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Long-lived coherences in strongly interacting spin ensembles
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Periodic driving has emerged as a powerful tool to control, engineer, and characterize many-body quantum
systems. However, the required pulse sequences are often complex, long, or require the ability to control the
individual degrees of freedom. In this work, we study how a simple Carr-Purcell–Meiboom-Gill (CPMG)-like
pulse sequence can be leveraged to enhance the coherence of a large ensemble of spin qubits and serve as an
important characterization tool. We implement the periodic drive on an ensemble of dense nitrogen-vacancy
(NV) centers in diamond and examine the effect of pulse rotation offset as a control parameter on the dynamics.
We use a single diamond sample prepared with several spots of varying NV density, which, in turn, varies the
NV-NV dipolar interaction strength. Counterintuitively, we find that rotation offsets deviating from the ideal π

pulse in the CPMG sequence (often classified as pulse errors) play a critical role in preserving coherence along
an axis set by the π pulses even at nominally zero rotation offset. The cause of the coherence preservation is an
emergent effective field that scales linearly with the magnitude of the rotation offset for small offsets. In addition
to extending coherence, we compare the rotation offset dependence of coherence to numerical simulations to
measure the disorder and dipolar contributions to the Hamiltonian to quantitatively extract the densities of the
constituent spin species within the diamond.

DOI: 10.1103/PhysRevA.110.032612

I. INTRODUCTION

Engineered quantum systems have emerged as powerful
and flexible tools for probing many-body physics. Whether
composed of atomic, superconducting, or solid-state defect
degrees of freedom, these platforms now routinely provide
important insights into myriad phenomena such as phases
of matter [1–5] and quantum decoherence [6–10], and can
even enable the generation of metrologically useful entangled
states [11–16]. The physics of these many-body phenomena
crucially depends on the interplay between two distinct types
of interactions: those within the system itself (internal) and
those between the system and its environment (external).
Hence, controlling and characterizing these interactions is
central to developing a many-body quantum simulator or a
sensor.

Defects in semiconductors such as diamond—in particular,
the nitrogen-vacancy (NV) center—are especially promis-
ing as a platform for exploring many-body physics owing
to their optical polarizability and their ability to access
large system sizes [4,6,21,22]. While it has recently become
possible to synthesize ensembles of dipolar interacting NV
centers [6,23,24], additional interactions with the environment

*These authors contributed equally to this work.

often destroy the system’s coherence, limiting the landscape
of explorable quantum many-body phenomena. For example,
other defects in the diamond lattice, such as the spin-1/2
substitutional nitrogen impurity (P1 centers) or NV centers
of other orientations, introduce a local, random, fluctuating
magnetic field; such fluctuations are typically the primary
source of decoherence in NV systems. To design and realize
novel many-body states in NV ensembles and gain a clear
understanding of decoherence pathways, it is important to
characterize the various interactions within the system and
between the system and its environment. Armed with this
information, suitable protocols can be used to either mitigate
[25,26] or leverage [27] these interactions.

One powerful method to probe and manipulate interactions
in spin systems is Hamiltonian engineering, where the spins
are manipulated via coherent pulses on a timescale faster than
any interaction strength present in the system, resulting in an
effective time-averaged Hamiltonian H̄ that describes the evo-
lution of the spins. Through fine tuning of the pulse sequence
parameters (i.e., rotation angle, rotation axes, pulse duration,
timing between pulses), the effective Hamiltonian can be en-
gineered to extend coherence by decoupling external disorder
(e.g., Hahn echo [28] or CPMG [29,30]) or suppressing in-
ternal interactions (e.g., WAHUHA [31]). Recently, complex
sequences have been designed that are capable of suppress-
ing both disorder and interactions while being robust to
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pulse errors (DROID [32]). Outside of dynamical decoupling,
Hamiltonian engineering has also been applied to simulating
many-body physics in engineered spin systems [27].

In this paper, we demonstrate how replacing π pulses with
π + ε pulses in the canonical CPMG sequence, which we
dub the ε-CPMG sequence, provides a simple yet powerful
scheme for controlling the system’s effective Hamiltonian.
This control manifests itself in the ability to engineer the rela-
tive strength between onsite disorder and dipolar interactions
in a pulse-error-robust fashion. Using this simple ε-CPMG
sequence, our observations are twofold. First, moving away
from the CPMG sequence, i.e., ε �= 0, leads to a surprising
extension of spin coherence out to timescales approaching the
spin-locking timescale, T1,ρ , regardless of the ratio of dipolar
interactions to disorder. Second, the robust control over the
effective Hamiltonian offers a novel yet simple way of exper-
imentally characterizing the strength of dipolar interactions
and disorder, an important characteristic of many-body sys-
tems. Crucially, this understanding can be transferred into a
quantitative measure of the density of spin defects, both the
NV and surrounding spin baths.

II. EFFECT OF ROTATION OFFSETS

We investigate a chemical vapor deposition (CVD)-grown
diamond sample (sample C041) with a several-μm thick
nitrogen-doped layer, as detailed in previous work [23]. As
schematically indicated in Fig. 1(a), the diamond was irra-
diated in several-μm-scale spots with electrons of varying
dosage and energy. A key feature of our sample is that in
the spots with higher irradiation dosage, the NV density is
high enough to play a significant role in the decoherence dy-
namics [23]. The NV dynamics are governed by the following
Hamiltonian,

H =
∑

i

Bz
i (t )σ z

i +
∑
i< j

Ji j
(
σ x

i σ x
j + σ

y
i σ

y
j − σ z

i σ z
j

)
, (1)

where the first summand is referred to as disorder or exter-
nal interactions, the second summand contains the dipolar or
internal interactions, Bz

i (t ) is the local on-site field at spin i,
which can vary as a function of time, t . The dipolar coupling
between spins i and j is Ji j , and σ

x,y,z
i are the Pauli spin op-

erators for the ith spin. Our engineered Hamiltonian approach
permits the characterization of these internal and external in-
teractions without necessitating arbitrary wave generators (for
fast and precise control) or multiple microwave drives (as in
double resonance techniques). Instead, our ε-CPMG sequence
[shown in the inset for Fig. 1(b)] varies a single parameter
ε, defined as the deviation from a perfect π pulse. Addi-
tional experimental details can be found in the Appendices.
An example of a long-lived coherence (transverse magneti-
zation 〈σ y(t )〉 [33]) resulting from this sequence is shown in
Fig. 1(b).

Even though in Fig. 1(b), data is taken at a target of ε = 0,
a finite ε is still present due to experimental imperfections
and is, indeed, the origin of the long-lived coherence. To
elucidate the connection between finite ε and the long-lived
coherence, we compare the results from the CPMG sequence
to two different sequences designed to cancel the effects
of accumulating pulse errors: an alternating-phase CPMG

FIG. 1. Measurement of long-lived coherences in a dense NV
ensemble. (a) Cartoon sketch of our spin system, a CVD-grown,
nitrogen-doped diamond sample showing spots that have undergone
localized electron irradiation of varying dosage, resulting in high NV
densities that vary across spots. The NV ensemble (red) is mixed
randomly with a bath of spins (black). A magnetic field (blue) is
applied along the 111 direction. (b) Long-lived coherences observed
under ε-CPMG. For the data shown, θ ≈ π , and N is varied for
various fixed values of τ . For comparison, the spin echo is also shown
(N = 1, θ ≈ π , variable τ ). Data is taken on spot A [see Table I and
Fig. 2(a)]. Details of the fit to the spin echo data are given in the
Appendices. (c) Comparison of ε-CPMG to APCPMG (which has
the same filter function [17–19]) and XY-8, elucidating the impor-
tance of a finite ε for preserving coherence in the ε-CPMG sequence
(τ = 250 ns). Both APCPMG and XY-8 [20] are designed to cancel
the effect of accumulating rotation offsets. The experimental data
shows a marked difference in coherence between ε-CPMG and the
two sequences, reinforcing the notion that the finite, uncontrolled ε

in the CPMG sequence is the origin of the state’s long-lived nature.
The APCPMG coherence decays faster than the XY-8 coherence,
likely due to its susceptibility to frequency offsets such as those
due to on-site disorder. Even though ε = 0 is targeted in all cases,
a finite rotation offset still exists. For reference, a spin echo sequence
is shown in black.

(APCPMG) sequence and an XY-8 sequence. The CPMG
sequence (red) shows substantially longer coherence times
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TABLE I. Comparison of spin densities for spots A, B, and L as obtained from instantaneous diffusion (ID), DEER (Ref. [23]) and from
ε-CPMG, showing good agreement in the NV density. Explanations for the discrepancies are discussed in the text.

Spot Dosage Energy [NV]ID [P1]DEER [NV]ε−CPMG [spin-defect]ε-CPMG

A 1021 (e−/cm2) 200 keV 2.7 ± 0.08 ppm 3.8 ± 0.2 ppm 2.1 ± 0.3 ppm 23.2 ± 0.5 ppm
B 1020 (e−/cm2) 200 keV 2.2 ± 0.21 ppm 10.5 ± 0.2 ppm 1.3 ± 0.4 ppm 17.4 ± 0.9 ppm
L 1022 (e−/cm2) 145 keV 1.0 ± 0.2 ppm – 0.6 ± 0.3 ppm 16.1 ± 0.7 ppm

than both the XY-8 and the APCPMG sequence. Indeed, we
expect that the XY-8 data provides a more accurate assessment
of the dipolar-induced coherence decay and thus emphasizes
the importance of pulse errors in extending the coherence
of ε-CPMG, even beyond the dipolar limit. In nuclear spin
systems [34,35], finite pulse duration has been used to explain
a similar difference between CPMG and APCPMG.1 Strongly
interacting spin systems in silicon [36] have demonstrated a
similar enhancement of coherence at finite ε during CPMG,
with their optimal value being ten degrees.

III. EFFECTS OF DIPOLAR INTERACTIONS
AND DISORDER

Next, we examine three distinct irradiated spots on sample
C041, whose details are shown in Table I. We also study the
unirradiated background, where the NV density is sufficiently
low, such that NV-NV interactions are negligible. In Fig. 2,
we plot the coherence of multiple different NV ensembles
subject to our ε-CPMG pulse sequence as a function of ε for
τ = 250 ns. The results demonstrate how this one simple knob
can be tuned to optimize coherence for different spin environ-
ments, realized in the differently irradiated spots [Fig. 2(a) and
Table I]. Figure 2(b) shows that in the lowest NV density spot
(spot BG) coherence is maximized for ε = 0, as in an ideal
CPMG sequence. At ε = 90 degrees the coherence drops to
about half its maximum value. As the NV density increases
in spots L, B, and A, internal dipolar interactions start to
dominate the decoherence dynamics at small ε, leading to a
double-humped feature where coherence is maximized at a
nonzero ε.

The effective Hamiltonian under the train of pulses has par-
ticularly simple intuition for two extremal values of ε: when
ε = 0, i.e., a conventional CPMG sequence, static disorder
is decoupled [28–30,37] and dipolar couplings are unaffected
(the dipolar interaction between two spins is invariant under a
π rotation of both spins); when ε = ±π/2, the dipolar inter-
actions between NVs are maximally averaged out [38] while
the static disorder is only averaged out half as effectively
as in the ε = 0 case. When both static disorder and dipolar
interactions are present, an intermediate ε is best suited to
maximizing the coherence in such cases. Measuring NV en-
semble coherence as a function of ε and N determines the
strength of dipolar coupling relative to disorder.

Having understood the features of the sequence at large
N , we next examine the system’s coherence as a function of
the number of pulses, N . Figure 2(c) shows coherence vs. ε

1In our numerical analysis, we include the effects of dipolar inter-
actions during the pulse, finite pulse duration, and rotation offset.

in spot A for a varying number of pulses, N , while keeping
the interpulse spacing constant. Qualitatively, we observe the
emergence and deepening of a coherence dip at ε = 0 as
N increases. Coherence is also lost at higher N due to the
increased duration of the pulse sequence. After ∼5 pulses,
the dip is clearly visible. Using a simple analytical model to
compute the system’s late-time coherence, we reproduce the
experimental observations and find good agreement with the
relative strength between interactions and disorder. We find
that the periodic drive gives rise to an ε-dependent effective
magnetic field along the y direction that suppresses depolar-
ization. This effective magnetic field is linear for angles that
are small compared to 1 radian. Crucially, for this sequence,
the spins are initialized in the y direction. In dense ensembles
of nuclear spins, Refs. [39,40] have observed behavior similar
to Fig. 2.

While an approximate effective Hamiltonian description
of the data, as detailed in the Appendices, provides physical
intuition, it fails to provide a direct and quantitative mapping
between the properties of the sample and the observed dynam-
ics. We tackle this gap by simulating the full dynamics of the
NV ensemble interacting with a bath of spin-1/2 defects. Cru-
cially, this approach enables us to capture the full extent of the
experimental observations (both as a function of angle error
ε and number of pulses N) and use the agreement between
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FIG. 2. Behavior of ε-CPMG sequence. (a) Confocal images of
spots A, B, and L, showing a range of brightness indicating a range
of NV densities. (b) Coherence versus ε for various NV densities at
fixed N = 10 and τ = 250 ns, and (c) for various N for a given NV
density (spot A) and τ . See the Appendices for a comparison of this
data to an analytic model.
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FIG. 3. Simulations of long-lived coherences. (a), (b), (c) Coher-
ence versus ε for various N and for spots A, B, L. Markers show
experimental data. Plotted as dashed lines are the numerics for the
parameters {ρNV , ρbath} that minimized χ 2. (d) χ 2 contour plots as a
function of ρNV and ρbath. The color maps for each spot have been
superimposed. Separated colormaps are shown in the Appendices.

numerical data and experiments to quantitatively character-
ize important features of the sample such as the density of
different spin defects, thus revealing the relative strengths of
disorder and interactions.

To this end, we compute the dynamics of an NV ensemble
with density nNV surrounded by a bath of defects at density
nbath. See the Appendices for an explanation of the numerical
methods. By computing the NV ensemble dynamics over dif-
ferent sets of densities of NVs and bath spins {nNV, nbath} and
averaging over different spatial configurations of the NV and
bath ensembles [41,42], we obtain the coherence dynamics
for a wide range of samples as a function of ε and N . We
compare the resulting coherence dynamics across different
N : N > 3 for each pair of parameters,2 {nNV, nbath}, estimat-
ing the agreement between numerical and experimental data
via a χ2-like measure.

IV. DISCUSSION

Sample fits and χ2 contour plots are shown in Fig. 3. We
find that there is a clear region within this parameter space
that minimizes χ2. The corresponding densities are shown in
Table I. The extracted NV densities match the trends of those
measured on the same sample via DEER and instantaneous
diffusion [23], with the precise values falling within or just
outside their respective error bars. The spin bath density re-
ported here is larger than the P1 density obtained via DEER,
primarily because the present method is sensitive to all spinful

2The observations for the first few cycles, N � 3, are expected to
depend on the details of the initialization process, which we do not
capture in our simulation.

defects in the diamond, not just to P1s, whereas DEER is, by
design, only sensitive to a single group of P1 centers.3 Our
simulations also give an NV density slightly lower than what
was reported previously from instantaneous diffusion mea-
surements [23]. The previous analyses necessitated several
approximations, such as a quasistatic spin bath in the case of
DEER and a dominant NV bath in the case of instantaneous
diffusion. The present numerical treatment is free from these
assumptions and, hence, is a more reliable probe of the NV
density.

We stress that our ability to quantitatively extract the den-
sities of competing disordered and dipolar spin baths harbors
key advantages over other methods such as DEER, XY-8, and
instantaneous diffusion, namely technical simplicity, robust-
ness to pulse errors in the form of rotation offsets, and the
ability to simultaneously probe both NV density and disorder
without assuming one to be dominant.

Using DEER to measure total disorder requires addressing
each individual bath spectrally and is hampered by factors
such as inhomogeneous broadening and fast-varying noise.
Measuring dipolar couplings via NV-NV DEER is also pos-
sible, but only for high-density ensembles and significant
engineering to control the alignment of RF fields with the
different NV groups. Instantaneous diffusion can be used to
measure the strength of the dipole-dipole interaction via the
extension of T2 under non-π pulses but cannot easily measure
disorder and assumes that the change in T2 with pulse angle is
unrelated to the change in coupling to disorder. Using decou-
pling techniques such as XY-8 or DROID [24] and comparing
the coherence times between dipole-decoupled and disorder-
decoupled is another way to assess the relative importance
between these terms. Though XY-8 and DROID are better
at preserving arbitrary initial states (the ε-CPMG sequence is
best at preserving a state prepared along the direction of the ef-
fective field), XY-8 and DROID require complex sequencing,
and quantifying the strength of disorder versus dipolar inter-
actions is challenging. In this paper, we have shown how the
ε-CPMG sequence extends the coherence of spin ensembles
to times approaching T1,ρ and provides quantitative informa-
tion about the relative strengths of dipolar interactions and
disorder, important figures of merit for many-body systems.
Further, we show how our approach to Hamiltonian engineer-
ing can tune from dipolar-dominated to disorder-dominated
physics. Using this tunability, we identify an optimal ε for
maximizing coherence of an NV ensemble. We benchmark
our pulse sequence, its ability to tune interaction strengths,
and our numerical methods for estimating spin densities on a
single sample with multiple different NV densities.

V. CONCLUSION

As decoherence mitigation becomes an increasingly
large scientific endeavor, fast, straightforward, and accurate
diagnostic sequences like the one presented here will become
ever more essential for understanding how many-body quan-
tum systems decohere. Fast and efficient characterization of

3These extra spinful defects could be a result of the high irradiation
dosage.

032612-4



LONG-LIVED COHERENCES IN STRONGLY INTERACTING … PHYSICAL REVIEW A 110, 032612 (2024)

quantum systems may become increasingly important in the
pipeline for creating and developing samples; we propose
that the ε-CPMG sequence represents one such way of mit-
igating this potential bottleneck because it is efficient, has a
small technical footprint, and is unambiguous in its diagnosis.
Moreover, while we expect that ε-CPMG will be primarily
applicable to solid-state systems, we note that the treatment
is generic and could be applied to systems beyond dense
NV ensembles; in any disordered system where the nature of
interactions between particles within the system and without
must be understood, we expect ε-CPMG to be useful. Finally,
we anticipate that this framework may be extended beyond a
two-component Hamiltonian by introducing additional tuning
parameters within a periodic drive (for example, εx for x
pulses and εy for y pulses) to extend this treatment to even
more complicated Hamiltonians.
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APPENDIX A: SAMPLE PREPARATION
AND MEASUREMENT

To tune electron density we use a commercial TEM as in
Ref. [23]. The TEM electron irradiation creates vacancies,
and an 850 ◦C anneal promotes the conversion of nitrogen to
NV centers. By tuning the dosage, we can tune the relative
strength of NV-NV interactions from spot to spot.

After optical polarization into |0〉 using a 532 nm green
laser, a microwave π/2 pulse in the x direction initializes
the spins into the state |+y〉. Then, with a CPMG-like train
of pulses, the spins undergo repeated rotations about the +ŷ
axis by an angle θ = π + ε. At the end of the sequence, the
NVs are mapped into a population by a final π/2 pulse along
the x direction, and the state is read out optically via spin-
dependent photoluminescence under a 532 nm laser pulse. All
measurements presented are performed in a ∼320 G magnetic
field aligned with one of the four NV axes. Microwave (MW)
pulses address the {|0〉, |−1〉} transition of the aligned NV
group.

The data in Fig. 1(b) was fit to an exponential, exp(t/T2)n

with n = 1 and T2 = 3.5 µs. This is consistent with the
expected exponent in Ref. [6] for high conversion efficien-
cies where the physics is expected to follow an NV-NV
Ramsey-type exponential. We used rectangular pulses with a
Rabi frequency of 	 = 2π × 11.9 MHZ throughout the ex-

periments in this paper. The T2
∗ in Spot A as measured via

Ramsey decay is 340 ns.

APPENDIX B: EPSILON DEPENDENCE
OF THE COHERENCE

To gain some intuition for the qualitative shape of the
coherence vs. ε, we present a theoretical analysis of the co-
herence after ten pulses. We analyze each of the three spots
using this treatment and show that the strength of the dip
corresponds to a term proportional to the variance of the
dipole-dipole coupling, 〈J2

i, j〉.
To derive an effective, time-independent Hamiltonian, we

examine the time-evolution operator over two cycles, given
a native Hamiltonian, H = ∑

i Bz
i σ

z
i + ∑

i< j Ji j (σ x
i σ x

j +
σ

y
i σ

y
j − σ z

i σ z
j ) = Hon-site + Hdipolar.

Û 2 = e−iHτ Ry(π + ε)e−2iHτ Ry(π + ε)e−iHτ (B1)

= e−iHτ Ry(ε)e−2iH̃τ Ry(ε)e−iHτ , (B2)

where Ry(θ ) is the rotation operator about the y direction by
an angle, θ and H̃ = Ry(π )HRy(π ) = −Hon-site + Hdipolar. Bi

z

is the z field for spin i and assumed to be time independent
for this analysis. For the numerical treatment in the main
text, we relax this assumption and allow a time-varying field.
We then find an effective time-independent Hamiltonian using
the Magnus expansion focusing on the region close to ε = 0
because this is the regime where the effects of finite Ji, j are
most pronounced.

Our zeroth-order term will be given by,

H (0)
eff = 2ε

∑
σ

y
i

4τ
+ Hdipole = Beff

M∑
i

σ
y
i + Hdipole, (B3)

where Beff = ε/2τ . Higher-order terms will be generated by
the commutators between H , εσ y

τ
, and H̃ .

We measure the average coherence along the y direction,
averaged over the M addressed NV centers. After equilibrat-
ing, the coherence, C, will be given by,

C = 1

M

〈
M∑
i

σ
y
i

〉
= 1

M
tr

[
M∑
i

σ
y
i e−βHeff

]/
Z

≈ −β

MZ
tr

[
M∑
i

σ
y
i H (0)

eff

]
= −βBeff

Z
. (B4)

We use, ρ = e−βHeff /Z , where Z is the partition function and
β is given by an effective spin temperature, β = 1/kBT that
satisfies βHeff 	 1.

The temperature is determined by the initial value of the
y magnetization, which is initialized such that C = 1, as de-
tailed in the main text. We relate the initial and final energies
through

M∑
i

Beff = 〈Heff〉 ≈ −β

Z
tr
[
H2

eff

]
. (B5)

Using Eqs. (B4) and (B5), we arrive at the expression,

C = MB2
eff

tr
[
H2

eff

] . (B6)
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Finally, to arrive at an expression for tr[H2
eff ], we examine

lowest-order terms and expand about ε = 0. This results in
the following expression,

tr[H2] = tr
[
H2

dipolar

] + tr

[
M∑
i

(
Beffσ

y
i

)2

]
+ higher-order terms

= M
(
J2 + B2

eff

) + higher-order terms

= M
(
J2 + D2

1ε
2 + D2

2ε
4 + D2

3ε
6
)
, (B7)

where D1,2,3 are fit coefficients. Using Eqs. (B6) and (B7) and
simplifying in terms of unique fit parameters, we have:

C = Aε2

(J/D1)2 + ε2 + (D2/D1)2ε4 + (D3/D1)2ε6
. (B8)

The typical value of the dipolar coupling J , as defined in
Eq. (B7), should be understood as a local value, characterizing
only a region of the sample with finite lattice spacing. In-
deed, the quantity trH2

dipolar diverges if averaging is performed
over a macroscopic three-dimensional ensemble of rare spins
where the spin-spin spacing is allowed to go to zero [41–44].
However, this quantity becomes finite and well determined
if defined for a region of the sample where the spin-spin
spacing is lower bounded. We note that the expression for
Beff shown here is valid for small ε (compared to 1 radian),
as ε becomes large, the effective field will no longer be a
monotonic function of ε.

The fits using this model across varying spot densities are
shown in Fig. 4(a). We use a Gaussian smoothing of six de-
grees to account for the random uncertainties in pulse rotation
caused by pulse-to-pulse variation and inhomogeneities over
the confocal spot. The parameter (J/D1) relates the strength
of the dipolar contribution to other terms, including Beff and
qualitatively controls the strength of the dip about ε = 0.
We compare J/D1 to the numerically extracted ratio of NV
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FIG. 5. Simulations of long-lived coherences as in the main text
with the color maps, (d), (e), (f) separated instead of superimposed.

density to spin defect density and find that the two have the
expected linear relationship.

In this analysis, we consider offsets arising from incom-
plete angular rotations about the y axis. Frequency detuning
can also result in rotation offsets and rotation about slightly
different axes. We assume this effect is small for our exper-
iments because the Rabi frequency is much larger than the
linewidth. Crucially, unlike the APCPMG sequence, devia-
tions from this effect do not accumulate with increasing pulse
number as for rotation offsets in ε-CPMG.

APPENDIX C: NUMERICAL METHODS

The NVs are all initialized in the |+y〉 orientation, and their
subsequent dynamics have three contributions: (i) dipolar in-
teractions between NVs, (ii) Larmor precession arising from
local, random magnetic fields generated by the bath spins, and
(iii) periodic rotations by π + ε about the ŷ axis. By contrast,
the bath spin defects are assumed to be randomly polarized
in either ±1/2 and exhibit no coherent dynamics. Instead,
we consider their dynamics as a stochastic process that flips
the polarization of the spin defect with some characteristic
timescale, giving each spin in the bath a correlation time τc

that is related to the density of the spin bath, as described
in Ref. [8]. Such bath dynamics are crucial to capture the
observed decoherence dynamics of the NV centers; without
them, the effect of the spin bath can be exactly canceled for
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perfect π pulses. In addition, we incorporate different experi-
mental effects into the numerics, such as finite pulse duration,
which are difficult to incorporate in a simple theoretical anal-
ysis.4 The fits using this approach are shown in Fig. 5 with
the color maps separated rather than superimposed as in the
main text.

4Average Hamiltonian theory has been used to show that a finite
pulse duration gives rise to effects similar to those studied here. For
a detailed analysis of the effect of finite pulses, see Ref. [34].

We determine the best fit via minimization of a χ2-like
metric calculated as

χ2(ρNV, ρP1) =
∑
N,ε

[Cdata (ε, N ) − Cfit (ε, N, ρNV, ρP1)]2,

(C1)

where C(ε, N ) denotes the coherence as a function of ε and
the number of pulses, N . The plots shown in the text are
normalized to the minimum of χ2(ρNV, ρP1). The densities
of defects, ρNV, ρP1 are treated as fit parameters in the nu-
merics. We use a doubling of χ2 as our bounds for a region
of reasonable fit. We note that the optimal ε is not uniquely
determinative for the ratio of dipolar interaction strength. In-
stead, fitting the coherence as a function of both ε and N is
required because the optimal ε can change as a function of N ;
thus multiple curves for multiple values of N are required.
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