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Unified treatment of atomic excitation and ionization
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A unified treatment of atomic excitation and ionization in ion-atom collisions is proposed. It is demonstrated
that the state-resolved excitation cross sections multiplied by n3, where n is the principal quantum number of the
excited state, and the corresponding partial singly differential ionization cross section form two parts of a single
continuous function. This allows one to obtain the excitation cross section for any state including high-lying
Rydberg states and the energy-differential ionization cross section at, and arbitrarily close to, the threshold.
The proposed method can be used in any theoretical approaches to excitation and ionization and experimental
measurements.
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I. INTRODUCTION

The physics of quantum collisions is fundamental to our
understanding of the universe at its most basic level. It has
practical applications in many areas of science and tech-
nology, including clean energy production, medicine, and
astrophysics. When a projectile collides with an atomic or
molecular target it may scatter elastically or lead to excita-
tion of the target. It can also ionize the target and induce
various other processes depending on the nature of the target
and the projectile. An interesting aspect of the ionization
process in atomic collisions is its relationship to excitation.
This feature has been of interest since the early days of
quantum mechanics. In fact, as early as 1924, Sommerfeld
[1] predicted that the oscillator strengths from the discrete
states merge with the differential one from the continuum at
the ionization threshold. This theory is now a cornerstone in
the field of photon-atom scattering [2,3]. Furthermore, based
on the Oppenheimer scaling rule [4], Rudd and Macek [5]
suggested that the average excitation cross section below the
ionization limit merges continuously with the ionization cross
section above the ionization limit in ion-atom collisions. They
concluded that the transition across the threshold is a slowly
varying function of energy loss by the projectile (see Fig. 45
of Ref. [5]).1 The idea has not been further developed.

In this paper, we quantitatively show a continuity be-
tween excitation and ionization. We introduce a continuous
function that unifies these scattering processes. It links the
state-selective excitation cross sections and the corresponding
partial singly differential ionization cross section. We then
demonstrate how this function can be used to give the state-
resolved target-excitation cross sections for any bound state
including Rydberg ones. Furthermore, it gives the energy-

*Contact author: nicholas.antonio@postgrad.curtin.edu.au
†Contact author: igor.bray@curtin.edu.au
‡Contact author: a.kadyrov@curtin.edu.au
1As it will be seen later, this is not always the case.

differential ionization cross section at, and arbitrarily close to,
the ionization threshold.

II. THEORY

We consider scattering of an incident ion on an arbitrary
atomic target. The target can initially be in its ground state
or any excited state including a Rydberg one. We assume
that the collision energy is sufficient to ionize the target, i.e.,
the total energy of the collision system Etotal > 0. Follow-
ing the collision, the atomic electron may be excited to a
discrete eigenstate with energy2 En = −1/(2n2), where n =
1, 2, . . . ,∞ is the principal quantum number. Alternatively,
the electron may be excited into the atomic continuum with
energy 0 � E � Etotal. Let us generalize n into a continuous
variable x. This makes energy also a continuous function of x,
Ex. Then only integer values of x have a physical meaning of
the principal quantum number and only corresponding values
of Ex have a physical meaning of the bound-state energy.

From a physical point of view we assume there is little
difference between excitation of the high-lying Rydberg states
and near-threshold ionization. Therefore, we introduce a con-
tinuous function of electron energy, S(E ), that is common
for both excitation and ionization. Function S(E ) is not com-
pletely unknown. Its first-order derivative in E for E > 0 is a
measurable quantity known as the singly differential ioniza-
tion cross section (SDCS), dS/dE . At the ionization threshold
S(E ) should behave such that

lim
x→∞

dS

dEx
= lim

E→0

dS

dE
. (1)

The left-hand side can be written as dS/dEx =
(dS/dx)(dx/dEx ). When x → ∞, the continuous energy is
given as Ex = −1/(2x2). Therefore, we have dEx/dx = 1/x3.

2Atomic units (a.u.) are used unless otherwise specified. In addi-
tion, the target atom is assumed to be neutral; a generalization of the
results to partially stripped ions is straightforward.
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Accordingly, Eq. (1) reduces to

lim
x→∞ x3 dS

dx
= lim

E→0

dS

dE
. (2)

We now introduce the following piecewise function:

f (E ) =
{

x3dS/dx if E < 0,

dS/dE otherwise.
(3)

Both pieces of this function have a dimensionality of
[area]/[energy]. According to Eq. (2), the function behaves
smoothly at the ionization threshold.

We now claim that

dS(E )

dx

∣∣∣∣
x=n

= σn, (4)

where σn is the cross section for excitation of the n shell. In
other words, when x is an integer, the aforementioned deriva-
tive has a clear physical meaning and represents the scattering
cross section.

In practical calculations, the total SDCS, dS/dE , comes
as a sum of partial SDCS, dS�m/dE , where � and m are the
orbital angular momentum and magnetic quantum numbers
of the ionized electron. We now extend S�m(E ) to negative
energies. Then a relationship similar to Eq. (2) can be obtained
for S�m(E ),

lim
x→∞ x3 dS�m

dx
= lim

E→0

dS�m

dE
, (5)

and a corresponding piecewise function be introduced,

f�m(E ) =
{

x3dS�m/dx if E < 0,

dS�m/dE otherwise.
(6)

For completeness, we also introduce S�(E ) by summing
S�m(E ) over m:

lim
x→∞ x3 dS�

dx
= lim

E→0

dS�

dE
and f�(E ) =

�∑
m=−�

f�m. (7)

In addition to Eq. (4), we also claim that

dS�m

dx

∣∣∣∣
x=n

= σn�m, (8)

dS�

dx

∣∣∣∣
x=n

= σn�, (9)

where σn�m is the state-resolved excitation cross section and
σn� is the n�-resolved excitation cross section. The validity of
Eqs. (4), (8), and (9) is demonstrated below.

We note that we did not make any assumptions about
the projectile energy except it is sufficient to ionize the tar-
get. Therefore, those relationships are valid at all energies
larger than the ionization potential of the atom. We also
emphasize that we did not assume any particular functional
form of the excitation cross sections and the corresponding
singly differential ionization cross section when obtaining
Eqs. (2), (5), and (7).

By construction, the piecewise functions f�m(E ), f�(E ),
and f (E ) unify excitation and ionization. We now demon-
strate that they can be used in studying a Coulomb three-body

scattering problem, including the regions that were inaccessi-
ble in previous theories. We consider the benchmark system
of p̄ + H(1s) collisions. It is a Coulomb three-body problem
and has no analytic solution. It has been the subject of nu-
merous experimental [6] and theoretical studies [7]. Above
1 keV incident energy, the protonium formation channel can
be neglected, allowing one to describe p̄ + H scattering as a
single-center problem. As a result, it serves as a useful test
bed for developing new theoretical approaches and ideas. A
number of different methods give reliable excitation cross
sections for low-lying states as well as the total ionization
cross section (TICS). We do not go into details as this is
not the main subject of the present work. Instead, we refer
the reader to a comprehensive review [7]. We only note that
since publication of this review, a quantum-mechanical [8]
and a semiclassical wave-packet [9] versions of the conver-
gent close-coupling method were developed. These methods
give not only integrated cross sections but also a fully dif-
ferential picture of ionization. A missing piece of the puzzle
was the absence of the information on excitation of the Ryd-
berg states and threshold ionization. This paper provides the
missing piece.

III. RESULTS AND DISCUSSION

The total wave function of the collision system satisfies
Schrödinger’s equation [10] with outgoing-wave boundary
conditions. The method used for solving the scattering prob-
lem is based on expansion of the wave function using a
set of suitably chosen basis states. Such a set should in-
clude the continuum. The continuum can be included, e.g.,
by diagonalizing the target Hamiltonian using an orthogonal
Laguerre (Sturmian) basis [11] or using wave packets [9].
Here, we apply the convergent close-coupling approach to
ion-atom collisions where the continuum is discretized us-
ing the nonorthogonal Sturmian basis [12] which we will
refer to as the Coulomb-Sturmian (CS) one. The obtained
CS pseudostates are used to expand the total scattering wave
function for the p̄ + H system with some unknown expansion
coefficients. Thereafter the method is similar to the wave-
packet convergent close-coupling method detailed in Ref. [9].
Briefly, the expansion of the scattering wave function is sub-
stituted into the Schrödinger equation. This leads to a set
of coupled equations for the expansion coefficients in the
impact parameter representation. These equations are solved
subject to the boundary condition reflecting the initial chan-
nel. Asymptotically, the expansion coefficients represent the
transition probability amplitudes. Using the latter we can cal-
culate σn�m, σn�, and σn for excitation of the negative-energy
pseudostates.

The procedure for calculating the differential cross sec-
tions for ionization is given in Ref. [9]. In short, we begin
from the general definition of the scattering amplitude in the
post form [13,14]. If the collision leads to ionization, the final
state of the system is described by the three-body Coulomb
asymptotic state (CAS) representing three free particles. We
bypass the need to use the CAS by inserting the identity
operator constructed from the CS pseudostates into the post
form of the scattering amplitude. This effectively reduces the
CAS to a product of a plane wave for the relative motion of
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FIG. 1. The state-resolved excitation cross sections, multiplied
by n3, and the �m-partial SDCS for ionization as functions of electron
energy for � = 3 and m = 1. The convergence of the results with
respect to increasing Nmax is shown.

the heavy particles and the Coulomb wave for the electron. As
a result, the ionization amplitude is expressed in terms of the
amplitudes for excitation of the positive-energy pseudostates
and the projection of the pseudostates to the true continuum
[9]. The dS�m/dE for ionization are obtained by integrating
the fully differential cross sections. Alternatively, they can
be expressed in terms of the cross sections for excitation
of the positive-energy pseudostates. These two methods give
identical results.

In coupled-channel calculations the accuracy of the results
depends on the size of the basis. The basis is characterized by
three parameters: the number of CS functions Nmax for the s
states, the maximum orbital quantum number �max, and the
fall-off parameter λ. Then the number of the CS functions
for each � symmetry would be Nmax − �. As Nmax and �max

increase, the results converge. By systematically increasing
the size of the calculations, �max = 5 was found to be suf-
ficient. When converged, the results do not depend on λ,
however, the rate of convergence does. This has been tested
using λ = 0.4, 0.5, and 0.6. The convergent results from these
three sets of calculations were the same. By reducing λ we
can reduce the energy of the highest pseudostate. This allows
us to increase the density of the continuum discretization by
increasing Nmax without covering the part of the continuum
that is not important. All the final results presented here are
convergent to within a fraction of a percent. Hereafter, we
refer to the basis size used in calculations as (Nmax, �max, λ).

We have calculated the target excitation and singly differ-
ential ionization cross sections for p̄ + H(1s) collisions in a
wide range of collision energies from 1 keV to 1 MeV. To
avoid repetition, here we only present the results at 100 keV.
However, the conclusions drawn from these results are also
valid for all collision energies within the aforementioned
range.

Figure 1 presents n3σn�m for excitation and dS�m/dE for
ionization as functions of the electron energy for � = 3 and
m = 1 obtained using bases (Nmax, 5, 0.4) with increasing
Nmax. The results are shown as dots connected by straight
lines to guide the eye. We see a clear pattern of convergence
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FIG. 2. The n�-resolved excitation cross sections, multiplied by
n3, and the �-partial SDCS for ionization as functions of electron
energy for � = 0–4.

with increasing Nmax. Furthermore, as Nmax increases, n3σn�m

approach dS�m/dE near the ionization threshold, confirming
Eq. (5). However, it is notable that a few points on the
negative-energy side deviate from the SDCS at the threshold
for any value of Nmax. The reason for this can be explained by
looking at the energy distribution of the pseudostates. For any
basis size, the last few negative-energy pseudostates do not
represent the eigenstates of the target. Instead, they mimic the
remaining part of the discrete-energy spectrum. As mentioned
above, Eq. (5) is valid for excitations of the eigenstates. If
the energy of the pseudostate is different from the energy of
the corresponding eigenstate (meaning the wave functions are
different as well), the cross sections for excitation of such
pseudostates do not obey Eq. (5). However, more and more
negative-energy pseudostates accurately represent the eigen-
states as Nmax increases. In fact, a dominolike effect can be
seen in Fig. 1, where an increasing number of n3σn�m fall into
place and align with dS�m/dE along a smooth function of E
as Nmax increases. This confirms validity of Eqs. (5), (6), and
(8). This convergence pattern is not just for the � = 3, m = 1
states. We have observed similar behavior for all �m values
included in the calculations.

In Fig. 2, we plot n3σn� and dS�/dE for � = 0–4. The
results that do not correspond to the eigenstates are not shown
as they are not supposed to obey Eq. (7). In other words, we
plot the piecewise function f�(E ) at x = n. Having already
demonstrated convergence with Nmax, here we only show the
results obtained using basis (50,5,0.4). One can see that n3σn�

and dS�/dE align and join at the ionization threshold for
each value of � confirming Eqs. (7) and (9). Furthermore, it
is interesting to note different functional behaviors of f�(E )
for different values of �. For � = 0 and 1, n3σn� fall as they
approach the ionization threshold. For the case of � = 2, f�(E )
varies slowly across the ionization threshold. However, for
� > 2 they increase towards the threshold. It is remarkable
that Eq. (7) holds regardless.

In general, as seen in Fig. 2, the energies of the CS pseu-
dostates are not aligned for different � symmetry. However,
from the data shown in Fig. 2, we can easily reconstruct f�(E )
for each �, e.g., using a polynomial fit. We can then sum up
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multiplied by n3. For E � 0, f (E ) represents the SDCS.

all f�(E ) to get f (E ) as a continuous function. By integrating
f (E ) over E we also recover S(E ). Functions f (E ) and S(E )
are plotted in Fig. 3. We see that beginning from negative
energies, f (E ) falls as it approaches the threshold. This shows
that generally the transition across the threshold is not always
a slowly varying function of energy as suggested by Rudd
and Macek [5]. The figure also shows n3σn which coincides
with f (En) as expected. It is extraordinary that the piecewise
functions work for excitation of any state. When the target is
initially in the 1s state, considered here, the formula works
starting literally from n = 2.

Having demonstrated the validity of Eqs. (2)–(9), next we
use them to obtain the state-resolved excitation cross sec-
tions for any bound state including the Rydberg ones with
arbitrarily high energies. Furthermore, they also allow us to
obtain the SDCS for ionization at, and arbitrarily close to,
the threshold. To this end, we simply use piecewise functions
f�m(E ), f�(E ), and f (E ). To demonstrate the reliability of
this approach, we perform two different calculations. The first
calculation employs basis (50,5,0.4), and is used to recon-
struct f�m(E ), f�(E ), and f (E ). The second calculation uses a
very large basis of (130,5,0.4). This increases the number of
the eigenstates reproduced accurately. As a result we obtain
accurate converged excitation cross sections up to a reason-
ably high principal quantum number that can be tested against
the corresponding results obtained using f�m(E ), f�(E ), and
f (E ). We find that σn�m, σn�, and σn for high-lying states
not explicitly included in the (50,5,0.4) basis calculation,
but obtained using f�m(E ), f�(E ), and f (E ), reproduce the
corresponding converged results obtained directly using the
(130,5,0.4) basis in all cases. This shows that even without
explicitly including the high-lying states in the basis, the cal-
culations can give the cross sections for these states due to the
regular and smooth nature of f�m(E ), f�(E ), and f (E ).

The crosses in Fig. 4 represent σn� and σn up to n = 50
obtained using f� and f resulting from the (50,5,0.4) basis
calculation. The pluses represent the corresponding results
obtained directly using the (130,5,0.4) basis. The agreement
is perfect (the results are almost identical with the crosses
overlapping with the pluses). Note that out of the pseudostates
included in the (50,5,0.4) basis calculation only a small
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FIG. 4. The n�- and n-resolved excitation cross sections as func-
tions of the final-state principal quantum number n for � = 0–4. The
crosses represent σn� and σn obtained using f� and f resulting from
the (50,5,0.4) basis calculation. The pluses represent the correspond-
ing results obtained directly from the (130,5,0.4) basis calculation.

portion has negative energies. For instance, out of the 50 s
states only 14 have negative energies and only 9 correspond
to the eigenstates. It is extraordinary that the calculation with
a relatively small basis is capable of giving the complete set
of excitation cross sections due to the power of Eqs. (2)–(9).
We can also see that for n � 2, p-state cross sections are
dominant. As � increases further, each next set of n�-resolved
cross sections falls by an order of magnitude. This shows that
only the first few values of � significantly contribute to σn

even for the Rydberg states with n as high as 50. Though the
results are shown for 2 � n � 50, the method is expected to
work for arbitrarily high n as the limits of f (E ) and f�(E ) as
n → ∞ exist and are finite due to Eqs. (2) and (7).

Using Eq. (5) and the piecewise function f�m(E ) we can
calculate the state-selective cross sections for arbitrary states.
As an example, in Fig. 5 we show σn�m up to n = 100 for
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FIG. 5. The n�m-resolved excitation cross sections as functions
of the final-state principal quantum number n for � = 3 and m = 0–3.
The crosses represent σn�m obtained using f�m resulting from the
(50,5,0.4) basis calculation. The pluses represent the corresponding
results obtained directly using the (130,5,0.4) basis.
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� = 3 and all values of m. Again, the crosses represent σn�m

obtained using f�m resulting from the (50,5,0.4) basis calcula-
tion. The pluses represent the corresponding results obtained
directly from the (130,5,0.4) basis calculation.

Finally, the method gives the total excitation cross section,∑∞
n=2 σn. At 100 keV incident energy, it converges to four

significant digits when the first 50 shell cross sections are
summed up giving 1.051×10−16 cm2. One can also calculate
the SDCS at the ionization threshold. It is given by f (0). The
SDCS at the threshold is found to be 1.075×10−17 cm2/eV.
Obviously, S(Etotal ), representing the integral of f (E ) from 0
to Etotal, gives the TICS. We find TICS = 1.004×10−16 cm2,
which is accurate to four significant digits and in excellent
agreement with experiment [6]. Other physical properties of
function S(E ) remain to be investigated.

IV. CONCLUSION

We proposed a unified treatment of atomic excitation and
ionization. We demonstrated that the state-resolved excitation
cross sections multiplied by n3 and the corresponding partial
singly differential ionization cross section form two parts of a
single continuous function. This allowed us to obtain the exci-
tation cross section for any state including high-lying Rydberg
states and the energy-differential ionization cross section at,
and arbitrarily close to, the threshold.

Furthermore, the proposed method can be used in ex-
perimental and theoretical studies of other atomic collisions
involving arbitrary projectiles. For example, accurate mea-
surements or calculations of the first few excitation cross
sections and some small part of the SDCS of ionization in an
arbitrary collision system can be used as input to construct the
corresponding f (E ). This function will contain information
on all the missing parts of the excitation cross sections and
the SDCS. The accuracy of the outcome only depends on
the accuracy of the input data. The method may also lead
to further investigations of the threshold phenomena [15] in-
cluding threshold ionization in (e, 2e) [16] and various atomic
collisions [17] as it allows to approach the threshold as closely
as necessary and actually reach it, which was impossible so
far. The laser excitation of positronium into Rydberg states
[18] and further ionization [19] is another avenue that can be
explored using the new method.
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