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Many quantum systems display Markovian and non-Markovian behaviors with the information flow and
backflow between the system and the surrounding environment. In this paper, we introduce a definition of the
dynamics of open quantum systems called information trapping, which is a special case of the information
flow. We show that under specific conditions, the information flow can exhibit behavior beyond Markovian or
non-Markovian system dynamics. The physical reason behind this phenomenon may arise from the entanglement
between the system and the environment, such that the rates of entangling and disentangling can equalize over
time, influenced by the quantum memory of the system and environmental decoherence effects. This proposal
is investigated by considering some witnesses of the behavior of the system dynamics such as fidelity, trace dis-
tance, the Holevo quantity, and Hilbert-Schmidt speed in the quantum teleportation and dense coding protocols
based on the open quantum system consisting of an XXZ chain Heisenberg affected by intrinsic decoherence.
The main achievement of this work is focused on facilitating access to faithful quantum communication.
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I. INTRODUCTION

The interaction of quantum systems with their environ-
ment causes the exchange of information, which can lead to
dissipating energy and the loss of quantum coherence [1–6].
Nonetheless, the process is not required to be monotonic as
the quantum system may provisionally regain some of the lost
energy or information because of memory effects throughout
the evolution [7–20]. This well-known non-Markovianity dy-
namical behavior may appear in various quantum information
roles, including teleportation related to mixed states [21], en-
hancement of the capacity for quantum channels [22], optimal
entangling protocols [23–25], and work extraction from an
Otto cycle [26].

In fact, the dynamics of open quantum systems related to
the interaction of the system with its environment is split into
two classes: Markovian and non-Markovian dynamics. The
continuous flow of information from the system to its environ-
ment is known as Markovian dynamics. However, information
backflow to the system from the environment during certain
time intervals due to quantum memory effects refers to non-
Markovian dynamics [8,27,28].

The evaluation of the non-Markovianity of dynamics in
quantum systems has been a topic of extensive research
[8,9,29,30]. One approach is to identify temporary increases
in the entanglement shared between the open quantum sys-
tem and an isolated ancilla by measuring the deviation from
the complete-positivity divisibility of the dynamical map that
represents the system’s evolution, which was proposed by
Rivas et al. [31]. The next method depends on determining
the distinguishability of two optimal initial states evolving
via the same quantum channel or resource, and probing any
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nonmonotonicity (backflows of information) is characterized
by the trace distance (TD) and was first suggested by Breuer
et al. [27,32]. Other non-Markovianity witnesses have been
suggested according to various dynamical figures of merit,
including quantum mutual information [33], the flow of Fisher
information [34,35], local quantum uncertainty [36], negative
time-dependent decoherence rates in the standard shape of
the master equation [37], channel capacities [38], coherence
[39,40], quantum interferometric power [41–43], the fidelity
of the quantum states [44,45], Choi states [46], changes in
the volume of the set of accessible states in the evolved
system [47], correlation measures [48], spectral analysis [49],
quantum evolution speedup [50–52], entropy production rates
[53], and the Hilbert-Schmidt speed (HSS) [54]. This array
of witnesses and approaches emphasizes the diverse nature of
non-Markovian behavior, making it impossible to attribute to
a single system-environment interaction feature, hindering its
characterization with a single tool for this phenomenon.

The dynamics of open quantum systems is crucial when
communication protocols are influenced by system evolution.
One of the most popular protocols in quantum communi-
cation is quantum teleportation, first proposed by Bennett
et al. [55], which is a technique for transmitting quantum
information from a sender (Alice) in one place to a receiver
(Bob) located some distance away, utilizing a classical or
nonclassical channel [56–61]. Another favorite protocol in
quantum communication, which shares entanglement between
Alice and Bob, is quantum dense coding [59,62–64], initially
suggested by Bennett and Wiesner [62]. In this method, two
bits of classical information are transmitted through a single
encoded qubit sharing the initial maximum entanglement of
the channel (or resource) state related to the Bell state. Having
an initial entangled state shared between the sender(s) and
receiver(s) is crucial for enhancing the efficiency of quantum
communication protocols.
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In this article, we address the information-flow problem
between the system and environment in two protocols of
quantum communications such as quantum dense coding and
teleportation based on an open quantum system including an
XXZ Heisenberg model of spin-1/2 particles arranged on
a ring under intrinsic decoherence. In this investigation, we
examine the witnesses of non-Markovianity based on Holevo
capacity, TD, the fidelity of quantum teleportation, and phase
estimation via HSS in the output of quantum teleportation to
detect memory effects corresponding to system-environment
information backflows. We show that under specific con-
ditions, the information flow can exhibit behavior beyond
Markovian or non-Markovian system dynamics, which is cru-
cial in quantum communication. The most important reason
for investigating this idea is to facilitate faithful experimental
quantum teleportation [65,66] that helps to improve securely
transmitting quantum information.

This article is organized as follows: In Sec. II, the pre-
liminaries of quantum communication protocols and the
formulations governing them are expressed. Moreover, in
Sec. III, we describe the theoretical model that can be used as
a resource (or channel) for quantum teleportation and quan-
tum dense coding protocols. Last, in Sec. IV we summarize
the main findings and provide a discussion.

II. PRELIMINARIES

A. Quantum communication protocols

1. Quantum teleportation

In the normal protocol [67], remote transmission is accom-
plished using a two-qubit mixed state ρch serving as a channel
(resource) and is prepared by a generalized depolarized quan-
tum channel �(ρch ) concerning a single-qubit input state ρin.
Alice plans to send the encoded qubit state to Bob using this
technique. We can consider the unknown input (initial) state
of teleportation for any arbitrary pure single-qubit state:

|ψin〉 = cos
(θ

2

)
|0〉 + eiφsin

(θ

2

)
|1〉, (1)

where θ and φ denote the amplitude and phase of the initial
state of the single-qubit teleportation, respectively. The output
state of the teleportation when transmitting an arbitrary single-
qubit state (input state ρin = |ψin〉〈ψin|)) can be given by [67]

ρout = �(ρch )ρin =
3∑

i=0

Tr[Biρch]σiρinσi, (2)

where �(ρch ) is a generalized depolarized channel and Bi

represents the Bell state corresponding to the Pauli matrix σi

that is defined as follows:

Bi =
(
σ0 ⊗ σi

)
B0

(
σ0 ⊗ σi

)
, i = 1, 2, 3, (3)

where σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz, and I denotes the
identity matrix. In addition, for any two arbitrary qubits where
each is prepared in the standard basis {|0〉, |1〉}, we have

B0 = 1
2 (|00〉 + |11〉)(〈00| + 〈11|).

The fidelity criterion can be used to evaluate the similarity
between the input state and the teleported state. Hence, the

quality of the teleported state is characterized by the fidelity
f (ρin(t ), ρout (t )), which is defined as [68,69]:

f (ρin(t ), ρout (t )) =
(

Tr
[√√

ρin(t )ρout (t )
√

ρin(t )
])2

. (4)

where the limit for fidelity becomes 0 � f (ρin(t ), ρout (t )) �
1. For f = 1, the optimal fidelity required for achieving
optimal teleportation can be attained.

2. Quantum dense coding

In quantum dense coding, there is no need to physically
transmit the quantum state. The quantum state is transferred
to Bob after Alice’s local unitary transformation is completed.
The main goal of this process is to determine the quantum
advantage of the initial resource state ρ shared between Alice
and Bob for transmitting classical information. The quantum
dense coding protocol can be analytically formulated by the
Holevo quantity [70], which can be referred to as the dense
coding capacity, as follows [71,72]:

χ (ρ(t )) := S(ρ̄(t )) − S(ρ(t )), (5)

where

ρ̄(t ) = 1

4

3∑
i=0

(σi ⊗ I) ρ(t ) (I ⊗ σi ) (6)

is the ensemble average state and the significant quantity in
Eq. (5)

S(ρ(t )) = −Tr[ρ(t ) log2 ρ(t )] = −
∑

i

λi log2(λi), (7)

where S(ρ(t )) represents the von Neumann entropy of the
density matrix ρ(t ) and λi denotes the eigenvalues of the
density matrix. Achieving the quantum advantage in the valid
quantum dense coding required χ (ρ(t )) > 1, and for the opti-
mal quantum dense coding, it needed χ (ρ(t ))max = 2 [73,74].
The maximum classical information that can be sent to Bob
for a given initial state is known as the dense coding capacity
[75].

B. Non-Markovianity witnesses

1. Trace distance

The distinguishability between two evolved quantum states
ρin and ρout can be detected by the TD [7,8,27], first proposed
by Breuer et al. [27,32]. The TD is one of the most well-
known metrics for identifying the non-Markovianity of the
system dynamics:

D(ρin, ρout ) = 1
2 Tr|ρin − ρout|, (8)

where the modulus of the operator is determined by |A| =√
A†A. The bounds of the TD are 0 � D(ρin, ρout ) � 1, where

D(ρin, ρout ) = 0 if and only if ρin = ρout and D(ρin, ρout ) = 1
if and only if ρin and ρout are orthogonal. One key property of
the TD is that it provides a clear physical explanation of the
distinguishability between two quantum states.

In quantum communication theory, the accuracy of the sig-
nal transmission is measured through the statistical distance
in the Hilbert space between transmitted and received states
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[76]. The statistical distances play a crucial role in character-
izing signal degradation, channel noise, and the information
obtained from measurements [77]. Key distance measures in
quantum information encompass fidelity (Bures metrics) and
the TD. The trace distance is related to fidelity through an
inequality applicable to two mixed states [78,79],

1 − f (ρin, ρout ) � D(ρin, ρout ) �
√

1 − f (ρin, ρout )2. (9)

When both states are pure, the upper bound of the trace dis-
tance is saturated. It is important to note that we can utilize
two dependent input and output states of teleportation as quan-
tum states to detect non-Markovian dynamics through fidelity
and trace distance, as suggested in Ref. [45].

2. Hilbert-Schmidt speed

The HSS is acknowledged as a powerful tool for enhancing
quantum parameter estimation in quantum information theory.
As mentioned in [54,80], the HSS can be used as a non-
Markovianity witness that detects memory effects well.

To describe the HSS, we can assume the distance mea-
sure d (p, q), given by [d (p, q)]2 = 1

2

∑
x |px − qx|2 [81], in

which p = {px}x and q = {qx}x, with respect to the unknown
parameter ϑ , denote the probability distributions, leads to
the determination of the classical statistical speed (CSS)
s[p(ϑ0)] = d

dθ
d (p(ϑ0 + ϑ ), p(ϑ0)). We consider a given pair

of quantum states ρ and σ to expand to the quantum case and
define px = Tr[�xρ] and qx = Tr[�xσ ], which are the mea-
surement probabilities related to the positive operator-valued
measure (POVM) {�x � 0} fulfilling

∑
x �x = I.

Maximizing the classical statistical distance d (p, q) over
all possible measurements of POVMs [82], we determine
the corresponding quantum statistical distance known as
the Hilbert-Schmidt distance [83] denoted by DHS(ρ, σ ) ≡
max{�x} d (p, q) =

√
1
2 Tr[(ρ − σ )2]. Therefore, the related

quantum statistical speed (QSS) is defined by maximizing
the CSS over all possible measurements of POVMs [81,84].
Considering the quantum state ρ(ϑ ), the HSS is given by
[54,80,81]

HSS(ϑ ) = max
{�x}

s[p(ϑ )] =
√

1

2
Tr

[dρ(ϑ )

dϑ

]2
, (10)

which does not require diagonalizing the derivative of
dρ(ϑ )/dϑ . It should be noted that the HSS is a type of QSS
corresponding to the Hilbert-Schmidt distance [81].

3. Holevo quantity

As is well known, non-Markovian effects can cause faster
quantum evolution from an initial state to a subsequent state

[50,85–89]. It is thus obvious that the criterion of the Holevo
quantity can play the role of a suitable determiner of memory
effects occurring during the system dynamics. Here, we focus
on exploiting the Holevo capacity [70] as a kind of merit
for the non-Markovian feature of quantum evolutions, with
resultful practical advantages in the analysis.

As proposed in Ref. [38], concerning the concept that the
nonmonotonic speed (positive acceleration) of the quantum
dynamics is a signature of memory effects in the system
dynamics, one can introduce the non-Markovianity witness
based on the Holevo quantity as

F (t ) := dχ (ρ(t ))
dt

> 0, (11)

where ρ(t ) represents the evolved state of the system and
χ (ρ(t )) is defined in Eq. (5). If the channel of quantum
dense coding interacts with an environment, χ (ρ(t )) de-
creases monotonously, and in this situation the dynamics is
called Markovian. So we have F (t ) < 0 for some times. On
the other hand, every positive value of F (t ) is a witness of
non-Markovianity.

Corresponding to this witness, in analogy with what has
been accomplished for other measures [27,32,45,54,90], a de-
terminer of the degree of non-Markovianity can be expressed
by

N := max
∫
F (t )>0

F (t )dt, (12)

where the maximization is taken over all the possible
parametrizations of the initial state.

It is important to note that we aim to investigate only non-
Markovian effects using the witness based on χ (ρ(t )). In this
context, the actual value is not significant, and no optimization
of the initial state parameters is performed.

III. THE PHYSICAL MODEL

Consider a paradigmatic open quantum system including
an XXZ Heisenberg model of N spin-1/2 particles arranged
on a ring. The Hamiltonian of this system can be defined as
follows [91,92]:

Ĥ(XXZ ) = ε

N∑
i=1

σ̂ z
i −

N∑
i=1

[
J
(
σ̂ x

i ⊗ σ̂ x
i⊕1 + σ̂

y
i ⊗ σ̂

y
i⊕1

)
+ Jz

(
σ̂ z

i ⊗ σ̂ z
i⊕1

)]
, (13)

where the positive constants ε, J , and Jz denote the local
energy contribution and the coupling terms of the model and
⊕ represents the sum particles N (such that i = 1, 2). Consid-
ering two particles, the Hamiltonian in Eq. (13) reduces to

Ĥ(XXZ ) =

⎛
⎜⎜⎝

−2Jz + 2ε 0 0 0
0 2(Jz + ε) −4J 0
0 −4J 2(Jz − ε) 0
0 0 0 −2(Jz + ε)

⎞
⎟⎟⎠. (14)

The eigenvalues and the associated eigenvectors of the aforementioned Hamiltonian Ĥ(XXZ ) are

E1,2 = ∓2(±Jz + ε), E3,4 = 2(Jz ∓
√

4J2 + ε2), (15)
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and

|φ1〉 = |11〉 |φ2〉 = |00〉, |φ3,4〉 = |10〉 + −ε ± √
4J2 + ε2

2J
|01〉 (16)

where |0〉 = (
1
0) and |1〉 = (

0
1). In addition, |i j〉 denotes |i〉 ⊗ | j〉, where i, j = 0, 1.

Based on the consideration of the effect of intrinsic decoherence, the time evolution of the density matrix of the system is
obtained by the Milburn equation [93] as

ρ(t ) =
∑
m,n

exp

[
−γ t

2
(Em − En)2 − i(Em − En)t

]
|φm〉〈φm|ρ(0)|φn〉〈φn|, (17)

where Em,n and |φn,m〉 are, respectively, the eigenvalues and the eigenstates of the Hamiltonian of the system (7) and γ is the
intrinsic decoherence rate. Furthermore, ρ(0) represents the initial density matrix. Then, we consider that the system is initially
prepared in the mixed state as follows:

ρ(0) = r|ψp〉〈ψp| + 1 − r

4
I4, (18)

where |ψp〉 = √
p|01〉 + √

1 − p|10〉 is a pure state, with p being the degree of entanglement, and 0 < r � 1 is the level of the
purity in the initial state.

In the standard basis {|00〉, |01〉, |10〉, |11〉}, one can obtain ρ(t ) with respect to Eqs. (15)–(18) as

ρ(t ) =

⎛
⎜⎜⎝

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

⎞
⎟⎟⎠, (19)

where the elements of the aforementioned evolved density matrix are given by

ρ11 = ρ44 = −J4(r − 1)

ω
, ρ22 = 1

ω
{βε4 + J2ε2[(12p − 1)r + 5] + 4J4e−4t (2γ ε2+8γ J2+i�)[(r + 1)e4t (2γ ε2+8γ J2+i�)

+ (2p − 1)re8it� + (2p − 1)r] + 4�J3rε(e−4t (2γ ε2+8γ J2+i�) + e4t�(i−2γ�) − 6) − 8�Jrε3},

ρ33 = 1

ω
(J2{βε2 + 4J2(r + 1) − 4Jre−4t�(i+2γ�)[�ε + J (2p − 1)] − 8�Jrε − 4�e4t�(i−2γ�)}),

ρ23 = 1

4ω
J (8�(� + ε)e−4t (2γ ε2+8γ J2+i�) + M− − M+ + 8�(ε − �)e4(i−2γ )t�),

ρ32 = 1

4ω
J[8�(ε − �)e−4t (2γ ε2+8γ J2+i�) + M− − M+ + 8�(� + ε)e4t�(i−2γ�)], (20)

where

� =
√

−[(p − 1)p], � =
√

4J2 + ε2, β = (4p − 1)r + 1, M− = (� − ε)[−βε(� − ε)+4J2(r + 1)+8�Jr(� − ε)],

M+ = (� + ε)[βε(� + ε) + 4J2(r + 1) − 8�Jr(� + ε)], ω = βε4 + 2J4(3r + 5) − 32�J3rε

+ 2J2ε2[(8p − 1)r + 3] − 8�Jrε3,

� = Jr[�ε + J (2p − 1)]. (21)
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The important point is that, in this paper, h̄ = 1 is considered and all parameters are nondimensionalized to plot the figures,
as discussed in Ref. [94]. Note that the parameter values in this paper align with those in practical works [95–97] and theoretical
papers [60,98,99].

IV. DISCUSSION AND RESULTS

Substituting Eqs. (1), (3), and (19) in Eq. (2), one can calculate the output state of single-qubit quantum teleportation for
Eq. (19) as a resource of quantum teleportation as

ρout (t ) =
(

ρout,11 ρout,12

ρout,21 ρout,22

)
, (22)

where elements of the aforementioned matrix can be calculated as

ρout,11 = 1

ω

{
�2

[
sin2

(
θ

2

)]
[βε2 + 2J2(r + 1) − 8�Jrε] − 2J4(r − 1)

[
cos2

(
θ

2

)]}
,

ρout,12 = 1

ω
[J sin(θ )e(−64γ J2t−16γ tε2−4it�+iφ)(Ke8t(γ ε2+4γ J2+i�) + Qe4t(4γ ε2+16γ J2+i�) + Ke8γ t�2

)],

ρout,21 = 1

ω
[J sin(θ )e{−64γ J2t−i[φ+4t(�−4iγ ε2 )]}(Ke8t(γ ε2+4γ J2+i�) + Qe4t(4γ ε2+16γ J2+i�) + Ke8γ t�2

)],

ρout,22 = 1

ω

{
�2

[
cos2

(
θ

2

)]
[βε2 + 2J2(r + 1) − 8�Jrε] − 2J4(r − 1)

[
sin2

(
θ

2

)]}
, (23)

where

Q = −βε3 + 16�J3r − 4J2(2prε + ε) + 8�Jrε2,

K = 2ε�,
(24)

where β, ω,�,�, and � are given by Eq. (21).
Here, we explore the nature of the system dynamics in

processes of quantum dense coding and quantum teleportation
based on resource equation (14). This proposal is investigated
by considering some witnesses of behavior of the system
dynamics based on the fidelity f , TD, Holevo quantity χ , and
Hilbert-Schmidt speed with respect to initial phase HSSφ .

The straightforward expressions for fidelity and HSS are
given in Appendix. However, due to the cumbersome form
of the straightforward expressions of the Holevo quantity and
TD, we omit reporting them.

In Figs. 1(a)–1(c), the temporal variations of the fidelity
f , TD, Holevo quantity χ , and Hilbert-Schmidt speed with
respect to initial phase HSSφ for different values of the system
parameters are displayed. The fidelity and trace distance be-
tween the input [Eq. (1) such that ρin = |ψin〉〈ψin|] and output
[Eq. (22)] states in single-qubit quantum teleportation using
Eq. (4) are computed. The Holevo quantity utilizing Eqs. (5)
and (19), which is channel capacity in quantum dense coding,
is calculated. Moreover, the phase estimation is applied via the
Hilbert-Schmidt speed [Eq. (10)] corresponding to the output
state of the single-qubit quantum teleportation [Eq. (22)].
These quantities enable us to thoroughly explore the dynamic
nature of the system in quantum communication. For example,
fidelity and trace distance allow us to check the dynamics of
the system in quantum teleportation between the input and
output states. In addition, the Holevo quantity allows us to
understand the dynamic nature of the system without sending
the quantum state and only using the channel in quantum
dense coding. In addition, by using the HSS, we can estimate

the initial phase of quantum teleportation in the output state
so that we can get the dynamic nature of the system. The first
result that can be obtained from Figs. 1(a)–1(c) is that the
qualitative behaviors of f , the TD, χ , and HSSφ are exactly
the same because the minimum and maximum points of oscil-
lations coincide. This result indicates that in the time intervals
when the quality of the quantum teleportation is good, i.e., the
fidelity value is equal to unity, we have good channel capacity
to send qubits in quantum dense coding, and the HSS value is
maximum, which means that we have a good phase estimate,
which leads to optimal information extraction of the initial
phase in the present quantum teleportation protocol. The next
result that can be inferred from Fig. 1 is that when the intrinsic
decoherence rate is negligible, i.e., γ = 0.001 in Fig. 1(a),
both the fidelity value and the Holevo capacity value are at
their maximum, which indicates that we have a good quality
of quantum teleportation and quantum dense coding channel
capacity, respectively. Moreover, with increasing intrinsic de-
coherence rates in Figs. 1(b) and 1(c), the oscillations in the
qualitative behaviors of f , the TD, χ , and HSSφ decrease, and
over time, they show a uniform behavior without oscillations
[Fig. 1(c)]. A very significant question that arises here is
why the qualitative behaviors of f , the TD, χ , and HSSφ

become uniform over time in Fig. 1(c) and the oscillations are
suppressed over time. The more important question is, What
behavior does the system dynamics show?

To answer these key questions, we must return to the
discussion of information flow between the environment and
the system. Consider the flow of information F (t ) as de-
fined by the Holevo quantity dχ

dt proposed in Ref. [38]. When
F (t ) > 0, this indicates the presence of non-Markovian ef-
fects. Reference [45] suggested that fidelity can act as a
witness for these non-Markovian effects in quantum tele-
portation between input and output states. Additionally, in
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(a)

(b)

(c)

FIG. 1. Comparison between the qualitative behaviors of fidelity
f , trace distance (TD), Holevo capacity χ , and Hilbert-Schmidt
speed with respect to HSSφ when r = p = ε = 1 and θ = φ = π/2
and (a) J = 0.85, γ = 0.001, (b) J = 0.6, Jz = 1.8, γ = 0.01, and
(c) J = 0.5, γ = 0.1.

Ref. [100], HSS quantity was utilized as a non-Markovian
witness in the context of quantum teleportation output. Given
the qualitative similarities in the behaviors of fidelity, the
Holevo quantity, TD, and HSS, which exhibit coinciding
maximum and minimum points, we can also employ other
metrics such as the fidelity, TD, and HSS as witnesses for
monitoring non-Markovian effects in this scenario. Suppose
the flow of information F (t ) is based on fidelity df

dt [45], trace

distance dTD
dt [27], and Hilbert-Schmidt speed dHSSφ

dt [54] as
witnesses for probing the non-Markovian effects. Recall that,
when the information flow with respect to the quantities is
positive, F (t ) > 0, we face non-Markovian behavior, while,
when the information flow is negative, F (t ) < 0, we have
Markovian behavior. Hence, in Figs. 1(a)–1(c), we see that the
oscillations occur due to this fact. For some time intervals, the
behavior of the system dynamics is Markovian, while in some
other time intervals it is non-Markovian. In fact, when the

FIG. 2. The dynamics of Holevo capacity χ in the quantum
dense coding protocol with increasing of the intrinsic decoherence
rate γ when r = p = ε = 1 and J = 0.8.

value of the mentioned witnesses is negative, the Markovian
dynamics can be detected such that the information flows from
the system to the environment. However, when the value of the
mentioned witnesses is positive, the non-Markovian dynamics
can be found such that the information back flows from the
environment to the system. However, in Fig. 1(c), for t > 2
we see that the behavior has no oscillations and it is uniform.
To clarify this concept, see Fig. 2.

In Fig. 2, the time evolution of the Holevo capacity χ

in quantum dense coding for various intrinsic decoherence
rates γ is depicted. It is obvious that with increasing de-
coherence rate γ , oscillations in qualitative behavior are
suppressed and become uniform. It seems that in this situa-
tion, with, for example, γ = 0.1 or 0.01, information trapping
occurs in the quantum communication protocol. For a deeper
understanding of this important physical concept, the quali-
tative behavior of the flow of information corresponding to
the Holevo capacity witness F (t ) is illustrated in Figs. 3(a)
and 3(b) using the same conditions as in Fig. 2. In Fig. 3,
which we plotted for different intervals, we see that the
oscillations are around zero. Figure 3(b) focuses on oscilla-
tions in shorter intervals, and we clearly see that the average
value of the oscillations for more time (around 123.5 to
124) is zero. Furthermore, the oscillations of the informa-
tion flow are trapped between the upper and lower bounds
of the oscillations indicated by the red dashed lines. As il-
lustrated, the oscillations are very small but never become
zero, although the average value of the oscillations becomes
zero. Hence, the term “information trapping” is correct be-
cause the information flow is trapped between Markovian and
non-Markovian behaviors. This point plays a key role in quan-
tum communications.

So the responses to the two questions above have been ex-
pressed. But another key question arises: What is the physical
reason for information trapping in reality? We have always
faced two types of behavior, Markovian and non-Markovian.
But here, we provide a case that could result in a faithful
protocol. In response to the question above, we express that
the system interacts with the environment over time. At initial
times the quality of the quantum communication protocol is
good. But over time the quality can be influenced by decoher-
ence effects and becomes weak. However, when the rates of
the flow and backflow of the information between the system
and the environment are very small, then information trapping
can occur. This happens due to the presence of the effects
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(a)

(b)

FIG. 3. The temporal variations of information flow based on
Holevo capacity F (t ) when r = p = ε = 1, J = 0.8, and γ = 0.1
for different intervals of scaled time: (a) 0–3 and (b) 123.5–124.

of decoherence and quantum memory, where a decrease in
one causes an increase in the other and creates Markovian
or non-Markovian effects; however, when the amount of both
effects is very small, information trapping arises.

In Fig. 4, the dynamics of the Holevo quantity χ for in-
creasing r, p, local energy contribution ε, and coupling term
J are illustrated. Figure 4 shows that the information trap-
ping versus changing the parameters r, p, ε, and J is robust.
However, we can see that by changing these parameters, it
is possible for information trapping to occur at earlier times
or at the minimum or the maximum value of the Holevo
quantity.

Interpretation of information trapping

Now, we aim to offer an explanation of information trap-
ping using the concept of entanglement, which can aid deeper
comprehension of this phenomenon. Von Neumann’s entropy
is a widely used measure of entanglement between the parts
of a bipartite system [101] when the total system (total system
= system + environment) is in a pure state [102]. Bennett
et al. [103] demonstrated that the von Neumann entropy of
the reduced density matrix for each part of a bipartite system
in its pure state can be utilized as a determination of quantum
entanglement and correlations. The same discussion applies to
the scenario in which a system interacts with its environment.
The total state can be assumed to be a pure state according
to the principle of purification [68], with entropy acting as a
measure of entanglement that can be computed for the reduced
density matrix ρ. This means that, if we suppose the state of

(a)

(b)

(c)

(d)

FIG. 4. Dynamics of the Holevo capacity with an increasing
(a) r for p = 1, ε = 0.7, J = 0.8, and γ = 0.005, (b) p for r =
ε = 1, J = 0.8, and γ = 0.001, (c) local energy contribution ε for
r = p = 1, J = 0.7, and γ = 0.01, and (d) coupling term J for r =
p = 1, ε = 0.9, and γ = 0.003 when θ = φ = π/2.

the total state, the entanglement between the system and the
environment can be determined by the von Neumann entropy
as S(ρ) = −Tr[ρ log2(ρ)] = −∑

i λi log2(λi), where λi is the
eigenvalues of the density matrix.

In order to clarify the interpretation of information trap-
ping, we compare the qualitative behaviors of entropy (which
represents the entanglement between the system and environ-
ment) with respect to the output state ρout and HSSφ (which
is a powerful witness of dynamics effects) in Fig. 5. In the
preceding figures (Figs. 1–5), we have demonstrated that
increasing values of our witnesses, such as HSS, indicate non-
Markovian effects in the system’s dynamics, whereas decreas-
ing values indicate Markovian effects. In Fig. 5, we observe
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FIG. 5. Comparison between the Hilbert-Schmidt speed with re-
spect to HSSφ and entropy S when r = p = 1, ε = 0.8, θ = φ =
π/2, J = 0.8, and γ = 0.1.

that wherever the entanglement is maximum (minimum), the
value of the HSSφ is minimum (maximum). This means that
system-environment entangling leads to the flow of infor-
mation from the system to its environment and Markovian
dynamics, while disentangling leads to information backflow
to the system from its environment and non-Markovianity
[104]. Here, it can also be observed that entanglement is
trapped in a stable state. Thus, it can be concluded that the
reason for information being trapped in a quantum protocol
can be the level of system-environment entanglement. That
is, when the amount of information flow between the system
and environment and the backflow of information between
the environment and system are at their lowest, the system-
environment entanglement falls into a trap in a stable state
and leads to information trapping. The physical reason for this
phenomenon may arise from the entanglement between the
system and the environment. Over time, the rates of entangling
and disentangling can equalize, influenced by the quantum
memory of the system and environmental decoherence effects.
This phenomenon is similar to the steady state of entangle-
ment that arises in an open quantum system composed of
two identical two-level subsystems in a common stationary
environment undergoing Markovian dissipation [105,106] or
two trapped ions coupled to the dissipative environment [107],
which employs the master-equation method of evolution of
dynamics. These results refer to the asymptotic dissipative
preparation of an entangled state between the system and the
environment.

Briefly, information trapping can be described as follows:
In information trapping, there is a boundary between the in-
formation flow between the system and environment and the
backflow of information between the environment and system,
which leads to Markovian and non-Markovian effects. The
physical reason for this phenomenon can be the entanglement
between the system and the environment, and over time, the
rates of entangling and disentangling may become the same,
which is due to the existence of the quantum memory of the
system and the effects of the environment.

V. CONCLUSION

Quantum communication technologies depend on the
faithful transmission of information encoded in quantum
states across quantum channels. In this paper, we established a
definition of the dynamics of open quantum systems called in-
formation trapping, which is a special case of the information
flow and backflow between the system and the environment.
The idea behind this definition is that information trapping
can occur when the rates of information flow and backflow
between the system and the surrounding environment are very
low. This causes the information flow to become trapped
between the upper and lower bands of the maximum and
minimum values of the oscillations in non-Markovian and
Markovian dynamics, and the average oscillations of the in-
formation flow become zero. The physical explanation for this
phenomenon could arise from the entanglement between the
system and the environment, such that the rates of entangling
and disentangling could equalize over time, affected by the
quantum memory of the system and environmental decoher-
ence effects.

Introducing some witnesses of the behavior of the sys-
tem dynamics based on the fidelity, trace distance, Holevo
quantity, and Hilbert-Schmidt speed, one can detect the infor-
mation trapping via powerful tools. The fidelity and TD were
used as witnesses of the behavior of the system dynamics in
the transmission between two quantum states in single-qubit
quantum teleportation. The Holevo quantity was utilized as a
witness through the quantum capacity channel in the quantum
dense coding protocol. Moreover, the HSS with respect to the
initial phase was employed as a witness based on the output
of the quantum teleportation.

The model considered is an open quantum system includ-
ing an XXZ Heisenberg of two spin-1/2 particles arranged
on a ring affected by intrinsic decoherence. The effect of in-
trinsic decoherence is applied to the system using the Milburn
method.

Our study supplies a useful concept to detect the nature
of the system dynamics based on the concept of the flow
of information in quantum communication protocols such as
quantum teleportation and dense coding. The main reason
for exploring this concept is to enable faithful experimental
quantum teleportation [65] to improve the secure transmission
of quantum information. It thus motivates further analyses
of the role of memory effects in open quantum systems, es-
pecially for experimental quantum communication protocols
and quantum remote sensing.
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APPENDIX: STRAIGHTFORWARD EXPRESSIONS

By inserting Eqs. (1) and (22) in Eq. (4) and using ρin = |ψin〉〈ψin|, one can calculate the straightforward expression for the
fidelity of single-qubit quantum teleportation as follows:

f = 1

2ω
{sin2(θ ) exp[−2(16γ J2t + 4γ tε2 + 2it� + iφ)][JQ(1 + e4iφ )e4t(2γ ε2+8γ J2+i�) + ωe32γ J2t+8γ tε2+4it�+2iφ

+ 2�Jε(1 + e4iφ )(1 + e8it�)]}. (A1)

Furthermore, by using Eqs. (10) and (22), one can compute the straightforward expression of quantum estimation with respect
to phase φ by employing the HSS as

HSSφ = sin(θ )

(
1

ω2
{J2e−8t(4γ ε2+16γ J2+i�)[Qe4t(4γ ε2+16γ J2+i�) + 2�ε(e8γ t�2 + e8t(γ ε2+4γ J2+i�))]2}

)1/2

, (A2)

where β, ω,�,�,�, and Q are given by Eqs. (21) and (24).
It should be noted that due to the cumbersome forms of the expressions for the Holevo quantity, TD, and entropy, we refrain

from reporting them here.
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