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Motional Stark effect on bound-free spectra
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The motion of atoms through a magnetic field (due to a change in reference frame) will result in an additional
electric field felt by the electrons in that atom. The motional Stark effect is a well-established effect that has
been approximately included in calculations of spectra of magnetized plasmas, usually through diagonalizing
the Hamiltonian. The motional Stark effect for continuum states is poorly defined due to an overlap integral that
results in a Dirac delta function. This paper presents a workaround by evaluating the motional Stark effect in the
Green’s function within the scattering formalism. We report on some results pertaining to bound-free spectra for
white dwarf and neutron star magnetic field strengths. In most cases, resonances in the continuum are shifted
and broadened. This behavior has the effect of raising the Rosseland mean opacity in white dwarfs and neutron
star atmospheres.
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I. INTRODUCTION

In a large magnetic field, it is well established [1] that the
internal electronic states are linked with the motion of the
atom through space. This connection manifests as a motional
Stark effect term in the Hamiltonian of the atom

HMSE = �vatom · ( �B × �r), (1)

where �vatom is the velocity of the atom and �r is the dipole
moment of the electrons inside the atom. The motional Stark
effect can be derived from a simple transformation of a static
(i.e., laboratory) reference frame to the moving atomic refer-
ence frame. It can also be rigorously derived from separating
the multiparticle Hamiltonian into its center of mass and
relative coordinates [2], as is commonly done in atomic prob-
lems [3].

It is not possible to fully separate the center of mass and
relative coordinates; often a pseudoseparation is used and
then the atomic structure is corrected using perturbation the-
ory [4–6]. These corrections shift the energies of the levels,
which leads to a broadening of spectral lines in the atmo-
spheres of stars with high magnetic fields [5,7,8].

There are some complications regarding the motional Stark
effect. One such example is interference with particle colli-
sions [9]. More important is that an extension from discrete
to continuum states does not exist; this issue is the focus of
this paper. The application of calculating continuum states

with the motional Stark effect is relevant for calculations of
bound-free opacity, as well as in collision problems [10,11].

The complication with continuum states lies with the
boundary condition of continuum states as well as the form of
Eq. (1). Continuum states are notoriously complicated due to
their wave functions normalizing to a delta function. The eval-
uation of matrix elements of Eq. (1) for a continuum function
results a delta function. One way around this complication is
to volume normalize the wave function [12], but this option is
not satisfactory due to the modification of the normalization
properties of continuum wave functions.

The bound-free continuum contribution provides an im-
portant opacity source when calculating the spectra of
magnetized plasmas. It is essential, especially for diagnostic
purposes and for calculating atmospheric structure, to accu-
rately calculate the bound-free opacity. There is no simple
analytic prescription to calculate the bound-free opacity in a
high magnetic field, only numerical techniques can be used.
Further, the continuum is filled with resonances [13] and the
free states are quantized into Landau levels.

It is well known that broader spectral lines lead to an
increase of the Rosseland mean opacity, an important quan-
tity for radiation transport. Since the motional Stark effect
is known to broaden and shift spectral lines, its inclusion in
opacity calculations can result in changes to average opacities.

In this paper, we explore the impact that the motional Stark
effect has on continuum functions. The rest of the paper is
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organized as follows. Section II reviews atomic wave func-
tions in the presence of a large magnetic field. Section III
further details the problems associated with trying to calculate
the motional Stark effect for continuum problems. We resolve
this problem in Sec. IV by using a Green’s function to tackle
continuum problems. We present results in Sec. V, showing
how the motional Stark effect can impact bound-free spectra.
We discuss important aspects about opacity in Sec. VI, focus-
ing on both Rosseland mean opacities and oscillator strength
sum rules. Our conclusions are presented in Sec. VII.

II. CONSTRUCTION OF WAVE FUNCTIONS
IN A MAGNETIC FIELD

It is common to use cylindrical coordinates to solve for the
motion of an electron in a high magnetic field. In the absence
of a nuclear potential

H0 = 1

2me
( �p − e �A(r))2 (2)

= 1

2me

[
p2 − e �p · �B × �r + 1

4
( �B × �r)2

]
, (3)

where the symmetric gauge is assumed, an exact solution can
be found. A free electron wave function can be described
under these conditions by the quantum numbers |knm〉, where
k is the linear momentum in the z direction (aligned with the
magnetic field) and nm are the radial and azimuthal quantum
numbers, respectively. The wave function in this case is sepa-
rable, i.e.,

〈r|kn�m〉 = gk (z)�n�m(�, ϕ), (4)

with energies

Ekn�m = 1

2
k2 + |e|β

2
(2n� + |m| + m + 1) (5)

in atomic units. In the previous expression, β is the magnitude
of the magnetic field in atomic units, i.e., β = B/B0 where
B0 = 2.35 × 105 T. The part of the wave function in the z
direction, denoted here by gk (z), is often referred to as the
longitudinal wave function. The wave functions �n�,m(�, ϕ)
are what is known as Landau wave functions [1,2,10,14], and
they describe the behavior of the electron perpendicular to the
magnetic field.

The nm basis is particularly advantageous for Coulomb
problems. Another basis set that can be used takes advantage
of the (infinite) degeneracy of the energy eigenvalues with re-
spect to the m quantum number. In this case, the new quantum
numbers are n and s, where [15]

n = n� + 1

2
(|m| + m), (6)

s = n� + 1

2
(|m| − m), (7)

Ekns = 1

2
k2 + |e|β

2
(2n + 1), (8)

In the presence of a nuclear potential, a solution of the
form displayed in Eq. (11) below is not possible since the
spherically symmetric nuclear potential breaks the cylindri-
cal symmetry. There are multiple ways of calculating atomic

wave functions in high magnetic fields. One of the most
common methods is to build wave functions as a linear com-
bination of cylindrical wave functions [16], i.e.,[

1

2

d2

dz2
− V eff

n�m,n�m(z) + E − En�m

]
gνn�m(z)

=
∑
n′

�m′
V eff

n�m,n′
�m′ (z)gνn′

�m′ (z), (9)

where the effective nuclear potentials are given by

V eff
n�m,n′

�m′ = −
∫∫

d� dϕ � �n�m(�, ϕ)
Z√

�2 + z2
�n′

�m′ (�, ϕ).

(10)
Here, we use the quantum number ν to denote a bound state
and k continues to designate continuum states. The construc-
tion of Eq. (10) is based on the assumption that the magnetic
field dominates, creating the En�m term, which is the second
term of Eq. (5). For continuum states, the most basic solution
is what is known as the “adiabatic” solution, where a contin-
uum wave function is represented by

| f 〉 = |kn�m〉. (11)

The nonadiabatic solution

| f 〉 =
∑

n

cn|kn�m〉 (12)

is a linear combination of states that can be built up from
a reactance matrix [17]. These reactant matrices (and later
S matrices) are used to calculate autoionizing resonances in
the continuum [18]. The total continuum wave function is
expressed explicitly as [19–21]

| f 〉=|kn�m〉 +
∑∫

k′n′
�m′ |k′n′

�m′〉〈k′n′
�m′|GT (Ekn�m)|kn�m〉;

(13)

the Appendix provides a brief overview of the scattering prob-
lem and an explanation of the symbols GT (Ekn�m) that appear
in the above equation.

An example of using Eq. (11) versus Eq. (13) for bound-
free oscillator strengths is demonstrated in Fig. 1. Oscillator
strengths for bound-free or free-free transitions are often de-
noted in differential form, such as

df

dE
or

df

dω
, (14)

with the first denoting the ejected electron energy and the
second the photon energy. There are other normalizing con-
ventions, such as using the momentum of the ejected particle.
However, since our concern here is with the spectrum, using
Eq. (14) is the most convenient form to present the results.
The second solves Eq. (9) exactly using scattering methods,
while the first neglects the right-hand side of Eq. (9). This
example is for H I at B = 400 MG, a magnetic field that was
observed in white dwarf atmospheres. Using the single-state
approximation, the wave functions exhibit an expected fea-
tureless continuum with distinct thresholds for the different
Landau levels. The exact solution reveals the presence of res-
onances, which now dominate the continuum spectrum. The
calculations for Fig. 1 were obtained by truncating the number
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FIG. 1. Comparison of the bound-free oscillator strengths
(df /dE ) obtained with different treatments of the continuum as
a function of the ejected electron energy. Dashed blue lines use
Eq. (11) and solid black lines are calculated using the exact solu-
tion constructed from Eq. (13). Calculations performed for H I in
a B = 400 MG (β = 0.17) field. The exact solution results in the
continuum spectrum being dominated by resonances.

of quantum states, including only up to n� = 3. These features
are expected, as was found previously in Zhao et al. [13].

III. CONTINUUM WAVE FUNCTIONS
WITH A MOVING ATOM

The equations in Sec. II centered around the assumption
that the central nucleus of the atom is infinitely massive,
i.e., it is static. There are a number of consequences of not
having an infinitely massive nucleus. For example, there is a
shifting of atomic energies that depends on the finite mass of
the atom [22] even without the atomic motion. The energy-
level structure becomes even more complicated with atomic
motion.

When the atom is moving, additional terms appear in the
Hamiltonian due to the motional Stark effect. For the case of
an H-like atom we have [2]

HMSE = − 1

M

1 + Zme/mN

1 + me/mN
�s · (β × r), (15)

where

�s = ∇R − Z − 1

2
β × R, (16)

me, mN , and M are the electron, nuclear, and total masses, Z
is the charge of the nucleus, and R is the position operator
of the center-of-mass coordinate. The matrix elements for
the motional Stark effect [Eq. (15)] involve a cross product
of the position operator with the magnetic field, the resulting
vector operator (which is dotted in with the velocity vector)
is nonzero only perpendicular to the magnetic field. There-
fore, the only position operator matrix elements that need
to be evaluated are perpendicular to the magnetic field. The

evaluation of these matrix elements involves an overlap inte-
gral in the z direction. For bound states, this becomes

〈νn�m|r⊥|ν ′n′
�m′〉 = 〈n�m|r⊥|n′

�m′〉〈ν|ν ′〉, (17)

and presents no numerical issues because the longitudinal
wave functions decay to zero as |z| → ∞. Bezchastnov and
Pavlov [6] calculated the ion cyclotron transitions of the He+

ion with full consideration of the motional Stark effect con-
necting the center-of-mass motion with the electronic motion.
However, for continuum problems, continuum wave functions
oscillate at large z, and the overlap integral 〈k|k′〉 becomes
a delta function. In this case the wave functions are usually
normalized according to

〈kn�m|k′n′
�m′〉 = δmm′δn�n′

�
δ(k − k′)eiσ . (18)

This result is obtained by recognizing that at large |z|, the
longitudinal part of the wave function of a continuum state
is defined by the term

1√
2π

e±ikz+iσn�m , (19)

where σn�m is a phase shift due to traveling through a potential,
which in this case is a nuclear potential, and

σ = σn�m − σn′
�m′ , (20)

is the total phase shift, analogous to the Coulomb phase shift,
and is factored out when evaluating Eq. (18). It is convenient
to use the symmetric and antisymmetric basis, which allows
for purely real arithmetic. The resulting overlaps are

〈k+|k′
+〉 = δ(k − k′) cos(σ ) ; 〈k−|k′

−〉 = δ(k − k′) cos(σ ),
(21)

where the + and − subscripts indicate the use of symmetric
and antisymmetric wave functions, respectively.

One way to get around the difficulty of evaluating the
overlaps in Eq. (21) is to use a different center for the atomic
problem, using a shifted center of symmetry [7,23]. In the
first, the motional Stark term disappears, but then one is left to
calculate interaction potentials in a displaced basis set, where
m is no longer a good quantum number, presenting a different
set of problems, and having to explicitly solve for the proton
wave function relative to the guiding center.

In Potekhin [12], the continuum wave functions were
forced to be normalized to unity inside some length in the z
direction, Lz. Making this choice produces the normalization
condition

∫∫
d�dϕ

∫ Lz/2

−Lz/2
dz|ψkn�m(z, �, ϕ)|2 = 1. (22)

This expression is mathematically convenient to evaluate, but
is inconvenient due to the resulting wave functions no longer
being normalized as a true continuum function, though the
authors of Ref. [12] claimed that in the limit that Lz → ∞, it
does approach the correct limit. Rather than taking the limit, a
more fundamental approach is desirable, and would aid in its
inclusion in collision and line-broadening problems [10,11].
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IV. USING GREEN’S FUNCTIONS FOR THE MOTIONAL
STARK EFFECT IN CONTINUUM PROBLEMS

The primary challenge with continuum problems is that
the overlap integral in Eq. (17) as written results in a delta
function when it is applied to continuum states. We consider
several ways to get around the issue of the delta function,
including changing the order of solutions and looking for an
alternate form of the matrix element. The successful method
that we will present here is to use the Green’s function within
the scattering formalism.

A. Green’s function including motional Stark

The technique that we propose here involves the use of
Green’s functions within the scattering formalism [19,20];
Appendix gives a brief overview of scattering, including how
to address systems with two potentials.

Due to the delta function in the matrix elements of VMSE

(see the discussion in the previous section), it makes sense
to couple the resulting delta functions with the other operator
that contains a delta function, i.e., the Green’s function. We
define a Green’s function that includes the motional Stark
operator VMSE,

G = 1

E − H0 − HMSE
(23)

= 1

1 − (E − H0)−1HMSE

1

E − H0
, (24)

where H0 is the Hamiltonian without the motional Stark term.
This expression can be rearranged to write the total Green’s
function as an integral equation

G = G0 + G0HMSEG, (25)

where G0 = (E − H0)−1 and has analytic properties in the
|kn�m〉 basis. The complete Green’s function can be solved
using the close-coupling equations as defined in Ref. [24], i.e.,

[1 − G0HMSE]G = G0, (26)

where, in matrix element form,
∑
n′m′

∫
dk′δ(k − k′)[δnn′δmm′ − G0,knm〈nm|HMSE|n′m′〉]

× 〈k′n′m′|G|knm〉 = G0,knm, (27)

where the phase shift in Eq. (18) is implied and we use a more
compact notation for the Green’s function due to the fact that
it is diagonal in our chosen basis. Here, the delta function is
factored out and is now part of the integral. The integral is
now readily performed∑

n′m′
[δnn′δmm′ − G0,knm〈nm|HMSE|n′m′〉]〈kn′m′|G|knm〉

= G0,knm. (28)

From this result, it is clear that the Green’s function is diago-
nal in the z linear momentum, but not in the radial or azimuthal
quantum numbers.

An alternate formulation of the Green’s function can fully
separate it into a noninteracting part and an interacting part.

The interaction term can be put within a T matrix

G = G0 + G ′ = G0 + G0TMSE(E )G0, (29)

where

TMSE(E ) = 1

1 − HMSE(E − H0)−1
HMSE, (30)

which describes only the T matrix resulting from the motional
Stark effect. The T matrix can be obtained using the close-
coupling technique

[1 − HMSE(E − H0)−1]TMSE(E ) = HMSE, (31)

and can be solved using matrix solve routines (i.e., Ax = b) as
was done in Ref. [24]. The matrix element of this equation will
likewise have overlap integrals of the z component

∑
n′m′

∫
dk′δ(k − k′)[δnn′δmm′ − 〈nm|HMSE|n′m′〉G0,k′n′m′ ]

× 〈k′n′m′|TMSE(E )|k′′n′′m′′〉
= 〈nm|HMSE|n′′m′′〉δ(k − k′′). (32)

It is already known from Eqs. (28) and (29) that the resulting
T matrix has to also be diagonal in the z linear momentum, k.
We can then introduce a delta function as part of the definition
of the T matrix, and perform the integral over k′, to obtain the
reduced equation∑

n′m′
[δnn′δmm′ − 〈nm|HMSE|n′m′〉G0,k′n′m′ ]

× 〈k′n′m′|TMSE(E )|k′′n′′m′′〉δ(k − k′′)

= 〈nm|HMSE|n′′m′′〉δ(k − k′′). (33)

This equation can be solved by simply ignoring the delta
functions, as long as they are included when solving for the
final quantities of interest. This approach poses no problems
because Green’s functions are evaluated within an integral.

B. Modification of the scattering T matrix for collision problems

This new form of the Green’s function can now be included
in the collision T matrix that is used to describe electron-atom
scattering. This T matrix is distinct from TMSE(E ) because it
now includes Coulomb interactions between particles, in this
case, the Coulomb interaction between the free electron and
the nucleus. The scattering T matrix is defined as

T (E ) = V + VGT (E ), (34)

where V is the off-diagonal nuclear potential, specifically
defined to be the right-hand side of Eq. (9), and G contains the
MSE interaction. Since the Green’s function is separable into
the nonmotional Stark part and motional Stark part [Eq. (28)],
we can derive

T (E ) = V + V (G0 + G ′)T (E ) (35)

= t (E ) + t (E )G ′T (E ), (36)

where t (E ) is the scattering T matrix in the absence of the
motional Stark effect

t (E ) = V + VG0t (E ). (37)
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Finally, we obtain

T (E ) = 1

1 − t (E )G ′ t (E ), (38)

or in a form that isolates the motional Stark contribution

T (E ) = t (E ) + t (E )G ′ 1

1 − t (E )G ′ t (E ). (39)

For the results presented here, Eq. (34) will be used, though
the other forms may prove useful in other contexts.

V. RESULTS

Here we highlight several results to demonstrate the mo-
tional Stark effect. The focus here is on the Landau resonances
spectrum and bound-free differential oscillator strengths of
atomic hydrogen for conditions that are found in astrophysical
objects, namely, white dwarfs and neutron stars. The selected
cases demonstrate both moderate and strong field effects.
Since most cases that we explore here are in thermal plasmas
in astrophysical objects, we compare the effect of the motional
Stark effect contained within a thermal average.

These conditions cover a range of relative importance be-
tween the nuclear interaction and the magnetic field. When
β � 1, the nuclear interaction dominates, but, when β � 1,
the magnetic field dominates and the electrons are in the Lan-
dau regime. The case of β ∼ 1 is an interesting regime where
the two interactions are comparable. For the results discussed
here, our focus is limited to neutral hydrogen, though the
formalism presented above can be easily extended to ionic
spectra.

There are a few broad results that apply in all of the cases
that we explore here. First, the inclusion of the cos(σ ) fac-
tor in the evaluation of the matrix element in Eq. (18) does
not have significant bearing on the results. To that extent, it
appears as if the dominant changes to the spectrum occur in
the resonances caused by the highly excited bound states of
the atom. This behavior is born out specifically in the neutron
star cases where the continuum was largely unaltered by the
motional Stark effect. The only part of the spectrum that was
modified was in the narrow region of the spectra below the
Landau threshold.

Further, the transitions characterized by the 
m = 1 (i.e.,
clockwise polarization) selection rule are less affected by the
motional Stark effect than the degenerate states. The reason
why the clockwise polarization is less susceptible to change
from atomic motion is due to the selection rules and en-
ergy differences between levels. Analytic expressions for the
dipole moment are [1]

〈n + 1m + 1|r−1|nm〉 = −√
n + 1/

√
2β, (40)

〈nm + 1|r−1|nm〉 = −√
n − m/

√
2β, (41)

〈n − 1m − 1|r+1|nm〉 = −√
n + 1/

√
2β, (42)

〈nm − 1|r+1|nm〉 = −√
n − m + 1/

√
2β, (43)

where all arguments in the square root need to be zero or
greater. This later criterion limits the number of dipole chan-
nels that are available to positive m states. For example, the

allowed motional Stark channels from m = 1 to m = 0 will
involve states from transitions with either |
n| = 1 or more
highly excited states with n > 1. Therefore, for m = 1, the
high-energy spectra will be more affected by the motional
Stark effect, but low-energy states will be marginally affected,
unless the velocities of the atoms are quite high.

The motional Stark effect moves some of the resonances
above their respective thresholds. When neglecting the mo-
tional Stark effect, there are many resonances just below
each Landau threshold. In an electric field, it is well docu-
mented [3,25] that some states will lower their energies, and
others will have their energies raised and become resonances
on the bound-free continuum. It is, therefore, no surprise that
the same behavior is reproduced here with the motional Stark
effect.

Lastly, for practical application to laboratory and astro-
physical objects, the spectra must also be convolved with a
thermal Doppler profile. The thermal Doppler broadening will
further wash out the details of the resonances. However, in the
white dwarf case, the width from thermal Doppler broadening
is smaller than the widths of the resonances explored here,
so that broadening can be neglected. In the neutron star case,
the Doppler broadening is further minimized due to the lim-
ited motion perpendicular to the field. At such high magnetic
fields, the nucleus and the electrons start spiraling around each
other. This behavior increases the effective mass of the atom,
thus preventing the occurrence of high velocities, even in the
much hotter neutron star atmosphere.

A. H I in white dwarf magnetic fields (β < 1)

Magnetic fields between 1–1000 MG (5 × 10−4 � β �
0.5) have been found in magnetized white dwarfs [26]. Most
white dwarfs have hydrogen in their atmospheres and a much
smaller fraction have helium or other heavier elements. There-
fore, the study of the hydrogen bound-free continuum will
prove valuable to understanding white dwarf spectra.

Figure 2 examines the motional Stark effect in a B = 400
MG field (β = 0.17). Due to the breakdown of selection rules,
Fig. 2 indicates the polarization of light, rather than the 
m
value that the transition corresponds to. We show results for
two different atomic (pseudo)momenta that are common in a
white dwarf atmosphere. For such (comparatively) low fields,
we neglect the anisotropic mass correction [22], which, for the
ground state of hydrogen, does not affect the true velocity of
hydrogen to one part in 105.

The motional Stark effect has the greatest impact on the
number and position of the resonances. We show a zoom in
of the resonances below the n� = 2 threshold in the linearly
polarized light to more clearly demonstrate the changes due
to the motional Stark effect. When we include the motional
Stark effect, we average over a thermal distribution of K : the
pseudomomentum of the atom. For each K the resonances are
both shifted and broadened. Therefore, the thermal average
destroys much of the structure that was previously present.
This behavior also occurs for the counterclockwise circularly
polarized spectra. The clockwise circularly polarized spectra,
however, is not as susceptible to the motional Stark effect as
the other polarizations. Here the shifting is not as severe but
below the first threshold, new resonances appear.
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FIG. 2. Examination of the impact of the motional Stark effect on the Lyman spectrum as a function of photon energy with a static
hydrogen atom, K = 0, and one in a thermal plasma of 2.5-eV temperature with a magnetic field of 400 MG (β = 0.17). Here, ω is the
energy of the photon in eV. The motional Stark effect causes a shifting in the resonances, as well as new resonances to appear. The zoomed-in
spectrum demonstrates the shifting and adding of resonances. Additionally, for the clockwise polarization calculation, subthreshold resonances
now contribute to the spectrum.

B. H I in neutron star magnetic fields (β > 1)

For the neutron star case, we explore two magnetic fields,
β = 5 and β = 103. When hydrogen is considered for the
latter case, the resulting wave functions are “adiabatic” and
are well approximated by Eq. (11). There are some further
consequences to the later field that are not considered in the
white dwarf case: the finite mass of the proton shifts m �= 0
states by an amount proportional to −mβ. When the magnetic
field is large as in the case of neutron star fields, this results
in a not-insignificant shift [22]. Therefore, at β = 103, the
different m quantum numbers have different energies at which
ionization occurs (this is different from ionization energy) in
the absence of the motional Stark effect.

This means that the diagonal elements of the T matrix
will be extremely small near the n� = 0 threshold since the
energies are separated by 103 hartrees. The smallness of the
T matrix will make it so that the impact of the motional

Stark effect cannot be distinguished by the calculation. On
one hand, this is a valuable test to verify that the solution
does indeed converge and does not diverge like the r⊥ operator
does. On the other hand, it makes evaluation of the effect that
we are interested in impossible to observe.

We therefore use a modified technique to remedy this sit-
uation. The technique requires subtracting a small amount of
V eff from the right-hand side of Eq. (9) and including it as part
of the T -matrix potential in Eq. (34) so that

H0 = −1

2

d2

dz2
+ (1 − α)V eff (z)δn�,n′

�
, (44)

V = −αV eff (z)δn�,n′
�
+ V eff (z)(1 − δn�,n′

�
), (45)

where α is a small number. Using this slightly modified
technique, the bound-free spectrum is nearly identical to that
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FIG. 3. Linearly polarized photoionization spectrum of H I in
β = 5 (top panel) and β = 103 (bottom panel); photon energy ω is
given in eV. Spectra for a static atom are displayed in black and for an
atom moving in a hot neutron star atmosphere are displayed in red.
Including motional Stark at the high magnetic-field case generates
resonances from high energy states of different m, which have now
become autoionizing.

for which α = 0. As expected, resonances appear when the
motional Stark effect is included in the spectrum calculation
and these results are independent of the choice of α.

The results here are less interesting than in the white dwarf
case because the magnetic field is starting to dominate the
electronic behavior. In Fig. 3, we see that, as before, the reso-
nances at β = 5 are shifted. At β = 103, resonances from the
different m thresholds appear and more structure is observed
in the bound-free spectrum. Below the next Landau threshold,
we see in Fig. 4 that the same qualitative behavior occurs as
in the β = 5 case.

VI. DISCUSSION

Calculations of white dwarf and neutron star spectra de-
pend on getting many of these details correct. Unfortunately,
the necessary data (oscillator strengths as a function of pho-
ton energy) are not available and approximate solutions [27]
are currently the best-available models [28,29]. For magnetic

FIG. 4. Same as bottom panel of Fig. 3, but just below the n� =
1 threshold. Extremely high-energy resonances are broadened and
reduced. Other resonances have shifted to lower energies.

white dwarfs (for instance), the bound-free opacity is modified
in the following way [28]:

κν = ν

ν − 
mνL
κν (ν − 
mνL ), (46)

where νL is the shift in the energy levels from the linear Zee-
man effect. The resulting opacity will be largely continuous
and will not capture any of the resonances presented here.
Therefore, the calculations without the motional Stark effect
are already much more physical than those already being
used by atmosphere models. Nevertheless, as can already be
seen by the above results, the motional Stark effect plays an
important role in white dwarf atmospheres.

These models may go some way toward resolving a spe-
cific problem with magnetic white dwarfs. Schmidt et al. [30]
and Gänsicke et al. [31] reported on white dwarfs with high
magnetic fields (∼500 MG) that are quite peculiar, where the
visible spectrum is fit with a hotter temperature than the far
UV, see Refs. [30,31]. To our knowledge, this problem has yet
to be resolved, and cannot be accurately modeled by assuming
that the star has a hot spot [31]. Both stars have a sharp
change of slope in the UV around 3000 Å, which corresponds
to roughly 4.13 eV. This abrupt change roughly corresponds
to the Balmer jump in a high magnetic field, similar to the
case that we explore above. The UV spectrum measured by
Gänsicke et al. [31] is relatively featureless, and as we see
here, the inclusion of the motional Stark effect on spectrum
calculations will aid in smearing out resonances.

It is outside the scope of this particular study to resolve
the astrophysical problems presented by Schmidt et al. [30]
and Gänsicke et al. [31]. Such work involves making a grid of
these photoionization cross sections. This grid would be quite
large, needing to be dependent on not only photon energy,
but also magnetic field, photon polarization, and (because
the motional Stark effect depends on particle velocities) tem-
perature. Further, white dwarf atmospheres are fairly dense,
where plasma perturbations are sure to modify the spectrum
even further than what was shown here (all calculations were
performed assuming an isolated atomic system), adding yet
another dimension to the grid. This hypothetical grid would
then need to be incorporated into a stellar atmosphere code,
where radiative equilibrium and transport is calculated at a va-
riety of plasma densities and temperatures for a single stellar
gravity and effective temperature.

We turn our attention briefly to the evaluation of the mean
opacity. A commonly used quantity for evaluating mean opac-
ity is the Rosseland mean [32]

κ−1
ν =

∫ ∞
0 dνκ−1

ν u(ν, T )∫ ∞
0 dνu(ν, T )

, (47)

where

u(ν, T ) = ∂

∂T
Bν (T ), (48)

and Bν (T ) is the Planck distribution. For instance, at T =
2.5 eV, the peak of the Rosseland weighting distribution is
around 10 eV—the location of the unperturbed H I Lyα line.
It is clear that the reduction in the depth of the resonances will
impact the Rosseland mean. The inclusion of the motional
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TABLE I. Comparison of the TR sum rule under different ap-
proximations at B = 400 MG (white dwarf application) for circularly
polarized light: q = 1 and q = −1.

State Field free K = 0 K = 20

q = 1

1sm=0 1.0 1.1610 1.1610
2pm=−1 0.0 1.0728 1.0752
2pm=0 1.0 1.5836 1.5840
2sm=0 1.0 2.0143 2.0138
3dm=−2 −1.0 1.1997 1.2047

q = −1

1sm=0 1.0 0.8390 0.8390
2pm=−1 2.0 0.9272 0.9248
2pm=0 1.0 0.4164 0.4160
2sm=0 1.0 −0.0143 −0.0138
3dm=−2 3.0 0.7953 0.8003

Stark effect will therefore raise the Rosseland mean opacity
compared to the case of static atoms.

Within the discussion about the effect of this work on
opacity, it is important to also draw attention to the Thomas-
Reiche-Kuhn (TRK) oscillator-strength sum rule. In the
absence of a magnetic field, it is well known that the total
oscillator strength out of a given level is equal to the number
of electrons in that system [3]. For hydrogen, then the TRK
sum rule states that ∑

j

fi→ j = 1. (49)

The TRK sum therefore places limits the total integrated opac-
ity. However, in a magnetic field, the sum rules are modified
and are a function of the magnetic field strength [33–35]

∑
j

fi→ j = 1 + qLz + q
β

2

〈
r2
⊥
〉
, (50)

where q is the polarization of the transition and Lz is the
z component of angular momentum. Here, it is clear that
the total integrated opacity will increase with magnetic-field
strength. In the absence of a magnetic field, the TRK sum
rule [Eq. (49)] is derived using simple operator relationships
and is independent of the choice of the potential. However,
with a magnetic field [Eq. (50)], the sum rule now depends
on the specific state of the wave functions. Because the wave-
function solution is modified by the motional Stark effect, it
therefore also has an impact on the oscillator strength sum
rule. These changes are two-fold: first, when a perpendicular
electric field is applied, Lz is no longer an eigenstate of the
new wave functions and will be modified from its static pic-
ture; second, the electric field causes elongation of the wave
function in the x-y plane causing changes in the expectation
value of r2

⊥. If we consider the white dwarf case, where B =
400 MG, overall, the motional Stark effect does not induce
major changes in the TRK sum rule, though it is not fixed. We
highlight some results in Table I for white dwarfs at B = 400
MG and in Table II for neutron stars at B = 2.35 × 1012 G.

TABLE II. Comparison of the TRK sum rule under different
approximations at B = 2.35 × 1012 G (neutron star application) for
circularly polarized light: q = 1 and q = −1.

State K = 0 K = 20 K = 100

q = 1

1sm=0 1.9963 1.9964 1.9972
2pm=−1 1.9978 1.9978 1.9981
3dm=−2 1.9983 1.9984 1.9982

q = −1

1sm=0 0.0037 0.0036 0.0028
2pm=−1 0.0022 0.0022 0.0019
3dm=−2 0.0017 0.0016 0.0015

VII. CONCLUSION

It is well known that atoms moving in a magnetic field
results in changes to the electronic energy structure; this phe-
nomenon is known as the motional Stark effect. The impact
of the motional Stark effect has been well documented for
bound-state problems where states normalize to unity. How-
ever, the extension of the motional Stark effect to continuum
problems is not trivial due to the delta function normalization.
We present here a means of calculating the motional Stark ef-
fect on continuum problems by using a scattering formalism.

Our principal results are documented in Sec. V. To summa-
rize, the motional Stark effect on continuum states does not
strongly depend on the phase shift, transitions to m = 1 are
less affected by motional Stark, resonances are shifted in en-
ergy (some up and some down), and other resonances appear
at different values of atomic momenta. Taking the thermal
average of these effects produces resonances in the continuum
that become weaker and less distinct. Further, much of the
structure disappears entirely.

The work presented here describes the most physically
comprehensive bound-free opacity for atoms in a large mag-
netic field embedded in a thermal plasma. This work will
be most significant for astrophysical plasmas, such as those
found in the atmospheres of white dwarfs and neutron
stars.
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APPENDIX: SCATTERING PROBLEM

The technique that we propose here involves the use of
Green’s functions within the scattering formalism [19,20].
In the scattering problem, the Schrödinger equation can be
written in the form

(E − H )|�〉 = 0, (A1)

where |�〉 is the total scattering wave. The Lippmann-
Schwinger equation can be readily derived [36] in the form

|�〉 = |φ〉 + 1

E − H0
V |�〉, (A2)

where the second term is an in-coming or out-going scattered
wave. In a magnetic field, the geometry is changed to being
an effective one-dimensional problem. Therefore, rather than
an in-coming or out-going wave, this same equation now
becomes a reflected or transmitted wave.

The quantity (E − H0)−1 is often referred to as a Green’s
function, generally labeled as G. The Green’s function con-
tains a singularity and is evaluated using complex analysis by
introducing a small imaginary part

lim
η→0

1

E − H0 + iη
= p.v.

E − H0
− iπδ(E − H0), (A3)

where p.v. denotes taking the Cauchy principal value. From
here on out, as well as in the main text, the small imaginary
part will be implied. We make a point of explicitly showing the
delta function here as it will be important for the evaluation of
the motional Stark effect.

An alternative to Eq. (A2) is to solve for the T matrix. The
T matrix is defined as

T (E ) = V + VGT (E ) (A4)

and modifies the scattering equation to become

|�〉 = |φ〉 + GT (E )|φ〉. (A5)

For this work, the T matrix is obtained by solving linear
systems of the generic form Ax = b [24]. The system to be
solved is

[1 − VG]T (E ) = V, (A6)

where the quantity in brackets corresponds to the matrix A,
the T -matrix corresponds to x and V is the set of b.

For the motional Stark part of the problem, we have two
potentials, i.e.,

H = H0 + V1 + V2. (A7)

In Refs. [20,36], a formalism was developed to address this
problem. Within scattering, this approach appears in the
context of a distorted-wave treatment, but proves to be advan-
tageous for the specific problem at hand. In the case of a free
electron in the potential of an atomic nucleus, V2 can represent
part of that potential, and V1 can represent the motional Stark
effect. The scattering problem then becomes one of finding a
solution to the equation

|�〉 = |φ〉 + 1

E − H ′ V1|�〉, (A8)

where we define

H ′ = H0 + V2. (A9)

For the motional Stark problem, H ′ does not have a known
solution and is not diagonal in the |knm〉 basis, though H0 will
be diagonal in that given basis set.
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