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Spin-noise-induced synchronization between non-overlapping laser beams
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Noise-induced synchronizations have led to diverse phenomena and applications. Here, we propose and
demonstrate an approach towards inducing synchronizations between non-overlapping laser beams by intrinsic
spin noise. Two linearly polarized and non-overlapping laser beams propagate through a vapor of flying
unpolarized alkali atoms and capture their correlated noise properties by the atom-light interaction, resulting
in synchronization between the two laser beams. Using correlation spectra, we demonstrate the nearly in phase
synchronization at the atomic Larmor frequency between the two laser beams, which can easily be varied across
a wide frequency range by the magnetic-field strength. Moreover, we show that the degree of synchronization
increases with the atomic density, and the synchronization remains effective when the Larmor frequencies in
the regions of the two laser beams are different. Our method may be useful for applications like secure key
distribution and secure communication.
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I. INTRODUCTION

Spatially separate systems can become synchronized in
many different ways in physical [1,2], chemical [3], biolog-
ical [4,5], and engineering systems [6]. Various mechanisms
have been studied to induce synchronization, such as forced
synchronization induced by external drives [7] and sponta-
neous synchronization induced by interactions [8]. Noise is
inevitable in practical systems and is generally considered to
have a negative impact on synchronization [9]. Nevertheless,
recent studies indicated that noise can actually induce sta-
ble synchronization [4,10–14]. For instance, when applied to
subsystems with similar response characteristics, common or
correlated noise can lead to synchronized noisy behavior in
initially independent subsystems [4,11,12]. Recently, noise-
induced synchronization has attracted significant attention,
with potential applications in the areas such as brain-inspired
computing [14] and secure key distribution [11].

Spin noise in spin ensembles arises from the statistical
nature of intrinsic random flips of individual spins and has
been widely observed in spin systems, such as alkali atomic
vapors [15–23], quantum dot ensembles [24], and semicon-
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ductor systems [25,26]. Currently, optical measurements of
spin noise have emerged as a crucial way to numerous ap-
plications, such as the nonperturbative investigation of spin
dynamics [15,16,19–28], the generation of quantum random
numbers [18], and the quantification of spin squeezing [29].

Laser beams are often used to monitor spin noise through
the rotation of the optical polarization by the spins. The cou-
pling can be adjusted by spin and optical parameters [16].
If several laser beams interact with the same medium, they
can acquire correlated noise properties from the interaction
with the spin system, and their polarizations can be thus
synchronized [30]. Moreover, multiple laser beams can ac-
quire correlated noise properties from spin ensembles due
to spin-spin interactions [21,31,32]. Up to now, experimental
research has focused on the method of overlapping multiple
laser beams.

Here, we use a different approach: The two laser beams
propagate parallel through an atomic vapor cell, interact-
ing with different atomic ensembles. However, the freely
moving atoms can uniformly redistribute throughout the en-
tire cell many times during the lifetime of their spin states.
Recent theoretical studies suggest that, in such a scenario,
the spin noise in these ensembles can become correlated
[33–35], leading to closely correlated optical polarization
modulation in both laser beams via atom-light interaction. The

2469-9926/2024/110(3)/033105(11) 033105-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7349-3032
https://orcid.org/0000-0001-5260-2976
https://ror.org/04c4dkn09
https://ror.org/04c4dkn09
https://ror.org/00t33hh48
https://ror.org/00t33hh48
https://ror.org/00t33hh48
https://ror.org/00t33hh48
https://ror.org/01k97gp34
https://ror.org/04c4dkn09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.033105&domain=pdf&date_stamp=2024-09-10
https://doi.org/10.1103/PhysRevA.110.033105


SHIMING SONG et al. PHYSICAL REVIEW A 110, 033105 (2024)

FIG. 1. Schematic of spin-noise-induced synchronization be-
tween non-overlapping laser beams. (a) Experimental setup and
schematic correlation plots between Stokes components S2(t ) for
independent and perfectly synchronized laser beams. Two non-
overlapping input laser beams a and b interact with the collective
spins Fa and Fb, respectively. Flying spins denoted by the red color
travel between Fa and Fb, imprinting their coherent spin dynamics
onto the two laser beams. (b) Energy-level diagram of the 85Rb atoms
in the magnetic field B.

synchronization between the polarization directions of two
polarized laser beams is analyzed by the correlation spectra
of two laser beams. We observe the nearly in phase syn-
chronization between two laser beams at the atomic Larmor
frequency. Furthermore, we investigate the synchronization
with varying experimental conditions, including Larmor fre-
quency, vapor temperature, and magnetic field gradient, and
the experimental results align well with the theoretical pre-
dictions. As spin noise is intrinsically unpredictable [18], our
technique produces synchronized random laser beams which
have been extensively researched in the field of the secure key
distribution [11].

This paper is organized as follows. In Sec. II, we introduce
the model of the spin-noise-induced synchronization between
two non-overlapping laser beams. In Sec. III, we present the
theoretical results derived from the model and characterize
the synchronization using the correlation spectra. Section IV
presents the experimental results under different conditions.
Finally, we present conclusions and discussion in Sec. V.

II. PHYSICAL MODEL

Figure 1(a) shows our experimental setup to synchronize
two non-overlapping laser beams by the spin noise of a
85Rb atomic ensemble encapsulated in a cell with no buffer
gas [36]. The inner surfaces of the cell are coated with

octadecyltrichlorosilane (OTS) to minimize the effect of wall
collisions on the atomic spins, leading to a wall-relaxation rate
on the order of tens of s−1 [22,37]. Two spatially separated
laser beams propagate through the cell along the z direction.
Their frequency is set at δl = 1 GHz below the 85Rb D2 optical
transition (5S1/2 − 5P3/2; 780 nm), as shown in Fig. 1(b). This
detuning is larger than the dominating Doppler broadening
�l ≈ 500 MHz of the optical absorption line to reduce the
optical pumping of the spin ensemble to a rate of about 3.3 s−1

[see Eqs. (A18)–(A21) in the Appendix]. For spins in the
F = 2 state, the detuning is much larger than for the F = 3
state [see Fig. 1(b)]. Accordingly, the atom-light coupling
coefficient G ∝ 1/δl is much stronger for spins in the F = 3
hyperfine level than that for those in F = 2; this allows us
to focus only on the spins in F = 3. As discussed in more
detail below, both laser beams are linearly polarized along the
x direction before they enter the cell.

The dynamics of the atomic spins in a magnetic field B =
(0, B, 0) can be described by the stochastic Bloch equation

dF =(gF μBF × B − γ F )dt + QdW , (1)

where F = ∑Nat
j=1 f j is the collective spin, with f j being the

angular momentum of the jth atom and Nat being the number
of atoms in the F = 3 hyperfine level. gF is the effective g fac-
tor, and μB is the Bohr magneton. γ is the spin relaxation rate,
which results from various processes, such as spin-exchange
collisions and atom-wall collisions [22]. The noise terms dWi,
with i ∈ {x, y, z}, arise from intrinsic spin fluctuations and are
considered Gaussian white noise with zero mean and a vari-
ance of dt , i.e., 〈dWi(t )〉 = 0 and 〈dWi(τ )dWi(0)〉 = δ(τ )dt ,
with τ being the time lag [31]. The Gaussian distribution of
dW arises from the central-limit theorem for a large number
of independent atoms. The state-independent noise strength Q
is Q = √

2γ Var(Fi ), with Var(Fi ) = 4h̄2Nat being the variance
of the collective angular momentum component, assuming the
spin dynamics is a stationary noise process [38].

We probe the collective spins via their effect on the polar-
ization of the laser beam, which we quantify via the Stokes
vector S = (S1, S2, S3); we have

S1 ≡ [nph(x) − nph(y)]/2,

S2 ≡ [nph(+45◦) − nph(−45◦)]/2,

S3 ≡ [nph(σ+) − nph(σ−)]/2. (2)

Here, nph represents the number of photons. The arguments
x, y, and ±45◦ denote polarization along Cartesian axes, while
σ± indicate left- and right-hand circular polarization. The
indices 1,2,3 refer to the components of the Stokes vector.
For the input laser beam, the component S(in)

1 can be ap-
proximated as a large classical value S1 = 〈S(in)

1 (t )〉, while
the components S(in)

2 and S(in)
3 are considered to be Gaus-

sian processes with zero mean, 〈S(in)
2 (t )〉 = 〈S(in)

3 (t )〉 = 0, and
variance Var[S(in)

2 (t )] = Var[S(in)
3 (t )] = S1/2 due to the com-

mutation relation [Ŝ(in)
2 , Ŝ(in)

3 ] = iŜ(in)
1 [39].

On passing through the cell, the optical polarization expe-
riences a rotation due to a difference in refractive index for
left- and right-hand circular polarizations [40]. The effect can
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be described by the Hamiltonian

Ĥint = GF̂zŜ3, (3)

where Fz is the z component of the collective spin F. The cou-
pling coefficient is G = − h̄ca1λ

2�l
16πAl δl

[41]. Here, c is the speed
of light, λ is the laser wavelength, Al is the laser-beam cross
section, and a1 is the dimensionless vector polarizability. The
interaction rotates the Stokes vector S around the three-axis by
an amount proportional to Fz(t ). According to the Heisenberg
equation of motion dŜ/dt = i[Ĥint, Ŝ]/h̄, the polarization of
the output laser beam can be expressed by the Stokes parame-
ter formalism using the input-output relations

S(out)
1 (t ) ≈ S(in)

1 (t ),

S(out)
2 (t ) ≈ S(in)

2 (t ) + G

h̄c
Fz(t )S1,

S(out)
3 (t ) = S(in)

3 (t ). (4)

Therefore, the longitudinal component of the atomic angular
momentum rotates the polarization of the laser beam.

If two laser beams travel through the same vapor cell
without overlap, their polarization is modified by the atoms
in their separate beam paths. In the following, we write Fa

and Fb for the collective angular momenta of these ensembles.
Since the atoms are free to travel through the cell, these two
ensembles are correlated. When atoms uniformly redistribute
throughout the entire cell much faster than the spin relaxation
rate, the influence of the details of the atomic motion on
spin dynamics and spin correlations can be neglected. The
correlation can be quantified by the following set of stochastic
Bloch equations [31,42]:

dFa = (gF μBFa × B − γ Fa − kad Fa + kdaFd )dt

+ QaadW a + QdadW d ,

dFb = (gF μBFb × B − γ Fb − kbd Fb + kdbFd )dt

+ QbbdW b + QdbdW d ,

dFd = [gF μBFd × B − γ Fd − (kda + kdb)Fd + kad Fa

+ kbd Fb]dt + Qdd dW d + Qad dW a + Qbd dW b, (5)

where Fd denotes the collective angular momentum of the
atoms outside of the laser beams. Here, kαβ , with α, β ∈
{a, b, d}, are the hopping rates from ensemble α to ensem-
ble β and are shown as red arrows in Fig. 1(a). Qαβ , with
α ∈ {a, b, d}, depend on the angular momentum variance,
the relaxation rate, and the hopping rate, as described by
the fluctuation-dissipation theorem [see Eq. (A2) in the Ap-
pendix]. Here, we neglect the back-action of laser beams
∼〈F 〉 that is far less than the intrinsic spin noise ∼√

Var(F )
for the unpolarized atomic ensemble [31]. Under our ex-
perimental conditions, the cross-sectional area of both laser
beams is Al ≈ 10 mm2. We can therefore reduce the number
of parameters by setting kad = kbd = ka and kda = kdb = kd .
The diameter of the laser beams is considerably smaller than
that of the cell (35 mm); thus, kd/ka � 1. For the coated cell,
the atoms can travel between the different ensembles without
significant loss of the spin polarization, so γ /ka � 1.

III. CORRELATION FUNCTIONS

To quantify the degree of synchronization between the
two laser beams, we calculate the auto- and cross-correlation
functions of the Stokes parameters [5]

gαβ (τ ) = 〈
S(out)

α2 (τ )S(out)
β2 (0)

〉
, (6)

where α, β ∈ {a, b}. According to Eq. (4), the polarizations
depend on the input polarizations and the spin polarizations
Fαz in the medium:

gαβ (τ ) = 〈
S(in)

α2 (τ )S(in)
β2 (0)

〉 + G2S2
1

h̄2c2
〈Fαz(τ )Fβz(0)〉. (7)

Here, we use the fact that 〈S(in)
2 (τ )Fz(0)〉 = 0 because the

input laser beams are not correlated to the spins. Considering
S(in)

2 (t ) to be a Gaussian noise process,
〈
S(in)

α2 (τ )S(in)
β2 (0)

〉 = δαβS1δ(τ )/2. (8)

Here, δαβ is the Kronecker delta function, and δ(τ ) is the Dirac
delta function. The cross-correlation functions 〈Fαz(τ )Fβz(0)〉,
with α, β ∈ {a, b}, can be obtained from the dynamics in
Eq. (5) as [see Eqs. (A3)–(A8) in the Appendix]

〈Fαz(τ )Fβz(0)〉 ≈ Var(Fz )cos(ωLτ )

(
kd

ka
e−γ |τ | + δαβe−ka|τ |

)
.

(9)
Combining the correlation functions in Eqs. (8) and (9)

with Eq. (7), we obtain the correlation spectra g̃αβ (ω) from
the Fourier transform of gαβ (τ ):

g̃αβ (ω) =4G2S2
1Nat

c2

[
kd

ka

γ

(ω − ωL )2 + γ 2
+ δαβka

(ω − ωL )2 + k2
a

]

+ δαβS1

2
.

(10)
From Eq. (10), we can see that the autocorrelation spectrum
g̃aa(ω) = g̃bb(ω) consists of three components: a narrow peak
at ωL with a half width at half maximum (HWHM) equal to
γ (the first term), a broad peak at ωL with a HWHM equal
to ka (the second term), and a photon shot-noise base with
a height of S1/2 (the third term, a fundamental limit to the
optical detection). The cross-correlation spectrum g̃ab(ω) =
g̃ba(ω) exhibits a peak only at ωL with a HWHM equal to γ .
Therefore, the cross-correlation spectrum is equal to the first
term of the autocorrelation spectrum. The result indicates that
after times � 1/ka, the atoms have traveled distances that are
large compared to the beam diameter and the distance between
the beams. The cross-correlation spectrum characterizes the
synchronization of the two output laser beams mediated by
the atomic spins simultaneously flying through both beams
during the decoherence time.

The cross-correlation spectrum g̃ab(ω) or g̃ba(ω) is a com-
plex number whose normalized amplitude is [5]

Cab(ω) = |g̃ab(ω)|√
g̃aa(ω)

√
g̃bb(ω)

, (11)

and its phase is

�ab(ω) = arctan

{
Im[g̃ab(ω)]

Re[g̃ab(ω)]

}
. (12)

033105-3



SHIMING SONG et al. PHYSICAL REVIEW A 110, 033105 (2024)

The amplitude measures the synchronization between two sig-
nals, i.e., S(out)

a2 (t ) and S(out)
b2 (t ), as a function of the frequency

ω, which ranges from 0 (no correlation) to 1 (perfect corre-
lation). When ω = ωL, �ab ≈ 0, indicating nearly in phase
synchronization. With Eq. (10), the correlation amplitude at
the Larmor frequency becomes

Cab(ωL ) = 8G2S1Natkd

8G2S1Nat (γ + kd ) + c2kaγ
. (13)

The number of atoms inside the beam Nat varies with the vapor
temperature Tv as [43]

Nat ≈ 0.722
7

12

Al l

Tv

1014.178−4040/Tv , (14)

where the coefficient 0.722 denotes the natural abundance of
85Rb, the coefficient 7/12 represents the fraction of atoms on
the F = 3 level, and l is the cell length. This can be used to
adjust the degree of correlation.

IV. EXPERIMENTAL DEMONSTRATION

We perform the experiment on the setup shown in Fig. 1(a).
Two laser beams, sourced from independent laser diodes with
1-mW power, are transversely separated by approximately
5 mm, each with an effective beam diameter of about 3 mm.
They are sent through an OTS-coated cell filled with unpo-
larized 85Rb atoms. The vapor cell is shielded by a five-layer
μ-metal shield, reducing the residual magnetic field to less
than 1 nT. Inside the shield, a solenoid coil generates the
uniform magnetic field B = (0, B, 0). The vapor temperature
is maintained by an oven, ranging from 285.7 to 359.3 K.
After two laser beams pass through the vapor cell, we simulta-
neously measure their respective Stokes components S(out)

a2 (t )
and S(out)

b2 (t ) by independent balanced photodiodes, and then
the signals are simultaneously digitized by a multichannel
data acquisition card (NI 9223). Finally, the correlation spec-
tra of the Stokes component S(out)

2 (t ) of two laser beams are
calculated from the recorded time-domain data.

Figure 2(c) shows the auto- and cross-correlation spectra
|g̃aa(ω)| and |g̃ab(ω)| at a vapor temperature of 342.0 K. Here,
we use their amplitudes, which are very close to the real
part. In the ideal case, the imaginary part vanishes, but in the
experimental data, we find small signals below the experimen-
tal uncertainty. We overlay the theoretical and experimental
spectra to make a comparison. The autocorrelation spectrum
exhibits a narrow spin-noise peak at the Larmor frequency
ωL = 163.3 kHz with a HWHM equal to γ = 42 s−1, a broad
spin-noise peak at ωL with a HWHM equal to ka = 4.4 ×
104 s−1, and a photon shot-noise base. The cross-correlation
spectrum manifests a narrow peak at ωL. The line shapes of the
experimental auto- and cross-correlation spectra are in good
agreement with those of the theoretical spectra calculated
from Eq. (10), thereby validating our model. The small peak
at 163.5 kHz matches the Larmor frequency expected for the
F = 2 subsystem if the nuclear Zeeman effect is taken into
account. We conclude that the synchronization scheme does
not depend on the hyperfine state. The signal from F = 3 is
nearly an order of magnitude larger than that of F = 2, as
expected from the different detunings (see Sec. II).

FIG. 2. Experimental Stokes components S(out)
2 (t ) of the two

output laser beams and their correlation. (a) Measured Stokes com-
ponents S(out)

2 (t ) of the two laser beams after applying a band-pass
filter centered at the Larmor frequency ωL , with a bandwidth of
500 Hz. During the interval shown here, the two signals are syn-
chronized in phase. (b) Correlation plot between the filtered Stokes
components S(out)

2 (t ). The data points shown here correspond to a
time slice of 100 s; the correlation coefficient is about 0.34. (c) The-
oretical and experimental auto- and cross-correlation spectra. The
cross-correlation peak indicates the synchronization at ωL between
the two laser beams. Line shapes of both experimental auto- and
cross- correlation spectra (noisy curves) are in good agreement with
the theoretical expectations (smooth curves) derived from Eq. (10),
validating the theoretical model. The inset shows the zoomed-in
correlation spectra around ωL .

We can quantify the synchronization by the cross-
correlation amplitude Cab(ω) and the phase �ab(ω), which
are shown in Figs. 3(a) and 3(b), respectively. We obtain
Cab(ωL ) = 0.65, and �ab(ωL ) = 0.06 rad, which confirms the
nearly in phase synchronization at ωL between the two laser
beams. At other frequencies, Cab(ω) is indistinguishable from
zero, and �ab(ω) fluctuates randomly. Moreover, we can de-
termine kd as kd = 198 s−1. The values of γ , kd , and ka

validate assumptions in deriving Eq. (9), specifically kd/ka �
1 and γ /ka � 1.

A comparative experiment is conducted in a cell filled with
about 13 kPa of nitrogen buffer gas, where the atomic motion
becomes diffusive and too slow for traveling between the two
bright regions before the spins decohere. Figures 3(c) and 3(d)
depict Cab(ω) and �ab(ω), respectively, for this case. Cab(ω)
exhibits zero values, and �ab(ω) shows random behaviors,
indicating the lack of synchronizations between two laser
beams. The experimental results can be obtained by setting
kd → 0 in the theoretical calculations. The results confirm the
importance of spin hoppings in the synchronization scheme.
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FIG. 3. Representative cross-correlation amplitudes Cab(ω) and
phases �ab(ω) for two independent laser beams. (a) and (b) show
Cab(ω) and �ab(ω), respectively, for the scenario where two laser
beams become synchronized at ωL . (c) and (d) illustrate Cab(ω) and
�ab(ω), respectively, for the case where buffer gas prevents the atoms
from becoming correlated throughout the cell. As a result, the two
laser beams remain independent.

According to the theory, we expect that the synchronization
should occur at the Larmor frequency ωL = gF μBB, and the
values Cab(ωL ) and �ab(ωL ) = 0 should be independent of
B. We test this prediction by repeating the measurement at
different magnetic fields. The results are shown in Fig. 4(a),
where the magnetic-field strength is varied to cover Larmor
frequencies from 106 to 277 kHz. Black triangles are exper-
imental values of Cab(ωL ), and the green shading represents
the standard deviation, which is 3.4% in our experimental
data. Red diamonds denote experimental values of �ab(ωL ),
with a mean value of 0.12. The cyan shading indicates a
standard deviation of 0.06. These deviations mainly arise from
the technique noise and the atom-light interaction fluctuations
induced by optical detuning fluctuations of about 0.05 GHz.
The results demonstrate the stability of the synchronization
over the wide synchronization frequency range.

According to Eq. (13), the correlation should increase with
the number of atoms. We verify this prediction by adjusting

FIG. 4. (a) Synchronization for different Larmor frequencies ωL .
Black triangles represent the correlation amplitude Cab(ωL ), and red
diamonds represent the phases �ab(ωL ). The green shading and cyan
shading are their standard deviations. (b) Cab(ωL ) versus vapor tem-
perature Tv . Blue squares represent the experimental results, while
the red line is the theoretical expectation.

FIG. 5. (a) The eigenfrequency of the system versus the dif-
ference between the Larmor frequencies δ = ωaL − ωbL . (b) The
amplitude Cab(ω̄L ) as a function of δ. The hopping rate kab is approx-
imated as kab ≈ kd due to the relation for the hopping time 1/kab =
1/ka + 1/kd , where kd = 198 s−1 is estimated from the experimental
data shown in Fig. 2(c).

the temperature of the vapor cell and therefore the number of
atoms Nat (Tv ) in the laser beams. Figure 4(b) shows Cab(ωL )
for the temperature range from 285.7 to 359.3 K at a constant
Larmor frequency ωL = 163.3 kHz. The blue squares and the
red line depict experimental and theoretical results, respec-
tively. Cab(ωL ) shows a rapid increase between 285.7 and
333.3 K and saturates at kd/(kd + γ ) ≈ 0.66 beyond 333.3 K,
as determined by the best fit. Experimental results meet pre-
dictions well, suggesting that better synchronization requires
a higher vapor temperature within a certain temperature range.

So far, we have assumed that the atoms in the two laser
beams precess at the same Larmor frequency. As an inter-
esting extension, we now consider the case where Fa and
Fb have distinct Larmor frequencies, ωaL = gF μBBa and
ωbL = gF μBBb, respectively, but the atoms still exchange
between the two regions. Figure 5(a) depicts the eigen-
frequency of the system as a function of the frequency
difference δ = ωaL − ωbL, and Fig. 5(b) shows the amplitude
Cab(ω̄L ) as a function of δ with the average Larmor frequency
ω̄L = (ωaL + ωbL )/2. Here, we apply a small magnetic field
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gradient in the y direction to make the Larmor frequencies of
two ensembles different. When δ < 2kab, the eigenfrequency
of the system is a single frequency ω̄L [see Eqs. (A14) and
(A15) in the Appendix]. The amplitude Cab(ω̄L ) remains sig-
nificantly nonzero. Here, kab is the hopping rate between
ensembles a and b. Therefore, the corresponding hopping
time is approximately 1/kab, which can also be expressed
as approximately 1/ka + 1/kd when considering it as in the
previous section. Thus, kab is approximated as kab ≈ kd =
198 s−1. γ depends quadratically on δ [see Eq. (A27) in
the Appendix]. For δ > 2kab, the system bifurcates, and the

eigenfrequencies are ω̄L ±
√

δ2/4 − k2
ab [see Eq. (A16) in the

Appendix]. Cab(ω̄L ) becomes small. The experimental results,
shown as the blue squares in Fig. 5(b), are in good agreement
with the predicted trend. The results indicate that the synchro-
nization scheme remains effective even when two laser beams
respectively interact with collective spins having different
Larmor frequencies.

V. CONCLUSION AND DISCUSSION

In conclusion, we proposed and demonstrated a differ-
ent approach for achieving synchronization between spatially
separated laser beams by atomic spin noise. The synchroniza-
tion occurs in a narrow frequency band centered at the Larmor
frequency of the atoms. The synchronization frequency can
therefore be controlled and varied across a wide frequency
range. The amplitude of the correlation function increases
with the atomic density, which can be controlled by the vapor
temperature. We also considered the case where the Larmor
frequencies in the regions of the two laser beams are different.
In this case, the correlation remains effective.

Our scheme creates two synchronized random laser beams.
The input laser beams are detuned from atomic transitions,
and therefore, the output beams still maintain notable inten-
sity. This correlated randomness can be transmitted to distant

locations by the laser beams, which opens the potential for
applications such as long-range key distribution [11,44]. The
unpredictability of random beams generated by our strategy
relies on the inherent randomness of quantum spin noise,
which is unpredictable in principle [18]. In the situation
where the Larmor frequencies of the two interaction regions
are different, our results suggest a critical point at δ = 2kab,
which usually indicates the occurrence of a phase transi-
tion [42,45]. Our experiment provides a potential platform
for studying phase-transition phenomena, such as transi-
tions between unbroken and broken phases in non-Hermitian
physics [42,45].
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APPENDIX

1. Correlation between atomic ensembles with
same Larmor frequency

Based on Eq. (5), the angular momentum vector F ≡
[Fax, Fay, Faz, Fbx, Fby, Fbz, Fdx, Fdy, Fdz]T satisfies the stochas-
tic differential equation

dF = AFdt + QdW , (A1)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ − kad 0 −ωL 0 0 0 kda 0 0
0 −γ − kad 0 0 0 0 0 kda 0
ωL 0 −γ − kad 0 0 0 0 0 kda

0 0 0 −γ − kbd 0 −ωL kdb 0 0
0 0 0 0 −γ − kbd 0 0 kdb 0
0 0 0 ωL 0 −γ − kbd 0 0 kdb

kad 0 0 kbd 0 0 −γ − kda − kdb 0 −ωL

0 kad 0 0 kbd 0 0 −γ − kda − kdb 0
0 0 kad 0 0 kbd ωL 0 −γ − kda − kdb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the noise vector dW ≡ [dWax, dWay, dWaz, dWbx, dWby, dWbz, dWdx, dWdy, dWdz]T . If the spin dynamics is a stationary noise
process [38], then the noise strength matrix Q satisfies [31,46]

Aσ(0) + σ(0)AT = −QQT , (A2)

where σ(τ ) = 〈F(t + τ )FT (t )〉t is the time-correlation matrix with 〈·〉t the average over t .
The evolution of σ(τ ) (τ �= 0) satisfies [31]

d

dτ
σ(τ ) =

〈
AF(t + τ )dτ + QdW (t + τ )

dτ
FT (t )

〉
t

= A〈F(t + τ )F(t )T 〉t + Q
〈dW (t + τ )FT (t )〉t

dτ

= Aσ(τ ), (A3)
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where we assume there is no correlation between the noise
term dW (t + τ )(τ �= 0) and the angular momentum FT (t ).
Consequently, the time correlation matrix for τ > 0 is

σ(τ ) = exp(Aτ )σ(0). (A4)

Since A is not a diagonal matrix, it is convenient to diagonal-
ize A to obtain the matrix exponential exp(Aτ ). The matrix A

can be diagonalized into

A = V�V −1, (A5)

with the matrix � = diag[−γ ,−γ − ka,−γ − ka − 2kd ,

−γ − iωL,−γ − ka − iωL,−γ − ka − 2kd − iωL,−γ + iωL,

−γ − ka + iωL,−γ − ka − 2kd + iωL] and the eigenvectors

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −i kd
ka

i i
2

kd
ka

−i − i
2

kd
ka

−1 − 1
2 0 0 0 0 0 0

0 0 0 kd
ka

−1 − 1
2

kd
ka

−1 − 1
2

0 0 0 −i kd
ka

−i i
2 i kd

ka
i − i

2
kd
ka

1 − 1
2 0 0 0 0 0 0

0 0 0 kd
ka

1 − 1
2

kd
ka

1 − 1
2

0 0 0 −i 0 −i i 0 i

1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Here, we use kad = kbd = ka and kda = kdb = kd to reduce the number of parameters, assuming the cross-sectional areas of two
beams are equal. Since the number of atoms in a region should be conserved, ka/kd = N (d )

at /N (a)
at , with N (α)

at being the number of
atoms in region α, where α ∈ {a, d}. Then the matrix exponential exp(Aτ ) is

exp(Aτ ) = V exp(�τ )V −1. (A6)

The initial state of the time correlation matrix is calculated by σ(0) = ∑
m ρm 〈m| F̂ F̂ † |m〉 =

diag[Var(Fax ), Var(Fay), Var(Faz ), Var(Fbx ), Var(Fby), Var(Fbz ), Var(Fdx ), Var(Fdy), Var(Fdz )], where |m〉 is the eigenvector
of the spin Hamiltonian and ρm is the occupation factor of |m〉 at the thermal equilibrium. Thus, according to Eq. (A4), the
correlation functions 〈Fαz(τ )Fβz(0)〉, with α, β ∈ {a, b}, are

〈Fαz(τ )Fβz(0)〉 =

⎧⎪⎨
⎪⎩

[
1
2 e−(γ+ka+2kd )τ − ka+2kd

2ka
e−(γ+ka+2kd )τ + kd

ka
e−γ τ

]
Var(Fz )cos(ωτ ), α �= β,[

1
2 e−(γ+ka+2kd )τ + ka+2kd

2ka
e−(γ+ka+2kd )τ + kd

ka
e−γ τ

]
Var(Fz )cos(ωτ ), α = β.

(A7)

Here, we simplify Var(Faz ) and Var(Fbz ) as Var(Fz ). Since the
cross-sectional area of the laser beams is considerably smaller
than that of the cell, we have kd/ka � 1. The atoms can travel
between the different ensembles without significant loss of the
spin polarization in the coated cell, so γ /ka � 1. Therefore,
we can approximate 〈Fαz(τ )Fβz(0)〉 as

〈Fαz(τ )Fβz(0)〉 ≈ Var(Fz )cos(ωLτ )

(
kd

ka
e−γ τ + δαβe−kaτ

)
.

(A8)
Moreover, we find that the components Fay and Fby, which are
along the direction of the magnetic field, have no impact on
〈Fαz(τ )Fβz(0)〉 based on Eq. (A4). Therefore, we ignore these
two components in the following calculations.

2. Correlation between atomic ensembles with different
Larmor frequencies

If we replace the Larmor frequency ωL with ωαL =
gF μBBα for the Larmor frequencies of Fα , where α ∈
{a, b, d}, in Eq. (5), obtaining its analytical solution neces-
sitates solving a univariate sextic equation, thus rendering
a general analytical solution unattainable. To derive an
analytical conclusion, we omit the atoms in the dark

region d and simplify the dynamics of collective angular
momenta as

dFa = (gF μBFa × Ba − γ Fa − kabFa + kbaFb)dt

+ Q′
aadW ′

a + Q′
badW ′

b,

dFb = (gF μBFb × Bb − γ Fb − kbaFb + kabFa)dt

+ Q′
bbdW ′

b + Q′
abdW ′

a. (A9)

Here, kab and kba are effective hopping rates between Fa

and Fb. To distinguish from the case where the atoms have
the same Larmor frequency, we use the primed symbols to
describe the spin dynamics in this scenario as

dF ′ = A′F ′dt + Q′dW ′, (A10)

with the angular momentum vector F ′ ≡ [Fax, Faz, Fbx, Fbz]T ,
the rate matrix

A′ =

⎡
⎢⎢⎢⎣

−γ − kab −ωaL kba 0

ωaL −γ − kab 0 kba

kab 0 −γ − kba −ωbL

0 kab ωbL −γ − kba

⎤
⎥⎥⎥⎦,
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and the noise vector dW ′ ≡ [dW ′
ax, dW ′

az, dW ′
bx, dW ′

bz]
T . The

noise strength matrix Q′ satisfies

A′σ′(0) + σ′(0)A′T = −Q′Q′T , (A11)

where σ′(τ ) = 〈F ′(t + τ )F ′T (t )〉t . According to Eq. (7), we
need to calculate 〈Fαz(τ )Fβz(0)〉 to obtain the correlation func-
tion gαβ (τ ). The initial state of the time correlation matrix
is σ′(0) = diag[Var(Fax ), Var(Faz ), Var(Fbx ), Var(Fbz )]. Simi-
lar to Eq. (A4), the time correlation matrix σ′(τ ) (τ > 0) is
calculated as

σ′(τ ) = exp(A′τ )σ′(0), (A12)

where the matrix A′ can be diagonalized into

A′ = V ′�′V ′−1. (A13)

Here, �′ = diag[−γ − kab − � + iω̄L,−γ − kab + � −
iω̄L,−γ − kab − � − iω̄L,−γ − kab + � + iω̄L]. The
average Larmor frequency is ω̄L = (ωaL + ωbL )/2, and
the difference δ = ωaL − ωbL. The behavior of the system
depends on the relative size of this frequency difference and
the exchange rates kab. It can be quantified by the parameter

� =
√

k2
ab − δ2/4. From the detailed balance, kab = kba. �2

determines the values of the matrices �′ and V ′ and therefore
determines the correlation matrix σ′(τ ).

Next, we categorically analyze σ′(τ ) with respect to
whether � is a real or imaginary number. For the case where
� is real and the hopping between the two ensembles is
faster than the differential precession, the correlation func-
tions 〈Fαz(τ )Fβz(0)〉 (τ > 0), with α, β ∈ {a, b}, are

〈Faz(τ )Faz(0)〉 = Var(Fz )
e−(γ+kab)τ

2�
[|δ|(e−�τ − e�τ )sin(ω̄Lt ) + �(e−�τ + e�τ )cos(ω̄Lτ )],

〈Fbz(τ )Fbz(0)〉 = Var(Fz )
e−(γ+kab)τ

2�
[|δ|(e�τ − e−�τ )sin(ω̄Lt ) + �(e−�τ + e�τ )cos(ω̄Lτ )],

〈Faz(τ )Fbz(0)〉 = Var(Fz )
e−(γ+kab)τ

2�
kab(e�τ − e−�τ )cos(ω̄Lτ ). (A14)

Combining Eqs. (7), (8), and (A14), we obtain the correlation spectra of the two laser beams as

g̃aa(ω) =2G2S2
1Nat

c2

[ |δ|
�

ω̄L − ω

(ω − ω̄L )2 + (γ + kab + �)2
− |δ|

�

ω̄L − ω

(ω − ω̄L )2 + (γ + kab − �)2

+ γ + kab + �

(ω − ω̄L )2 + (γ + kab + �)2
+ γ + kab − �

(ω − ω̄L )2 + (γ + kab − �)2

]
+ S1

2
,

g̃bb(ω) =2G2S2
1Nat

c2

[ |δ|
�

ω̄L − ω

(ω − ω̄L )2 + (γ + kab − �)2
− |δ|

�

ω̄L − ω

(ω − ω̄L )2 + (γ + kab + �)2

+ γ + kab + �

(ω − ω̄L )2 + (γ + kab + �)2
+ γ + kab − �

(ω − ω̄L )2 + (γ + kab − �)2

]
+ S1

2
,

g̃ab(ω) =2G2S2
1Nat

c2

kab

�

[ γ + kab − �

(ω − ω̄L )2 + (γ + kab − �)2
− γ + kab + �

(ω − ω̄L )2 + (γ + kab + �)2

]
. (A15)

Thus, the polarizations of the laser beams oscillate and synchronize at ω̄L.
For the case where � is imaginary and the hopping between the two ensembles is slower than the differential precession, the

system bifurcates, and the eigenvalues become �′ = diag[ − γ − kab + i(ω̄L − ε),−γ − kab − i(ω̄L − ε),−γ − kab − i(ω̄L +
ε),−γ − kab + i(ω̄L + ε)], with ε = −i�. Based on Eqs. (A12) and (A13), the correlation functions 〈Fαz(τ )Fβz(0)〉 (τ > 0),
with α, β ∈ {a, b}, are

〈Faz(τ )Faz(0)〉 =Var(Fz )

{
2ε + |δ|

4ε
cos[(ω̄L + ε)τ ] + 2ε − |δ|

4ε
cos[(ω̄L − ε)τ ]

}
e−(γ+kab)τ ,

〈Fbz(τ )Fbz(0)〉 =Var(Fz )

{
2ε − |δ|

4ε
cos[(ω̄L + ε)τ ] + 2ε + |δ|

4ε
cos[(ω̄L − ε)τ ]

}
e−(γ+kab)τ ,

〈Faz(τ )Fbz(0)〉 =Var(Fz )
kab

2ε
{sin[(ω̄L + ε)τ ] − sin[(ω̄L − ε)τ ]}e−(γ+kab)τ . (A16)
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Combining Eqs. (7), (8), and (A16), we obtain the correlation spectra of the two laser beams as

g̃aa(ω) =G2S2
1Nat

c2

[
2ε + |δ|

ε

γ + kab

(ω − ω̄L − ε)2 + (γ + kab)2
+ 2ε − |δ|

ε

γ + kab

(ω − ω̄L + ε)2 + (γ + kab)2

]
+ S1

2
,

g̃bb(ω) =G2S2
1Nat

c2

[
2ε − |δ|

ε

γ + kab

(ω − ω̄L − ε)2 + (γ + kab)2
+ 2ε + |δ|

ε

γ + kab

(ω − ω̄L + ε)2 + (γ + kab)2

]
+ S1

2
,

g̃ab(ω) =2G2S2
1Nat

c2

kab

ε

[
ω̄L + ε − ω

(ω − ω̄L − ε)2 + (γ + kab)2
− ω̄L − ε − ω

(ω − ω̄L + ε)2 + (γ + kab)2

]
. (A17)

3. Calculation of optical pumping rate

The total width of the optical transition is influenced by
various factors, including Doppler broadening (approximately
500 MHz), natural linewidth (around 6 MHz), hyperfine split-
tings of the excited state (roughly 200 MHz), and Zeeman
splittings of the ground state F = 3 level (about 100 kHz).
We focus on the dominating Doppler broadening effect, which
leads to an absorption cross section

σG(�) = πrec f1g(�l ), (A18)

with

g(�l ) = 2
√

2ln2/π

�G
exp

(−4ln2

�2
G

�2
l

)
(A19)

and

�G = v̄

λ
ln2. (A20)

Here, re = 2.82 × 10−15 m is the classical electron radius,
f1 ≈ 2/3 is the D2 transition’s oscillator strength, and v̄ =√

8kBTv

πM is the thermal speed of the 85Rb atoms, with M =
1.42 × 10−25 kg being the mass of a 85Rb atom.

The width of the laser beam is several megahertz, sig-
nificantly smaller than the laser detuning �l . Therefore, we
consider the laser beam to be a monochromatic beam. Conse-
quently, the optical pumping rate can be expressed as

γop = �σG, (A21)

where � is the number of photons per unit cross-sectional area
per unit time. The cross-sectional area of the laser beam is
about 10 mm2, with a laser power of about 1 mW, establishing
� = 3.84 × 1015 s−1 m−2. By combining Eqs. (A18)–(A21),
the optical pumping rate for �l = 1 GHz is determined to be
γop = 3.3 s−1.

4. Temperature calibration

The vapor cell is placed within a boron-nitride oven, which
is heated by the ac current flow in twisted heating wires
to avoid generating magnetic fields. The temperature of the
oven is monitored by a thermocouple and stabilized to 0.1 K
with an analog temperature controller. Heat is then transferred
from the boron-nitride oven to the vapor cell, subsequently
elevating the atomic vapor temperature. As a result of this
indirect heating technique, the vapor temperature may not
precisely match the oven’s setting temperature. The heating
system in our experiment closely resembles that of our prior
study [23], and we observe a linear relationship between

the vapor temperature and the setting temperature. Given the
small temperature range in our experiments, we can establish
an assumed relationship between the vapor temperature Tv and
the setting temperature Tset as

Tv = aT Tset + T0, (A22)

where aT and T0 are constants.
We determine the vapor temperature Tv through the

temperature-dependent spin-exchange effect of Rb atoms. The
primary spin relaxation mechanisms within the OTS-coated
cell comprise spin-exchange relaxation, wall relaxation, and
optical pumping [17,22]. Consequently, the spin-relaxation
rate γ can be represented as

γ ≈ γse + γw + γop. (A23)

Here, γse = qnatσsevrel/2π represents the spin-exchange re-
laxation rate [47], where q = 2

3
I (2I−1)
(2I+1)2 = 5

27 is the nuclear

slowing-down factor for the F = 3 hyperfine level of 85Rb
atoms, nat ≈ 1

Tv
1014.178−4040/Tv m−3 is the number density

of the rubidium atoms, σse ≈ 2 × 10−14 cm2 is the spin-
exchange cross section [22], and vrel ≈ √

2v̄ is the relative
velocity between two rubidium colliding atoms. γw = 4NbVc

Sc v̄

denotes the wall-relaxation rate, where Nb is the number of
coherent bounces between atoms and the cell wall, Vc is the
cell volume, and Sc is the surface area of the cell. Therefore,

FIG. 6. Relaxation rate γ versus setting temperature Tset . The
fitting line is based on Eqs. (A22) and (A24).
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FIG. 7. Experimental auto- and cross-correlation spectra of the
laser beams in the comparative experiment.

the relaxation rate γ can be further expressed as

γ = qnat (Tv )σsevrel/2π + γw + γop. (A24)

Within our experimental parameters, the number-density mag-
nitude nat can vary over several orders, whereas the changes
in vrel ∼ √

Tv , γw ∼ 1/v̄ ∼ 1/
√

Tv , and γop ∼ e−1/Tv√
Tv

are com-
paratively smaller. Consequently, we can assume that vrel,
γop, and γw remain constant during vapor temperature adjust-
ments. Based on Eqs. (A22) and (A24), the curve fitting of the
relationship between γ and Tset in Fig. 6 reveals the correlation
between the vapor temperature Tv and the set temperature Tset

as

Tv = 0.87Tset + 18.89 K. (A25)

Additionally, the fitting analysis reveals the wall-relaxation
rate to be γw = 17.9 s−1, closely aligning with findings from
previous studies [22,37].

5. Correlation spectra in comparative experiment

The comparative experiment is conducted in a buffer-gas-
filled cell, where the spin-noise signal is notably reduced
compared to that in the OTS-coated cell due to pressure
broadening induced by the buffer gas. Figure 7 shows the
experimental auto- and cross-correlation spectra at a va-
por temperature of 342.0 K. The autocorrelation spectrum
|g̃aa(ω)| exhibits an observable spin-noise peak at the Larmor
frequency ωL with a HWHM of 1.88 kHz, alongside a noise
base. In both the OTS-coated cell and the buffer-gas-filled

FIG. 8. Spin relaxation rate γ versus Larmor frequency differ-
ence δ at a vapor temperature of 342.0 K.

cell, the laser-beam powers are 1 mW, so the noise baseline
is assumed to be the same. The amplitude ratio of the spin-
noise signal to the noise baseline is approximately 0.05 in
the buffer-gas-filled cell, while it is 3.07 in the OTS-coated
cell, as depicted in Fig. 2(c). Using the noise baseline as
a reference, we find that the spin-noise peak amplitude in
the buffer-gas cell is approximately 1 − 0.05/3.07 = 98.4%
smaller than that in the OTS-coated cell. The cross-correlation
spectrum |g̃ab(ω)| displays nearly zero values, indicating a
lack of synchronization between the two laser beams.

6. Relationship between spin relaxation and
magnetic field gradient

The spin relaxation rate γ was observed to show a
quadratic dependence on the magnetic-field inhomogeneity
∂B/∂y in a recent work [48], implying a quadratic relation-
ship with the frequency difference δ = 466 Hz/G × 5 mm ×
∂B/∂y. Therefore, we can assume

γ = ayδ
2 + γ0, (A26)

where ay represents the coefficient characterizing the sensitiv-
ity of γ to δ and γ0 denotes the baseline rate of spin relaxation
unaffected by the magnetic field gradient. Figure 8 illustrates
the experimental γ values for various δ values along with
the quadratic curve fitting. Based on the fitting outcome, we
derive

γ = 0.003 Hz−1δ2 + 45.2 s−1. (A27)
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