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Quantum sensing of ultralow temperature in biwire ultracold polar molecules
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We present a systematic study of quantum sensing of ultralow temperature in biwire ultracold polar molecules
of a quasi-one-dimensional (1D) trap by exploring the dynamics of two physically different qubit models. The
two models consist of a trapped impurity atom that act as a temperature quantum sensor interacting with polar
molecules reservoir, where dipole moments are aligned head-to-tail across the wires. Our model takes advantage
of the adjustable interwire distance to accurately control the precision ultralow temperatures measurement.
We show that the system undergoes a transition from Markovian to non-Markovian dynamics, which can be
controlled by changing the interwire separation, the dipole—dipole interaction (DDI), and the temperature.
We characterize the thermometric performance using the quantum signal-to-noise ratio for both models and
demonstrate that such a quantity exhibits a higher peak at ultralow temperature. We therefore emphasize that
ultracold polar molecules are crucial for revolutionizing temperature sensing.
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I. INTRODUCTION

A high-precision ultralow temperatures measurement is
crucial not only for quantum physics but also for multiple
quantum technologies such as quantum sensing [1–3], quan-
tum information processing [4], and quantum many-body
simulations [5,6].

The achievement of laser and evaporative cooling tech-
niques made it possible to attain temperatures in the nK and
sub-nK regime [7–10]. The most prominent success of these
methods is the observation of a Bose-Einstein condensate
(BEC) [11,12], a quantum degenerate Fermi gas [13], a dipo-
lar BEC [14] in dilute quantum atomic gases, and an ultracold
gas of polar molecules [15,16].

The temperature of an ultracold gas, which is commonly
measured using an absorption imaging in the nK regime
[17], is inferred from its density, i.e., the sensing error in
the measurement of temperatures substantially grows at very
low temperatures [10]. So far, several schemes to enhance the
quantum sensitivity of the temperature of both dipolar and
nondipolar BECs have been introduced [18–29]. However,
achieving nondestructive ultralow temperature measurements
still presents challenges.
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Recently, quantum sensing of temperature near the abso-
lute zero, i.e., quantum thermometry, has attracted a great
deal of interest [18–31]. A perfect thermometer should be
small enough in such a way its coupling with its host should
not affect the measurement of its temperature. The theoret-
ical design of the smallest quantum thermometer that can
measure extremely small changes in temperature is based
on small quantum systems, serving as probes, such as a
two-level system [5,32–40] or a harmonic oscillator [41–43].
These probes interact with a thermal bath and encode tem-
perature information into their quantum states. Temperature
is extracted from observables of the probe system. The
exploitation of quantum entanglement, quantum coherence,
quantum non-Markovian, and other quantum features in such
quantum temperature sensors has great potential to outper-
form temperature measurement techniques based on classical
physics [3,44].

In this paper, we theoretically propose a quantum ther-
mometer based on the measurement of a mixed bosonic
system consisting of an impurity qubit in contact with a
thermal bath made up of one-dimensional (1D) biwire (tube)
ultracold polar molecules. It is worth stressing that such a
thermometer prototype remains widely unexplored. The re-
alization of a quantum degenerate gas of polar molecules
[15,16] which establishes a long-range and anisotropic inter-
action among molecules, offer a unique setting for sensing
the temperature with high precision and a negligible dis-
turbance of the bath. Polar molecules may be better suited
than neutral atoms for boosting the accuracy of temperature
measurements, as they possess tunable electric dipole moment
which can be induced by a static dc electric field, in addition
to their own intrinsic dipole moment [15,16]. Recent studies
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FIG. 1. (a) A single impurity atom, with an internal level struc-
ture, trap in a deep harmonic trap. (b) An atomic qubit trapped
in a double-well potential, the distance between two wells in the
same trap is 2L. Each qubit interacts with a thermally equilibrated
quasi-1D biwire system of cold polar molecules with dipoles oriented
in opposite directions in different wires. Here the impurity qubit
atom acts as a quantum sensor to estimate the temperature of the
molecules.

have shown that unconventional d- and f -wave superfluids of
fermionic polar molecules in a two-dimensional (2D) bilayer
geometry occur at temperatures well below any temperature
that has been reached so far (i.e., pK and fK regimes) [45,46].

The aim is to investigate the dynamics of two different
qubit models, namely, the following: (i) single-qubit probe
and (ii) double-well qubit probe that act as the sensor, de-
phasing under the effect of a thermally equilibrated 1D
biwire ultracold polar molecules reservoir. Such a biwire
configuration constitutes an ideal platform to investigate the
properties of polar molecules since it allows for stability
against chemical reactions and includes an additional con-
trollable parameter, interwire space, which leads to boosting
the controllability of the system at hand. The dipole mo-
ments are assumed to be aligned perpendicularly to the tubes
by an external field and in opposite directions in different
wires (see Fig. 1). The interaction of the impurity qubit
with its polar molecules environment is described within the
realm of the exact pure dephasing model (known also as a
spin-boson model) [19]. A transition from Markovian to non-
Markovian dynamics is observed here through variation of
the interwire separation and the temperature. However, such
a non-Markovianity measure decreases with the dipole-dipole
interaction (DDI) for both models in agreement with the re-
sults of Ref. [29].

Furthermore, we numerically investigate the temperature-
sensing performance using the quantum signal-to-noise ratio
(QSNR) in terms of the interwire space and the DDI strength
for both models. We discover that the QSNR attains its max-
imum at a certain optimal encoding time which is inversely
proportional to temperature and to interwire distance. On the
other hand, we show that the coupling of the qubit to collective
excitations of the reservoir which develops a roton-maxon
structure may significantly decohere the qubit and thus, holds
the promise of inducing strong non-Markovian effects. It is

also found that such a rotonization modifies the QSNR and
the thermometric performance of our models.

The rest of the paper is organized as follows. Section II
introduces the two models of impurity qubit immersed in a
thermally equilibrated quasi-1D polar molecules reservoir. We
describe the dynamics and the non-Markovianity measure of
such qubit models under the influence of the dephasing noise.
The temperature sensing protocol is also briefly discussed.
Section III is devoted to numerical simulations. We look, in
particular, at how the interwire space, the temperature and the
DDI affect the non-Markovianity, the QSNR, the maximum
achievable QSNR, and the temperature optimal relative error
of both models. Finally, our conclusions and discussions are
drawn in Sec. V.

II. MODELS

We consider dipolar BECs loaded in a biwire system of
a quasi-1D trap, where the two wires are separated by a
distance λ, assuming a vanishing hopping between wires. The
dipole moments are assumed to be aligned perpendicularly
to the tubes by an external field and in opposite directions
in different wires. Here we investigate the dynamics of two
different qubit models that act as the sensor, each embedded
in a thermally equilibrated ultracold polar molecules reservoir
at temperature T . In model I, the impurity is trapped in a
deep harmonic trap and has two internal levels, |e〉 and |g〉
representing the qubit states [47] [see Fig. 1(a)]. In model
II, the atomic qubit is trapped in a double-well potential and
forms an effective qubit system where the two qubit states are
represented by occupation of the impurity in the left |l〉 or the
right |r〉 [19] [see Fig. 1(b)].

For model I, we suppose that the impurity qubit with two
hyperfine spin states is confined in a harmonic trap UI (r) =
mIω

2
I r2/2 that is independent of the internal states, where mI

is the mass of the impurity and ωI is the trap frequency. For
h̄ωI � 1, the spatial wave function of the qubit is given by
ψI = π−3/4ł−3/2

I exp(−r2/2l2
I ), where lI = √

h̄/mIωI is the
impurity harmonic oscillator length. The Hamiltonian of the
sensor is given by [48]

Hmodel I
I = h̄�

2
(|e〉〈e| − |g〉〈g|), (1)

where � is the level splitting between the excited |e〉 and
ground |g〉 states.

Now for model II, we assume an impurity atom in the
double-well system where the distance between two wells
in the same trap is 2L. Therefore, the Hamiltonian of the
sensor can be written in terms of the Pauli operators σz =
|l〉〈l| − |r〉〈r| as

Hmodel II
I = h̄

2
[�r (1 + σz ) + �l (1 − σz )], (2)

where h̄�l,r are the energies of the impurity.
Regarding the polar molecules (reservoir) with mass m and

dipole moment d placed in two wires, we assume that they are
harmonically confined in a quasi-1D geometry with the axial
trap frequency ωx being much smaller than the radial trap fre-
quency ω⊥. The interaction potential has a contact component
related to the s-wave scattering length a as Vc(x) = g1Dδ(x) =
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FIG. 2. (a) Interwire interaction potential as a function of x for
different values of the interwire distance and gd = 1. (b) The Bogoli-
ubov spectrum from Eq. (5) for different values of εdd with α = 4.5
and � = 0.4. (c) The same as (b) but for different values of � with
α = 15 and εdd = 10.

2h̄2a/(ml2
0 )δ(x), where l0 = √

h̄/mω⊥ and the DDI potential
which takes the form [49,50]

Vd (x) = −gd
x2 − 2λ2

(x2 + λ2)5/2
, (3)

where gd = 2r∗/l0 with r∗ = md2/h̄2 being the characteris-
tic dipole-dipole length. The potential Vd (x) is repulsive for
x <

√
2λ, while it is attractive at x >

√
2λ which may open

up the possibility of forming interwire polar molecules [see
Fig. 2(a)]. The Fourier transform of the potential (3) reads
Vd (k) = gd k2[K0(kλ) + K2(kλ)], where K0(y) and K2(y) are
modified Bessel functions [50]. For kλ � 1, the DDI potential
reduces to Vd (k) = gd [2/λ2 + ln(2e−0.5−γ /kλ)], where γ =
0.5772 is Euler’s constant. In the frame of the Bogoliubov
theory the Hamiltonian of the host reads

ĤB=
∑
k 	=0

h̄ωkb̂†
kb̂k, (4)

where b̂†
k and b̂k are operators of elementary excitations obey-

ing the usual Bose commutation relations and the frequency
of the Bogoliubov excitations is given by

ωq = 1
2ω⊥

√
q4 + αq2{1 + εddq2[K0(q�) + K2(q�)]}, (5)

where q = kl0 is the dimensionless wave vector, α = 8an
is a dimensionless parameter depending on the condensate
density n, � = λ/l0 is the dimensionless interwire distance,
and εdd = gd/g1D is the relative strength describing the in-
terplay between the DDI and contact interaction. For fixed
interlayer separation and small εdd, the Bogoliubov spectrum

(5) increases monotonically with q. As εdd gets larger, ωq

exhibits first a maximum and then a minimum as the mo-
mentum increases results in roton-maxon structure as is seen
in Fig. 2(b). If the roton minimum touches the zero-energy
axis, the Bose condensate suffers a roton instability. The same
behavior holds in quasi-2D dipolar BECs [51]. The energy
and the height of the roton are sensitive to � as shown in
Fig. 2(c). Note that a biwire system of polar molecules with
dipole moments in the upper and lower wires, oriented in the
same direction, cannot exhibit a roton-maxon character of the
excitation spectrum.

For the sensor-reservoir (host-impurity) interaction we will
assume, for simplicity, contact pseudopotential interaction
potential, VIB = gIBδ(x), where gIB = 2h̄2aIB/mIB(l2

I + l2
0 ),

and mIB = mmI/(m + mI ) is the reduced mass. Although the
sensor-reservoir coupling Hamiltonians are formally similar,
they are substantially different due to the distinct trap-
ping potentials of the impurity qubit. They are defined as
[23]

Hmodel I
IB = |e〉〈e|

∑
k 	=0

(g̃kb̂k + g̃∗
kb̂†

−k ), (6)

where the sensor-reservoir coupling parameter for model I is
given

g̃k = gIB

√
n



√
h̄2k2/2m

h̄ωk

∫
dx|φ(x)|2eikx, (7)

and

Hmodel II
IB =

∑
k 	=0

[(
g̃r

kb̂k + g̃r∗
k b̂†

−k

)
(1 + σz )

+ (
g̃l

kb̂k + g̃l∗
k b̂†

−k

)
(1 − σz )

]
, (8)

where the sensor-reservoir coupling parameter for model II
reads [19,23]

g̃r,l
k = gIB

√
n



√
h̄2k2/2m

h̄ωk

∫
dx|φ(xr,l )|2eikx, (9)

where φ are the real eigenstates of impurity atoms localized
in the internal state or the two wells of the potential UI , and 

is the size of the quasi-1D condensate.
The total Hamiltonian of the system can be obtained by

collecting three sub-Hamiltonian H = HI + HB + HIB.

A. Dynamics of the qubit

The dynamics of the qubit in polar molecules reservoir is
dephasing because HI commutes with HIB. More precisely,
the diagonal elements of the density matrix are constant while
the off-diagonal elements decay as |ρ i j

I (t )| = e−�(t )ρ
i j
I (0),

where ρ
i j
I = 〈i|ρI | j〉 and i, j = r, l or e, g. The decoher-

ence exponent � is defined for the two models as follows
[19,23]:

�(t, T )model I =
∑

k

2g2
k

ω2
k

sin2

(
ωkt

2

)
coth

(
ωk

2kBT

)
, (10)
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and

�(t, T )model II =
∑

k

2g2
k

ω2
k

sin2

(
ωkt

2

)
sin2(kL)

× coth

(
ωk

2kBT

)
, (11)

where the coupling parameters (7) and (9) turn out to be given
as

gk = gIB

√
n



√
h̄2k2/2m

h̄ωk
e−(klI /2)2

.

Note that the decoherence exponent � contains all the infor-
mation concerning the time, the interaction, and temperature
dependence of the decoherence process. For λ � l0, one
reproduces the results of Ref. [29] for impurity qubit im-
mersed in a quasi-1D dipolar BEC. The thermal contribution
coth[ωk/(2kBT )] to � originates from the normal and anoma-
lous fluctuations of the condensate. If the dipolar BECs
are at zero temperature, the decoherence factors (10) and
(11) reduce to �(t )model I = ∑

k(2g2
k/ω

2
k ) sin2(ωkt/2), and

�(t )model II = ∑
k(2g2

k/ω
2
k ) sin2(ωkt/2) sin2(kL). In the short

times limit, i.e., ωkt � 1, one can approximate sin2(ωkt/2) ≈
(ωkt/2)2, thus, the decoherence factor is ∝ t2 for both models.

B. Non-Markovianity measure

Here, we check the existence of a Markovian-non-
Markovian crossover and explain how the interwire separation
affects the non-Markovianity of the reservoir. To this end,
we follow the method proposed by Breuer et al. which is
based on the dynamics of the so-called information flux
σ (t ) = dD[ρ1(t ), ρ2(t )]/dt [52]. This represents the tem-
poral change of two evolving quantum states, ρ1,2(t ) =
�(t )ρ1,2(0) as measured by the trace distance [22]. The
non-Markovianity is defined to be the maximal amount of
information that the system may recover from its environ-
ment, N = maxρ1,2(0)

∫
σ>0 dtσ [t ; ρ1,2(0)]. Frankly speaking,

calculating N is a complicated task due to the difficult op-
timization over all pairs of initial states. However, for the
purely dephasing system that is considered in this work, the
trace distance between these two states takes the form D(t ) =
e−�(t ). This immediately gives the following expression of the
non-Markovianity measure for a dephasing qubit [23,53]:

N =
∫

�′(t )<0
�′(s)ds. (12)

Equation (12) enables us to analyze effects of the background
parameters such as the interwire separation, DDI, and temper-
ature on the dynamics of information flow.

C. Temperature sensing

Now let us evaluate the temperature sensing precision of
the qubit associated with state ρI (t ) of both models. The
ultimate temperature sensing precision is restrained by the
quantum Cramér-Rao bound, defined as (δT )min = 1/

√
νFQ

T
[54,55], where δT is the mean square error, ν is the number of

FIG. 3. (a) Non-Markovianity measure N for model I as a func-
tion as of the relative strength εdd for different values of the interwire
distance � with T = 0.2. (b) Non-Markovianity as a function as of
the interwire distance � for different values of temperature T with
εdd = 0.1. Parameters are l̃I = lI/l0 = 0.5, and α = 4.

repeated measurements, and

FQ
T = (∂T �)2

e2� − 1
,

accounts for the quantum Fisher information (QFI) with re-
spect to the temperature T . Here � is the decoherence factor
of both models. The temperature sensing performance can be
characterized by the optimal relative error as [24]

(δT )min

T
= 1√

νQT
, (13)

where

QT = T 2FQ
T , (14)

denotes the QSNR. A higher QSNR indicates superior temper-
ature sensing performance. As foreseen above, QT increases
in a power law, tα , at short times (see also Fig. 4). Obvi-
ously, Eqs. (10) to (14) demonstrate that the strength of the
sensor-environment coupling and the interwire distance of the
reservoir play a crucial role in the temperature measurement.

III. NUMERICAL RESULTS

To be concrete, we consider a single 23Na atom immersed
in a polar molecule reservoir of KRb with a linear density is
chosen to be n = 5 × 107m−1. These molecules are charac-
terized by a strong DDI which can be tuned using precisely
controlled magnetic fields allowing atom pairs to be converted
into weakly bound molecules known as Feshbach molecule
[56]. The trapping frequency is assumed to be ω⊥ = 200 Hz,
and the corresponding oscillator length is l0  1.5μm.

A. Model I

Here we present the effects of the interwire space, the
temperature and the DDI on the non-Markovianity, the QSNR,
the maximum achievable QSNR, and the temperature op-
timal relative error of model I. Let us start by making a
connection between the above decoherence factor and the
non-Markovianity measure.
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FIG. 4. (a) Dynamic behavior of the QSNR QT (t ) for model I
as a function of time t̃ = ωT t for different interwire distance �.
(b) Encoding time topt as a function of the temperature for two of
�. (c) The maximum achievable QSNR, Qmax

T as a function of the
temperature T for two values of �. (d) The optimal relative error
(δT )min/T for model I as a function of T from Eq. (13), after ν = 600
measurements for two values of the interwire space, �. Parameters
are T = 0.2 nK, l̃I = 0.5, α = 4, and εdd = 0.1. Here ωT = kBT/h̄.

Figure 3(a) depicts that the non-Markovianity, N decreases
with the relative strength, εdd for any � giving rise to reduce
the fraction of recovered information flow.

Figure 3(b) shows that the interwire separation is crucial
for the occurrence of non-Markovian reservoir memory ef-
fects. Particularly, for � � 0.1, N is negligible indicating
that the polar molecule environment only receives informa-
tion from the qubit (i.e., plays the role of emitter). However,
increasing � amplifies the fraction of recovered informa-
tion flow owing to the ability of the polar molecule to store
and then supply information to the qubit. Another important
remark is that the non-Markovianity, N decreases with tem-
perature for � � 0.4.

In Fig. 4(a) we plot the dynamical behavior of the QSNR
for different interwire distances. We see that at short times t̃ �
5, QT (t ) is higher for large � while the situation is reversed
completely for long times t̃ > 5. It develops a maximum with
time where the position of such a maximum strongly depends
on the interwire separation.

The maximum achievable QSNR Qmax
T can be evaluated by

optimizing the encoding time topt. Its behavior as a function
of the temperature for different values of � is captured in
Fig. 4(b). We observe that both topt and Qmax

T are increasing
with decreasing � in the whole range of temperature T . Our
numerical results show also that the maximum achievable
QSNR rises monotonically with temperature for any � as seen
in Fig. 4(c).

FIG. 5. (a) The QSNR QT for model I at the optimal point in
time as a function of the interwire distance � for different values
of εdd and for T = 0.2 nK, l̃I = 0.5, and α = 4. (b) The maximum
achievable QSNR Qmax

T (�) as a function of � for two values of
temperature with εdd = 0.1.

Figure 4(d) depicts the optimal relative error (δT )min/T as
a function of temperature T after 600 measurements for two
values of interwire space, �. We see that the optimal relative
error varies slowly with temperature in the sub-nk regime,
while it is sensitive to interwire space changes. For instance,
for only 600 measurements (δT )min/T � 11.3% for � = 0.6
while it decays below 10.4% for � = 0.4 which is better than
the sensing consisting of a qubit embedded into an ordinary
BEC with short-range interactions [24]. One should stress that
as the number of the measurements gets larger, the optimal
relative error becomes marginal as shown in Eq. (13).

Figure 5(a) shows the optimal point in time for the varia-
tion of QT with � for different values of εdd. We see that QT

first increases, reaches its maximum and then lowers with �

notably for small relative DDI strength εdd. The hight and the
width of the QSNR peak depend on � and on εdd giving rise
to influence the temperature sensing performance. As can be
seen from Fig. 5(b), the maximum achievable QSNR Qmax

T (�)
is decreasing with the interwire space at any temperature.

B. Model II

In this section we calculate the above physical quantities in
the frame of model II.

In Fig. 6 we show the non-Markovianity measure of model
II versus the relative strength, εdd, and the interwire distance,
�, for different values of the distance between two wells, L̃.
We observe that when εdd gets stronger, the non-Markovianity
becomes very fragile notably for small � [see Fig. 6(a)]. A
crossover from Markovian to non-Markovian dynamics oc-
curs for large interwire space (� � 0.2) as shown in Fig. 6(b).
Such non-Markovianity becomes pronounced for larger L̃.
Whereas for � � 0.2, the dynamics is Markovian for all the
considered values of L̃. This reveals that to induce a non-
Markovian dynamics, the interwire and inwerwell distances
must be large enough to suppress effects of quantum and
thermal fluctuations stemming from interactions.

Comparably with model I, Fig. 7(a) shows that the QSNR
QT (t ) of model II reaches a maximum at time topt, where
the location of the peak relies on the interwire distance. For
example, for � = 1 the peak is located at topt = 10 while for
� = 0.4, the maximum is attained at longer times, topt  25.
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FIG. 6. (a) Non-Markovianity for model II as a function of the
relative strength εdd for different values of the interwire distance,
�, with distance between two wells L̃ = L/l0 = 7.5. (b) Non-
Markovianity as a function of �, for different values of L̃, and
εdd = 0.1. Parameters are T = 0.2 nK, l̃I = 0.5, α = 4.

FIG. 7. (a) Dynamic behavior of the QSNR for model II as a
function of time t̃ for different interwire distance � with L̃ = 7.5.
(b) The QSNR as a function of � and L̃ for t̃  10 and T = 0.2.
Parameters are l̃I = 0.5, α = 4, and εdd = 0.1.

FIG. 8. (a) The maximum achievable QSNR for model II as a
function of the temperature for three values of L̃. (b) The optimal
relative error (δT )min/T for model II as a function of temperature,
T from Eq. (13), after ν = 600 measurements for three values of L̃.
Parameters are T = 0.2 nK, l̃I = 0.5, α = 4, and εdd = 0.1.

In Fig. 7(b) we plot the QSNR in plane (�, L̃) at time t̃  10
and temperature T = 0.2. We see that QT (t ) reaches its max-
imum for large � and L̃.

Similarly to the model I, the maximum achievable QSNR,
Qmax

T of model II is increasing with T for any values of L̃ as
shown in Fig. 8(a). We see also that Qmax

T rises with L̃.
According to the expression in Eq. (13), Fig. 8(b) shows

that by adjusting the distance between two wells, the opti-
mal relative error of the temperature is enhanced at any low
temperature and for any interwire distance. For instance, for
L̃ = 2.5 one has (δT )min/T � 12.6% while it decreases to
≈10.3 for L̃ = 7.5 which is comparable with the value found
in model I. The obtained temperature sensing, which requires
a wide interwell space L̃, clearly improves the results of [24]
for sensing with an ordinary BEC.

IV. ROTONIZATION EFFECTS

Here we explore effects of rotonization on the dynamic
behavior of the QSNR and on the non-Markovianity N for
both models. It is clearly visible from Figs. 9(a) and 9(b)
that in the presence of the roton-maxon in the reservoir
spectrum, the QSNR QT (t ) of model I increases continuously
with time inducing strong non-Markovian effects irrespective
of the value of �. The absence of a peak in the QSNR indi-
cates that the probe is not optimal for any temperature.

As shown in Fig. 9(c) the QSNR of model II saturates at
a certain time in contrast to model I. The saturation time de-
pends on the interwire distance. For large interwire distances,
one can expect that QT (t ) saturates at long times. We see
also that QT remains tiny during its time evolution signaling
that the temperature sensing error will diverge as T → 0 due
to the rotonization effects. Figure 9(d) depicts the emergence
of a non-Markovian dynamics of model II at � � 0.5 for any
L̃ indicating the existence of information backflows from the
environment to the qubit.

By comparing the reduced dynamics of two different qubit
models, we find that model II has higher values of the non-
Markovianity measure than model I in agreement to the result
of Ref. [23] for qubit models dephasing under the effect
of an ordinary BEC state. Our results uncover also that the
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FIG. 9. (a) Dynamic behavior of QT (t ) for model I as a function
of time t̃ for different interwire distance �. (b) Non-Markovianity,
N , for model I as a function as of �. (c) Dynamic behavior of QT (t )
for model II as a function of time t̃ for different values of � with
L̃ = 7.5. (d) Non-Markovianity for model II as a function of � for
different values of L̃. Parameters are T = 0.2 nK, l̃I = 0.5, α = 18,
and εdd = 1.

two models can have different sensitivity toward their polar
molecules environment.

V. CONCLUSION

In this paper we proposed a quantum thermometer based
on measurement of a mixed bosonic system consisting of two

different models of an impurity qubit coupled to 1D biwire
ultracold polar molecules where dipole moments are aligned
head-to-tail across the wires. We found that the interwire sep-
aration plays a key role in the emergence of non-Markovian
reservoir memory effects. By means of the QSNR, we stud-
ied numerically the temperature sensing performance and
demonstrated that the interwire separation is indeed a relevant
quantity for manipulating the information flowback and for
enhancing the temperature sensitivity for both models. We
revealed also that the rotonization strongly affects the QSNR
and the thermometric performance of our models.

A comprehensive comparison of the two qubit models
reveals that (i) the double-well model has larger values of
the non-Markovianity measure than the intrinsic state struc-
ture in concordance with the results of Ref. [23] for qubit
models dephasing under the effect of an ordinary BEC
state, (ii) the two models have different sensitivity toward
their polar molecules environment and different temperature
optimal relative error, and (iii) a small value of the opti-
mal relative error of temperature for a double-well qubit
probe requires a wide interwell space and a large interwire
distance.

Importantly, we showed that polar molecules are more
appropriate than neutral atoms for enhancing the temperature
sensitivity at extremely low temperatures. Our findings open
up an avenue to the realization of quantum thermometers
and of quantum simulators for non-Markovian open quantum
systems with ultracold polar molecules.
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