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Robust two-qubit gate with reinforcement learning and dropout
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In the realm of quantum control, reinforcement learning, a prominent branch of machine learning, emerges
as a competitive candidate for computer-assisted optimal experiment design. This paper investigates the extent
to which guidance from human experts is necessary for effectively implementing reinforcement learning in the
design of quantum control protocols. Specifically, our focus lies on engineering a robust two-qubit gate, utilizing
a combination of analytical solutions as prior knowledge and techniques from computer science. Through
thorough benchmarking of various models, we identify dropout—a widely used method for mitigating overfitting
in machine learning—as a particularly robust approach. Our findings demonstrate the potential of integrating
computer science concepts to propel the development of advanced quantum technologies.
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I. INTRODUCTION

With advancements in algorithms, computer-designed ex-
periments [1,2] have disrupted the traditional notion that
human experts are solely responsible for proposing new ex-
periments. This raises the fundamental question: How much
information must human experts provide to algorithms for
efficient setup searching? This question becomes particularly
pertinent when considering computer-assisted experiment de-
sign as a simplified version, where one is aware of the
experimental setup but seeks specific protocols to achieve
desired goals. In this scenario, reinforcement learning (RL)
emerges as a natural choice, allowing agents to explore solu-
tions by interacting with the environment. RL [3] has seen
significant applications in studying physics problems over
the past decade [4], primarily focusing on quantum control
problems [5–13]. Meanwhile, its collaboration with artificial
neural networks (ANNs) has been employed to solve pulse
design for quantum state preparation [14–16], gate operation
[17–20], and the quantum Szilard engine [21]. Furthermore,
RL has been utilized in information retrieval, controlling
the measurement process in quantum metrology, and extract-
ing real-time quantum information for closed-loop quantum
control [22,23]. Additionally, quantum RL has also been
developed by replacing the classical models with quantum
systems due to the model-free nature [24].

To explore the potential of RL in the presence of limited
physical knowledge, a targeted selection of a quantum control
task is imperative. In light of compelling motivations, our
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focus is directed towards the design of robust quantum gates.
Simulating the dynamics of quantum systems for building
the RL environments becomes exponentially complex as the
system size increases. However, by numerically calculating
the propagator of a Hamiltonian with only a few energy levels
per episode, we can present fair comparisons among vari-
ous models with affordable computational resources. From
the physical perspective, numerous approaches to achieving
robustness have been proposed, such as adiabatic quantum
control [25], pulse-shaping engineering [26–28], composite
pulses [29–33], and shortcuts to adiabaticity [34,35]. Among
them, geometric quantum computing, which leverages topo-
logical properties to cancel the effects of systematic errors,
has shown promise across various quantum systems [36–42],
and has been combined with machine learning (ML) methods
[43–45]. It is indeed a well-studied example that provides
sufficient information for encoding in the environment to
explore the necessity of physics knowledge. Based on our
research background, we believe it is possible to design ro-
bust quantum gates without considering explicit methods, e.g.,
accumulating geometric phase or canceling error sensitivity.
To accomplish this, we have the option to select from various
quantum platforms that are susceptible to noise and systematic
errors. While other quantum systems could also be of interest,
for the purposes of this paper, we intentionally focus on liquid
nuclear magnetic resonance (NMR) and Josephson charge
qubits as used in Refs. [37–39].

The paper is structured as follows. In Sec. II, we propose
an RL model that encodes pertinent information, including
operation time and tunable parameter ranges, along with the
analytical solution for the geometric two-qubit gate, serving as
an example of robust quantum gate design based on physical
knowledge. Sections III and IV focus on benchmarking the
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FIG. 1. Schematic diagram of the DRL approach to the robust two-qubit gate. The state encodes the real part and imaginary part of elements
in the propagator U (ti ), the last action a(ti−1), and the normalized systematic time ti = i/NmaxiδT . The state is sent to the input layer of the
ANN as the DRL agent θ , outputting action to control the system for the next time step. The agent is trained to accumulate maximum reward,
targeting the two-qubit gate RYY (π/4) at the end of each episode. In our protocol, we use Gaussian perturbation on the action and dropout in
the ANN to obtain robustness against systematic errors. Once the training process converges by maximizing the reward-dependent objective
functionL(θ ), the optimal model θ∗ is tested in the error-free and drop-out-free environment for obtaining the pulses for robust quantum gates.
The pulses are fixed and later evaluated under systematic errors.

performances of RL models trained under different settings
and methods from computer science, such as perturbation on
nodes or dropout. We find out that the dropout itself leads
the model to robustness against systematic errors without
guidance from human experts. Finally, we provide concluding
remarks in Sec. V, discussing potential avenues for further
research and the implications of our findings for practical
quantum information processing and quantum computing.

II. DEEP REINFORCEMENT LEARNING

In this section, we shall first outline our task and present the
model, which includes the Hamiltonian and its preliminaries.
Our primary objective is to design the robust entangling gate
RYY (π/4) for two qubits; see review [46]. One well-known
approach is the geometric gate, known for its robustness
mechanism induced by topological protection. Acting as a
perfect entangling gate that transforms separable states into a
maximally entangled state, it serves the same critical character
as the controlled-NOT (CNOT) gate does in constructing the
universal gate set for quantum computing. The gate exploits
the geometric phase acquired by a quantum state during its
cyclic evolution in parameter space, thereby offering inherent
resilience against systematic errors on the controlling param-
eters. The design of Hamiltonians plays a crucial role in
shaping the geometric properties of the system.

In this context, the general Hamiltonian appears in the
study of Josephson charge qubits or liquid-state NMR (h̄ = 1)
[37]:

H = H1 ⊗ I2 + I1 ⊗ H2 + J

2
Z1 ⊗ Z2,

H1,2 = 1
2 [�1,2 cos(ωt )X1,2 + �1,2 sin(ωt )Y1,2 + �Z1,2], (1)

where �i, �i, Xi, Yi, and Zi represent the Rabi frequency, de-
tuning, and Pauli operators on the ith qubit, respectively, and J
denotes the exchange energy between two qubits. In general,
two-qubit Hamiltonians are elements of su(4), which makes
an analytic approach challenging. However, the Hamiltonian
(1) is restricted to a subalgebra of su(4) [47], systematically
reducing the complexity. Thus, the analytical analysis can
be found in Appendix A by utilizing dynamical invariants
[47,48], and the fast nonadiabatic gate can be designed using
inverse engineering accordingly.

With this knowledge, we turn to deep reinforcement learn-
ing (DRL), as shown in its workflow (Fig. 1). The insight
is that a RL model can mimic the behavior of creatures that
interact with the environment, being educated by reward to
alter its decision based on its observation. In this way, an
environment should be defined, specifying the task and its
relevant state and action spaces, which can be either contin-
uous or discrete. Next, an agent equipped with a deep neural
network is trained to interact with the environment, making
sequential decisions and receiving feedback in the form of
rewards. Through an iterative process of exploration and ex-
ploitation, the agent refines its policy, using techniques like
value-based methods or policy gradients, to maximize long-
term cumulative rewards. After the training process, the agent
can be deployed to perform the desired task autonomously,
exhibiting learned behaviors that demonstrate the efficacy of
DRL.

To be more specific, our goal is to train a neural network
as an agent to design the robust entangling gate RYY (π/4) =
exp(iπY1 ⊗ Y2/4) for two qubits. We aim to benchmark the
effects of physical priors or methods from the RL com-
munity that induce robustness. To explore all possibilities,
we unbound the constraints on Xi and Yi in Eq. (1), re-
sulting in the most general Hamiltonian for the agent to
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explore:

HDRL =
2∑

j=1

Hj + J (t )

2
Z1 ⊗ Z2, (2)

where

Hj = � j (t ) cos(ωt )Xj + � j (t ) sin(ωt )Yj + � j (t )Zj,

and the tunable ranges of the parameters are � j (t ) ∈
[0,�max], � j (t ) ∈ [−�max,�max], and J (t ) ∈ [0, Jmax]. We
then normalize these control parameters to [0,1] for ANN
encoding in the action or state. Once the total operation time
T is set, we obtain the length of each time step δT = T/Nmax

by bounding the maximum time steps per episode. At the ith
time step, the accumulated propagator reads

U (ti, t0) = T
i−1∏
j=0

U (t j+1, t j ) = T
i−1∏
j=0

exp[−iHDRL( jδT )δT ],

(3)

which should be close enough to exp(−iπY1 ⊗ Y2) at the last
time step after the training. The neural network acts as the
general function approximator representing the policy π (a|s),
where the input layer observes the state s(ti ), and the output
layer provides the action a(ti ) for evolving the state to the next
time step. The state consists of the ordered elements of the
propagator at the present, the last action, and the normalized
systematic time as

s(ti ) = {Re[Uj,k (ti )], Im[Uj,k (ti )], a(ti−1), ti}, (4)

with ti = i/Nmax and j, k ∈ {1, 2, 3, 4}. The action contains
the renormalized control parameters in Eq. (2) as

a(ti ) = {�̃1(ti ), �̃1(ti ), �̃2(ti ), �̃2(ti ), J̃ (ti )}, (5)

where these parameters should be restored as �̃ j (ti ) =
� j (ti )/�max, �̃ j (ti ) = (� j (ti ) + �max)/2�max, and J̃ (ti ) =
J (ti )/Jmax to simulate the evolution of the environment to the
next time step. The performance and training of RL are highly
related to the reward function or pretraining. For a fair com-
parison among all models and to avoid cherry picking, we do
not perform any pretraining and define a very simple reward
function by rewarding the agent with r = − log10(1 − F ) in
terms of logarithmic infidelity at the end of each episode,
where the gate fidelity is defined as

F =
∣∣∣∣Tr[exp(−iπY1 ⊗ Y2/4)U (T, 0)]

dim(U )

∣∣∣∣
2

. (6)

Using the baseline proximal policy optimization (PPO) algo-
rithm [49], we train the agent to maximize the accumulated
reward, aiming for the fast nonadiabatic yet robust quantum
gates we seek.

III. NUMERICAL EXPERIMENTS

Now we present the specific settings for our numerical
experiments and subsequently showcase our findings while
analyzing the gate fidelities. Initially, we employ the most
general Hamiltonian depicted in (2) to evolve the quantum
states, with the primary objective of assessing the capabilities
of DRL in scenarios with limited prior physical knowledge.

The first setting is designed to efficiently obtain the gate
operation. In this setting, we reward the agent with r =
− log10(1 − F ) after each time step in one episode, and con-
ditionally end the episode to calculate the total reward if the
maximum time step is met or F > 0.99 is satisfied after any
time step. Together with the discount rate γ on the reward
γ ir(ti), this design encourages the agent to achieve the target
more quickly by placing higher value on short-term rewards.
Meanwhile, we clip the reward function by a value of 1 if the
gate fidelity falls within the range [0.95,0.99), and provide an
additional bonus of 10 if it reaches the threshold of F = 0.99.
The clipped reward function can expedite training with the
PPO algorithm without affecting our objectives. We halt the
training and evaluate the model once it exceeds the fidelity
threshold.

In Fig. 2(a), we illustrate the gate’s robustness against over-
rotating errors [�1,2 → �1,2(1 + δ�)] and off-resonance
errors [�1,2 → �1,2(1 + δ�)] under such a setting using a
heat map. As expected, the region enclosed by the contour
F = 0.99 is relatively small. However, this solution is not
the time-optimal solution with minimal robustness due to the
batch method employed in training the DRL agent. It can be
easily verified that a time-optimal solution consists of single-
qubit resonant pulses that exchange Y and Z and a two-qubit
pulse of ZZ . In other words, DRL naturally introduces robust-
ness into quantum control through the standard batch method,
which is a commonly used technique in ML, being applicable
to gradient-based optimization as well [50,51]. This result
serves as the baseline for robustness to study the effects of
other methods and settings.

A. Gaussian perturbation on nodes

To enhance robustness, we engineer the environment illus-
trated in Fig. 2(a) with minimal human expert input. Instead
of modifying the reward function by introducing Lagrangian
multipliers for error sensitivity, we investigate whether per-
turbations applied to nodes of the ANN can achieve a similar
effect. These perturbations are exclusively imposed on nodes
within the output layer due to the inherent lack of inter-
pretability of the network. The underlying idea is that if the
DRL agent can be trained effectively in such an environment,
it should exhibit greater robustness against over-rotating and
off-resonance errors, as the environment simulates their ef-
fects by perturbing the agent’s actions. In essence, we expect
the agent to accumulate more rewards by successfully navi-
gating this customized challenge.

We introduce perturbations to the action nodes using
random Gaussian variables: �̃ → �̃[1 + N (μ = 0, σ = 0.1)]
and �̃ → �̃[1 + N (μ = 0, σ = 0.1)]; see Eq. (5). In the en-
tire context, we omit the subscript j and the dependence ti
for brevity. It is worthwhile to mention that we perform mis-
cellaneous numerical experiments with different settings of
standard deviation σ = 0.02, 0.05, 0.1, 0.2, and observe the
tradeoff between the convergence of the model and robust-
ness. The less the standard deviation is, the easier it is to obtain
a converged model but the robustness is also reduced, and vice
versa. Thus, we select the standard deviation σ = 0.1 as a
trade-off. In each episode, once the Gaussian perturbation is
randomized at the initial time step, it remains unchanged until
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FIG. 2. Robustness of the entangling gate RYY (π/4) against over-rotating errors (�1,2 → �1,2 + �maxδ�) and off-resonance errors
(�1,2 → �1,2 + �maxδ�). The gate fidelity is defined as F = | 1

4 Tr[exp(−iπY1 ⊗ Y2/4)U (T, 0)]|2, where U (T, 0) represents the propagator
under these errors. To emphasize the impact of systematic errors, we present a heat map displaying the logarithmic infidelity. Models in
(a)–(c) are trained in an environment featuring the general two-qubit Hamiltonian depicted in (2). These models are rewarded with logarithmic
infidelity at the end of each episode, and they operate without prior human expert knowledge about robustness. We employ three different
techniques from computer science: the standard batch method in (a), Gaussian perturbation on the nodes in the output layer in (b), and dropout
in (c). (d) Evaluated by operating the analytical nonadiabatic geometric gate; see Appendix A. The fidelities at zero noise F(a) = 0.9926,
F(b) = 0.9917, F(c) = 0.9967, and F(d ) = 0.9962 are calculated and compared. Parameters: Random Gaussian perturbations on nodes following
�̃ → �̃[1 + N (μ = 0, σ = 0.1)] and �̃ → �̃[1 + N (μ = 0, σ = 0.1)], and a dropout rate of κ = 0.1.

the end. Notably, we observe that the DRL agent converges,
as evidenced by the activation of the additional bonus once the
gate fidelity surpasses the threshold under these perturbations.
Consequently, we obtain control pulses by running the model
in an error-free environment. Although the corresponding gate
fidelity does not exceed F = 0.99 due to the model converg-
ing to a solution with systematic errors induced by statistical
fluctuations and the batch method, the characteristic of robust-
ness remains intact.

In Fig. 2(b), we rectify the deviated model by identify-
ing the maximum fidelity point on the original heat map
and adjusting the control parameters to relocate the maxi-
mum fidelity to the center (δ�, δ�) = (0, 0) for illustrative
purposes. This adjustment reveals a significantly larger area
enclosed by the contour of F = 0.99, demonstrating that
Gaussian perturbations applied to nodes provide additional
robustness in the design of quantum control using DRL.
Moreover, the principal axis of the ellipse aligns with the
diagonal direction because both types of systematic errors are
included during the training process.

B. Dropout

Dropout is a common technique to mitigate overfitting dur-
ing the training of ANNs [52]. Larger weights in the network
tend to overfit the training data more easily [53]. The concept
behind dropout is that probabilistically disconnecting nodes
in the network serves as a simple regularization method to re-
duce weight magnitudes and perform model averaging. While
this method was originally proposed for classical supervised
learning, physicists have suggested its quantum analog [54]
to reduce circuit complexity in quantum algorithms, aligning
with the technique’s underlying philosophy. This insight moti-
vates us to investigate its performance in quantum control with
DRL. The key idea is that we can emulate various system-
atic errors by randomly disconnecting nodes during training.
Although we lack specific information about the correlation
between a particular node and robustness against over-rotating
or off-resonance errors, we believe that averaging the network
across weights and biases should enhance gate robustness.
The training process should converge when the dropout rate is
appropriately set based on the network size and connectivity.
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Instead of applying Gaussian perturbations to the output
layer, we randomly disconnect each node with a dropout rate
of κ = 0.1. The setting of κ is empirical and optimized, which
has a similar effect on the model convergence and robustness
as the standard deviation of Gaussian perturbation. While
the ANN remains a black box, the lack of interpretability of
specific nodes does not hinder our approach. Once the model
converges, we disable dropout to obtain the control pulse,
which is expected to be robust against all types of errors
in the output layer, including variations in the length and
magnitude of ZZ interactions. After centralizing the heat map
using the same method, we achieve the best gate performance,
as depicted in Fig. 2(c). Based on the results of all our ex-
periments, we conclude that DRL can explore solutions with
robustness without the need for human expert intervention,
relying instead on techniques from computer science. Particu-
larly noteworthy is the fact that robustness can be introduced
simply by implementing dropout, a regularization method,
rather than modeling systematic errors in the environment or
encoding criteria for robustness, such as error amplitudes or
fidelity sensitivity, into the reward function. In experiments
with dropout, the RL scheme no longer has knowledge on any
interpretable error. The network disconnects nodes randomly
as a black box.

After demonstrating the effectiveness of DRL for gener-
ating robust two-qubit gates without human guidance, we
now proceed to compare the results obtained from different
techniques, including the analytical solution derived from
nonadiabatic geometric theory, which involves the cancella-
tion of dynamical phases [38,39]. The gate fidelities at zero
noise for the DRL models are F(a) = 0.9926, F(b) = 0.9917,
and F(c) = 0.9967, corresponding to the models evaluated us-
ing the standard batch method, Gaussian perturbation on the
nodes, and dropout, respectively, as depicted in Figs. 2(a)–
2(c). As indicated in Fig. 2(d), the heat map presents the
robustness of the fast nonadiabatic geometric gate, yielding
F(d ) = 0.9962 error free for comparison.

To present the quantitative study on robustness, we define
the differences in fidelity as

A = (A//,A⊥) =
(

F (0) − F (r//)

|r| ,
F (0) − F (r⊥)

|r|
)

, (7)

where r is the vector from the maximum of fidelity (as
the pivot) to an arbitrary point in the parameter space
of systematic errors. r// and r⊥ denote the direction
along the major and minor axes of the elliptical con-
tour, respectively. Therefore, the smaller A// and A⊥ are,
the more robust the corresponding control protocol is.
We calculate the fidelity differences in Figs. 2(a)–2(d):
A(a) = (0.6773, 0.088), A(b) = (0.3039, 0.032), A(c) =
(0.3526, 0.037), andA(d ) = (3.626, 1.453), showcasing that
one can obtain robust quantum gates by both perturbing the
nodes and dropout compared to the standard batch method
as RL baseline and explicit geometric quantum gates with a
distance of |r| = 0.04. To maintain objectivity and prevent
cherry picking, we train five models with random seeds rang-
ing from 1 to 5 under each setting (see Appendix B) and
average the figures of merit to derive a general conclusion.
Although the Gaussian perturbation model exhibits slightly
better robustness than dropout, the dropout-trained model

does not necessitate prior knowledge of error types. Therefore,
these results reveal that DRL with dropout achieves superior
performance over explicit geometric quantum gates in ad-
dressing systematic errors and optimizing gate performance
in quantum systems.

The standard batch method, Gaussian perturbation on
nodes, and dropout, used in Figs. 2(a)–2(c), represent dis-
tinct optimization techniques for deriving control pulses. Each
approach tackles the task of finding optimal control pulses
differently. The batch method relies on gradient-based opti-
mization, while Gaussian perturbation on nodes and dropout
introduce stochasticity into the optimization process. The in-
corporation of randomness in Gaussian perturbation on nodes
and dropout can lead to exploration of different regions of
the parameter space, potentially resulting in diverse optimal
control pulses. In Fig. 3, we present normalized control pulses
for all tunable parameters obtained through DRL exploration.
These pulses result from running the trained DRL models in
an error-free environment. Notably, the adjustment of single
qubit pulses aims to centralize the maximum gate fidelity at
(δ�, δ�) = (0, 0) within the respective parameter space. The
pulse amplitudes, as outputs of the DRL, exhibit continuity in
the decision layer but are discretized into stepwise functions,
rendering them interpretable and amenable to smoothing if
necessary. It is worth emphasizing the broad applicability of
these control pulses across various physical systems. Dropout,
with its focus on preventing overfitting through regulariza-
tion, may produce pulses more resilient to variations in the
quantum system or experimental conditions. Moreover, to
implement the robust two-qubit gate, operational time cal-
culation depends on the tunable parameter ranges. While
in certain scenarios, like the weak-coupling limit between
qubits, retraining the model with modified tunable coupling
ranges may be necessary, the methodology remains funda-
mentally applicable. Furthermore, pulse smoothness is crucial
due to the notable similarities in consecutive time-step actions
within the PPO algorithm. This consistency underscores in-
sights into the stability and predictability of the agent’s
decision-making process.

IV. DISCUSSION

In this section, we shall have insight into the more technical
aspects after conducting a thorough analysis and evaluation
of DRL’s performance based on our previous numerical ex-
periments. As one might discern, rewarding the agent with
logarithmic infidelity at the end of each episode can inspire
the agent to discover more efficient control pulses. In essence,
it motivates the agent to explore an “as-soon-as-possible”
solution, aiming to achieve the gate fidelity threshold by
the N th time step and conclude the episode before reaching
the maximum time step Nmax. We use “as-soon-as-possible”
instead of “time-optimal” in the description, as an explicit
objective function that encompasses terms related to ro-
bustness or energy cost is not provided in the problem
statement. Notably, robustness in our approach is intro-
duced through techniques from computer science, such as
the batch method, perturbations on nodes, or dropout, rather
than by engineering the reward function to incorporate error
sensitivity.
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FIG. 3. Control pulses obtained from the models evaluated in Figs. 2(a)–2(c) without the guidance of human experts. (a) Rabi frequency
on the first qubit. (b) Rabi frequency on the second qubit. (c) Magnitude of the ZZ interaction between the two qubits. (d) Detuning on the
first qubit. (e) Detuning on the second qubit. The solid blue lines represent pulses obtained from the standard batch method, the dashed red
lines from Gaussian perturbation on nodes, and the dot-dashed black lines from dropout. Parameters: Dimensionless tunable Rabi frequency
� ∈ [0, �max], �max = 2π , detuning � ∈ [−�max, �max], �max = 2π , magnitude of ZZ interaction J ∈ [0, Jmax], Jmax = 2π , operation time
T = 2, and maximal time step Nmax = 20.

Another critical consideration is that the DRL agent should
not seek the global optimal solution that maximizes accumu-
lated rewards in each episode. For example, in a scenario
in which the agent can learn a gate operation with fidelity
surpassing 0.99 within a maximal time step N < Nmax, it
could exploit a loophole to gain extra rewards by deactivating
all pulses once the clipped reward r = 1 − log10(1 − F ) is
triggered. The episode would continue since the gate fidelity
does not meet the threshold. Finally, the agent could reactivate
the pulses a(tN ) at the last time step of the episode to trigger
the r = 10 − log10(1 − F ) bonus. Through this method, the
agent would earn an additional reward of

�r =
Nmax−1∑
i=N−1

γ i[1 − log10(1 − FN−1)]

+γ Nmax [10 − log10(1 − FNmax )]

−γ N [10 − log10(1 − FNmax )], (8)

which is positive when N is sufficiently small and requires
large tunable ranges of control parameters. This would re-
sult in a sudden drop in the total reward during the training
process, even if the model appears to be converging. In our
numerical experiments, neither of these phenomena occurred
because we set the tunable ranges of control parameters within
reasonable bounds, preventing the model from initially con-
verging to an as-soon-as-possible solution. However, it should
be noted that such solutions, as well as the cheating solution
described, could potentially be discovered with certain hyper-
parameters after training for more episodes. In essence, what
we performed in the numerical experiments, without guid-
ance from human experts, corresponds to the early-stopping

method, a common technique to prevent overfitting in super-
vised learning.

The absence of geometric gates as robust solutions within
specialized Hamiltonians in the environment is related to the
initialization and exploration of the agent. None of the tech-
niques from computer science led to geometric gates (at least
not after training a moderate number of episodes) because
the mechanism of robustness is not restricted to the prop-
erty of topological protection. Our assumption is that DRL
algorithms can discover geometric gates under settings with
well-tuned hyperparameters and a more extensive number of
episodes. Considering that the robustness performance shown
in Figs. 2(d)–2(f) is already quite promising compared to
geometric gates, extensive effort would be required to un-
cover such solutions. However, we provide a trick to obtain
geometric gates from the agent if one insists on pursuing this
approach. One can evaluate the dynamical phases γ d

n at the
end of each episode and design a reward function as follows:
r = − log10(1 − F ) − λ(γ d

n )2, where λ > 0 is a tunable co-
efficient for the Lagrangian multiplier. This additional term
penalizes the agent by the square of dynamical phases if
they are not canceled. Nevertheless, the requirement for this
additional physical knowledge may discourage us from em-
ploying DRL for such a task, especially when the calculation
of dynamical phases has already led to explicit solutions.

V. CONCLUSION

After thoroughly investigating the capabilities of DRL for
exploring robust two-qubit gates without the guidance of
human experts, we have conducted extensive numerical ex-
periments to explore the potential of DRL in quantum control.
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Our findings demonstrate that DRL, when equipped with tech-
niques from computer science such as dropout, can effectively
navigate the complex parameter space and identify robust
quantum control strategies. Specifically, dropout, which in-
troduces stochasticity by randomly disconnecting nodes in
the DRL agent during training, has emerged as a promising
method for achieving satisfactory levels of robustness.

Interestingly, our experiments suggest that there is no ne-
cessity to incorporate additional physical knowledge, such as
operation time or Hamiltonian details, into the DRL frame-
work. In fact, the inclusion of such information might hinder
the agent’s ability to explore and discover optimal solutions.
Instead, a general Hamiltonian with appropriately set tunable
ranges, coupled with the utilization of dropout, suffices for
robust quantum control exploration using DRL.

We have selected the entangling two-qubit gate of
RYY (π/4) as our focus due to its maximal entanglement
capability and ease of realization in liquid NMR and Joseph-
son charge qubits [37–39]. To show the advantage, we have
benchmarked our results against the analytical solution of the
nonadiabatic geometric gate [38]. Although other platforms
may employ different two-qubit gates, such as the Mølmer-
Sørensen or CPHASE gate for trapped ions [55–57], we believe
that the general Hamiltonian and dropout techniques can fa-
cilitate the learning of various gates across diverse quantum
platforms.

In summary, our paper highlights the potential of DRL as
a powerful tool for exploring robust quantum control strate-
gies. By leveraging techniques from computer science and
embracing the inherent flexibility of general Hamiltonians,
DRL shows promise in addressing complex quantum control
challenges without the need for explicit human guidance.
Looking ahead, further research could explore the scalability
of DRL techniques to larger quantum systems and investigate
their applicability in real-world experimental settings. Addi-
tionally, refining the incorporation of physical constraints and
domain knowledge into the DRL framework may enhance its
performance and broaden its applicability in quantum optimal
control tasks.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
NONADIABATIC GEOMETRIC GATE

In this Appendix, we provide an analytical solution for the
robust entangling gate RYY (π/4) described by the Hamilto-
nian (1). While the nonadiabatic geometric theory has been
previously proposed in Refs. [37–39,48], we repeat the proce-
dure here for the sake of completeness.

To obtain the dynamical invariant, we deactivate the local
pulses on the first qubit and simplify the two-qubit Hamilto-
nian (2) into two parts:

H±(t ) = 1

2
[� cos(ωt )G±

x + � sin(ωt )G±
y + �±G±

z ], (A1)

where G±
i = (I1 ± Z1)/2 ⊗ (i ∈ {X,Y, Z}) are effective Pauli

operators and �± = � ± J is the effective detuning. The dy-
namical invariant of H± is then given by [58]

I±(t ) = � cos(ωt )G±
x + � sin(ωt )G±

y + (�± − ω)G±
z .

(A2)

The instantaneous eigenstates of the Hamiltonian H±
are superpositions of the eigenvectors of the invariant
I±, expressed as |�(t )〉 = ∑

n cneiαn (t )|φ(t )〉, where αn(t )
= ∫ T

0 dt ′〈φn(t ′)|i∂t ′ − H (t ′)|φn(t ′)〉 represents the Lewis-
Riesenfeld phases incorporating both geometric and dynami-
cal phases. A more general case involving a four-level system
can be found in Ref. [47]. By canceling the dynamical phases
γ d

n = − ∫ T
0 dt ′〈φn(t ′)|H (t ′)|φn(t ′)〉, we obtain the geometric

gate:

U (t, 0) =
∑

n

eiαn (t )|φn(t )〉〈φn(0)|, (A3)

governed solely by geometric phases after an operation
time of T . The eigensystem of I± yields eigenvalues λ± =√

(�± − ω)2 + �2 and corresponding eigenstates:

E+
± = ±λ+, |φ+

± (t )〉 = (cos θ+
± e−iωt , − sin θ+

± , 0, 0)T ,

(A4)

E−
± = ±λ−, |φ−

± (t )〉 = (0, 0, cosθ−
± e−iωt , − sin θ−

± )T ,

(A5)

with sin θ±
± = 1/

√
ξ±
±

2 + 1, cos θ±
± = ξ±

± /
√

ξ±
±

2 + 1, and
ξ±
± = �/(�± ∓ λ± − ω). In this case, the Lewis-Riesenfeld

phases are obtained as α±
± = (λ± ∓ ω)t/2. The parameter

settings � = ω/2 and � = ±√
ω2 − 4J2/2 in the nona-

diabatic regime give the two-qubit geometric gate, VU =
eiγ +

± |φ+
± (0)〉〈φ+

± (0)| + eiγ −
± |φ−

± (0)〉〈φ−
± (0)|, yielding

VU = −eiπa−(a−G+
z −a+G+

x )eiπa+(a+G−
z −a−G−

x ), (A6)

where a± = √
J/ω ± 1/2. To ensure that the gate VU allows

maximum entanglement, we calculate the singular values D±
of the matrix D, the elements of which are Di j = Tr(VU i ⊗
j)/4 with i, j ∈ {I, X,Y, Z}, and ensure that it equals to
DCNOT

± = √
1/2 or other perfect entanglers.
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FIG. 4. Decomposition of a robust two-qubit entangling gate,
RYY (π/4), highlighting the topological protection mechanism
against systematic errors. The entangling gate is decomposed into
universal geometric qubit gates, which are analytically solvable by
canceling dynamical phases. The gate operation requires a total time
of max(T (U(1) ), T (U(2) )) + T (VU ) + max(T (U(3) ), T (U(4) )). Infor-
mation gained from the analytical solution, such as the operation
time, switching time, and form of Hamiltonian, is utilized to design
the environment for investigating the capabilities of DRL.

Accordingly, we find the parameter setting J/ω =
±0.3187 that corresponds to the gate time of VU as T =
2π/ω. With Cartan decomposition, one can verify that the
entangling part of VU is exactly exp(iπY1 ⊗ Y2/4). For the
standard RYY (π/4) gate, we have local single qubit geo-
metric gates on each qubit before and after VU as shown
in Fig. 4, which are all robust against systematic errors
on local Rabi frequency and detuning. The method for de-
signing the single qubit gate is similar to the two-qubit
gate. The dynamical invariant of H1,2 shares the same
structure as I± but with effective operators G±

i and ef-
fective detuning �± replaced by the standard version Xi,
Yi, Zi, and �, respectively. We also have the nonadia-
batic condition for canceling the dynamical phases as �2 +
�(� − ω) = 0, yielding the parametrized single qubit gate of
gate time Ui(β j ) = − exp[iπ sin β j (− cos β jXi + sin β jZi )],
where cos2 β j = �/ω j with the gate time T = 2π/ω j . By

a sequence of β j on the ith qubit gate, one achieves
the universal single qubit rotation gate with three Eu-
ler angles. To simplify, we minimize the Frobenius norm
||U − RYY (π/4)|| between the matrix expression of the tar-
get gate RYY (π/4) = exp(−iπY1 ⊗ Y2/4) and U = (U(3) ⊗
U(4) )VU (U(1) ⊗ U(2) ), resulting in optimal parameters obtained
through sequential least-squares programming:

U(1) = U1(0.13)U1(0.91)U1(0.29)U1(0.52),

U(2) = U2(0.46)U2(0.31)U2(0.90)U2(0.3)U2(0.69)

×U2(0.23)U2(0.48),

U(3) = U1(0.24)U1(0.56)U1(0.29)U1(0.24)U1(0.81)

×U1(0.29)U1(0.81),

U(4) = U2(1.11)U2(0.27)U2(0.90)U2(0.16)U2(0.62).

APPENDIX B: NUMERICAL RESULTS AND
HYPERPARAMETERS

In the following Appendix, we explore the detailed ro-
bustness of the general Hamiltonian (2) using three distinct
models: the standard batch method, Gaussian perturbation to
nodes, and dropout, as illustrated in Fig. 2. To ensure ob-
jectivity and prevent bias, we adopt a systematic approach.
Specifically, we train five models for each setting, utilizing
random seeds spanning from 1 to 5, as outlined in Figs. 5–7.
By averaging the figures of merit obtained from these models,
our analysis provides a comprehensive comparison of the
robustness performance of each model, enabling us to draw
meaningful conclusions with an unbiased assessment.

Expanding on the detailed robustness demonstration of the
general Hamiltonian (2) for three different models, we first
examine the performance of the entangling gate RYY (π/4)
against various types of errors. These errors include over-
rotating errors [�1,2 → �1,2(1 + δ�)] and off-resonance

FIG. 5. Heat maps illustrating the logarithmic infidelity are plotted, being similar to Fig. 2(a). Here, the evaluated models labeled (a)–(e)
are trained with random seeds ranging from 1 to 5 using the standard batch method.
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FIG. 6. Heat maps illustrating the logarithmic infidelity are plotted, being similar to Fig. 2(b), where Gaussian perturbation is applied on
the nodes in the output layer. Here, the evaluated models labeled (a)–(e) are trained with random seeds ranging from 1 to 5. The parameters of
random Gaussian perturbations on nodes are �̃ → �̃[1 + N (μ = 0, σ = 0.1)] and �̃ → �̃[1 + N (μ = 0, σ = 0.1)], respectively.

errors [�1,2 → �1,2(1 + δ�)]. The gate fidelity, denoted as
F , is evaluated as | 1

4 Tr[exp(−iπY1 ⊗ Y2/4)U (T, 0)]|2, where
U (T, 0) represents the propagator under these errors. This
fidelity metric highlights the impact of systematic errors
through a heat map displaying the logarithmic infidelity. The
models under assessment are trained in an environment gov-
erned by the general two-qubit Hamiltonian depicted in (2).
These models are rewarded with random seeds ranging from 1
to 5, and importantly, they operate without prior human expert
knowledge about robustness.

First, we explore the robustness of the gate under the stan-
dard batch method. Similar to previous experiments in Fig. 5,
we introduce systematic errors such as over-rotation and

off-resonance errors to assess the gate fidelity. The standard
batch method, a conventional approach in machine learning,
involves using the entire dataset in each iteration of the opti-
mization algorithm, typically gradient descent. In the realm
of training neural networks for quantum gate optimization,
this method entails feeding the entire training dataset into
the model at once and updating model parameters based
on gradients computed from the entire dataset. To ensure
a comprehensive evaluation, we train five models for each
configuration, utilizing random seeds ranging from 1 to 5,
as depicted in Figs. 5(a)–5(e). This practice of varying the
random seeds during initialization ensures exploration of dif-
ferent regions of the parameter space, guarding against the

FIG. 7. Heat maps illustrating the logarithmic infidelity are plotted, being similar to Fig. 2(c), where the evaluated models in (a)–(e) are
trained with random seed from 1 to 5. Dropout with a rate of κ = 0.1 is used.
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TABLE I. Hyperparameters of three models in Fig. 2.

General Hamiltonian

Figure Neurons in hidden layers Batch size Learning rate Episodes T Nmax Complementary

Fig. 2(a) {64, 64, 64} 32 10−4 105 2 20 Default
Fig. 2(b) {64, 64, 64} 32 10−4 2 × 105 2 20 �̃, �̃ → �̃[1 + N (μ, σ )], �̃[1 + N (μ, σ )]
Fig. 2(c) {64, 64, 64} 32 10−4 2 × 105 2 20 Dropout rate κ = 0.1

optimization algorithm becoming trapped in local minima.
Training multiple models with distinct random seeds offers
a more exhaustive assessment of the model’s performance
and robustness. By aggregating the results obtained from
training these five models, we derive a more dependable
estimate of the model’s performance and robustness. Averag-
ing serves to mitigate the variance in results stemming from
the randomness in initialization and training. This approach
yields a more stable and representative evaluation, thereby
bolstering the credibility of the conclusions drawn from our
analysis.

Similar to the standard batch method, when applying
Gaussian perturbation, we also train five models for each
configuration using random seeds ranging from 1 to 5; see
Figs. 6(a)–6(e). Gaussian perturbation refers to the process
of introducing random noise to the parameters of a model
according to a Gaussian distribution. In the context of our
simulation, this involves adding random Gaussian noise to the
parameters �̃ and �̃ in the output layer of the DRL models.
The noise is characterized by a mean (μ) of zero and a stan-
dard deviation (σ ) of 0.1, and it is added independently to each
parameter. This perturbation incorporates randomness into
the model’s parameters, simulating variations or uncertainties
in the system being modeled. The main difference between
Gaussian perturbation and the standard batch method lies in
how the noise is introduced. In Gaussian perturbation, noise is
explicitly added to the actions, simulating uncertainty or vari-
ability. In the standard batch method, a batch of experiences
is used for policy updates, which helps to average out the
variability and stabilize learning without explicitly introduc-
ing noise. Additionally, the standard batch method involves
training the models using the entire dataset in each iteration
of the optimization algorithm. Meanwhile, Gaussian perturba-
tion is an additional step in the training process, integrated into
the environment after each time step, which is not explicitly
shown in the objective function for policy optimization. As
a consequence, the results obtained from applying Gaussian
perturbation to the DRL models are likely to differ from those
obtained using the standard batch method, leading to different
patterns of errors and variations in the gate fidelity.

Comparing the three models mentioned—the standard
batch method, Gaussian perturbation on nodes, and dropout—
they each have their own advantages and limitations. Finally,

we present the results for five models trained with random
seeds ranging from 1 to 5, as shown in Figs. 7(a)–7(e), where
dropout with a rate of κ = 0.1 is utilized to assess its ef-
fectiveness in enhancing the gate’s robustness. Dropout is a
regularization technique commonly used in neural network
training, including in the context of DRL. It works by ran-
domly “dropping out” a proportion of the neurons in the
network during each training iteration. This process helps pre-
vent overfitting by introducing noise and reducing the reliance
of the network on specific neurons or features. When training
neural networks for quantum gate optimization, dropout can
be used to enhance the robustness of the gate by introducing
variability and preventing the network from memorizing noise
in the training data. By encouraging the network to learn
more general and robust representations, dropout can improve
the model’s ability to generalize to unseen data and mitigate
the impact of systematic errors.

When random seeds ranging from 1 to 5 are used to
train the models, it means that each model is initialized
with different random seeds for the weights and biases. This
ensures that each model explores different regions of the
parameter space during training, which can help prevent us
from cherry picking on a certain result with better perfor-
mance. Upon the the results from models trained with random
seeds ranging from 1 to 5 under each setting, we can av-
erage the figures of merit to derive a conclusion. For three
RL methods toward robustness, the averaged differences are
obtained as Astd = (0.851, 0.040), AGauss = (0.407, 0.030),
and Adropout = (0.543, 0.031), with a distance of |r| = 0.04.
Although the Gaussian-perturbated model exhibits slightly
greater robustness than dropout, the dropout-trained model
does not require prior knowledge of the types of errors. As
mentioned above, dropout regularization provides a mecha-
nism for preventing overfitting and improving generalization
performance in neural networks by randomly dropping units
during training, potentially resulting in improved robustness
and better adaptation to unseen data.

Besides the above information for reproduction (see
Table I), we make all codes, including environments, mod-
els, and scripts, open access [59]. Other hyperparameters of
the PPO algorithm are set to their default values if they are
not explicitly mentioned. We utilized the open-source library
TENSORFORCE V0.5.3 for the implementation.

[1] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A.
Zeilinger, Automated search for new quantum experiments,
Phys. Rev. Lett. 116, 090405 (2016).

[2] M. Krenn, M. Erhard, and A. Zeilinger, Computer-
inspired quantum experiments, Nat. Rev. Phys. 2, 649
(2020).

032614-10

https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1038/s42254-020-0230-4


ROBUST TWO-QUBIT GATE WITH REINFORCEMENT … PHYSICAL REVIEW A 110, 032614 (2024)

[3] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau, An introduction to deep reinforcement
learning, Foundations and Trends in Machine Learning 11, 219
(2018).

[4] J. D. Martín-Guerrero and L. Lamata, Reinforcement learning
and physics, Appl. Sci. 11, 8589 (2021).

[5] J. Yao, L. Lin, and M. Bukov, Reinforcement learning for
many-body ground-state preparation inspired by counterdia-
batic driving, Phys. Rev. X 11, 031070 (2021).

[6] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A. Polkovnikov,
and P. Mehta, Reinforcement learning in different phases of
quantum control, Phys. Rev. X 8, 031086 (2018).

[7] R. Porotti, D. Tamascelli, M. Restelli, and E. Prati, Coherent
transport of quantum states by deep reinforcement learning,
Commun. Phys. 2, 61 (2019).

[8] M. Y. Niu, S. Boixo, V. N. Smelyanskiy, and H. Neven, Univer-
sal quantum control through deep reinforcement learning, npj
Quantum Inf. 5, 33 (2019).

[9] M. Dalgaard, F. Motzoi, J. J. Sørensen, and J. Sherson, Global
optimization of quantum dynamics with AlphaZero deep explo-
ration, npj Quantum Inf. 6, 6 (2020).

[10] X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung, Automatic
spin-chain learning to explore the quantum speed limit, Phys.
Rev. A 97, 052333 (2018).

[11] R.-B. Wu, H. Ding, D. Dong, and X. Wang, Learning robust
and high-precision quantum controls, Phys. Rev. A 99, 042327
(2019).

[12] M. Ostaszewski, J. Miszczak, L. Banchi, and P. Sadowski, Ap-
proximation of quantum control correction scheme using deep
neural networks, Quantum Inf. Process. 18, 126 (2019).

[13] C. Jiang, Y. Pan, Z.-G. Wu, Q. Gao, and D. Dong, Robust
optimization for quantum reinforcement learning control using
partial observations, Phys. Rev. A 105, 062443 (2022).

[14] X.-M. Zhang, Z. Wei, R. Asad, X.-C. Yang, and X. Wang, When
does reinforcement learning stand out in quantum control? A
comparative study on state preparation, npj Quantum Inf. 5, 85
(2019).

[15] T. Haug, W.-K. Mok, J.-B. You, W. Zhang, C. E. Png, and
L.-C. Kwek, Classifying global state preparation via deep re-
inforcement learning, Mach. Learn.: Sci. Technol. 2, 01LT02
(2021).

[16] C. Messikh and A. Messikh, Robust stimulated Raman short-
cuts to adiabatic passage with deep learning, Europhys. Lett.
140, 48003 (2022).

[17] Z. An and D. Zhou, Deep reinforcement learning for quantum
gate control, Europhys. Lett. 126, 60002 (2019).

[18] Y. Ding, Y. Ban, J. D. Martín-Guerrero, E. Solano, J. Casanova,
and X. Chen, Breaking adiabatic quantum control with deep
learning, Phys. Rev. A 103, L040401 (2021).

[19] M.-Z. Ai, Y. Ding, Y. Ban, J. D. Martín-Guerrero, J. Casanova,
J.-M. Cui, Y.-F. Huang, X. Chen, C.-F. Li, and G.-C. Guo,
Experimentally realizing efficient quantum control with rein-
forcement learning, Sci. China: Phys. Mech. Astron. 65, 250312
(2022).

[20] O. Shindi, Q. Yu, P. Girdhar, and D. Dong, Model-free quantum
gate design and calibration using deep reinforcement learning,
arXiv:2302.02371.

[21] V. B. Sørdal and J. Bergli, Deep reinforcement learning for
quantum Szilard engine optimization, Phys. Rev. A 100, 042314
(2019).

[22] S. Borah, B. Sarma, M. Kewming, G. J. Milburn, and J.
Twamley, Measurement-based feedback quantum control with
deep reinforcement learning for a double-well nonlinear poten-
tial, Phys. Rev. Lett. 127, 190403 (2021).

[23] Y. Ding, X. Chen, R. Magdalena-Benedito, and J. D. Martín-
Guerrero, Closed-loop control of a noisy qubit with rein-
forcement learning, Mach. Learn.: Sci. Technol. 4, 025020
(2023).

[24] D. Dong, C. Chen, H. Li, and T. J. Tarn, Quantum reinforcement
learning, IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 38, 1207 (2008).

[25] P. Král, I. Thanopulos, and M. Shapiro, Colloquium: Coher-
ently controlled adiabatic passage, Rev. Mod. Phys. 79, 53
(2007).

[26] M. Steffen and R. H. Koch, Shaped pulses for quantum com-
puting, Phys. Rev. A 75, 062326 (2007).

[27] E. Barnes and S. Das Sarma, Analytically solvable driven time-
dependent two-level quantum systems, Phys. Rev. Lett. 109,
060401 (2012).

[28] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust
quantum control by a single-shot shaped pulse, Phys. Rev. Lett.
111, 050404 (2013).

[29] K. R. Brown, A. W. Harrow, and I. L. Chuang, Arbitrarily
accurate composite pulse sequences, Phys. Rev. A 70, 052318
(2004).

[30] B. T. Torosov, S. Guérin, and N. V. Vitanov, High-fidelity adia-
batic passage by composite sequences of chirped pulses, Phys.
Rev. Lett. 106, 233001 (2011).

[31] X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z.
Jiang, Y. Wu, and J. Du, Experimental fault-tolerant universal
quantum gates with solid-state spins under ambient conditions,
Nat. Commun. 6, 8748 (2015).

[32] H.-N. Wu, C. Zhang, J. Song, Y. Xia, and Z.-C. Shi, Composite
pulses for optimal robust control in two-level systems, Phys.
Rev. A 107, 023103 (2023).

[33] Z.-C. Shi, J.-T. Ding, Y.-H. Chen, J. Song, Y. Xia, X. X. Yi,
and F. Nori, Supervised learning for robust quantum control in
composite-pulse systems, Phys. Rev. Appl. 21, 044012 (2024).

[34] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[35] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-
Odelin, and J. G. Muga, Fast optimal frictionless atom cooling
in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104,
063002 (2010).

[36] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J.
Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband,
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