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Hyperfine-induced frequency shifts for the candidate clock transitions in the 61Ni12+ ion
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The 61Ni12+ ion is a promising candidate for a novel ultraprecise optical clock, owing to its two clock
transitions with narrow natural linewidth between levels with low degeneracy. Using the multiconfiguration
Dirac-Hartree-Fock (MCDHF) method, we calculated the hyperfine-induced Landé g factors for the 3P0 F = 3/2
and 3P1,2 F = 1/2 states, as well as the hyperfine-induced electronic quadrupole moment of the 3P0 F = 3/2
state in the 61Ni12+ ion. The effects of the electron correlations and relativistic effects on the concerned atomic
parameters were evaluated in detail based on the active space approach. It is found that the valence-valence
and core-valence electron correlations have the dominant influence on the atomic parameters concerned, while
the core-core and the higher-order correlations are non-negligible for evaluating the uncertainties. Additionally,
the relative quadratic Zeeman shifts, the relative electric quadrupole shift, and the corrections arising from the
hyperfine-induced effect were evaluated. It is demonstrated that the hyperfine interaction strictly eliminates the
electric quadrupole shift of the M1 transition 3s23p4 3P1 −3P2, and significantly reduces the electric quadrupole
frequency shift for the E2 transition 3s23p4 3P0 −3P2 by a factor of 4 × 10−6. The hyperfine-induced corrections
to the relative quadratic Zeeman shifts are factors of 2 × 10−4 and 6 × 10−7 for the M1 and E2 transition,
respectively. It means that the hyperfine-induced effects need to be identified precisely for an ultraprecise 61Ni12+

optical clock aiming for a precision better than 10−19 when the magnetic field exceeds 1 µT or the gradient of the
environmental electric field exceeds 108 V/m2.
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I. INTRODUCTION

The extraordinary precision afforded by optical clocks not
only facilitates the improvement of time standards, but also
enables the testing of fundamental physics, such as looking
for changes in fundamental constants over time, measuring
gravity redshift, and probing the existence of forces beyond
the Standard Model [1–4]. Up to now, the fractional uncer-
tainties of 171Yb, 171Yb+, 87Sr, and 40Ca+ clocks have been
achieved at a level of 10−18 [5–8], and at 10−19 for the
27Al+ clock [9]. Compared to the neutral atoms and singly
charged ions, highly charged ions (HCIs) possess extremely
narrow optical transitions that are insensitive to the exter-
nal perturbations and more sensitive to the variation of the
fine structure constant α, due to the shrunk electronic cloud
and enhanced relativity effect with the increasing of the ion
charge. In recent years, nearly 70 HCIs have been suggested
as candidates for ultraprecise optical clocks and exploring
new physics beyond the Standard Model [10–21]. Meanwhile,
the HCI optical clock experiments have made substantial
progress [22–24]. For instance, the sympathetic cooling and
quantum logic spectroscopy of HCIs have been applied for
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the Ar13+ ion [22,23]. The Ar13+ clock with an uncertainty
of 2.2 × 10−17 has been achieved, while the associated in-
stability of 2.6 × 10−14/

√
τ is limited mainly by the natural

linewidth (∼16 Hz) of the clock transition [24]. Additionally,
optical clocks based on the HCI with narrow clock transition,
such as Ni12+, Pd12+, Pr9+, Nd9+, and Pb41+, are also being
developed [25–30].

The Ni12+ ion is one of the most promising candidates
for a novel ultraprecise optical clock, since it provides two
optical clock transitions with narrow natural linewidths within
its simple energy level structures, the electric quadrupole (E2)
transition at 498 nm 3s23p4 3P0 −3P2 and the magnetic dipole
(M1) transition at 512 nm 3s23p4 3P1 −3P2 [26]. In particu-
lar, the high-quality factor of the E2 transition at 7.5 × 1016

is beneficial to provide high stability for the optical clock,
which is advantageous for its precision and accuracy in time-
keeping. Furthermore, the M1 transition serves not only as
a candidate optical clock transition to demonstrate the HCI
clock but also as a logic transition for detecting the E2 clock
transition [29]. The electric quadrupole shift, caused by the
interaction between the electric quadrupole moments of the
clock states and the gradient of the electric field, is one of
the main systematic shifts in the atomic clock. Compared
with bosonic Ni isotopes, the fermionic 61Ni (I = 3/2) isotope
can substantially suppress the electric quadrupole frequency
shift of the clock transitions by selecting clock transitions
between the particular hyperfine levels [27,31]. As shown in
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FIG. 1. Clock transitions in the 61Ni12+ ion.

Fig. 1, the clock transitions corresponding to the 61Ni12+ ion
are 3s23p4 3P0 F = 3/2 − 3P2 F = 1/2 and 3s23p4 3P1 F =
1/2 − 3P2 F = 1/2. In this way, the electric quadrupole fre-
quency shift of the M1 transition will be strictly removed, and
the electric quadrupole frequency shift of E2 transition will
be reduced significantly. However, the hyperfine interaction
caused by the coupling of the spin of the 61Ni nucleus to
electrons breaks the spatial symmetry of the electron cloud,
and thus leads to a mixing between the states with the same
parity but different angular momenta. This introduces a slight
sensitivity to the perturbations from electromagnetic field and
systematic frequency shifts for an optical clock. For instance,
the hyperfine interaction results in nonzero Landé g factors for
the 3P0 clock state of the 27Al+ and 87Sr clock [32]. In fact, the
“hyperfine-induced” effect will influence the frequency shifts
of the clock transitions of the 61Ni12+ ion, but there has been
no investigation of it.

In this work, we carried out ab initio calculations on
the hyperfine-induced Landé g factors of 3P0 F = 3/2 and
3P1,2 F = 1/2 states, and the electronic quadrupole moment
of the 3P0 F = 3/2 state involved in clock transitions of
61Ni12+ ion, using the MCDHF method. The electron corre-
lations, not only in the valence shell but also those related
to the core, were taken into account systematically based
on the active space approach, as high-quality wave functions
are required for accurate determination of hyperfine-induced
Landé g factors and electronic quadrupole moment. In addi-
tion, the relative quadratic Zeeman shifts, the relative electric
quadrupole shifts, and the correction due to the hyperfine-
induced effect on these shifts were evaluated. This work is
expected to support the experimental investigations of the
61Ni12+ ion optical clock.

II. THEORETICAL METHOD

A. Hyperfine interaction

The hyperfine interaction, denoted as Hhfs, is the interac-
tion between the electrons and the electromagnetic multipole
moments of the nucleus. For an N-electron atom system with
the nonzero nuclear spin, its Hamiltonian can be represented
as a sum of Hhfs and the relativistic Dirac-Coulomb-Breit
(DCB) Hamiltonian HDCB,

H = HDCB + Hhfs. (1)

The DCB Hamiltonian is given by

HDCB =
N∑

i=1

[c αi · pi + (βi − 1)c2 + V nuc(ri)]

+
N∑

i> j

[
1

ri j
+ Bi j

]
, (2)

where c is the speed of light in vacuum, αi and βi are the 4 × 4
Dirac matrices, Vnuc(ri ) is the monopole part of the electron-
nucleus interaction, 1

ri j
is the Coulomb interaction, and Bi j is

the Breit interaction in the frequency-independent limit, given
by

Bi j = − 1

2ri j

[
αi · α j + (αi · ri j )(α j · ri j )

r2
i j

]
. (3)

The hyperfine interaction Hhfs is represented as a scalar
product of two spherical tensors with the rank of k,

Hhfs =
∑
k�1

T (k) · M (k), (4)

where T (k) and M (k) act on the electronic and nuclear space,
respectively [33]. The k = 1 and k = 2 terms describe the
magnetic dipole and electric quadrupole hyperfine interac-
tions, respectively. The higher-order terms with k � 2 are
small and neglected in this work. For an N-electron atom, the
electronic tensor operators T (1) and T (2) read

T (1) =
N∑

j=1

t (1)( j) =
N∑

j=1

−iα(α j · l jC(1)( j))r−2
j (5)

and

T (2) =
N∑

j=1

t (2)( j) =
N∑

j=1

−C(2)( j)r−3
j , (6)

where i is the imaginary unit, α is the fine-structure constant,
and l j is the orbital angular momentum operator. C(1) and C(2)

are spherical tensor operators with the components related to

the spherical harmonics as C(k)
q =

√
4π

2k+1Ykq. The magnetic

dipole moment μI and electronic quadrupole moment Q of
the nucleus are related to the matrix elements of the nuclear
tensor operators M (1) and M (2) through [34]

μI = √
2I + 1

(
I 1 I

−I 0 I

)
〈ϒI||M (1)||ϒI〉 , (7)

QI = 2
√

2I + 1

(
I 2 I

−I 0 I

)
〈ϒI||M (2)||ϒI〉. (8)

The values of the magnetic dipole moment and electronic
quadrupole moment of 61Ni, μI = −0.75002 µN and Q =
0.162 b, were taken from the table by Stone [35].

The hyperfine interaction causes the electronic angular mo-
mentum J to couple with the nuclear spin I and form a total
angular momentum F, i.e., F = I + J. In this case, F and
MF are good quantum numbers, and the wave functions of
the atomic system |FMF 〉 are expressed as

|FMF 〉 =
∑
�′J ′

d�′J ′ |ϒ�′IJ ′FMF 〉, (9)
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where

|ϒ�IJFMF 〉 =
∑
MI MJ

〈IJMI MJ |IJFMF 〉|ϒIMI〉|�JMJ〉.
(10)

Here 〈IJMI MJ |IJFMF 〉 is the Clebsch-Gordan coefficient,
and |ϒIMI〉 and |�JMJ〉 are wave functions of the nucleus
and the electrons in the atom, respectively, in which ϒ and
� represent the additional quantum numbers for describing
nuclear and electronic states uniquely. Comparing with the
fine structure split, the hyperfine interaction is so weak that it
can be treated as a perturbation. In the first-order perturbation
approximation, hyperfine-induced mixing coefficients are

d (1)
�′J ′ = 〈ϒ�′IJ ′FMF |Hhfs|ϒ�IJFMF 〉

Eϒ�IJFMF − Eϒ�′IJ ′FMF

, (11)

where the primes label the perturbing states. The matrix el-
ements for the magnetic dipole and the electric quadrupole
hyperfine interaction are

〈ϒ�IJFMF |T (1) · M (1)|ϒ�′IJ ′FMF 〉

= (−1)I+J+F

{
I J F
J ′ I 1

}

× √
2J + 1

√
2I + 1〈�J‖T (1)‖�′J ′〉〈ϒI‖M (1)‖ϒI〉,

(12)

and

〈ϒ�IJFMF |T (2) · M (2)|ϒ�′IJ ′FMF 〉

= (−1)I+J+F

{
I J F
J ′ I 2

}

× √
2J + 1

√
2I + 1〈�J‖T (2)‖�′J ′〉〈ϒI‖M (2)‖ϒI〉,

(13)

respectively.

B. Zeeman effect of hyperfine levels

The interaction between the atom and magnetic field B can
be described by the Hamiltonian Hm [36,37],

Hm = −(μI + μe) · B, (14)

where μI is the nuclear magnetic moment. The interaction
between the nuclear magnetic moment and the magnetic
field, −μI · B, is related to the nuclear g factor of gI =
−(me/mp )(μI/IμN ), where me and mp are the electron
and proton masses, respectively. For the 61Ni isotope, gI =
−2.72 × 10−4. The electronic magnetic moment μe that
includes the Schwinger quantum electrodynamic (QED) cor-
rection is given by

μe = N (1) + �N (1) (15)

and

N (1) =
N∑

j=1

n(1)( j) = −
N∑

j=1

√
2i

2α
(α j · l jC(1)( j))r j, (16)

�N (1) =
N∑

j=1

�n(1)( j) =
N∑

j=1

(gs − 2)

2
β j� j, (17)

where � j is the relativistic spin matrix, and gs = 2.00232
stands for the g factor of the electron spin corrected by QED
effects.

In the weak-magnetic-field approximation, Hm � Hhfs, the
energy shift of a given hyperfine level |FMF 〉 can be deter-
mined by the perturbation theory,

�E (1)
m = 1

2
〈FMF |N (1) + �N (1)|FMF 〉B

= MF
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1)

× 〈�J‖N (1) + �N (1)‖�J〉√
J (J + 1)

B

= MF
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1)
gJ

B

2

= MF gF
B

2
, (18)

where gJ and gF are Landé g factors for the fine and hyperfine
states. Substituting Eq. (9) into the equation above, the gF can
be written as

gF ≈ 〈ϒ�IJFMF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉
MF

+ 2
∑
�′J ′

d (1)
�′J ′

〈ϒ�IJFMF |N (1)
0 + �N (1)

0 |ϒ�′IJ ′FMF 〉
MF

= g(0)
F + δg(1)

F hfs. (19)

The last term δg(1)
F hfs represents a hyperfine-induced Landé g

factor. Only the states belonging to the 3s23p4 configuration
are treated as perturbing states in practical calculations, ne-
glecting others because of their fractional contribution due
to large energy intervals. For instance, the contributions from
states above 3s23p4 were estimated to be less than 10−10 for
the δg(1)

F hfs of concerned states in the 61Ni12+ ion.
Generally, the second-order Zeeman effects also should be

considered for evaluating the Zeeman shift of the clock tran-
sition frequency. For an atomic state |FMF 〉, the second-order
Zeeman shift is given by

�E (2)
m =

∑
J ′F ′

|〈ϒ�′IJ ′F ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉B|2
Eϒ�IJF − Eϒ�′IJ ′F ′

= Cm2B2, (20)

where Cm2 is the quadratic Zeeman shift coefficient. The hy-
perfine level energy is EIJF = EJ + �Ehfs, and �Ehfs is given
by

�Ehfs = 1

2
AhfsK + Bhfs

3
4 K (K + 1) − I (I + 1)J (J + 1)

2I (2I − 1)J (2J − 1)
,

(21)
where K = F (F + 1) − J (J + 1) − I (I + 1), the magnetic
dipole and the electric quadrupole hyperfine interaction con-
stants Ahfs and Bhfs of the clock states in the 61Ni12+ ion have
been calculated in our previous work [31].

For the state with quantum number J = 0, the second-
order Zeeman shift arises from levels separated in energy by
the fine-structure splitting, while for the state with nonzero
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J , it arises from nearby hyperfine levels. Accordingly, the
quadratic Zeeman shift coefficient of the states with nonzero
J is

Cm2 ≈ 〈ϒ�IJF ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉2

Eϒ�IJF − Eϒ�IJF ′

+
∑
J ′F ′

(
d (1)

�′J ′ 〈ϒ�IJ ′F ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉)2

Eϒ�IJF − Eϒ�IJF ′

+ 2
∑
J ′F ′

d (1)
�J ′ 〈ϒ�IJ ′F ′MF |N (1)

0 + �N (1)
0 |ϒ�IJFMF 〉

× 〈ϒ�IJF ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉
Eϒ�IJF − Eϒ�IJF ′

+ 2
∑
J ′F ′

d (1)
�′J ′ 〈ϒ�IJ ′F ′MF |N (1)

0 + �N (1)
0 |ϒ�IJFMF 〉

Eϒ�IJF − Eϒ�IJF ′

×
∑
J ′F ′

d (1)
�′J ′ 〈ϒ�IJ ′F ′MF |N (1)

0 + �N (1)
0 |ϒ�IJFMF 〉

= C(0)
m2 + δC(1)

m2 hfs. (22)

For the state with J = 0, it is

Cm2 ≈
∑
J ′F ′

〈ϒ�IJ ′F ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉2

Eϒ�IJF − Eϒ�IJ ′F ′

+
∑
J ′F ′

(d (1)
�′J ′ 〈ϒ�IJ ′F ′MF |N (1)

0 + �N (1)
0 |ϒ�IJFMF 〉)2

Eϒ�IJF − Eϒ�IJ ′F ′

+ 2
∑
J ′F ′

d (1)
�J ′ 〈ϒ�IJ ′F ′MF |N (1)

0 + �N (1)
0 |ϒ�IJFMF 〉

× 〈ϒ�IJ ′F ′MF |N (1)
0 + �N (1)

0 |ϒ�IJFMF 〉
Eϒ�IJF − Eϒ�IJ ′F ′

= C(0)
m2 + δC(1)

m2 hfs. (23)

The initial term means a quadratic Zeeman shift coefficient
excluding the induced effect by hyperfine interaction, while
the subsequent terms represent its correction arising from
the hyperfine-induced effect. The Zeeman matrix elements
between hyperfine states are given by

〈ϒ�IJFMF |N (1)
0 + �N (1)

0 |ϒ�′IJ ′FMF 〉

= (−1)I+J ′+1+F MF

√
2F + 1

F (F + 1)

{
J F I
F J ′ 1

}

× √
2J + 1〈�J||N (1) + �N (1)||�′J ′〉 (24)

and

〈ϒ�IJFMF |N (1)
0 + �N (1)

0 |ϒ�′IJ ′F − 1MF 〉

= (−1)I+J ′+1+F MF

√
F 2 − M2

F

F

{
J F I

F − 1 J ′ 1

}

× √
2J + 1〈�J||N (1) + �N (1)||�′J ′〉, (25)

where J ′ = J − 1, J, J + 1.

C. Electric quadrupole moments of hyperfine levels

The atomic state electric quadrupole moment is due to the
atomic charge distribution deviated from spherical symmetry.
The interaction between the electric quadrupole moment and
the electric-field gradient generated by the electrodes of an ion
trap is described by the Hamiltonian HQ,

HQ = ∇ε(2) · �(2) =
2∑

q=−2

(−1)q∇ε(2)
q �

(2)
−q. (26)

The q = 0 components of the tensor for the gradients of the
external electric field ∇ε(2) is ∇ε

(2)
0 = − 1

2
∂εz

∂z . �(2) is the

electric-quadrupole operator, and �
(2)
0 = − e

2 (3z2 − r2) [38].
We treated the HQ as a perturbation, since the energy shift

due to HQ is small in practice. For a given hyperfine level
|FMF 〉, the energy correction is

�EQ = 1

2

∂εz

∂z
〈FMF |�(2)

0 |FMF 〉. (27)

Considering the wave functions of the atomic system with
hyperfine mixing Eq. (9), the electric quadrupole moment of
the hyperfine level �F = 〈�F |�(2)

0 |�F 〉 is

�F ≈ 〈ϒ�IJFMF |�(2)
0 |ϒ�IJFMF 〉

+ 2
∑
�′J ′

d (1)
�′J ′ 〈ϒ�IJFMF |�(2)

0 |ϒ�′IJ ′FMF 〉

= �
(0)
F + δ�

(1)
F hfs

, (28)

where

〈ϒ�IJFMF |�(2)
0 |ϒ�′IJ ′FMF 〉

= (−1)I+J ′+1+F
[
3M2

F − F (F + 1)
]

×
√

2F + 1

(2F + 3)(F + 1)F (2F − 1)

{
J 2 J ′
F I F

}

× 〈�J||�(2)||�′J ′〉. (29)

Since �(2) is an even-parity operator of rank 2, the elec-
tric quadrupole moments of the 3s23p4 3P1 F = 1/2 and
3P2 F = 1/2 states in the 61Ni12+ ion are strictly zero. For
the electric quadrupole moments of the 3s23p4 3P0 F = 3/2
state, only contributions from the adjacent 3P2 and 1D2 states
are included in practical calculations; others are neglected
because their fractional contribution is less than 10−13. In
addition, the direct contribution due to the nuclear electronic
quadrupole moment of 61Ni (Q = 0.162 b ≈ 6.4 × 10−9 a.u.)
is negligible for the electric quadrupole frequency shifts of the
concerned transitions in the 61Ni12+ ion.

D. MCDHF method

In the MCDHF method, an electronic state wave func-
tion (ESFs) |�JMJ〉 is constructed with configuration state
functions (CSFs) |γ JMJ〉 with the same parity, total angular
momentum J , and its component along the z direction MJ

[39,40]:

|�JMJ〉 =
NCSF∑
i=1

ci|γiJMJ〉, (30)
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where ci is the mixing coefficient, and γi stands for other
appropriate labeling of the CSF. Each CSF is a linear com-
bination of products of one-electron Dirac orbitals. Both the
mixing coefficients and the orbitals are optimized in the self-
consistent field (SCF) procedure to minimize the energies
of the levels concerned. Once a set of orbitals is obtained,
relativistic configuration interaction (RCI) calculations can be
carried out to capture more electron correlations by optimiz-
ing the mixing coefficients. In addition, the Breit interaction
and leading quantum electrodynamic (QED) corrections have
also been included by the RCI calculations [41].

III. COMPUTATIONAL MODEL

For the many-electron atomic system, the description of
electron correlations in the computational model is crucial
for the precision of the calculated atomic parameters. In the
framework of the MCDHF method, the electron correlation
effects are divided into first- and higher-order electron corre-
lation effects according to the perturbation theory, and these
correlations are captured by the active space approach.

In the case of Ni12+, the first-order electron correlation ef-
fects were captured by the CSFs generated through the single
and double (SD) excitation from the occupied orbitals in the
reference configuration 3s23p4 to virtual orbitals. To capture
the electron correlation effect systematically, we treated the
3s and 3p orbitals as valence orbitals and others as core.
Therefore, the first-order electron correlation is composed
of the correlation between valence electrons (VV correla-
tion), the correlation between core and valence electrons (CV
correlation), and the correlation between the core electrons
(CC correlation). In this work, the VV and CV correlation
were taken into account in the SCF calculations. The SCF
calculations were started from the Dirac-Hartree-Fock (DHF)
approximation, where the occupied orbitals are optimized as
spectroscopic orbitals. These orbitals were kept frozen in the
subsequent calculations. To capture the VV and CV correla-
tions, the configuration space was augmented by the restricted
SD replacement of occupied orbitals with a set of virtual
orbitals. The restriction condition is that only one core orbital
can be substituted at a step. For monitoring the convergence,
the virtual orbitals were enlarged and optimized layer by
layer up to nmax = 12 and lmax = 6, where nmax and lmax are
the maximum principal quantum number and the maximum
angular quantum number of the virtual orbitals. Each layer
consists of orbitals with different orbital angular momentum.
For example, the first layer of virtual orbitals consists of {4s,
4p, 3d , 4 f } in this work. In our test calculations, it was
observed that the contributions from orbitals with large orbital
angular momentum l (such as 9i, 10h, 11g orbitals, etc.) were
negligible for the atomic parameters concerned, hence these
orbitals were not included in the set of active orbitals. The
orbitals set formed in the last step of SCF calculations, labeled
as CV, were fixed in RCI calculations.

The CC correlations were taken into account in RCI cal-
culations by adding the CSFs generated through the SD
excitation from the core orbitals to all virtual orbitals.
To quantify the effects of various core orbitals on the
physical quantities concerned, we opened up the 2p, 2s,
and 1s subshells successively, and labeled corresponding

calculations with CC2p, CC2s, and CC1s, respectively. So far,
all the first-order electron correlations have been captured in
our calculations.

To raise the accuracy of the calculated atom parameters,
the primary higher-order electron correlation was considered
in our calculations. In principle, the higher-order correlation
can be captured by adding the CSFs generated from the triple
and quadruple (TQ) excitation. However, it is impracticable
and unnecessary to include all TQ excitation CSFs in practical
calculations, due to the rapid expansion of the configuration
space and the minimal contributions from most of these CSFs.
To control the number of CSFs and capture the dominant
higher-order correlation, we employed the MR-SD approach,
which further included the CSFs from the SD excitation
of the multireference (MR) configuration set. Notably, the
CSFs generated by the MR-SD approach are equivalent to
the restricted TQ excitation from a single reference configura-
tion. In this study the multireference (MR) configuration set,
{3s23p4, 3s3p43d , 3s23p23d2, 3p6}, was formed by selecting
the CSFs with the weights of |ci| > 0.01 in the configuration
space of the CC1s model. This model is marked as MR, in
which the SD excitations are permitted from orbitals with
n � 2 in the multireference configurations to the three lay-
ers of virtual orbitals. Finally, the contributions of the Breit
interaction and the QED effects are evaluated based on the
MR model, labeled using MR-B and MR-BQ, respectively.
In practice, we employ the GRASP2018 [42] and HFSZEE-
MAN95 [43] packages to perform present calculations. The
active orbital and the number of CSFs corresponding to com-
putational processes are shown in Table I.

IV. RESULTS AND DISCUSSION

A. Energies

Table II shows the energies of the 3s23p4 3P1, 3P0, and
1D2 states in the Ni12+ ion as functions of the computa-
tional models. It is observed that the VV and CV electron
correlations contribute significantly to the fine structure of
Ni12+ ion. Specifically, from the DF model to the CV model,
the calculated energies of 3P1, 3P0, and 1D2 states vary by
0.3%, 5%, and 8% respectively. The effects of the electron
correlation between core orbitals are relatively small, as the
nuclear Coulomb potential is stronger in the inner region. In
this case, the total contribution of the CC correlations (CC2p +
CC2s + CC1s) to the energies is not more than 0.1%, 0.5%,
and 0.3% for the 3P1, 3P0, and 1D2 states, respectively. The
contributions of the higher-order correlations, which involve
orbitals with n � 2 captured in the MR model, are slightly
larger than the contributions of the CC correlation. These
contributions to the energies of the 3P1, 3P0 and 1D2 states
are −0.2%, −0.5%, and −0.4%, respectively. Therefore, for
the calculation of the Ni12+ ion that required high precision,
the main higher-order correlation is indispensable, while the
CC correlation is necessary to reduce the uncertainties. It is
well known that the effect of the Breit interaction on the fine
structure of HCI is important. Our calculation demonstrates
that for the Ni12+ ion, the effect of the Breit interaction on
the energies of the 3P1, 3P0, and 1D2 states is −2.4%, −1.3%,
and 1%, respectively. The contributions of the QED effect are
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TABLE I. Number of CSFs for the states with 3s23p4 configuration of Ni12+ ion and the active orbital in various correlation models. AO
represents the active orbital, and NCSF is the number of CSFs.

NCSF

Model AO (nmaxl) J = 0 J = 1 J = 2

DHF {3s, 3p} 2 1 2
CV {12s, 12p, 11d , 12 f , 10g, 9h, 8i} 130 704 362 637 520 557
CC2p {12s, 12p, 11d , 12 f , 10g, 9h, 8i} 178 648 495 326 713 217
CC2s {12s, 12p, 11d , 12 f , 10g, 9h, 8i} 221 881 615 343 886 166
CC1s {12s, 12p, 11d , 12 f , 10g, 9h, 8i} 279 334 774 815 1 115 484
MR {5s, 5p, 5d , 5 f , 5g} 613 794 1 709 421 2 473 599

less than a tenth of those of the Breit interaction. Additionally,
the correction from the frequency-dependent Breit interaction
on the energies concerned is evaluated between spectroscopic
orbitals, and considered in the results from the MR-BQ model.

The level structure and transition properties of the Ni12+

ion were evaluated with a variety of theoretical methods
[26,44–49], for the purpose of interpreting the vast amount
of observational data from the solar, astrophysical, and lab-
oratory plasma. At the bottom of Table II, we compared
the calculated results with the recommended values from the
National Institute of Standards and Technology (NIST) and
theoretical results in the literature for the energies of states
concerned in Ni12+ ion. Ishikawa and Vilkas [44] calculated
energies of 46 states arising from the 3s23p4, 3s3p5, and
3s23p33d configurations of S-like ions using multireference
Møller-Plesset (MR-MP) perturbation theory. Their results
have excellent agreement, within 0.2%, with the NIST val-
ues since almost all electron correlations (nondynamic and

TABLE II. Energies of the 3s23p4 3P1, 3P0, and 1D2 states rela-
tive to the ground state 3P2 in the Ni12+ ion (in a.u.). Other theoretical
results and the NIST values are also presented for comparison.

Model 3P1
3P0

1D2

DHF 0.0909 0.0975 0.2344
CV 0.0911 0.0930 0.2178
CC2p 0.0912 0.0933 0.2181
CC2s 0.0912 0.0934 0.2182
CC1s 0.0912 0.0935 0.2184
MR 0.0910 0.0930 0.2174
MR-B 0.0889 0.0918 0.2153
MR-BQ 0.0890 0.0917 0.2153

Others

Ishikawa [44] 0.0890 0.0915 0.2140
Bhatia [45] 0.0815 0.0845 0.2220
Chou [46] 0.0884 0.0920 0.2235
Aggarwal [47] 0.0880 0.0915 0.2225
Nazira [48] 0.0880 0.0915 0.2225
Nazirb [48] 0.0880 0.0910 0.2215
Yu [26] 0.0891 0.0923 0.2165
Wang [49] 0.0890 0.0918 0.2150
NIST [50] 0.0890 0.0914 0.2143

aCalculated with the MCDHF method.
bCalculated with FAC.

dynamic correlations), the Breit interaction, and the QED
effect are captured in the calculation. By contrast, for the
superstructure (SS) calculations by Bhatia and Doschek [45],
only the 3s23p4 and 3p6 configurations were used to optimize
the atomic state wave function of even states. Therefore, the
SS calculations yield differences of 8% and 4% for the 3P1,0

and 1D2 states with the NIST values. The electron correla-
tions included in the earlier MCDHF calculations by Chou
et al. [46], Aggarwal et al. [47], and Nazir et al. [48] are
similar, only considering the main VV correlation. Therefore,
the discrepancies among these results are tiny. All of their
calculations differed by 1% and 4% for the 3P1,0 and 1D2

states from the NIST. In addition, Nazir et al. [48] also per-
formed the flexible atomic code (FAC) calculation, and their
FAC results agree well with the MCDHF calculation for the
levels belonging to the configuration 3s23p4. The higher-order
correlation is neglected in the MCDHF calculations by Yu
and Sahoo [26], while the CC correlation is neglected in the
calculation by Wang et al. [49]. As shown in our calculation,
the contributions of the higher-order correlation are larger
than and opposite to those of the CC correlation. Thus, the
results calculated by Wang et al. are in better agreement with
the recommended values in the NIST database. It is shown
that the sufficient description of electron correlations in the
computational model is indispensable for calculation asked
for high precision. On the whole, our calculated results are in
good agreement (within 0.5%) with the recommended values
in the NIST database, since sufficient electron correlations and
Breit interaction are captured in our calculations. The good
agreement also confirms the reliability of the computational
model.

B. Hyperfine-induced Landé g factor and quadratic
Zeeman shift

As shown in Sec. II B, only the states belonging to the
3s23p4 configuration are considered in practical calculations,
since the contributions from others are negligible. Therefore,
for the 3P0 F = 3/2 and 3P1,2 F = 1/2 states the hyperfine-
induced Landé g factors are

δg(1)
F hfs(

3P
0

) = 2
〈3P0 FMF |N (1)

0 + �N (1)
0 | 3P1 FMF 〉

MF

× 〈3P1 FMF |Hhfs| 3P0 FMF 〉
E3P0

− E3P1

, (31)
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TABLE III. Reduced off-diagonal hyperfine interaction matrix elements (in a.u.).

M1 hyperfine interaction

Model 〈3P1 ‖T (1)‖ 3P0〉 〈3P2 ‖T (1)‖ 3P1〉 〈1D2 ‖T (1)‖ 3P1〉 〈1D2 ‖T (1)‖ 3P2〉
DHF 0.31468 0.62644 0.9669 0.21191
CV 0.27027 0.58665 1.0068 0.21847
CC2p 0.27303 0.58857 1.0055 0.21717
CC2s 0.27403 0.58947 1.0056 0.21690
CC1s 0.27603 0.59126 1.0058 0.21623
MR 0.26738 0.58255 1.0027 0.21820
MR-B 0.26829 0.58711 0.9994 0.22309
MR-BQ 0.26824 0.58678 0.9996 0.22271

E2 hyperfine interaction

Model 〈3P2 ‖T (2)‖ 3P1〉 〈1D2 ‖T (2)‖ 3P1〉 〈1D2 ‖T (2)‖ 3P2〉 〈3P2 ‖T (2)‖ 3P0〉 〈1D2 ‖T (2)‖ 3P0〉
DHF 46.255 10.894 29.987 33.251 −9.6898
CV 46.629 11.846 32.475 34.066 −11.733
CC2p 46.570 11.820 32.404 34.009 −11.616
CC2s 46.583 11.819 32.400 34.014 −11.584
CC1s 46.579 11.812 32.383 34.007 −11.550
MR 46.452 11.813 32.379 33.940 −11.653
MR-B 46.401 11.583 31.786 33.786 −11.328
MR-BQ 46.396 11.598 31.822 33.792 −11.354

δg(1)
F hfs(

3P1) = 2

[
〈3P1 FMF |N (1)

0 + �N (1)
0 | 3P2 FMF 〉

MF

× 〈3P2 FMF |Hhfs| 3P1 FMF 〉
E3P1

− E3P2

+ 〈3P1 FMF |N (1)
0 + �N (1)

0 | 1D2 FMF 〉
MF

×〈1D2 FMF |Hhfs| 3P1 FMF 〉
E3P1

− E1D2

]
, (32)

and

δg(1)
F hfs(

3P2) = 2

[
〈3P2 FMF |N (1)

0 + �N (1)
0 | 3P1 FMF 〉

MF

× 〈3P1 FMF |Hhfs| 3P2 FMF 〉
E3P2

− E3P1

+ 〈3P2 FMF |N (1)
0 + �N (1)

0 | 1D2 FMF 〉
MF

× 〈1D2 FMF |Hhfs| 3P2 FMF 〉
E3P2

− E1D2

]
. (33)

The reduced off-diagonal hyperfine interaction and
Zeeman matrix elements needed to calculate the
δg(1)

F hfs(
3P0, 1, 2) for the 61Ni12+ ion as functions of computa-

tional models are presented in Table III and Table IV, respec-
tively. As can be seen, the first-order electron correlation re-
lated to the valence orbitals is the primary electron correlation
for these matrix elements. For most of these matrix elements,
the corrections attributed to the CC and higher-order correla-
tions are relatively small and with opposite signs. The effect of
Breit interaction and the QED effect on most of the matrix ele-
ments concerned is not more than 1% and 0.2%, respectively.

The hyperfine-induced g factors for the 3P0 F = 3/2 and
3P1,2 F = 1/2 states in 61Ni12+ ion are presented in Table V.
It is found that the tendencies of electron correlation effects

TABLE IV. Reduced Zeeman matrix elements (in a.u.).

Model 〈3P0 ‖μ(1)‖ 3P1〉 〈3P1 ‖μ(1)‖ 3P2〉 〈3P1 ‖μ(1)‖ 1D2〉 〈3P2 ‖μ(1)‖ 1D2〉 〈3P1 ‖μ(1)‖ 3P1〉 〈3P2 ‖μ(1)‖ 3P2〉
DHF 0.67983 0.44384 0.11035 0.14328 1.060746 1.8015
CV 0.67132 0.44179 0.11826 0.15285 1.060742 1.7961
CC2p 0.67175 0.44182 0.11816 0.15273 1.060743 1.7962
CC2s 0.67190 0.44183 0.11812 0.15268 1.060743 1.7963
CC1s 0.67204 0.44185 0.11807 0.15262 1.060743 1.7963
MR 0.67146 0.44176 0.11837 0.15299 1.060744 1.7962
MR-B 0.67313 0.44231 0.11633 0.15053 1.060744 1.7975
MR-BQ 0.67299 0.44227 0.11648 0.15071 1.060744 1.7975
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TABLE V. Hyperfine-induced Landé g factors of the 3P0 F = 3/2 and 3P1,2 F = 1/2 states in 61Ni12+ ion. Numbers in square brackets
stand for the power of 10 and in parentheses for the uncertainties.

δg(1)
F hfs(

3P0 F = 3/2) δg(1)
F hfs(

3P1 F = 1/2) δg(1)
F hfs(

3P2 F = 1/2)

Model Cal. Rev. Cal. Rev. Cal. Rev.

DHF 7.451 [−5] 2.080 [−4] 9.189 [−6] 9.129 [−6] −1.232 [−5] −1.266 [−5]
CV 2.210 [−4] 1.764 [−4] 8.097 [−6] 8.320 [−6] −1.199 [−5] −1.227 [−5]
CC2p 2.012 [−4] 1.783 [−4] 8.126 [−6] 8.347 [−6] −1.200 [−5] −1.228 [−5]
CC2s 1.950 [−4] 1.790 [−4] 8.138 [−6] 8.360 [−6] −1.201 [−5] −1.229 [−5]
CC1s 1.903 [−4] 1.804 [−4] 8.161 [−6] 8.384 [−6] −1.202 [−5] −1.231 [−5]
MR 2.105 [−4] 1.746 [−4] 8.048 [−6] 8.262 [−6] −1.194 [−5] −1.220 [−5]
MR-B 1.429 [−4] 1.756 [−4] 8.422 [−6] 8.386 [−6] −1.227 [−5] −1.226 [−5]
MR-BQ 1.5(2) [−4] 1.76(6) [−4] 8.4 (1) [−6] 8.4 (1) [−6] −1.22 (1) [−5] −1.22 (1) [−5]

on the g factors are similar to those on the matrix elements
and energies. In this work, the sufficient electron correlations,
Breit interaction, and the QED effect were taken into account
systematically. Thus, the higher-order electron correlation that
was neglected in the computational models is the dominant
source of uncertainty for our calculated result. The upper limit
on the effects of this correlation should be smaller than the
higher-order correlation included in the calculation, since the
stronger nuclear Coulomb potential is in the inner region.
Conservatively, we treated the contribution of the higher-order
correlations captured in the MR model as the uncertainty due
to the neglected higher-order correlations. The “truncation”
uncertainties due to the finite number of virtual orbitals were
evaluated according to the convergence trends of the various
correlations. The final uncertainty shown in parentheses in
Table V is the square root of the sum of the squares of the
individual uncertainties. It can be seen that the uncertainty
of δg(1)

F hfs(
3P0 F = 3/2) reaches 15%. This large uncertainty

mainly results from the energy interval between 3P1 and 3P0

states �E3P0 − 3P1
.

It was found that the �E3P0 − 3P1
is much more sensitive

to the electron correlation, Breit interaction, and the QED
effect than the other energies used in this work. In fact,
our calculated �E3P0 − 3P1

deviates from the NIST value by
16%. To improve the �E3P0 − 3P1

, one can optimize J = 0
and J = 1 terms separately. Nevertheless, the resulting orbital
in this way are nonorthogonal with each other, and the off-
diagonal Zeeman and hyperfine interaction matrix elements
cannot be dealt with using the standard Racah technique. We
revised the calculated results using the energy values from
the NIST database, and marked as “Rev.” in Table V. The
uncertainty of the revised δg(1)

F hfs(
3P0 F = 3/2) is decreased

to not more than 4%. Moreover, the calculated result (labeled
as “Cal.”) is in agreement with the revised result. For the
δg(1)

F hfs(
3P1 F = 1/2) and δg(1)

F hfs(
3P2 F = 1/2), the calculated

results are found to be in excellent agreement with the revised
results, and with uncertainties less than 2%.

For the clock transitions of the 61Ni12+ ion, the first-order
Zeeman shift can be canceled by measuring two transitions
with the opposite magnetic quantum number MF and aver-
aging the frequencies. In order to evaluate the second-order
Zeeman shift, we evaluated the quadratic Zeeman shift co-
efficient Cm2 of the magnetic substates with |MF | = 1/2 for
the 3P0 F = 3/2 and 3P1,2 F = 1/2 states and show this in

Table VI. It is found that the calculated Cm2 are smaller than
the estimated values, which are independent of MF by Cm2 ∼
(gJμB − gIμN )2/h2Ahfs. The discrepancy is mainly due to
the fact that only the magnetic dipole hyperfine interaction
is considered for the estimated result. As we show in Ta-
ble VI, we revised the estimated results by Cm2 ∼ (gJμB −
gIμN )2/�EF , where �EF represents the hyperfine splitting,
and the revised estimate values agree well with our calcu-
lated values. The hyperfine-induced quadratic Zeeman shift
coefficients δC(1)

m2 hfs for magnetic substates of 3P0 F = 3/2
and 3P1,2 F = 1/2 states are evaluated. It is shown that the
hyperfine-induced effect influences the Cm2 at the level of
10−4 for the 3P0 F = 3/2 and 3P1 F = 1/2 states, and the
level of 10−7 for the 3P2 F = 1/2 state.

As shown in Fig. 2, we evaluated the relative quadratic
Zeeman shifts of clock transitions and the correction caused
by the hyperfine-induced effect as a function of the magnetic
field B. It is observed that under a magnetic field of B =
1 µT, the relative quadratic Zeeman shifts are 2.0 × 10−16 and
1.2 × 10−16 for the M1 transition 3P1 −3P2 and E2 transition
3P0 −3P2 in Ni12+ ion, respectively. Additionally, the relative
quadratic Zeeman shifts induced by the hyperfine interaction
are at the level of 10−20 and 10−23 for the M1 and E2 transi-
tions, respectively. Therefore, to achieve a Ni12+ clock with
the fractional uncertainties below 10−19 level, it is crucial

TABLE VI. Quadratic Zeeman shift coefficient Cm2 (in Hz/T2)
and hyperfine-induced correction δC (1)

m2 hfs of the 3P0 F = 3/2 and
3P1,2 F = 1/2 states in 61Ni12+ ion. Numbers in square brackets
stand for the power of 10.

3P0 F = 3/2 3P1 F = 1/2 3P2 F = 1/2

Cm2
a ≈ 3.5 [12] ≈ 1.4 [11]

Cm2
b ∼ 2.1 [11] ∼ 7.5 [10]

3P0 F = 3/2
|MF | = 1/2

3P1 F = 1/2
|MF | = 1/2

3P2 F = 1/2
|MF | = 1/2

Cm2
c 5.1 [6] 1.2 [11] 7.5 [10]

δC (1)
m2 hfs 2.8 [3] 2.1 [7] 4.1 [4]

aEstimated with Cm2 ∼ (gJμB − gIμN )2/h2Ahfs.
bRevised value with Cm2 ∼ (gJμB − gIμN )2/�EF .
cCalculated with Eqs. (22) and (23).
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FIG. 2. Relative quadratic Zeeman shifts (a) and the correction of the hyperfine-induced effect on the relative quadratic Zeeman shifts
(b) of clock transitions in 61Ni12+ ion (in logarithmic scale).

to identify precisely the hyperfine-induced quadratic Zeeman
shift when the magnetic field exceeds 1 µT.

C. Hyperfine-induced electric quadrupole moments

As mentioned previously, the electric quadrupole moments
of the states with F < 1, 3P1 F = 1/2 and 3P2 F = 1/2, are
zero. For the hyperfine induced electric quadrupole moments
of the 3P0 F = 3/2 state, only the 3s23p4 3P2 and 1D2 states
are considered in practical calculations:

δ�
(1)
F hfs

(3P0)

= 2

[
〈3P0 FMF |�(2)

0 | 3P2 FMF 〉〈3P2 FMF |Hhfs| 3P0 FMF 〉
E3P0

− E3P2

+〈3P0 FMF |�(2)
0 | 1D2 FMF 〉〈1D2 FMF |Hhfs| 3P0 FMF 〉

E3P0
− E1D2

]
.

(34)

We present the δ�
(1)
F hfs

(3P0 F = 3/2) and the reduced off-
diagonal electric quadrupole matrix elements needed as
functions of the computational models in Table VII. It can be
seen the electron correlation related to the valence orbitals and

the Breit interaction are crucial to the δ�
(1)
F hfs

(3P0 F = 3/2).
The contribution of the CC correlations and the QED effect
are relatively small but necessary to reduce the uncertainties.
The uncertainty of the δ�

(1)
F hfs

(3P0 F = 3/2) is also composed
of “truncation” uncertainties and the uncertainty due to the
neglected higher-order correlations. Moreover, the uncertainty
due to the neglected higher-order correlations is the contri-
bution of the higher-order correlations captured in the MR
model. Our calculated δ�

(1)
F hfs

(3P0 F = 3/2) with uncertainty
of less than 0.3% is in excellent agreement with the revised
value using the energy values from the NIST database, since
sufficient electron correlations, the Breit interaction, and the
QED effect are captured in our calculations.

The electric quadrupole shift caused by the interaction
between the electric quadrupole moments of the clock states
with the gradient of the electric field is one of the main
systematic shifts in the atomic clock. As shown in Fig. 3,
we evaluated the relative electric quadrupole shifts of clock
transitions as a function of the gradient of the environmen-
tal electric field. It can be seen that compared with the
transitions between fine levels, the electric quadrupole shifts
of transition between hyperfine levels are significantly sup-
pressed. Specifically, the electric quadrupole shifts of the M1
transition 3P1 F = 1/2 − 3P2 F = 1/2 are removed strictly.

TABLE VII. Hyperfine-induced electric quadrupole moments of the 3P0 F = 3/2 state δ�
(1)
F hfs

(3P0 F = 3/2) (in a.u.) and the electric
quadrupole matrix elements (in a.u.). Numbers in square brackets stand for the power of 10 and in parentheses for the uncertainties.

δ�
(1)
F hfs

(3P0 F = 3/2)

Model 〈3P0 ‖�(2)‖ 3P2〉 〈3P0 ‖�(2)‖ 1D2〉 Cal. Rev.

DHF −0.33152 0.043673 −2.845 [−7] −3.031 [−7]
CV −0.31531 0.048476 −2.869 [−7] −2.921 [−7]
CC2p −0.31629 0.048296 −2.868 [−7] −2.927 [−7]
CC2s −0.31660 0.048227 −2.869 [−7] −2.931 [−7]
CC1s −0.31689 0.048165 −2.868 [−7] −2.933 [−7]
MR −0.31573 0.048327 −2.864 [−7] −2.915 [−7]
MR-B −0.31506 0.047152 −2.887 [−7] −2.901 [−7]
MR-BQ −0.31512 0.047255 −2.889 (7) [−7] −2.90 (2) [−7]
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FIG. 3. Relative electric quadrupole shift of the M1 transition 3P1 MJ = 1 − 3P2 MJ = 2 (a) and the E2 transitions (b) 3P0 MJ = 0 −
3P2 MJ = 2 and 3P0 F = 3/2 − 3P2 F = 1/2 in the 61Ni12+ ion (in logarithmic scale). The relative electric quadrupole shift of the transition
3P1 F = 1/2 − 3P2 F = 1/2 is zero.

Assuming the gradient of the environmental electric field is
108 V/m2, the relative electric quadrupole shifts of the E2
transition can be reduced from 4.2 × 10−15(for 3P0 MJ =
0 − 3P2 MJ = 2) to 1.6 × 10−20 (for 3P0 F = 3/2 − 3P2 F =
1/2). It means that for achieving the optical clock with the
fractional uncertainties below 10−19, the hyperfine-induced
electric quadrupole shift is non-negligible once the gradient
of the environmental electric field exceeds 108 V/m2.

V. CONCLUSION

In summary, the hyperfine-induced effect on the two can-
didate clock transitions in the 61Ni12+ ion was investigated
in the weak field approximation. We carried out ab initio
calculations on the hyperfine-induced corrections to Landé
g factors of 3P0 F = 3/2 and 3P1,2 F = 1/2 states, and to
the electronic quadrupole moment of the 3P0 F = 3/2 state
using the MCDHF method. Based on the investigation of the
sensitivity of the atomic parameters concerned to electron
correlations, the Breit interaction, and the QED effect, the
computational uncertainties were estimated. Combined with
the environmental conditions, the relative quadratic Zeeman

shifts and electric quadrupole shifts were evaluated. For the
3P1 −3P2 and 3P0 −3P2 transitions in the 61Ni12+ ion, the
hyperfine interaction introduces corrections to the relative
quadratic Zeeman shift by factors of 2 × 10−4 and 6 × 10−7,
respectively. Additionally, the hyperfine interaction strictly
eliminates the electric quadrupole shift of the M1 transition,
and significantly reduces the electric quadrupole frequency
shift for the E2 transition by a factor of 4 × 10−6. Therefore,
for an 61Ni12+ optical clock with a precision better than 10−19,
it is crucial to determine the hyperfine-induced effects accu-
rately, when the magnetic field exceeds 1 µT or the gradient of
the environmental electric field exceeds 108 V/m2.
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