
PHYSICAL REVIEW A 110, 032609 (2024)

Simple quantum algorithm to efficiently prepare sparse states

Debora Ramacciotti ,* Andreea I. Lefterovici ,† and Antonio F. Rotundo ‡

Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany

(Received 31 January 2024; revised 10 July 2024; accepted 12 August 2024; published 10 September 2024)

State preparation is a fundamental routine in quantum computation, for which many algorithms have been
proposed. Among them, perhaps the simplest one is the Grover-Rudolph algorithm. In this paper we analyze the
performance of this algorithm when the state to prepare is sparse. We show that the gate complexity is linear
in the number of nonzero amplitudes in the state and quadratic in the number of qubits. We then introduce a
simple modification of the algorithm, which makes the dependence on the number of qubits also linear. This is
competitive with the best known algorithms for sparse state preparation.

DOI: 10.1103/PhysRevA.110.032609

I. INTRODUCTION

Given a classical vector ψ ∈ CN , the goal of state prepara-
tion is to build a unitary Uψ such that Uψ |0〉 = |ψ〉, where
|ψ〉 is a quantum state whose amplitudes are given by ψ .
This is the first step of many algorithms, such as the quan-
tum simulation of physical systems [1,2], quantum machine
learning [3], and quantum linear solvers [4,5]. For this reason,
state preparation is a subroutine of fundamental importance in
quantum computing, and it is an object of ongoing research.

Early state-preparation algorithms are described in [1,6,7].
The basic idea of these algorithms is the same: It was inde-
pendently introduced in [6,7] and had already been present
in earlier works such as [1,8]. Following what is now the
standard notation, we collectively refer to these algorithms as
Grover-Rudolph algorithms.

In recent years, several works have tried to design new
state-preparation algorithms with better worst-case asymp-
totic scaling (e.g., [9–12]) and have uncovered an interesting
trade-off between space and time complexity in state prepara-
tion. In this paper we take a more practical point of view. We
focus on sparse vectors, i.e., vectors with only a few nonzero
elements. This is a special class of vectors, which often ap-
pears in practical applications, such as quantum linear solvers
[4,5]. Recent works that have considered state-preparation
algorithms tailored for sparse vectors are [13–16]. These al-
gorithms have a complexity linear in both the sparsity of the
vector and the number of qubits.

The number of gates required to prepare a generic state
with the Grover-Rudolph algorithm scales exponentially in the
number of qubits, so this algorithm is sometimes overlooked
as an option to prepare sparse states. Our first contribution
is to explicitly show that the Grover-Rudolph algorithm is
able to prepare sparse vectors with a number of gates linear
in the sparsity and quadratic in the number of qubits. This
is a simple result, but it is not clearly stated and proved in

*Contact author: debora.ramacciotti@itp.uni-hannover.de
†Contact author: andreea.lefterovici@itp.uni-hannover.de
‡Contact author: af.rotundo@gmail.com

the literature. We then introduce a small modification of the
Grover-Rudolph algorithm, which reduces the complexity of
preparing sparse vectors to linear in both the sparsity and the
number of qubits. This shows that the Grover-Rudolph algo-
rithm is a competitive algorithm for preparing sparse states.

A much better complexity of order log(nd) can be achieved
at the cost of introducing a large O(nd log d) number of ancil-
lary qubits [17]. However, the algorithms considered in this
paper require only O(n) ancillary qubits, so we will compare
them only to other algorithms that require a similar number of
ancillary qubits.

The rest of the paper is organized as follows. In Sec. II
we summarize the Grover-Rudolph algorithm. In Sec. III
we specialize to sparse states and analyze the number of
gates the Grover-Rudolph algorithm requires for their prepa-
ration. In Sec. IV we introduce a simple variation of the
Grover-Rudolph algorithm, which we call the permutation
Grover-Rudolph algorithm, and show that it has the same
complexity as more recent algorithms designed for sparse
vectors [13–16].

II. GROVER-RUDOLPH ALGORITHM

In this section we describe the Grover-Rudolph algorithm
[6] for state preparation.1

Letting ψ ∈ CN be a classical vector, we want to imple-
ment a unitary Uψ such that Uψ |0〉 = |ψ〉, where |ψ〉 is a
quantum state with amplitudes equal to ψ . For simplicity, we
assume that N = 2n so that we can encode the vector ψ in an
n-qubit state.2 More precisely, we want that

Uψ |0〉 = eiθ

‖ψ‖
∑
i1···in

ψi1···in |i1 · · · in〉, (1)

1One can consider several versions of the Grover-Rudolph algo-
rithm. The one we present here is similar to the one of [9], except for
the use of phase gates, in place of RZ rotation, and for skipping an
optimization step. See the text for further explanation.

2If this is not the case, one can pad ψ with zeros until this condition
is met.

2469-9926/2024/110(3)/032609(10) 032609-1 ©2024 American Physical Society

https://orcid.org/0009-0008-4476-5482
https://orcid.org/0009-0007-4810-5927
https://orcid.org/0000-0002-5251-5693
https://ror.org/0304hq317
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.032609&domain=pdf&date_stamp=2024-09-10
https://doi.org/10.1103/PhysRevA.110.032609

RAMACCIOTTI, LEFTEROVICI, AND ROTUNDO PHYSICAL REVIEW A 110, 032609 (2024)

where the indices ik take values in {0, 1}, ‖ψ‖ is the 2-norm
of the vector, and θ ∈ [0, 2π) is some irrelevant global phase.
We use a standard binary representation of integers, with the
most significant bit on the left. The strategy of the Grover-
Rudolph algorithm is to construct a series of coarse-grained
versions of ψ and prepare them recursively using controlled
rotations.

More precisely, let ψ (k), for k = 1, . . . , n − 1, be the fol-
lowing coarse-grained states with components:

ψ
(k)
i1···ik = ei arg(ψ (k+1)

i1 ···ik 0)
√∣∣ψ (k+1)

i1···ik0

∣∣2 + ∣∣ψ (k+1)
i1···ik1

∣∣2
. (2)

The superscript (k) keeps track of the number of qubits re-
quired to encode ψ (k). For notational convenience, we also
introduce ψ (0) ≡ 1 and ψ (n) ≡ ψ . We prepare states |ψ (k)〉,
whose amplitudes are given by ψ (k), by recursively appending
a qubit in state |0〉 and performing the transformation

ψ
(k)
i1···ik |i1 · · · ik〉|0〉 →ψ

(k)
i1···ik |i1 · · · ik〉

(
cos θ

(k)
i1···ik |0〉

+ eiφ(k)
i1 ···ik sin θ

(k)
i1···ik |1〉). (3)

The angles and phases should be chosen so that the new state
is |ψ (k+1)〉, i.e., such that the term on the right-hand side of
(3) is equal to

∑
j ψ

(k+1)
i1...ik j |i1 · · · ik j〉. A short calculation shows

that this requires

θ
(k)
i1···ik = 2 arccos

∣∣ψ (k+1)
i1···ik0

∣∣
∣∣ψ (k)

i1···ik
∣∣ ,

φ
(k)
i1···ik = arg

(
ψ

(k+1)
i1···ik1

) − arg
(
ψ

(k+1)
i1···ik0

)
,

(4)

where arg(z) is the phase of a complex number z, and when
ψ

(k)
i1···ik = 0 one should pick θ

(k)
i1···ik = 0. For k = 0, there are no

controlling qubits, so we are simply performing a one-qubit
gate. The transformation (3) can be implemented by applying
a y rotation Ry(θ (k)

i1···ik) and a phase shift gate P(φ(k)
i1···ik),3 both

controlled on the state of the first k qubits being |i1 · · · ik〉,
Uk =

∑
i1···ik

|i1 · · · ik〉〈i1 · · · ik| ⊗ [
P
(
φ

(k)
i1···ik

)
Ry

(
θ

(k)
i1···ik

)]
,

k = 0, . . . , n − 1. (5)

Note that the superscripts of the angles and phases indicate
how many qubits control the transformation and the subscripts
which value the controls should have. For instance, θ (2)

11 means
that the rotation and phase gates are applied when the first two
qubits are in state |11〉.

The steps we have just explained are summarized in Al-
gorithm 1 (GroverRudolph). The algorithm takes as input the
angles and phases needed to implement the Uk’s. We decide
to store these in a list of dictionaries Lk for k = 0, . . . , n − 1.
The entries in the dictionary Lk are given by {key: value} pairs
of the form {(i1, . . . , ik): (θ (k)

i1···ik , φ
(k)
i1···ik)}. For the special case

k = 0, we set L0 = {1: (θ (0), φ(0))}. This dictionary can be
computed using Algorithm 2 (FindAngles).

3The y rotation acts on the computational basis as
Ry(θ)|0〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉 and Ry(θ)|1〉 =
cos(θ/2)|1〉 − sin(θ/2)|0〉. The phase shift gate acts on the
computational basis as P(φ)|0〉 = |0〉 and P(φ)|1〉 = eiφ |1〉.

ALGORITHM 1.. GroverRudolph.

1: function GROVERRUDOLPH(angle and phase dictionaries Lk)
2: |ψ〉 ← P(φ (0))Ry(θ (0))|0〉
3: for k = 1, . . . , n − 1 do
4: |a〉 ← |0〉
5: for (i1, . . . , ik), (θ (k)

i1···ik , φ
(k)
i1···ik) in Lk do �Implement Uk as

in Eq. (5)
6: if |ψ〉 = |i1, . . . , ik〉 then
7: |a〉 ← P(φ (k)

i1···ik)Ry(θ (k)
i1···ik)|a〉

8: end if
9: end for
10: |ψ〉 ← |ψ〉 ⊗ |a〉
11: end for
12: return |ψ〉
12: end function

We now analyze the complexity of both Algorithm 1
(GroverRudolph) and Algorithm 2 (FindAngles). Let us begin
with the quantum part, Algorithm 1 (GroverRudolph). The
algorithm consists of n unitaries Uk for k = 0, 1, . . . , n − 1.
Each unitary involves k + 1 qubits and is made out of Ry

rotations and phase gates controlled on k qubits (U0 is not
controlled). In the worst case, the kth unitary is made out
of O(2k) controlled gates. For each controlled gate, we need
O(k) Toffoli gates. Summing over all k, we arrive at a worst-
case asymptotic scaling of O(n2n). The complexity of the
classical preprocessing required to determine the rotation an-
gles and the phases is O(2n). To see this, consider the function
FINDANGLES in Algorithm 2 (FindAngles). To find the angles,
we need first to find the coarse-grained states ψ (k). In the
worst case, ψ (k) has 2k nonzero components, so to find the
next coarse-grained state we need O(2k) operations. In total,
we need O(2n) operations to find all coarse-grained states. To
find the angles, we need the same number of operations.

Note that one could use the efficient gate decomposition
from [9] to reduce the worst-case gate complexity to O(2n).
We do not do this because when specializing to sparse vectors,
most angles and phases are zero. The number of multicon-
trolled one-qubit gates is then much smaller than in the

ALGORITHM 2. FindAngles.

1: function FINDANGLES(ψ ∈ CN with N = 2n)
2: ψ (n) ← ψ

3: for k = n − 1, n − 2, . . . , 1 do
4: Lk ← empty dictionary
5: Compute ψ (k) using Eq. (2)
6: for (i1, . . . , ik) ∈ {0, 1}k

7: Compute θ
(k)
i1 ···ik and φ

(k)
i1···ik using Eq. (4)

8: Lk[(i1, . . . , ik)] ← (θ (k)
i1···ik , φ

(k)
i1···ik)

9: end for
10: end for
11: return {Lk}
12: end function

032609-2

SIMPLE QUANTUM ALGORITHM TO EFFICIENTLY … PHYSICAL REVIEW A 110, 032609 (2024)

FIG. 1. General Grover-Rudolph circuit for preparing a three-
qubit state.

worst-case scenario, and the decomposition of [9] would in
fact lead to much deeper circuits.4

A simple example

Before continuing, we illustrate the Grover-Rudolph al-
gorithm in a simple example. Consider a vector with eight
positive components

ψ =
[
0

√
1
3 0 0 0 0

√
2
3 0

]
. (6)

Our goal is to prepare the corresponding quantum state

|ψ〉 =
√

1
3 |001〉 +

√
2
3 |110〉. (7)

The most general circuit implementing Algorithm 1 (Grover-
Rudolph) for three qubits is depicted in Fig. 1. Note that to
simplify the notation, we have denoted the rotation gates by θ

instead of Ry(θ) and phase gates by φ instead of P(φ).
To find the angles and phases, we first need to compute

the coarse-grained vectors, as in Eq. (2). Since the vector
ψ is positive, we can interpret its entries as the square root
of a probability and visualize the coarse-graining procedure
as in Fig. 2. The coarse-grained vectors ψ (k) are obtained
by iteratively binning together the probabilities in pairs and
summing them.

The Grover-Rudolph procedure starts by preparing the first
coarse-grained state

|ψ (1)〉 =
√

1
3 |0〉 +

√
2
3 |1〉 (8)

by applying a one-qubit rotation to |0〉. This can be done by
applying Ry(θ (0)) with θ (0) = 2 arccos(1/

√
3). We can then

prepare the next coarse-grained state

|ψ (2)〉 =
√

1
3 |00〉 +

√
2
3 |11〉 (9)

by appending a qubit in state |0〉 and rotating it depending on
the state of the first qubit. More specifically, when the first
qubit is in state |1〉, we need to rotate the second to |1〉; when
the first qubit is in state |0〉, we should leave the second qubit
in |0〉. This can be done by picking θ

(1)
0 = 0 and θ

(1)
1 = π .

The last step is performed similarly. We need to pick angles

4To be more explicit, consider Figs. 1 and 2 from [9]. The de-
composition proposed there works by replacing the multicontrolled
rotations with 2k controlled-NOT (CNOT) gates and 2k one-qubit ro-
tations, with angles defined by Eq. (3) in [9]. For sparse vectors, it
turns out that most angles on the right-hand side of Eq. (3) are zero.
The angles on the left-hand side, on the other hand, are typically all
different from zero. So for sparse vectors, we actually end up with a
less efficient circuit.

FIG. 2. Visualization of the coarse-graining procedure from
Eq. (2). The bars in the histograms correspond to probabilities, i.e.,
amplitudes squared. Note that ψ (3) ≡ ψ .

θ
(2)
00 = π and θ

(2)
11 = 0. The end of this process yields the

desired state |ψ〉.

III. GROVER-RUDOLPH ALGORITHM FOR
SPARSE VECTORS

In this section we analyze how well the Grover-Rudolph
algorithm performs for preparing sparse vectors. We consider
vectors ψ ∈ CN which have only d � N nonzero elements.
Above we saw that the worst-case complexity of the Grover-
Rudolph algorithm is exponential in the number of qubits.
However, we intuitively expect that for sparse vectors it
should be possible to prepare the state with only O(d) gates, as
the vector has only d degrees of freedom. Below we explicitly
show this and find that the Grover-Rudolph algorithm can
prepare sparse states with O(dn2) gates.

We assume that we know the number of nonzero elements
in ψ and their locations, namely, that we have access to ψ as
a tuple of vectors (λ, φ). The vector λ contains the locations
of the nonzero entries of ψ , and φ contains their values. The
length of both vectors is d . Without loss of generality, we
assume that the elements of λ are arranged in increasing order.

The coarse-graining procedure from Eq. (2) does not in-
crease the number of nonzero elements; hence all ψ (k) have
sparsity dk � d . Let (λ(k), φ(k)) be the pair of vectors defining
ψ (k). Equation (2) needs to be applied only when two consec-
utive elements of ψ (k) are nonzero. From this it follows that
we can find each coarse-grained vector using at worst O(d)
operations, for a total of O(dn) classical operations. Once we
have these vectors, we can find the angles and phases with
additional O(dn) operations.

We can find the angles efficiently, exploiting the sparsity
of the vector, as follows. Letting (λ(n), φ(n)) ≡ (λ, φ), we
compute the coarse-grained vectors (λ(k), φ(k)) and layers of
angles for k = n − 1, . . . , 1 by repeating the following steps.
We initialize two empty lists λ(k) and φ(k) for the coarse-
grained vector and an empty dictionary Lk for the angles and
phases. We then loop over the list λ(k+1) that was found at
the previous iteration (in the first step, it is given by λ); let
l be the current location in λ(k+1). Recall that we need to
apply Eq. (2) only when ψ (k+1) has two consecutive nonzero
entries, the first one of which is at an even location. So we
check if λ

(k+1)
l is even and if λ

(k+1)
l+1 = λ

(k+1)
l + 1. If these

two conditions are true, we compute Eq. (2) and append the

032609-3

RAMACCIOTTI, LEFTEROVICI, AND ROTUNDO PHYSICAL REVIEW A 110, 032609 (2024)

ALGORITHM 3.. FindSparseAngles.

1: function FINDSPARSEANGLES(nonzero location and values
(λ, φ))

2: (λ(n), φ (n)) ← (λ, φ)
3: for k = n − 1, n − 2, . . . , 1
4: λ(k) ← [], φ (k) ← []
5: Lk ← { } �Empty dictionary for angles and phases of

unitary Uk

6: for l = 0, 1, . . . , len(λ(k+1)) do
7: if λ

(k+1)
l is even and λ

(k+1)
l+1 = λ

(k+1)
l + 1 then

8: x ← evaluate Eq. (2) �Use ψ
(k+1)
i1···ik j ← φ

(k+1)
l+ j

9: Append x to φ (k)

10: Append λ
(k+1)
l /2 to λ(k)

11: l ← l + 1 �Skip one iteration
12: else
13: Append φ

(k+1)
l to φ (k)

14: Append �λ(k+1)
l /2 to λ(k)

15: end if
16: Compute θ

(k)
i1···ik and φ

(k)
i1···ik using Eq. (4) �Use

ψ
(k)
i1···ik ← x

17: Lk[(i1, . . . , ik)] ← (θ (k)
i1···ik , φ

(k)
i1···ik) �(i1, . . . , ik) bit

representation of �λ(k+1)
l /2

18: end for
19: end for
20: return {Lk}
21: end function

result to φ(k). Otherwise, we simply copy φ
(k+1)
l to φ(k). In

any case, since the coarse-graining halves the length of the
vector, the location of the new entry in φ(k) is at �λ(k+1)

l /2,
so we append this value to λ(k). When we use Eq. (2), we
should skip the next element in ψ (k+1), as this has already
been merged, so we increase l by 1. Having found ψ

(k)
l , we

can use Eq. (4) to find θ
(k)
i1···ik and φ

(k)
i1···ik , where (i1, . . . , ik) is

the bit representation of �λ(k+1)
l /2, and append them to Lk .

Finally, we return all the dictionaries Lk . We summarize these
steps in Algorithm 3 (FindSparseAngles). Note that this is the
only thing we need to change to take advantage of sparsity;
Algorithm 1 (GroverRudolph) remains unchanged.

Since each ψ (k) has at most d nonzero elements, we find
that each Uk has at most d nonzero angles and phases. From
this it follows that each Uk can be implemented using O(kd)
gates (d from the number of nonzero angles and k from the
number of controlling qubits). Summing over k, we arrive at
an overall gate complexity of O(dn2). As expected, we con-
clude that Algorithm 1 (GroverRudolph) performs on sparse
vectors much better than the worst-case complexity would
suggest.

On practical instances, the performance of Grover-Rudolph
might very well be better than the worst case. So we estimate
the typical complexity of the algorithm by sampling ran-
dom sparse vectors and explicitly counting the gates needed
to prepare them. We compute the cost of the algorithm by
counting the number of Toffoli, CNOT, and one-qubit gates
needed to implement it. We use standard constructions for
controlled gates (see, e.g., [18]). To implement a one-qubit
gate controlled on k � 2 qubits being in a state given by the

bit string x, we use k − 1 ancilla qubits, 2(k − 1) Toffoli gates,
two CNOT gates, and 4 + 2(n − |x|) one-qubit gates. Here |x|
is the Hamming weight of the bit string x.

In more detail, we consider 100 random complex vectors,
for various values of d and n, and we study how the gate count
scales as a function of d and n. The results are displayed in
Fig. 3. Note that we display only the count of Toffoli gates,
as the plots for the counts of CNOT and one-qubit gates are
very similar. By inspecting the diagram, we find that also the
average-case complexity of the algorithm scales linearly in d
and quadratically in n.

In this section we have shown that the Grover-Rudolph
algorithm works well on sparse vectors. However, the scal-
ing we have found, O(dn2), does not quite match the best
known algorithms for preparing sparse vectors [13–16], which
have a worst-case complexity of O(dn). Note that n is only
logarithmic in the size of the vector, so it is possible that
optimizing the Grover-Rudolph circuit might overcome this
small overhead in practical applications. In Appendix A we
consider a simple optimization procedure that reduces the
number of needed gates, at the cost of a small classical over-
head. However, we find that this reduction is not significant
enough. Therefore, in the next section we introduce a small
variant of the Grover-Rudolph algorithm for which we can
prove a worst-case scaling of O(dn).

IV. PERMUTATION OF THE GROVER-RUDOLPH
ALGORITHM

We introduce a simple variation of the Grover-Rudolph
algorithm, for which we can prove the worst-case complex-
ity of O(dn). The idea of this variant is as follows. First,
we prepare a dense state whose amplitudes are given by the
nonzero entries of ψ . To prepare this state, we only need
�log d� qubits, and we can use Algorithm 1 (GroverRudolph).
We then append a sufficient number of qubits, such that the
total dimension of the Hilbert space becomes N , and apply
a permutation unitary which maps the nonzero amplitudes to
their correct location. We show that this permutation can be
efficiently implemented. The idea of preparing a dense state
with all the nonzero entries and then permuting the basis states
has already been used in [14]. Our algorithm differs in the
implementation of the permutation and, as we discuss further
below, has a better classical complexity.

Similarly to the preceding section, we assume we have
access to ψ as a tuple of vectors (λ, φ). Each vector has size
d , with λi ∈ {0, . . . , N} being the location of the ith nonzero
element of ψ and φi being its value. We assume without loss
of generality that the elements of λ are arranged in increasing
order. As a first step, we prepare a dense vector

|ψ̃〉 =
d−1∑
i=0

φi|i〉, (10)

using the standard Grover-Rudolph algorithm. We then add
a sufficient number of qubits initialized in |0〉 such that the
total size of the Hilbert space becomes N . Finally, we apply a
permutation unitary that maps |i〉 → |λi〉.

There are of course many permutations, mapping i to λi.
We build one, directly decomposed in cycles, as follows. Let

032609-4

SIMPLE QUANTUM ALGORITHM TO EFFICIENTLY … PHYSICAL REVIEW A 110, 032609 (2024)

FIG. 3. Gate count for preparing random states using Algorithm 1 (GroverRudolph) (a) as a function of d at fixed n and (b) as a function
of n at fixed d using (a) a log-log scale and (b) a lin-lin scale.

i ∈ I , with I = {0, 1, . . . , d − 1}, and for simplicity consider
i = 0. We initialize a cycle with elements (0, λ0). If λ0 � d ,
we can close the cycle, add it to our permutation, and go to the
next available i. If λ0 < d , we set j = λ0, we remove j from
I , and we add λ j to the cycle. We then repeat the steps above
until we find a λ j larger than d . The steps are summarized in
Algorithm 4 (SparsePermutation).

An example can be useful to understand how SparsePer-
mutation works. Consider d = n = 4 and λ = (0, 3, 12, 15).
We begin by initializing S = (1, 1, 1, 1), which keeps track of
which elements of λ have not already been included in a cycle,
and an empty list P, where we will store the cycles. We then
loop over i = 0, 1, 2, 3.

(i) For i = 0, we have λ0 = 0, so we do not need to permute
anything and we can continue to the next i [there is no need to
add to P the trivial cycle (0)].

(ii) For i = 1, we have S1 = 1 and λ1 = 3 �= 1, so we
initialize the cycle c to (1, 3). Since λ1 < d , we also append
λ3 = 15 to c and we set S3 = 0. Now λ3 � d , so we can stop
here and append c = (1, 3, 15) to P.

(iii) For i = 2, we have S2 = 1 and λ2 = 12 �= 2, so we set
c = (2, 12). Since λ2 � d , we can stop and append c to P.

(iv) For i = 3, since S3 = 0 [see step (ii)], we can continue
to the next i.

Finally, we return P = {(1, 3, 15), (2, 12)}.
To understand how the complexity of Algorithm 4

(SparsePermutation) scales, let P = {c0, c1, . . . , cnc−1} be
the list of cycles returned by the algorithm. We denote
by Mk the length of the kth cycle in the list, with k =
0, 1, . . . , nc − 1. To generate this list, the algorithm loops
over i = 0, 1, . . . , d − 1 and does three blocks of operations:
an if statement, an initialization, and a while loop. The first
two operations take O(n) time. The if statement is run every
iteration and the initialization step is run nc � d times. So they
both contribute O(dn) to the classical complexity. The while
loop is run only for cycles with more than two entries, with
each iteration taking O(n) time. Hence, we find a contribution
of O(n

∑
k max(Mk − 2, 0)). We can upper bound the sum

by
∑

k Mk , which is the total length of the cycles in P. In
the worst case, we have

∑
i Mi = 2d , which happens for a

permutation made of d 2-cycles. This happens when λi � d
for all i. To see this, let λ j < d for some value of j. Then in the
permutation we replace two cycles of length 2 with one cycle
of length 3, and

∑
i Mi decreases. We conclude that Algorithm

4 (SparsePermutation) has complexity of O(nd).

ALGORITHM 4. SparsePermutation.

1: function SPARSEPERM(vector of nonzero locations λ)
2: P ← { } �Initialize empty permutation
3: S = {S0, S1, . . . , Sd−1} with Si = 1, for i = 0, . . . , d − 1 �Track valid starting values for cycles
4: for i = 0, 1, . . . , d − 1 do
5: if Si = 0 or λi = i then
6: continue �Skip iteration if i already present in a cycle or if cycle is trivial
7: end if
8: j ← λi, c ← {i, j}
9: while j < d do

10: Sj ← 0, j ← λ j

11: append j to c
12: end while
13: append c to P �Add cycle to permutation
14: end for
15: return P �Permutation decomposed in cycles
16: end function

032609-5

RAMACCIOTTI, LEFTEROVICI, AND ROTUNDO PHYSICAL REVIEW A 110, 032609 (2024)

ALGORITHM 5. PermutationGroverRudolph.

1: function PERMGR(sparse vector {(x0, ψ0), . . . , (xd−1, ψd−1)}, number of qubits n)
2: Apply Algorithm 1 (GroverRudolph) to prepare |ψ̃〉 = ∑d−1

i=0 ψi|i〉
3: Append n − �log2 d� qubits in state |0〉 �Add qubits until there are n
4: P ← SPARSEPERM({xi})
5: for c ∈ P
6: Apply CYCLE(c, n) �See Algorithm 7 (Cycle)
7: end for
8: end function

Once we have decomposed the permutation in cycles, we
can use Algorithm 7 (Cycle) (see Appendix B) to implement
it. Algorithm 7 (Cycle) implements a cycle of length M with

O(Mn) classical operations. Note that since, as we have ar-
gued above,

∑
i Mi = O(d), the overall classical complexity is

still of O(nd). Putting everything together, we find Algorithm
5 (PermutationGroverRudolph) for preparing sparse states.

The quantum complexity of this algorithm is given by
the cost of the Grover-Rudolph step needed to prepare ψ̃

and the cost of implementing the permutation |i〉 → |λi〉. As
explained in Sec. II, the first is given by O(n2n), where n is the
number of qubits. For the Grover-Rudolph step in this case,
the number of qubits is only n = O(log d); hence we find
O(d log d). For the second one, we can use Eq. (B1), which
states that the complexity of one cycle scales like O(Mn),
where n is the number of qubits and M is the cycle length. The
cost of the permutation scales like the sum of all cycles lengths
times the number of qubits. In the worst case, we have d cycles
of length 2, obtaining that the complexity of the permutation
is O(dn). Putting everything together, we find that the worst-
case complexity of the algorithm scales as O(dn). Note that
we could consider better algorithms for the Grover-Rudolph
step, e.g., the algorithm of [9], which would scale as O(d)
instead of O(d log d). Since the complexity of the algorithm
is dominated by the permutation step, we do not think this
would make a significant difference. It would be interesting to
consider better ways to implement the permutation.

Similarly to what we did in Sec. III, we numerically
estimate the average-case complexity of Algorithm 5 (Permu-
tationGroverRudolph). We consider random complex sparse
vectors, for various values of d and n, and compute the
number of gates required by Algorithm 5 (Permutation-
GroverRudolph) to prepare them. The results are shown in

Fig. 4. We find that scaling is linear in both d and n, the same
as in the worst-case analysis.

From our analysis, we know that the worst-case cost of
Algorithm 5 (PermutationGroverRudolph) scales better than
that of Algorithm 1 (GroverRudolph). However, this speedup
might fail to appear for vectors of reasonable size and sparsity.
For this reason, we study empirically the relative costs of these
two algorithms. In Fig. 5 we plot the ratio between the number
of Toffoli gates required by Algorithm 5 (PermutationGrover-
Rudolph) and Algorithm 1 (GroverRudolph) [subjected to the
optimization strategy in Algorithm 6 (OptimizeAngles)] to
prepare the same random vectors used to generate the plots in
Fig. 4. We find that Algorithm 5 (PermutationGroverRudolph)
performs better than the optimized version of Algorithm 1
(GroverRudolph) already at moderate values of n and starting
at densities d/N between 10−3 and 10−2. Unsurprisingly, for
larger values of n the transition happens sooner, i.e., at larger
densities.

V. CONCLUSION

In this paper we have studied the performance of the
Grover-Rudolph algorithm for preparing sparse states. We
have found that the usual version of the algorithm [see Algo-
rithm 1 (GroverRudolph)] has a gate complexity of O(dn2).
Here n is the number of qubits needed to encode the vector
we want to prepare, ψ , and d is the number of nonzero

FIG. 4. Gate count for preparing random states using Algorithm 5 (PermutationGroverRudolph) (a) as a function of d at fixed n and (b) as
a function of N = 2n at fixed d using (a) a log-log scale and (b) a lin-lin scale.

032609-6

SIMPLE QUANTUM ALGORITHM TO EFFICIENTLY … PHYSICAL REVIEW A 110, 032609 (2024)

FIG. 5. Ratio between the number of gates required by Algorithm 5 (PermutationGroverRudolph) and the optimized gate count given by
Algorithm 1 (GroverRudolph) in concert with Algorithm 6 (OptimizeAngles) to prepare some random states, as a function of the density d/N
at (a) fixed n and (b) fixed d . We use a logarithmic scale on the abscissa.

entries in ψ . Moreover, we have introduced a simple modifi-
cation of the algorithm which has a gate complexity of O(dn)
[Algorithm 5 (PermutationGroverRudolph)]. This is compet-
itive with the best known algorithms for preparing sparse
vectors [13–16]. The classical complexity of both Algorithm
1 (GroverRudolph) and Algorithm 5 (PermutationGroverRu-
dolph) is O(dn). This is better than those of [13,14], which
are O(nd2 log d) and O(nd2), respectively, and it is equal to
that of [15,16]. Ultimately, the decision of which algorithm
to use depends on the specific properties of the vectors to
prepare. The main point of this work is that, when considering
sparse vectors, the Grover-Rudolph algorithm should also be
considered as an option.

We point out that in both Algorithm 1 (GroverRudolph)
and Algorithm 5 (PermutationGroverRudolph) there is space
for improvements. In particular, it would be interesting to
consider optimization procedures to reduce the number of
controlled rotations and Toffoli gates in Algorithm 1 (Grover-
Rudolph). We consider one such optimization procedure in
Appendix A, which shows promising results, for real vectors.
In Algorithm 5 (PermutationGroverRudolph) it would be in-
teresting to try to improve the permutation step, both at the
level of the classical preprocessing, i.e., finding a different
suitable permutation, and at the level of the quantum circuit
needed to implement the permutation. However, it should be
noted that these improvements will not change the asymptotic
scaling that in all cases is O(dn).

Finally, we point out an interesting possible future di-
rection of research. In a recent work [19] an approximate
state-preparation algorithm was developed that significantly
reduces the cost of preparing a state when a small error is
allowed. It would be interesting to understand whether this
technique can be adapted to sparse states.

All the results were obtained using Python. The code is
available on Ref. [20].

ACKNOWLEDGMENTS

This work was supported by the Quantum Valley Lower
Saxony and by the BMBF project QuBRA. Helpful correspon-

dence and discussions with J. Ammermann, L. Binkowski, T.
Bittner, D. Eichhorn, D. Incalza, A. Loţan, T. J. Osborne, A.
Peduri, S. Wilkening, and H. Wilming are gratefully acknowl-
edged.

APPENDIX A: OPTIMIZING THE GATES

We consider a simple optimization strategy in which we
merge consecutive gates that have the same rotation angles
and phases and have controls differing only by one bit flip.
For example, consider the situation depicted in Fig. 6. The
first gate is conditioned on 11 and performs a rotation with
an angle θ , while the second gate is conditioned on 10 and
executes a rotation with the same angle θ . Given the gates
differ in only one control and share the same rotation angles,
they can be combined into a single gate, controlled on the
first qubit being in 1. Note that this reduction not only affects
the total gate count but also leads to gates with one fewer
controlling qubit.

To explain how to perform the merge, we assume again that
the angles and phases needed to implement the unitaries Uk

are stored in dictionaries Lk as {(i1, . . . , ik): (θ (k)
i1...ik

, φ
(k)
i1...ik

)}.
For every control (i1, . . . , ik) in dictionary Lk , we loop over
its neighbors and check whether the corresponding angles,
if present, are the same. Here the neighbors are found by
flipping one bit, i.e., they are neighbors in Hamming distance.
When the angle is the same, we merge the two controls into
one. To do this, we replace the one bit on which the original
controls disagreed with e. This simply helps to keep track of
which qubits control the rotation. For example, 010 and 000
would be merged in 0e0. We repeat this procedure until no
new merging is possible. Note that to find neighbors, we do

FIG. 6. Example of the optimization procedure.

032609-7

RAMACCIOTTI, LEFTEROVICI, AND ROTUNDO PHYSICAL REVIEW A 110, 032609 (2024)

ALGORITHM 6. OptimizeAngles.

1: function OPTIMIZEANGLES (dictionaryD)
2: Merging_success ← True �Flag to mark merging success
3: while (Merging_success = True) & (len(D) > 1) do
4: Merging_success ← MERGEABLE(D)
5: end while
6: return D
7: end function
8:
9: function MERGEABLE(dictionary D)

10: for k, θ in D
11: for i = 0, . . . , len(k)
12: if k[i] = e then continue
13: end if
14: k′ ← copy of k with ith entry flipped
15: θ ′ ← D[k′]
16: if θ = θ ′

17: Remove k, k′ from D
18: k′′ ← copy of k with ith entry set to e
19: Add {k′′ : θ} to D
20: return True
21: end if
22: end for
23: end for
24: return False
25: end function

not consider the entries set to e. These steps are summarized
in Algorithm 6 (OptimizeAngles).

The complexity of Algorithm 6 (OptimizeAngles) is
O(dn2 log d). To see this, consider first the function MERGE-
ABLE. This has complexity of O(dn2), as can it be seen by
considering the structure of the two nested for loops. The
first for loop iterates over all the items in the dictionary,
whose number is upper bounded by d . The second for loop
iterates over all bits in a key, whose number is upper bounded
by n. Finally, the operations inside the inner for loop have
complexity O(n). Next we consider the while loop. This takes
at most log d repetitions, as can be seen by noticing that at
any iterations of the while loop, only angles which have been
merged in the previous iteration can be further merged. Hence,
the number of mergeable angles decreases by at least a factor
2 at every repetition of the while loop. Therefore, we have
at most O(log d) iterations. Putting everything together, we
arrive at a complexity of O(dn2 log d).

It is difficult to understand theoretically how much this
optimization reduces the number of required gates. Therefore,
we rely on numerics. We consider the same random vectors
used to generate Fig. 3, optimize the angles using Algorithm
6 (OptimizeAngles), and compute the ratio between the gates
needed to prepare the state before and after optimization. The
results are shown in Figs. 7(a) and 7(b). We apply the same
strategy further for both real and uniform random vectors and
we show the results in Figs. 7(c) and 7(d) and Figs. 7(e) and
7(f), respectively.

We find that the optimization of random vectors is only
relevant at intermediate values of d . Empirically, the best
improvement we observe is around 10%. As we have seen,
this comes at a classical cost, which is O(n2 log d) worse than

the one required to find the angles. In the case of real vectors,
we observe that at densities d/N ≈ 0.1 the improvement in
the gate count ranges from 20% to 25%, respectively, making
them suitable candidates for this particular type of optimiza-
tion. In the case of uniform vectors, the improvement in gate
count at moderate values of d ranges from 10% to 35%. For
fixed d , our optimization approach showcases improvements
of up to 40%.

In the near future, quantum costs will be the bottleneck of
quantum calculations; hence it is still useful to incur a higher
classical complexity cost that will reduce the gate total count,
even by a modest amount.

APPENDIX B: IMPLEMENTING PERMUTATION
MATRICES

We present a simple way to implement permutation matri-
ces.

Given a permutation σ of N elements, we want to im-
plement a unitary, which we also denote by σ , that acts
as σ |i〉 = |σ (i)〉. For simplicity, we assume that N = 2n for
some integer n, but this condition can be easily relaxed.
First, we classically decompose the permutation in cycles,
σ = c0c1 · · · cnc−1. Here nc is the number of required cycles.

Each cycle is then simple to implement. Let c =
(x0x1 · · · xM−1) be a cycle of length M, where xk are n-bit
strings, and let |a〉 be an ancilla register that we initially
prepare in |0〉. The cycle can be implemented by repeating
for k = 0, 1, . . . , M − 1 the following two operations.

(i) We flip the ancilla conditioned on the state of the first n
qubits being |xk〉.

(ii) Conditioned on the ancilla being in state |1〉, we map
the first n qubits to |xk+1〉.

032609-8

SIMPLE QUANTUM ALGORITHM TO EFFICIENTLY … PHYSICAL REVIEW A 110, 032609 (2024)

FIG. 7. Ratio of the number of Toffoli gates needed to run Algorithm 1 (GroverRudolph) after and before optimizing the angles using
Algorithm 6 (OptimizeAngles) to prepare (a) and (b) random states, (c) and (d) random real states, and (e) and (f) uniform states as a function
of the density d/N at fixed n and at fixed d . We use a logarithmic scale on the abscissa.

To map |xk〉 to |xk+1〉 we can use
⊗n−1

l=0 X �l , where � =
xk ⊕ xk+1 is the bitwise difference between xk and xk+1. Note
that we are setting xM ≡ x0. For example, in Fig. 8 we

FIG. 8. Circuit for N = 8 and σ = (0, 1, 2).

show the circuit obtained for cycle c = (0, 1, 2) and N = 8.
The steps needed to implement a cycle are summarized in
Algorithm 7 (Cycle).

Finally, we provide a count for the number of gates re-
quired to run this algorithm. The ancilla flip is a generalized
Toffoli gate with n controls; hence the cost of each is 2(n −
1)CT + 4C1 + 2CCNOT. We also need to include two X gates for
every qubit controlled on 0, resulting in adding n − |xk| gates.
There will be M + 1 of these terms. Then each state flip is
determined by the number of bits that need to be swapped.
More precisely, we need |xk ⊕ xk+1| CNOT gates for each of
the M elements of a cycle.

032609-9

RAMACCIOTTI, LEFTEROVICI, AND ROTUNDO PHYSICAL REVIEW A 110, 032609 (2024)

ALGORITHM 7. Cycle.

1: function CYCLE(cycle c = (x0x1 · · · xM−1), n-qubit basis state |y〉)
2: xM ← x0

3: Add a qubit ancilla in state |a〉 = |0〉
4: for k = 0, 1, . . . , M − 1 do
5: if y = xk then
6: Flip ancilla, a → a ⊕ 1
7: end if
8: � ← xk ⊕ xk+1

9: if a = 1 then
10: |y〉 ← (X �0 ⊗ X �1 ⊗ · · · ⊗ X �n−1)|y〉 � Map |xk〉 to |xk+1〉
11: end if
12: end for
13: return |y〉
14: end function

The cost of this algorithm is

C[cycle(c)] = 2(M + 1)((n − 1)CT + 2C1 + CCNOT) + 2
M∑

k=0

(n − |xk|)C1 + 4
M−1∑
k=0

|xk ⊕ xk+1|C1 + 2
M−1∑
k=0

|xk ⊕ xk+1|CCNOT

= O(Mn), (B1)
where CT , CCNOT, are C1 are the costs of Toffoli, CNOT, and one-qubit gates, respectively, c = (x0x1 · · · xM−1), |·| denotes the
Hamming weight of the bit string, and again xM ≡ x0. Note that the algorithm also requires O(Mn) classical operations.

[1] C. Zalka, Simulating quantum systems on a quantum computer,
Proc. R. Soc. London Ser. A 454, 313 (1998).

[2] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[3] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
arXiv:1307.0411.

[4] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm
for linear systems of equations, Phys. Rev. Lett. 103, 150502
(2009).

[5] A. M. Childs, R. Kothari, and R. D. Somma, Quantum al-
gorithm for systems of linear equations with exponentially
improved dependence on precision, SIAM J. Comput. 46, 1920
(2017).

[6] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[7] P. Kaye and M. Mosca, in Proceedings of the International
Conference on Quantum Information, Rochester (Optica, Wash-
ington, DC, 2001), paper PB28.

[8] E. Knill, Approximation by quantum circuits, arXiv:quant-
ph/9508006.

[9] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M.
Salomaa, Transformation of quantum states using uni-
formly controlled rotations, Quantum Inf. Comput. 5, 467
(2005).

[10] X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, in IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems (IEEE, Piscataway, NJ, 2023).

[11] M. Plesch and Č. Brukner, Quantum-state preparation with
universal gate decompositions, Phys. Rev. A 83, 032302
(2011).

[12] J. Gonzalez-Conde, T. W. Watts, P. Rodriguez-Grasa, and M.
Sanz, Efficient quantum amplitude encoding of polynomial
functions, Quantum 8, 1297 (2024).

[13] N. Gleinig and T. Hoefler, An efficient algorithm for sparse
quantum state preparation, in Proceedings of the 2021
58th ACM/ IEEE Design Automation Conference (DAC),
San Francisco, CA, USA (IEEE, Piscataway, NJ, 2021),
pp. 433–438.

[14] E. Malvetti, R. Iten, and R. Colbeck, Quantum circuits for
sparse isometries, Quantum 5, 412 (2021).

[15] T. M. L. de Veras, L. D. da Silva, and A. J. da Silva, Double
sparse quantum state preparation, Quantum Inf. Process. 21,
204 (2022).

[16] F. Mozafari, G. D. Micheli, and Y. Yang, Efficient deterministic
preparation of quantum states using decision diagrams, Phys.
Rev. A 106, 022617 (2022).

[17] X.-M. Zhang, T. Li, and X. Yuan, Quantum state preparation
with optimal circuit depth: Implementations and applications,
Phys. Rev. Lett. 129, 230504 (2022).

[18] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[19] G. Marin-Sanchez, J. Gonzalez-Conde, and M. Sanz, Quantum
algorithms for approximate function loading, Phys. Rev. Res. 5,
033114 (2023).

[20] https://github.com/qubrabench/grover-rudolph.

032609-10

https://doi.org/10.1098/rspa.1998.0162
https://doi.org/10.1103/RevModPhys.86.153
https://arxiv.org/abs/1307.0411
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/16M1087072
https://arxiv.org/abs/quant-ph/0208112
https://arxiv.org/abs/quant-ph/9508006
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.22331/q-2024-03-21-1297
https://ieeexplore.ieee.org/document/9586240
https://doi.org/10.22331/q-2021-03-15-412
https://doi.org/10.1007/s11128-022-03549-y
https://doi.org/10.1103/PhysRevA.106.022617
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevResearch.5.033114
https://github.com/qubrabench/grover-rudolph

