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Advanced quantum networking systems rely on efficient quantum error correction codes for their optimal
realization. The rate at which the encoded information is transmitted is a fundamental limit that affects the
performance of such systems. Quantum aggregation allows one to increase the transmission rate by adding
multiple paths connecting two distant users. Aggregating channels of different paths allows more users to
simultaneously exchange the encoded information. Recent work has shown that quantum aggregation can also
reduce the number of physical resources of an error correction code when it is combined with the quantum
multiplexing technique. However, the difference in channel lengths across the various paths means some of
the encoded quantum information will arrive earlier than others and it must be stored in quantum memories.
The information stored will then deteriorate due to decoherence processes leading to detrimental effects for
the fidelity of the final quantum state. Here, we explore the effects of a depolarization channel that occurs
for the quantum Reed-Solomon code when quantum aggregation involving different channel lengths is used.
We determine the best distribution of resources among the various channels connecting two remote users.
Furthermore, we estimate the coherence time required to achieve a certain fidelity. Our results will have a
significant impact on the ways physical resources are distributed across a quantum network.
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I. INTRODUCTION

Future quantum networks will allow one to exchange infor-
mation over large distances connecting multiple remote users
[1–3]. This can be accomplished by sending high-quality
quantum states, which can then be used for a variety of tasks,
for instance, improving the security of the communication
channels using quantum cryptographic protocols [4–10], ac-
celerating the computational time with quantum computers
[11–16], and improving the precision of measurements with
quantum sensing and imaging methods [17–19]. However,
due to the fragile nature of these quantum states errors and
device imperfections will affect the performance of those
approaches canceling the advantages that these technologies
have on their classical counterparts.

One method that allows the transmission of high-fidelity
states involves the use of quantum error correction (QEC)
codes [20–26]. Information is now encoded in a more complex
quantum system, which protectsit from the errors occurring
during transmission and recovered when needed. The com-
plexity of such a code requires a large number of physical
resources for the encoding. Communication channels with
low capacities [27–29] and insufficient resources within a
node will reduce the number of resources that can be trans-
mitted over a single path, greatly affecting the communication
rate. For instance, when several users are connected by the
same path (or part of it), the number of channels of the path
can be insufficient for an efficient communication between
two users, decreasing thus their communication rate. Alterna-
tively, one can think of a single channel connecting two users.
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The communication rate, in this case, will be strictly limited
by the repetition rate at which the photons are sent.

One way to alleviate these issues is to connect the users
with more paths using quantum aggregation in which the en-
coded states are distributed over the channels of those distinct
paths [30]. This allows a user at the sender’s node to immedi-
ately communicate with the users at the receiver node without
the necessity of waiting for the connecting channels to be
available after the other users end their communication tasks.
In Ref. [30] it was shown that using two paths for exchanging
information using the quantum Reed-Solomon [31] (QRS)
code allows one to use channels of higher quality to com-
pensate for other channels of lower quality and still reach the
threshold fidelity. For instance, to reach a threshold fidelity of
the encoded transmitted state equal to 99.5% a user can send
his state over two paths, one having channel loss transmission
probability 20% higher and the other one having channel
loss transmission probability 50% lower compared to the
channel loss transmission probability of the single-path case
[30]. Moreover, when higher-dimensional photonic encodings
are used [32] quantum aggregation shows a drastic reduc-
tion of the physical resources required to reach a threshold
fidelity [30].

In the aggregation scenario, a fundamental issue arises due
to the different length of the two paths. In fact, part of the
encoded information that arrives early at the remote node must
be stored in quantum memories, which undergoes a dephasing
process affecting the final fidelity of the state [33]. Once the
delayed piece of encoded state reaches the far end, it can be
used with the one retrieved from the quantum memory to cor-
rect the errors. The coherence time of the quantum memories
used can, therefore, play a fundamental role in determining
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FIG. 1. Quantum aggregation over two paths of length L2 > L1

containing each N1, N2 channels, respectively. Alice distributes her
encoded state over the channels and sends it through the two paths.
Bob stores the received early qudits into quantum memories and
decodes the state once the delayed qudits have arrived.

the performance of the QEC code when quantum aggregation
is in use. Large path-length differences or short coincidence
times can be detrimental in recovering the information sent
making the communication among users impossible. A low
coherence time might also determine whether adopting quan-
tum aggregation is a valid option to reach a certain threshold
fidelity.

In this work we analyze the impact of temporal delays
caused by the path-length differences (i.e., the time interval
in which a piece of an encoded quantum state is stored and
that one in which it is retrieved) on the fidelity of the final
decoded state in a quantum aggregation scenario. To this end,
we consider two users that exchange information using the
QRS code connected by two and three communication paths
of different lengths. We determine the performance of such
a system with delay for several configurations in which the
information can be distributed and we determine the coher-
ence times the quantum memories must have for an optimal
performance. The paper is divided as follows. In Sec. II we
analyze a quantum aggregation system applied to the smallest
QRS code with a temporal delay in one path. Then in Sec. III
we extend our analysis to higher-dimensional QRS codes and
show several different and interesting configuration arise. We
conclude in Sec. IV.

II. QUANTUM AGGREGATION WITH DELAY

Let us begin by exploring the effect of temporal delay in
quantum aggregation using the [[n, 1, d]]D QRS code, where
n is the number of physical qudits of dimension D used to
encode one logical qudit and capable of correcting the loss
of d − 1 qudits, with d being the code distance. In the gen-
eral quantum aggregation scenario two users, Alice and Bob,
are connected by two lossy paths having different lengths
L1 and L2, as shown in Fig. 1. In the following we assume
that D = n = N1 + N2 with N1 and N2 being the number of
channels inside path 1 and path 2, respectively, and L2 > L1

[33]. Alice encodes her state using a [[n, 1, d]]D QRS code
and distributes N1 qudits in the channels of path 1 and N2

qudits in the channels of path 2, respectively. We denote such

a configuration as N1 + N2. Then Bob decodes the received
states if the number of the transmitted qudits arriving earlier
(N ′

1) is enough for retrieving the information sent by Alice
(N ′

1 � d ), otherwise, when N ′
1 < d , he stores those qudits

in quantum memories (QMs). We assume that the density
matrix, ρ, of these stored qudits that undergo a depolarizing
channel is given by ρ → ρ ′ = (1 − pd )ρ + pd I/D′, where
I is the D′-dimensional identity operator and pd is the de-
polarization error probability given by pd = 1 − e−t/T2 , with
t = (L2 − L1)/c, with c being the speed of light traveling in
optical fibers and T2 being the coherence time of the QMs.
Next when N ′

1 < d while the number of qudits transmitted
over path 2 (N ′

2) satisfies N ′
2 � d, Bob uses the N ′

2 qudits
to recover the initial information discarding the stored qudits
associated with the transmission through path L1. Now when
both N ′

1 < d and N ′
2 < d but with N ′

1 + N ′
2 � d Bob retrieves

the qudits stored into the QMs and applies a decoding pro-
cedure on all transmitted qudits. This later case will affect
the fidelity of the decoded state due to the temporal delay
of the qudits traveling in path 2. Finally, when N ′

1 + N ′
2 < d

we assume for simplicity the state shared by Alice and Bob is
a completely mixed state (the worst case) and all the informa-
tion has been lost. We assume that the local gates’ errors are
negligible compared to the memory depolarization errors.

Now let us explore the impact of the temporal de-
lay in a quantum aggregation scenario using the small-
est QRS code the [[3, 1, 2]]3 code capable of correcting
one error in which one logic qutrit is created using
three physical qutrits. In the [[3, 1, 2]]3 QRS code proto-
col Alice encodes her initial qutrit |ψ〉A = α0|0〉 + α1|1〉 +
α2|2〉 into the logic state |ψ〉L = α0|0〉L + α1|1〉L + α2|2〉L,

where |0〉L = (|000〉 + |111〉 + |222〉)/
√

3; |1〉L = (|012〉 +
|120〉 + |201〉)/

√
3 and |2〉L = (|021〉 + |102〉 + |210〉)/

√
3.

She sends this encoded state over a lossy path to Bob. Upon a
successful transmission of the state sent by Alice, Bob applies
a decoding procedure described in Muralidharam et al. [34] to
retrieve the initial state. In the quantum aggregation scenario,
we have two configurations; the 2 + 1 configuration and the
1 + 2 configuration, in which 2(1) qudits are traveling in the
channels of path 1 having a transmissivity p1 = e−L1/Latt while
1(2) qutrits are sent via path 2 with transmission probability
p2 = e−L2/Latt , respectively. Here Latt = 22 km (0.2 dB/km) is
theattenuation length of the optical fiber.

In the 2 + 1 configuration the fidelity F2+1 of the state
received and decoded by Bob is

F2+1 = p2
1 p2 + 2p1 p2(1 − p1)

(
1 − 2

3 pd
)

+ p2
1(1 − p2) + (1 − Ps1 )/27, (1)

where Ps1 = p2
1 p2 + 2p1 p2(1 − p1) + p2

1(1 − p2) is the prob-
ability of the successful transmission of information from
Alice to Bob. Let us give an intuitive derivation of Eq. (1)
that can be easily extended to derive the fidelity of higher-
dimensional QRS codes. The no-loss term, which is the first
and dominant term in Eq. (1), and the loss of the qudit
traveling in path 2 [third term in Eq. (1)] do not depend on
the depolarization error pd because Bob immediately applies
the decoding procedure on the two qutrits traveling in the
channels of path 1. Then, in the case in which one of the two
qudits traveling in path 1 is lost, the temporal delay due to
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FIG. 2. Fidelity of the decoded state received by Bob versus the
coherence time, T2, of the QM used to store the qutrits transmitted
through path 1, in the 2 + 1 configuration (solid blue lines) and 1 + 2
configuration (dash-dotted red lines) for (a) L1 = 1 km, L2 = 3 km
and (b) L1 = 5 km, L2 = 8 km. In the insets we depict the fidelity, F,

versus L2 at (a) L1 = 1 km and (b) L1 = 5 km for both configurations.
Also shown for the three-path configuration as the black dashed
curves (a) with L1 = 1 km, L2 = 2 km, L3 = 3 km and (b) with
L1 = 5 km, L2 = 6 km, L3 = 8 km. The dotted purple lines are the
fidelities of the 0 + 3 configuration (where the length of the channels
in path 1 are increased so L1 = L2).

the storage of the transmitted qudit contributes to the fidelity
with a term proportional to (1 − 2

3 pd ), which is derived in
Appendix A. To gain an understanding of the behavior of
the fidelity we plot in Fig. 2(a) the fidelity F2+1 versus the
memories coherence time for L1 = 1 km and L2 = 3 km (solid
blue curve). We see that the coherence time of the QM only
affects the fidelity when T2 < 0.1 ms and noting that for no
memory (T2 = 0) F2+1 ∼ 0.94. This is due to the fact that the
no-loss term does not depend on pd . Therefore, even when
there are no QMs in the system the transmitted state can be
used to extract some information. A similar explanation can
be given to the case in which L2 → ∞ [see the left graph
of the inset of Fig. 2(a)]. Here we plot the fidelity versus L2

with L1 = 1 km for T2 = 1 ms (solid blue curve), T2 = 0.1
ms (dashed red curve), and T2 = 0.01 ms, respectively. We
observe that the fidelity decreases at lower coherence times
while reaching an asymptotic value of ∼0.92 at large values
of L2, from which information can partially be extracted. This
can be explained considering that, for this configuration, the
no-loss term corresponds to the case in which two qudits
are successfully transmitted and one is lost with very high
probability. Therefore, since this code can correct the loss
of one qudit, the transmitted state containing two qudits with
probability (∼p2

1) still has sufficient information allowing the
fidelity to exceed 50%.

The alternate 1 + 2 configuration changes quite drastically.
It is straightforward to show that F1+2 is

F1+2 = p2
2 p1 + 2p1 p2(1 − p2)

(
1 − 2

3 pd
)

+ p2
2(1 − p1) + (1 − Ps2 )/27, (2)

where Ps2 = p2
2 p1 + 2p1 p2(1 − p2) + p2

2(1 − p1). Even in
this configuration the dominant term is the no-loss term,
which does not depend on pd because, although the two qudits
arrive later, they can be immediately used to decode the state
while discarding the early qudit transmitted over path 1. The
second term in Eq. (2) refers to the loss of a qudit traveling
in path 2. Therefore, Bob needs to retrieve the stored qudit
from the QM to decode the state together with the single qudit
transmitted over path 2. The contribution to the fidelity from
the depolarization channel applied to the stored qudit is equal
to the previous configuration. Finally, the third term in Eq. (2)
does not depend on pd because Bob can use the two qudits
transmitted over path 2 to decode the state. To visualize this
we plot F2+1 (solid red line) versus T2 at the same numerical
values of the previous configuration, as shown in Fig. 2(a).
As expected, the fidelity in this case has much lower values
because the no-loss term suffers the loss of two qudits with
higher probability, hence the second term in Eq. (2) is more
relevant in this case. In other words, the coherence time in
this case affects the fidelity more than the other case. This can
also be seen from the graph in the right side of the inset of
Fig. 2(a). Here, we plot the fidelity versus L2 for different
coherence times. In this case the probability of losing two
qudits traveling in path 2 increases with L2, [mathematically,
the first term in Eq. (2) decreases], hence, the contribution to
the fidelity from the second term is more significant. In this
case one can see that T2 determines a threshold value for L2

after which the fidelity is below 50% [see the crossing points
of the curves with the x axis in the graph in the right side of the
inset of Fig. 2(a)]. From this considerations we conclude (as
expected) that distributing more qudits in the shorter channel
gives a significant advantage in terms of having higher fideli-
ties and being slightly affected by the coherence time. Please
see Appendix B for the full derivation of Eqs. (1) and (2).

We expect that, for higher values of L1, all the results de-
scribed above are worse for both configurations. This scenario
is shown in Fig. 2(b), where we plot the fidelities of the con-
figurations versus T2 at L1 = 5 km and L2 = 8 km and in the
inset where we plot the fidelities of both configurations versus
L2 at L1 = 5 km. Even in this case the fidelity in the 2 + 1
configuration reaches an asymptotic value as L2 increases,
which is much lower than the previous case.

It is interesting now to add one more path (path 3),
with transmission probability p3 = e−L3/Latt , to the previous
scheme, such that L3 > L2 > L1 while maintaining the same
highest distance separating Alice and Bob. In this case, each
qutrit travels across a channel in the corresponding path. This
can be referred to as the 1 + 1 + 1 configuration. The fidelity
of Bob’s decoded state is

F1+1+1 = p1 p2 p3

(
1 − 2

3
pd12

)
+ (1 − Ps)1/27

+
3∑

i �= j �=k=1

pi p j (1 − pk )

(
1 − 2

3
pdi j

)
, (3)

where pdi j = 1 − e−Ti j/T2 , with Ti j = |Li − Lj |/c and Ps =
p1 p2 p3 + p2 p3(1 − p1) + p1 p3(1 − p2) + p1 p2(1 − p3). In
this case, the no-loss term of Eq. (3) depends on pd because
the qutrit traveling in the channel of path 1 arrives first and
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needs to be stored in a QM before Bob can apply a decoding
process with a second qudit. One can also see that all the other
terms in Eq. (3) depends on pd because, in the loss event
of any qudit, Bob needs to wait for another one to start the
decoding process. Figure 2(a) shows the fidelity of Eq. (3)
(black dashed line) at L1 = 1 km, L2 = 2 km, and L3 = 3 km.
One can see that, for small values of T2 (T2 < 0.1 ms), the
no-loss term greatly affects the fidelity, whereas for higher
values of T2 the fidelity of the three-path case increases until
it crosses the 1 + 2 configuration of the two-path case at a
crossing point T c

2 	 0.3 ms. This is due to the fact that the
expression of the fidelity of the state received by Bob in the
three-path case is more affected by the coherence time than
the 1 + 2 case as one can see comparing Eq. (1) with Eq. (3).
Therefore, we expect that, for large values of T2, the no-loss
term of Eq. (3) becomes higher than the no-loss term of Eq. (1)
because when T2 → ∞ the qudit in path 2 travels over a
smaller distance than the qudits of the 1 + 2 configuration.
At L1 = 5 km and L2 = 8 km the three-path case has also a
lower fidelity as shown from the dashed curve in Fig. 2(b).
However, in this case the crossing point of this curve with
the one corresponding to the 1 + 2 configuration is slightly
lower than the crossing point shows in Fig. 2(a). This can be
explained by considering that, for larger distances, the main
source of error is the channel loss, hence, the coherence time
affects less the fidelity of the decoded state. In fact, we can
see that at very low values of T2 the fidelity of the three-path
case is very similar to the 1 + 2 case.

For comparison we also plot the fidelities of the 0 + 3
configuration (dotted purple line), as shown in Figs. 2(a) and
2(b). This corresponds to the situation in which the channel
length of the shorter path has been increased so L1 = L2. One
notices that the 0 + 3 case outperforms both the 2 + 1 and
1 + 2 case as well as the three-path case at low values of T2.

This shows that for a very limited range of low decoherence
times it might be more convenient adding a fiber delay line
to the shorter path to match the longer path rather than using
quantum aggregation.

III. TEMPORAL DELAY
FOR HIGHER-DIMENSIONAL CODES

So far we considered the smallest QRS code that can
correct one loss errors. What happens as we increase the
code size? We analyze the effects of the temporal delay in
a quantum aggregation scenario for the [[5, 1, 3]]5 and the
[[7, 1, 4]]7, QRS codes, which can fix the loss of two and three
qudits, respectively. Let us begin with the [[5, 1, 3]]5 code.
Here there are four possible configurations: 4 + 1, 3 + 2,
2 + 3, and 1 + 4.

A. 4 + 1 and 1 + 4 configurations

In these configurations for the [[5, 1, 3]]5 code, the fidelity
of the state decoded by Bob is

F4+1 = p4
1 p2 + 4p3

1 p2(1 − p1) + p4
1(1 − p2)

+ 6p2
1 p2(1 − p1)2 f1(pd )

+ 4p3
1(1 − p1)(1 − p2) + (1 − Ps1 )/55, (4)

FIG. 3. Fidelity of the state decoded by Bob when Alice encodes
her state using the [[5, 1, 3]]5 QRS code in a quantum aggregation
scenario for L1 = 1 km and L2 = 3 km versus the coherence time
T2. The blue solid curve (red dash-dotted curve) refers to the 4 + 1
(1 + 4) configuration in which Alice distribute four (one) qudits into
the shorter channels and one (four) qudits in the longer channels,
respectively, whereas the dashed yellow curve (dotted purple curve)
refers to the 3 + 2 configuration in which Alice distributes three
(two) qudits into the shorter channels and three (two) qudits in the
longer ones, respectively. In the inset, we plot the contributions to the
fidelity of the probability of losing zero (solid curves), one (dashed
curves), and two (dotted curves) qudits for the 1 + 4 and 2 + 3
configurations.

and

F1+4 = p4
2 p1 + 4p3

2 p1(1 − p2) + p4
2(1 − p1)

+ 6p2
2 p1(1 − p2)2 f2(pd )

+ 4p3
2(1 − p2)(1 − p1) + (1 − Ps2 )/55, (5)

where Ps1(2) = p4
1(2) p2(1) + 4p3

1(2) p2(1)(1 − p1(2)) + p4
1(2)(1 −

p2(1)) + 6p2
1(2) p2(1)(1 − p1(2))2 + 4p3

1(2)(1 − p1(2))(1 − p2(1))
and f1(2)(pd ) being a contribution to the fidelity when two or
one qudits are dephasing, respectively.

Comparing Eq. (4) with Eq. (5) one can see that the ex-
pressions of the two fidelities are almost identical except for
the fourth term, which is multiplied by f1,2(pd ), respectively,
whose analytical expression is given in Appendix B. What is
important, however, is that f1(pd ) � f2(pd ) and only equal
at pd = 0, 1. This is due to the fact that the term f1(pd )
can be considered as the fidelity of a density matrix in which
two qudits are dephasing whereas f1(pd ) takes into account
the dephasing of a single qudit. Hence in this later case,
less information is lost. However, the dominant term in both
Eqs. (4) and (5) is the no-loss term, hence, F1 is higher than
F2 for any value of the dephasing time T2, as shown in Fig. 3.
Therefore, it is more advantageous to distribute more qudits
into the shorter path as well as what we obtained for the
three-dimensional code.

B. 3 + 2 and 2 + 3 configurations

It is now interesting to analyze the 3 + 2 and 2 + 3 config-
urations of the [[5, 1, 3]]5 QRS code. The respective fidelities
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are

F3+2 = p3
1 p2

2 + 3p2
1 p2

2(1 − p1) f3(pd ) + 2p3
1 p2(1 − p2)

+ 3p1 p2
2(1 − p1)2 f2(pd ) + p3

1(1 − p2)2

+ 6p2
1 p2(1 − p1)(1 − p2) f1(pd ) + (1 − Ps1 )/55,

(6)

and

F2+3 = p3
2 p2

1 + 3p2
2 p2

1(1 − p2) f3(pd ) + 2p3
2 p1(1 − p1)

+ 3p2 p2
1(1 − p2)2 f1(pd ) + p3

2(1 − p1)2

+ 6p2
2 p1(1 − p2)(1 − p1) f2(pd ) + (1 − Ps2 )/55,

(7)

where Ps = p3
1(2) p2

2(1) + 3p2
1(2) p2

2(1)(1 − p1(2)) + 2p3
1(2) p2(1)

(1 − p2(1)) + 3p1(2) p2
2(1)(1 − p1(2))2 + p3

1(2)(1 − p2(1))2 +
6p2

1(2) p2(1)(1 − p1(2))(1 − p2(1)).
Figure 3 shows that, even in this configuration, it is more

convenient to use more qudits in the shorter path. In fact, F1

(dashed yellow curve) is higher than F2 (dotted purple curve)
for any value of T2. Further, Fig. 3 shows that at T2 � 0.16 ms
the fidelity of the 2 + 3 configuration outperforms the fidelity
of the 1 + 4 configuration. This can be explained with the
fact that some terms of Eq. (7) are much more affected by
the dephasing channel than Eq. (5). In fact, in the inset of
Fig. 3 we plot for those two configurations, the contributions
to the fidelity coming from the probability of losing zero (solid
curves), one (dashed curves), and two (dotted curves) qudits.
We expect that that for large values of T2 the probability of not
losing any qudit is higher in the 2 + 3 configuration (purple
solid curve of the inset) because less qudits are traveling in the
longer channel compared to the 1 + 4 configuration (red solid
curve of the inset) whereas the loss terms must be smaller.
However, at lower values of T2, the contribution of losing
one qudit for the 2 + 3 configuration is strongly affected by
dephasing whereas the one of the 1 + 4 configuration does
not depend on it. As regards the probability of losing two
qudits, the dephasing channel affects both configurations with
the 2 + 3 being slightly lower.The stronger impact of the
decoherence on the 2 + 3 configuration also explains the be-
havior of the crossing points at which the fidelity of the 1 + 4
configuration is equal to the fidelity of the 2 + 3 configuration,
as shown in Fig. 4. Here one can see that regardless the initial
value of L1 the crossing points occur at higher values of L2

(which corresponds to lower p2) when T2 decreases.
Now assuming that a user can send one qudit per unit of

time, this analysis shows that with a more even distribution
of qudits (for instance, 3 + 2 or 2 + 3) one can obtain faster
communication rates while reducing the quality of the trans-
mitted state when compared to the 4 + 1 configuration while
obtaining higher fidelity of the 1 + 4 configuration. How-
ever, at low values of T2 the 1 + 4 configuration outperforms
the 3 + 2 and the 2 + 3 configurations. When the fidelity
is the main figure of merit is then fundamental in determining
the value of the coherence time of the quantum memories at
the receiver node to guarantee a certain threshold fidelity.

FIG. 4. Length of path 2 versus the decoherence time T2 for the
point at which the fidelity of the 1 + 4 configuration (red dash-dotted
curve of Fig. 3) equals that of the 2 + 3 configuration (purple dotted
curve of Fig. 3) for L1 = 1 km (solid blue curve), L1 = 3 km (dashed
red curve), and L1 = 5 km (dotted black curve). Note that the curves
are shown for L2 > L1 according to the assumption that the length of
path 2 is always bigger than that one of path 1.

C. [[7, 1, 4]]7 QRS code

Let us now explore the performance of the large [[7, 1, 4]]7

QRS code. Figure 5 shows the fidelities of all configurations
of the [[7, 1, 4]]7 QRS code, where the solid blue curve,
the dashed yellow curve, and the green square dots refer to
the case in which a higher number of qudits travel in the
shorter channels whereas the dotted yellow curve, the blue

FIG. 5. Fidelity of the state received by Bob when Alice encodes
her state using the [[7, 1, 4]]7 QRS code in a quantum aggrega-
tion scenario for L1 = 1 km and L2 = 3 km. The blue solid curve
(blue dots) refers to the 6 + 1 (1 + 6) configuration in which Alice
distribute six (one) qudits into the shorter channels and one (six)
qudits in the longer channels, respectively; the dashed yellow curve
(dotted yellow curve) refers to the 5 + 2 configuration in which
Alice distribute five (two) qudits into the shorter channels and two
(five) qudits in the longer ones, respectively; the green square dots
(dash-dotted green curve) refers to the 4 + 3 configuration in which
Alice distribute four (three) qudits into the shorter channels and
three (four) qudits in the longer ones, respectively. In the inset we
plot the portion of the graph in which the 1 + 6, 2 + 5, and 4 + 3
configurations cross.
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dots, and the green dash-dotted curve refer to the case in
which the smaller number of qudits travel in longer channels.
One can notice the following common features shared with
the [[5, 1, 3]]5 QRS case illustrated above. First, the case in
which more qudits travel in the shorter path has higher fidelity
than the other case for any value of T2. This is mainly due to
the contribution of the no-loss term, which is the dominant
term in the expressions of the fidelities. Then, when the qudits
are almost equally distributed between the two channels (for
instance, the 3 + 2 configuration of the [[5, 1, 3]]5 QRS code,
or the 4 + 3 configuration of the [[7, 1, 4]]7 QRS code) the
fidelities are much more affected by the dephasing. As a
consequence, these fidelities will reach the asymptotic limit
of T2 → ∞ at higher values of T2 as shown in Fig. 5 (for
instance, the purple dotted curve in Fig. 3 and the green dots
and dash-dotted curve in Fig. 5).

Then, as well as the case of the [[5, 1, 3]]5 QRS code,
there is a crossing point in which the fidelities of different
configurations intersect. The inset of Fig. 5 shows that this
dephasing crossing point, T c

2 , occurs at T c
2 = 0.16 ms. This

can be explained with a very similar motivation given in
the [[5, 1, 3]]5 QRS code case. In fact, the loss terms in the
fidelity’s expressions of the configurations in which the qudits
are more evenly distributed depend on the dephasing channel
much more than the loss terms of the uneven distributions.
Hence, the corresponding fidelities assume high values at
T2 → ∞ and very low values at T2 → 0 for the even distri-
bution cases leading to a crossing point with the fidelity of the
uneven case. This is an interesting feature of the aggregation
network because one user can achieve a faster communication
rate, sending more qudits simultaneously the more even is the
distribution, while having better fidelities than the more un-
even distribution case for certain values of T2. However, when
the highest value of fidelity is required, then a more uneven
distribution is preferred. This aspect can play an important
role for some quantum communication systems in which a
trade-off between the fidelity of the transmitted states and the
transmission rate is the key factor, such as in several quantum
key distribution schemes [6–9]. Therefore, for such systems
optimizing the secret key rate could be a useful figure of merit
to assess the performance of tomorrow’s quantum network.

IV. CONCLUSION AND DISCUSSION

Distributing physical resources over multiple channels of
different lengths in a quantum aggregation scenario will re-
quire the use of quantum memories to store the states arriving
earlier. The decoherence process occurring in the memories
will partially destroy the stored information before the de-
layed state arrives. Here we analyze the effect of such a delay
time in a QRS code having dimensions of three, five, and
seven, respectively. For these codes, we analytically calculate
the fidelity of the final state as a function of the channel
loss and the dephasing time for different configurations in
which the resources are evenly or unevenly distributed over
two paths of different length. We expect that for large values
of the decoherence time T2 the fidelities will reach an asymp-
totic optimal value regardless the length of the channels. In
particular, we obtain that for T2 > 1 ms the fidelities of all
the configurations analyzed in this work asymptotically reach

FIG. 6. Decoding circuit of the [[5, 1, 3]]5 QRS code when
(a) one qudit and (b) two qudits are lost, respectively. The dashed
lines refer to the loss of a qudit. The symbol “+” refers to the sum
mod 5 gate.

their optimal value. This threshold for the coherence time is
vastly reachable with today’s technology using, for instance,
ion qubits [35], superconducting cavities [36], nuclear qubits
of NV centers [37], and ensemble-based quantum memories
[38]. We also analyze the behavior of such fidelities at a
fixed value of the coherence time when the length difference
between the two paths increases. In this case we obtain an
asymptotic value for the fidelity when the majority of the
qudits travels across the shorter path regardless of the value
of the coherence time. However, when most of the qudits
travel in the longer path we determine the largest achievable
distance of such a path, which is strongly affected by the
coherence time. We show that while quantum aggregation
allows users in a quantum network to exchange information
faster, the impact of a temporal delay in the received states
can have a detrimental effect on the quality of the transmitted
information. In addition, the configurations analyzed in this
work can potentially provide a guideline on the architecture of
quantum networks. Future works might consider using other
error-correction codes with quantum aggregation due to its
versatility as well as adding more paths connecting users.
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APPENDIX A: DECODING PROCEDURES

In this Appendix we illustrate the procedure to recover
the state sent by Alice for the [[5, 1, 3]]5 and [[7, 1, 4]]7

QRS codes, respectively, in a lossy channel. Figure 6 shows
the circuit that Bob applies to the encoded state sent by
Alice when Fig. 6(a) illustrates the situation involving the
loss of a single qudit and Fig. 6(b) the loss of two qudits.
The gates represent a sum modulo 5 between two qudits of
dimension five. After these gates are applied the remaining
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FIG. 7. Decoding circuit of the [[7, 1, 4]]7 QRS code when
(a) one qudit, (b) two qudits, and (c) three qudits are lost, respec-
tively. The dashed lines refer to the loss of a qudit. The symbol “+”
refers to the sum mod 7 gate.

qudits except the first one are measured in the computational
basis. These measurements will ideally project the first qudit
into the state |ψ〉A = α0|0〉 + α1|1〉 + α2|2〉 + α3|3〉 + α4|4〉.
Similarly, it is possible to retrieve the initial state of Alice for
the [[7, 1, 4]]7 QRS code with the decoding circuits shown in
Figs. 7(a), 7(b), and 7(c), which correspond to the loss of one,
two, and three qudits, respectively.

APPENDIX B: FIDELITIES AFTER DEPHASING

Here, we derive the general approach we use to cal-
culate the fidelity of the [[3, 1, 2]]3 QRS code when the
density matrix of the state undergoes a dephasing channel.
We then derive the terms that depend on the dephasing for
the [[5, 1, 3]]5 and [[7, 1, 4]]7 QRS codes.

Alice initially encodes her physical state |ψ〉A = α0|0〉 +
α1|1〉 + α2|2〉 into the logical state ρL = |ψ〉L〈ψ |L and sends
it to Bob over lossy channels, having transmission probabili-
ties p1 and p2, respectively. After the channel loss, the mixed
density matrix can be expressed as a sum of density matrices
multiplied by the loss probability, i.e.,

ρL → ρ ′ = p2
1 p2ρ0 + p1 p2(1 − p1)ρ1 + p1 p2(1 − p1)ρ2

+ p2
1(1 − p2)ρ3 + (1 − Ps)I3, (B1)

where ρ0, ρ1, ρ2, and ρ3 are the density matrices resulting
from the loss of no qudit, the first qudit, the second, or the
third qudit, respectively, while I3 is the normalized identity
operator of the Hilbert space spanned by the three qudits. We
assume that the terms of the density matrix ρ ′ corresponding
to the loss of two and three qudits are given by I3. The
fidelity of the state given by Eq. (B1) is, therefore, a lower

bound of the total fidelity. Now, the density matrices ρ1 and
ρ2 undergo a depolarization channel given by ρ1,2 → ρ ′

1,2 =
(1 − pd )ρ1,2 + pd I1,2Tr12(ρ1,2), where I1,2 is the identity of
the Hilbert space spanned by qudits 1 and 2, respectively.
Substituting ρ ′

1,2 in Eq. (B1) we obtain

ρ ′ → ρ(pd ) = p2
1 p2ρ0 + p1 p2(1 − p1)ρ ′

1 + p1 p2(1 − p1)ρ ′
2

+ p2
1(1 − p2)ρ3 + (1 − Ps)I3. (B2)

Bob applies the decoding procedure described in
Muralidharam et al. [34], which ideally restores the
initial state of Alice |ψ〉A. The fidelity, F, is given by
F =A 〈ψ |ρ(pd )|ψ〉A.

We now show the derivation of the term f1(pd ) of Eq. (4).
To this end, let us assume that the encoded state of the
[[5, 1, 3]]5 QRS code losses the first two qudits. The resulting
state is then given by ρl = ∑5

i=0 |ψ〉i〈ψ |i, where

|ψ〉0 = α0|000〉 + α1|341〉 + α2|132〉 + α3|423〉 + α4|214〉,
|ψ〉1 = α0|111〉 + α1|402〉 + α2|243〉 + α3|034〉 + α4|320〉,
|ψ〉2 = α0|222〉 + α1|013〉 + α2|304〉 + α3|140〉 + α4|431〉,
|ψ〉3 = α0|333〉 + α1|124〉 + α2|410〉 + α3|201〉 + α4|042〉,
|ψ〉4 = α0|444〉 + α1|230〉 + α2|021〉 + α3|312〉 + α4|103〉.

We now apply a depolarization channel to ρl and
we obtain ρl → ρ ′

l = (1 − pd )2ρl + pd (1 − pd )I1Tr1(ρl ) +
pd (1 − pd )I2Tr2(ρl ) + p2

d I12Tr12(ρl ), where I1(2) is the iden-
tity operator of the Hilbert space spanned by the qudit 1(2) and
I12 = I1 ⊗ I2. Bob will apply the decoding procedure of Fig. 6
to the state ρ ′

l obtaining a decoded state ρ ′′
l . The contribution

of ρ ′′
l to the fidelity of Eq. (4), f1(pd ) will be:

f1(pd ) =A 〈ψ |ρ ′′
l |ψ〉A = 〈ψ |Aρ(pd )|ψ〉A

= 1

20
(

5
4 − 2pd + p2

d

)
⎡
⎣4

⎛
⎝4

4∑
i=0

α4
i +13

4∑
i, j=0

α2
i α

2
j

⎞
⎠p2

d

−20

⎛
⎝2

4∑
i=0

α4
i + 5

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd + 25

⎤
⎦. (B3)

It is straightforward to see that f1(pd ) has a minimum at α0 =
α1 = α2 = α3 = α4 = 1/

√
5, which is the numerical value

we have used to find the fidelities of Eqs. (4) and (5). The
derivation of all the other terms due to dephasing follow a
similar approach, hence, we only give here the final result:

f2(pd ) = 1

5 − 4pd

⎡
⎣5 − 2

⎛
⎝2

4∑
i=0

α4
i + 5

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd

⎤
⎦,

f3(pd ) = 1

(5 − 4pd )2

⎡
⎣2

⎛
⎝8

4∑
i=0

α4
i + 25

4∑
i, j=0

α2
i α

2
j

⎞
⎠p2

d

−20

⎛
⎝2

4∑
i=0

α4
i + 5

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd + 25

⎤
⎦.
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The contributions to the fidelity that depend on pd of the [[7, 1, 4]]7 QRS code are:

g1(pd ) = 342
(

7
6 − pd

)
7
(
49 − 30p3

d + 108p2
d − 126pd

)
[

2

19

(
6

4∑
i=0

α4
i +19

4∑
i, j=0

α2
i α

2
j

⎞
⎠p2

d − 42

(
2

4∑
i=0

α4
i +5

4∑
i, j=0

α2
i α

2
j pd + 49

57

⎤
⎦,

g2(pd ) = 1

6
(

7
6 − pd

)
⎡
⎣7 − 2

⎛
⎝3

4∑
i=0

α4
i + 7

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd

⎤
⎦,

g3(pd ) = 1

(6pd − 7)3

⎡
⎣2

⎛
⎝108

4∑
i=0

α4
i + 343

4∑
i, j=0

α2
i α

2
j

⎞
⎠p3

d − 42

⎛
⎝18

4∑
i=0

α4
i + 49

4∑
i, j=0

α2
i α

2
j

⎞
⎠p2

d

+294

⎛
⎝3

4∑
i=0

α4
i + 7

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd − 343

⎤
⎦,

g4(pd ) = 1(
49 − 35pd + 49p2

d

)
[

p2
d − 7

(
5

4∑
i=0

α4
i +14

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd + 49

⎤
⎦,

g5(pd ) = 1

(6pd − 7)2

⎡
⎣3

⎛
⎝18

4∑
i=0

α4
i + 49

4∑
i, j=0

α2
i α

2
j

⎞
⎠p2

d −28

⎛
⎝3

4∑
i=0

α4
i + 7

4∑
i, j=0

α2
i α

2
j

⎞
⎠pd + 49

⎤
⎦.
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