitude for molecules with small
R. Then the offset angle θ is obtained with a Gaussian fit of
the angle distribution.

Next we discuss extending the TRCM model to molecules
with large R.

3. Expressions of τ for molecules with large R

In Fig. 1(b) we plot the laser-free and laser-dressed po-
tentials for the case of R = 16 a.u. of 2D H2

+ at the peak
time tp of the laser field. One can observe that, in this case,
the laser-free Coulomb potential shows two separate wells.
Accordingly, the laser-dressed Coulomb potential shows two
separate barriers: one dressed up near the left nucleus and
another dressed down near the right nucleus. On the other
hand, the DSFA model discussed above tells us that, due to
charge resonance, the ionization of molecules with large R
occurs from the laser-dressed states along the energies of E ′

1
and E ′

2, respectively. These two energies are associated with

the dressed-up and the dressed-down barriers, respectively,
as indicated by the horizontal arrows in Fig. 1(b). Because
the dressed-up potential barrier on the left is influenced by
the atomic nucleus on the right, the part of the dressed-up
barrier above the horizontal line of E ′

1 is lower and narrower
than the dressed-down barrier above the horizontal line of E ′

2.
Therefore, electrons will tend to tunnel through the dressed-
up barrier with a smaller exit position. In other words, for
molecules with large R and the ionization potential Ip, the
ionization event mainly occurs around the dressed-up barrier.
This ionization phenomenon is somewhat similar to that of an
atom with similar Ip but a smaller exit position. In this case, we
can also assume that at the tunnel exit, the tunneling electron
is still located at a quasibound state ψb which approximately
agrees with the virial theorem, and the expression |E(t0)|τ ≈
|vi| ≈ √|V (r(t0))|/n f still holds for molecules with large R.
However, for the current situation of large R, it may be nec-
essary to make slight corrections to the above expression in
order to quantitatively compare the model predictions with
TDSE results. We will return to this point later. Next we
further discuss the form of the potential V (r(t0)) in the above
expression for molecules with large R.

For molecules with small R, according to the discussion
in Sec. II C 2, the exit position r′

0 = |r0| − rd , with rd = R, is
smaller than the atomic one |r0| at the same Ip. The discussion
of Fig. 1(b) shows that this situation also holds for molecules
with large R. We determine the exit position r′′

0 for cases of
large R directly from the laser-dressed potential, as shown in
Fig. 1(b). Specifically, for Ex(t ) < 0, the exit position near the
left nucleus can be approximately calculated using

V (x, y0) − E0x = −[Ip − E0(R/2)] (27)

and the exit position near the right nucleus can be calculated
using

V (x, y0) − E0x = −[Ip + E0(R/2)]. (28)

Here V (x, y) ≡ V (r) is the Coulomb potential used in our
TDSE simulations and y0 = 0. The coordinates x2 and x4 in
Fig. 1(b) are solutions of Eqs. (27) and (28) and correspond
to the exit positions of the dressed-up and the dressed-
down barriers, respectively. As discussed above, electrons
tend to tunnel through the dressed-up barrier with a smaller
exit position. This smaller position can be represented as
r′′

0 = |x2 − x1|, with x1 relating to the position of the left nu-
cleus. The situation is similar for Ex(t ) > 0. We consider
that the correction for the exit position at the peak time tp is
rd = rp − r′′

0 , with rp ≈ Ip/E0, and assume that this correction
holds for any time t0. Then, for molecules with large R, the
time lag τ can be expressed as

τ ≈ k f

√|Vl (r′(t0))|/n f /|E(t0)|. (29)

Here |r′(t0)| ≡ r′
0 = |r0| − rd , with rd = rp − r′′

0 , is the exit
position at time t0, and the value of r0 can be evaluated by
Eq. (21). Similar to the case of small R, the potential V (r)
for the case of large R at the exit position r′(t0) can be con-
sidered to have the form of Vl (r′(t0)) = −Z ′/|r′(t0)|. Here Z ′
is the whole effective charge as introduced in Eq. (25). The
prefactor k f = 1.14 in Eq. (29) considers the fact that the
virial theorem holds only when the contributions of nondiag-
onal components to the mean potential energy 〈ψb|V (r)|ψb〉

033106-8



COULOMB EFFECTS ON STRONG-FIELD IONIZATION … PHYSICAL REVIEW A 110, 033106 (2024)

are negligible. Here |ψb〉 = ∑
n an|n〉, with |n〉 being higher

bound eigenstates of the field-free Hamiltonian H0 of the
molecular system. Our numerical simulations show that non-
diagonal components contribute about 30% to the mean value
[54]. In other words, instead of the virial theorem, the ex-
pression of 〈v2〉/2 ≈ −1.3〈V (r)〉/2 holds. As a result, vi =
|vi| ≈ √

1.3/|V (r(t0))|/n f ≈ 1.14
√|V (r(t0))|/n f and τ ≈

vi/|E(t0)| ≈ 1.14
√|V (r(t0))|/n f /|E(t0)|. Therefore, the non-

diagonal components contribute about 14% to the Coulomb-
induced velocity vi. For atoms and molecules with small R,
they have relatively small values of vi, and the effect of
nondiagonal components on vi is not significant. However,
for molecules with large R, the exit position is nearer to the
nucleus and therefore the value of vi is larger. The correction
of 14% to the velocity vi needs to be considered. In compari-
son with the case of k f = 1, the use of k f = 1.14 in Eq. (29)
results in an increase of about 2◦ in the model prediction
of the offset angle. In addition, for comparison with TDSE
simulations, the whole effective charge Z ′ can be chosen as
that used in simulations. For comparison with experiments,
one can determine the value of Z ′ at the equilibrium separation
R of the studied molecular system with the expression of Z ′

m ≈
Ip

√
(R/2)2 + Z ′2

a /I2
p , as in the case of small R discussed in

Sec. II C 2. Below, the TRCM model with the lag τ calculated
by Eq. (29) will be termed the L-TRCM model.

By assuming that for an arbitrary DSFA electron trajectory
(p, t0), the Coulomb potential does not influence the corre-
sponding complex amplitude F (p, t0), we obtain the L-TRCM
model amplitude F (p′, ti ) for electron trajectory (p′, ti ) di-
rectly from the DSFA one with F (p′, ti ) ≡ F (p, t0) at τ . The
amplitude F (p′, ti ) can be written as

F (p′, ti ) ≡ F (p, t0) ∝ {βE(ts) · d′
f [p + A(ts)]e−iS}. (30)

The dipole matrix element d f (v) is represented by Eq. (16).
The amplitude F (p′, ti ) of Eq. (30) can be further ap-
proximated as F (p′, ti ) ∼ cos(p′

k · R/2)e−iS with p′
k/|p′

k| =
p′/|p′| and p′

k = |p′
k| = √

p′2 + 2Ip, which takes the Coulomb
correction into consideration [42]. In this paper we use
cos(p′

k · R/2)e−iS to evaluate the TRCM model amplitude
for molecules with large R. Then the PMD of the L-TRCM
model can be obtained, and the offset angle θ can be further
obtained with a Gaussian fit of the angle distribution. In the
following, we will show that the L-TRCM model gives a good
description of the PMD of molecules with large R.

III. RESULTS AND DISCUSSION

A. Laser-dressed ionization picture

Before comparing results of the TDSE and models, we
further discuss Fig. 1, which shows the basic difference be-
tween laser-dressed potentials of atoms and molecules with
small and large R. This difference is related to the inherent
geometric structure of the studied system. It plays an impor-
tant role in the difference between ionization mechanisms of
atoms and molecules with different R. When the laser-dressed
potential curves for atoms and molecules with small R show
a single barrier in Fig. 1(a), the laser-dressed potential curves
of large R in Fig. 1(b) show two barriers near the positions

of these two stretched nuclei. One barrier is dressed up and
another is dressed down. As discussed in Sec. II C 3, due to the
contribution of the first excited state, the molecule with large
R will be ionized along the energies E ′

1 ≈ −(Ip − E0R/2) and
E ′

2 ≈ −(Ip + E0R/2), as shown by the two horizontal lines
in Fig. 1(b). The dressed-up barrier is related to the energy
E ′

1 = −0.09 a.u. and the dressed-down barrier is associated
with the energy E ′

2 = −2.13 a.u. The dressed energies E ′
1 or

E ′
2 are not the actual ionization potential of the system that

will appear in the saddle-point equation (4), but reflect the
fact that the ionization occurs near an atomic center which
is not located at the coordinate origin [33]. The part of the
dressed-up barrier above the horizontal line of E ′

1 is lower and
narrower than the dressed-down one above the horizontal line
of E ′

2, as shown by the intersections of the horizontal lines
and the laser-dressed potential function curves. As a result,
the dressed-up barrier is preferred for the bound electron of
the stretched molecule to escape through tunneling from the
neighboring well. In fact, for the present case in Fig. 1(b),
by solving Eqs. (27) and (28), it can be obtained that the
exit position of the upper barrier relative to the position of
the neighboring nucleus (i.e., the left nucleus) is r′′

0 = 5.22
a.u. and the exit position of the lower barrier relative to the
position of the neighboring nucleus (i.e., the right nucleus)
is r′′

0 = 5.84 a.u. The exit position of the potential barrier
near the left nucleus is smaller than that of the right nucleus,
because the left potential barrier is influenced by the right
nucleus. The exit position r′′

0 = 5.22 a.u. of the upper barrier is
used to obtain the correction parameter rd of the exit position
in the L-TRCM model, which can be written as rd = rp − r′′

0 ,
with rp ≈ Ip/E0. The L-TRCM model predicts an offset angle
of the PMD that is similar to the TDSE one, as will be shown
in Fig. 2. Therefore, our work is able to provide a concise
Coulomb-included strong-field model to describe tunneling
ionization of molecules with large R.

From Fig. 1(a) one can also see that the exit positions of the
barriers for the model atom and H2

+ with R = 2 a.u. are 6.46
and 5.71 a.u., respectively. They are also larger than r′′

0 = 5.22
a.u., as discussed in Fig. 1(b) for the upper barrier near the left
nucleus. This somewhat smaller exit position for molecules
with large R than that for atoms and molecules with small R
leads to a somewhat larger ionization probability for the case
of large R, since tunneling is easier to occur for a narrower
barrier. It also results in a larger offset angle in the PMD, since
the Coulomb force felt by tunnel electrons at the tunnel exit
is stronger for smaller exit positions. We will further discuss
these points in Figs. 2–4.

We mention that from the blue curve of the dressed po-
tential in Fig. 1(b), one can also understand the motion of
the electron after tunneling for the case of molecules with
large R. As the electronic wave packet exits the dressed-up
potential barrier and moves towards the right, there is a certain
probability that the electron will be recaptured by the nucleus
on the right. This recapture process will induce the emission of
harmonics with the largest energy E0R. Because this process
occurs around these two nuclei where the Coulomb effect is
strong, harmonics emitted in this process have also high inten-
sities, forming the so-called molecular high-order harmonic
generation plateau [47].
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B. Characteristics of the PMD

In the following, we first discuss ionization results for 2D
cases in Figs. 2–7 and then we extend our consideration to 3D
cases in Fig. 8.

In Fig. 2 we show the PMDs of 2D H2
+ with R = 2 and

16 a.u. and the model atom obtained with different methods.
First, the TDSE results in the left column of Fig. 2 show
that the offset angle of H2

+ with R = 16 a.u. in Fig. 2(g) is
θ = 22.8o, while that of H2

+ with R = 2 a.u. in Fig. 2(d) is
θ = 11.1◦ and the offset angle of the model atom in Fig. 2(a)
is θ = 8.31◦, that is, with similar Ip, the offset angle of the
molecule with large R is far larger than that of molecules with
small R and model atoms. In addition, it can be observed that
the PMD of H2

+ with R = 16 a.u. in Fig. 2(g) displays in-
terference fringes, which disappear for the case of R = 2 a.u.
The different phenomena discussed above show that electrons
within atoms and molecules respond differently to ionization
events when they have similar Ip but different R.

Second, the PMD predicted by the SFA and DSFA models
in the middle column of Fig. 2 can reproduce some main
characteristics of the corresponding PMD calculated through
TDSE. As shown in Figs. 2(h) and 2(e), there are obvious
interference fringes in the PMD of H2

+ with R = 16 a.u.,
which disappear in the PMD of H2

+ with R = 2 a.u. Next
we will discuss further the generation of interference fringes
in the PMD of molecules with large R. According to the
DSFA model, for molecules with large R, the dipole matrix
element can be written as cos(p · R/2)da(v), as shown in
Eq. (16). The momentum p is the drift momentum and is real.
Therefore, the term cos(p · R/2) will cause interference in
the process of tunneling ionization. The situation is different
for molecules with small R. According to the SFA model
for molecules with small R, the dipole matrix element can
be written as cos(v · R/2)da(v), as shown in Eq. (7). Under
the saddle-point approximation, the instantaneous velocity
v = p + A(ts) ≈ ±i

√
2Ip is an imaginary number, which does

not cause interference. This is why interference fringes appear
in the PMD of molecules with large R and disappear in the
case of small R. By comparing the PMD results in the left
and middle columns of Fig. 2, one can know that the SFA and
DSFA models disregarding the Coulomb effect cannot repro-
duce the offset angle of the PMD calculated by the TDSE.

Third, these TDSE results can be well reproduced by
strong-field models that include the Coulomb effect, as shown
in the right column of Fig. 2. For the case of the model atom
in Fig. 2(c), the offset angle predicted by the A-TRCM model
is θ = 8.25◦. For the case of H2

+ with R = 2 a.u. in Fig. 2(f),
the offset angle predicted by the S-TRCM model is θ = 10.3◦.
These model results for the offset angle are very close to the
TDSE ones. The PMD of the L-TRCM model for the case of
R = 16 a.u. is presented in Fig. 2(i). The offset angle predicted
by the L-TRCM model is θ = 20.9◦, which is also close to
the result of the TDSE in Fig. 2(g). Therefore, the model
results reproduce the TDSE phenomenon that the offset angle
for H2

+ with large R is remarkably larger than that for H2
+

with small R and that for a model atom. The discussion of
constructing these TRCM models in Sec. II C and analyzing
the potential function curves in Fig. 1 provide explanations
for the potential mechanism of the phenomenon, namely, for

H2
+ with large R, the strong resonance between the ground

state and the first excited state generates two laser-dressed
states with dressed energies E ′

1 and E ′
2. The ionization of the

stretched system occurs from these two laser-dressed states.
The dressed-up potential barrier related to one dressed state
with energy E ′

1 is lower and narrower than the dressed-down
barrier related to another dressed state with energy E ′

2. As a
result, the ionization channel characterized by tunneling of the
bound electron out of the dressed-up barrier near one nucleus
dominates in the ionization of the system. This channel re-
lated to the dressed-up state near one nucleus is somewhat
similar to that for the ionization of an atom with a single-
center Coulomb potential. The difference is that this channel
near one nucleus is also influenced by another nucleus. This
influence is essential for H2

+ with large R and reflects the
four-body interaction between the laser, the electron, and
these two nuclei of the stretched molecule. It results in the
exit position of the dressed-up barrier being smaller than that
of H2

+ with small R and that of a model atom. Therefore, at
the tunnel exit, the tunneling electron for H2

+ with large R
feels a stronger Coulomb force in comparison with the cases
of H2

+ with small R and the model atom. This stronger force
further induces a larger offset angle in the PMD for the case
of large R. In addition, the whole effective charge Z ′ is also
larger for cases of larger R with similar Ip. For example, in
our 2D TDSE simulations, Z ′ = 2 for R = 2 a.u., Z ′ = 3.1 for
R = 12 a.u., Z ′ = 3.14 for R = 14 a.u., Z ′ = 3.17 for R = 16
a.u., Z ′ = 3.194 for R = 18 a.u., and Z ′ = 3.214 for R = 20
a.u. This larger value of Z ′ for larger R will also induce an
increase of the offset angle. Our model is able to simplify
the complex four-body interaction and give a clear physical
picture for the ionization of the stretched system. The ioniza-
tion picture, where the electron located at a dressed-up state
ionizes through tunneling out of the dressed-up barrier near
one nucleus, is also supported by calculating the ionization
probability, as shown in Fig. 3.

In Fig. 3 we present the 2D results of TDSE ionization
probabilities for the model atom, H2

+ with R = 2 a.u. and
H2

+ with R = 16 a.u. at different laser intensities. One can
observe that the ionization probability of R = 16 a.u. is some-
what larger than that of R = 2 a.u. and is remarkably larger
than that of the model atom at different laser intensities. These
results agree with the analysis of laser-dressed potentials pre-
sented in Fig. 1. The part of the potential barrier above the
energy along which the electron tunnels out of the barrier for
the case of R = 16 a.u. is similar to that for R = 2 a.u. and is
remarkably lower than that for the model atom.

To further validate our above discussion, we have also
performed simulations for ionization of stretched H2

+ at dif-
ferent internuclear distances R. Relevant results are presented
in Fig. 4, where we plot the PMDs of 2D H2

+ with R = 12,
14, 18, and 20 a.u., obtained with the TDSE and L-TRCM
model. For the TDSE results in the left column of Fig. 4, it can
be observed that as the internuclear distance R increases, the
number of interference fringes increases. This phenomenon
is reproduced by the L-TRCM model, as seen in the right
column of Fig. 4. The offset angle of the TDSE for R = 12 a.u.
is 12.6◦. For other cases, these angles of the TDSE are similar
around a value of 22.6◦. The angles predicted by the L-TRCM
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model are around a value of 21◦ for all cases of R. The results
suggest that the L-TRCM model is more applicable for the
distance R larger than 14 a.u. In fact, the PMDs of the L-
TRCM model show clear interference fringes. By comparison,
in addition to interference fringes, the TDSE distributions
also exhibit more diverse structures, especially for the case
of R = 12 a.u. The difference in fine structures between the
TDSE and L-TRCM model results of PMD becomes smaller
for larger R. The potential reason for this difference can be that
(i) the description of the influence of another atomic nucleus
on the exit position of the dressed-up potential barrier is not
accurate enough and (ii) the expressions (11) and (12) used in
the L-TRCM model are more applicable for degenerate cases
which are generally satisfied when the distance R is large
enough. For example, our simulations show that for cases
of R = 8, 10, and 12 a.u., with �E/w > 10−5, the PMDs
show richer structures, and a more complex theory beyond the
L-TRCM model is needed to describe the process of tunneling
ionization. Here �E is the energy difference between the first
excited state and the ground state of model H2

+ molecules
with similar Ip in our simulations and w = 0.057 a.u. is the
laser frequency used in the TDSE. For cases of intermediate
distances R such as R = 4 and 6 a.u. with �E/w ∼ 1, a strong
single-photon resonance occurs between the ground state and
the first excited state. For the present cases of strong laser
fields beyond the description of the Rabi approximation, it is
difficult to obtain accurate analytical solutions for the ampli-
tudes of these two states [34]. To check the applicability of
the L-TRCM model and identify the different roles of charge
resonance and Coulomb potential in the offset angle, we have
also extended our simulations to other laser and molecular
parameters, as shown in Figs. 5–7.

C. Interplay of interference and Coulomb effects

In Fig. 5(a) we present the offset angles of the PMD pre-
dicted by the TDSE, the L-TRCM model, and the L-TRCM
model neglecting the interference effect, for 2D H2

+ with
different R at laser intensity I = 1×1015 W/cm2. When the
internuclear distance R changes from 14 to 20 a.u., the offset
angles of the TDSE for H2

+ are located in a small range
of 22.6◦–23.4◦. The predictions of the L-TRCM model for
the offset angle at different R are also located in a small
range of 20.5◦–21.1◦. There is a difference of about 1.3◦–2.3◦
between the results of the TDSE and the L-TRCM model. By
comparison, the L-TRCM model neglecting the interference
effect predicts the angles which are located in the range of
16.7◦–17.9◦. Specifically, this model assumes d f (v) = da(v)
in Eq. (16), which neglects the cos interference term, and
uses the expression (22) with the lag τ calculated through
Eq. (29) at the peak time tp. Then Eq. (30) gives the PMD from
which the offset angle of the L-TRCM-N model in Fig. 5(a)
is obtained. This means that the interference effect increases
the offset angle by about 3.6◦. The phenomenon is easy to
understand. The cos term will change the amplitude of the
photoelectron, resulting in a shift of the momentum which has
the largest amplitude.

In Fig. 5(b) we show the lag τ evaluated with the ex-
pression of τ = εθ/ω for these angles of the TDSE and the
L-TRCM model in Fig. 5(a) and the τ evaluated with Eq. (29)

corresponds to the lag of the L-TRCM-N model [55]. As
discussed in [41], for atoms, instead of the response-time
formula (23), the expression τ = εθ/ω can also be used to ap-
proximately deduce the lag (i.e., the response time of electrons
within an atom to a laser-induced tunneling ionization event)
from the angle measured in experiments. This approximate
expression of τ corresponds to the adiabatic version of the
TRCM model where the exit velocity v(t0) is neglected [41].
Here we compare the adiabatic prediction of this expression
for τ with that of Eq. (29). From the results in Fig. 5(b),
one can observe that, due to the interference effect, the time
lag deduced with the expression τ = εθ/ω differs somewhat
from that calculated directly by the response-time formula
(29) for molecules with large R. However, these lag curves
calculated using different methods show a similar trend, that
is, when the distance R is large enough, the lag is not sensitive
to the distance R. Specifically, the results of the TDSE for
different R are around 146 as, those of the L-TRCM model
are around 134 as, and the predictions of Eq. (29) are located
in a small range of 116–124 as. These results suggest that for
cases of large R, one can still use this expression of τ = εθ/ω

to approximately deduce the lag from the measured angle. We
mention that the results of lag for large R in Fig. 5(b) are
remarkably larger than 82 as predicted by Eq. (25) for H2

+
with R = 2 a.u., and 65 as predicted by Eq. (23) for the model
atom with similar Ip to H2

+.
In Fig. 5(c) we present the exit position r′′

0 = |x2 − x1|
obtained from the laser-dressed potential [also see Fig. 1(b)]
at the corresponding internuclear distance. This exit position
is used to determine the parameter rd in the L-TRCM model
to obtain the offset angle of the PMD in Fig. 5(a). The exit
positions r′′

0 are 4.85 a.u. for the case of R = 14 a.u., 5.22
a.u. for R = 16 a.u., 5.61 a.u. for R = 18 a.u., and 5.64 a.u.
for R = 20 a.u. The exit position increases slightly with the
increase of internuclear distance. This slow increase may be
the reason why the curves in Figs. 5(a) and 5(b) change slowly
with increasing internuclear distance. It also indicates that for
the cases of large R, the influence of another nucleus on the
exit position of the dressed-up barrier decreases slightly with
the increase of R.

In Fig. 6(a) we present the offset angles of the PMD pre-
dicted by the TDSE, the L-TRCM model, and the L-TRCM
model neglecting the interference effect, for 2D H2

+ with
R = 16 a.u. at different laser intensities. As the laser intensity
increases from 0.6×1015 W/cm2 to 1.2×1015 W/cm2, the
offset angle predicted by the TDSE increases from 20◦ to
23.3◦. The offset angles predicted by the L-TRCM model are
located in a small range of 20.9◦–21.3◦. There is a difference
of about 0.1◦–2.1◦ between the results of the TDSE and the
L-TRCM model. The difference between curves of the TDSE
and the L-TRCM model in Fig. 6(a) is smaller for lower laser
intensities, suggesting that the L-TRCM model seems more
applicable for lower laser intensities. These angles predicted
by the L-TRCM model neglecting the cos term in Eq. (16)
are located in a range of 17.1◦–18.2◦ and are smaller than
those predicted by the L-TRCM model. Results in Fig. 6(b)
are similar to Fig. 5(b) and show the corresponding time lags
for these angles in Fig. 6(a). As the black and red curves of lag
in Fig. 6(b) are close at lower laser intensities, but the corre-
sponding black and red curves of the angle in Fig. 6(a) deviate
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from each other at lower intensities, one can expect that the
relation of τ = εθ/ω, which is related to the adiabatic version
of the TRCM model and is used to obtain the black lag curve
in Fig. 6(b) from the black angle curve in Fig. 6(a), works
better for higher laser intensities. In Fig. 6(c) we present the
exit position r′′

0 obtained from the laser-dressed potential at
the corresponding laser intensity. In this case, the exit position
decreases slightly with the increase of laser intensity. This is
easy to understand because for higher laser intensities, the
Coulomb potential is more significantly bent by the laser field.

For a comprehensive comparison, in Fig. 7 we present the
ratios of (θ ′′ − θ ′)/θ ′′ for 2D H2

+ at different internuclear
distances R and varied laser intensities. Here θ ′′ is the offset
angle predicted by the TDSE and θ ′ is that predicted by the
L-TRCM model. The main phenomena shown in Fig. 7 are
that (i) for a fixed laser intensity, the ratio curve increases
remarkably with the increase of R and becomes insensitive
to R for R � 17 a.u., suggesting that for cases with larger R,
the influence of another nucleus on the tunnel exit becomes
insensitive to the increase of R, and (ii) for a fixed distance
R, the ratio is smaller for lower laser intensities on the whole,
suggesting that the L-TRCM model works better for lower
intensities. In particular, for all cases, the values of ratio are
close to or less than 10%, indicating the applicability range of
the L-TRCM model. The remaining difference between pre-
dictions of the L-TRCM model and the TDSE may arise from
the following reasons. Strong-field ionization of H2

+ with
large R involves a complex four-body interaction between the
electron, the laser, and these two nuclei. Due to the effect of
charge resonance, electrons tend to escape through tunneling
out of the dressed-up barrier near one of the two nuclei of the
molecule. This barrier is influenced by another nucleus of the
molecule, as discussed in Fig. 1(b). In the L-TRCM model,
we approximate this influence by simply correcting the tunnel
exit. This approximation is not precise enough. Therefore, the
predictions of the L-TRCM model may differ somewhat from
the results of the TDSE.

We mention that the Coulomb effect can also be consid-
ered with the modified SFA (MSFA) model [51], where the
Coulomb potential is included in the evolution of the system
after tunneling, with the solution of the Newton equation in-
cluding both the electric-field force and the Coulomb force.
For atoms and molecules with small R, the MSFA is able
to predict nonzero offset angles which are several degrees
smaller than those predicted by the TDSE and the TRCM
model [53]. For molecules with large R, however, the situation
is different. In the MSFA simulation, electrons tunneling from
one nucleus will encounter another nucleus shortly after tun-
neling. The Coulomb effect of the second nucleus may lead to
some unpredictable structures in the PMD, resulting in signif-
icant differences between the results of the MSFA and TDSE.

D. Further consideration of 3D cases

The above discussion focuses on 2D cases. To further
check the results, we have also performed 3D simulations.
Relevant results are presented in Fig. 8, where we plot the
PMDs of 3D H2

+ with different R obtained with the TDSE
and the L-TRCM model. For the L-TRCM model in 3D cases,
we use the value of n f = 3 in Eq. (29), and the whole effective

charges Z ′ used in Eq. (29) are Z ′ = 4.136 for R = 16 a.u.,
Z ′ = 4.17 for R = 18 a.u., and Z ′ = 4.202 for R = 20 a.u.
For the TDSE results in the left column of Fig. 8, it can
be observed that the offset angles of 3D cases are 3.3◦–4.9◦
smaller than the corresponding 2D ones shown in Figs. 2 and
4. The 3D TRCM model results in the right column of Fig. 8
are also in quantitative agreement with the 3D TDSE results,
with a difference smaller than 1.7◦.

It should be mention that in Ref. [56], the 3D TDSE for
H2

+ was solved and the important influence of large inter-
nuclear distances on the photoelectron energy spectrum was
revealed. In this case both the ground and excited states should
be incorporated in the SFA model. In addition, ionization from
the coherent superposition of states and a comparison of the
modified SFA with the 3D TDSE were given in Ref. [57].
The DSFA introduced in Sec. II B 2 in this paper is similar
to the modified SFA in Ref. [57]. In this modified SFA, the
energy difference between these two electronic states is small
and nonzero. In the DSFA, these two states are considered to
be degenerate.

IV. CONCLUSION

We have studied tunneling ionization of H2
+ with large R

in strong elliptically polarized laser fields, in comparison to
model atoms and H2

+ with small R. Our research indicates
that both the strong coupling between the ground state and the
first excited state of the system and the two-center Coulomb
potential of large R have significant effects on the ionization
process of the stretched molecule. The TDSE simulations
show that the offset angle in the PMD for cases of large R
is remarkably larger than the cases of small R and atoms
with similar ionization potentials, and the PMDs for cases
of large R show clear interference patterns which disappear
for cases of small R. By developing a strong-field model,
the L-TRCM model, which considers both the effects of the
first excited state and the two-center Coulomb potential of
large R, we were able to reproduce the typical results of the
TDSE. We showed that the interference patterns are closely
related to the effect of charge resonance between these two
lowest states of H2

+ with large R. In particular, the strong-
field ionization process for the case of large R involves a
strong four-body interaction between the electron, the laser,
and these two nuclei of the molecule. The laser-dressed two-
center Coulomb potential forms two potential barriers near
the two nuclei: one dressed up and another dressed down.
The dressed-up barrier near one of the two nuclei is influ-
enced by another nucleus and is lower and narrower than the
dressed-down one. Therefore, electrons tend to escape from
the dressed-up barrier. This property allowed us to approx-
imate the complex four-body interaction as the three-body
one between the electron, the laser, and the nucleus neigh-
boring the dressed-up barrier, taking into consideration the
influence of another nucleus on the dressed-up barrier as a
correction to the tunnel exit. The L-TRCM model based on the
above approximations suggests a simple method for studying
time-resolved ionization dynamics of molecules with large R.
It also provides a manner for probing the characteristics of
Coulomb potential of stretched molecules. In addition, we
also discussed the possible response time of the electron to
light, referred to as the Coulomb-induced ionization time lag,
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in strong-field tunneling ionization of molecules with large
R. This time is calculated by a simple expression composed
of basic laser and molecular parameters and reflects the time
scale of the strong four-body interaction between the laser, the
electron, and these two nuclei of the molecule. As the offset
angles deduced from the calculated time agree with the TDSE
ones, our simulations show that for tunneling ionization of
molecules with large R, the response time is larger than that of

model molecules with small R, but becomes insensitive to the
increase of the distance R when this distance is large enough.
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