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The precision required to characterize a Hamiltonian is central to developing advantageous quantum comput-
ers, providing powerful advances in quantum sensing and crosstalk mitigation. Traditional methods to determine
a Hamiltonian are difficult due to the intricacies of quantum systems, involving numbers of equations and
parameters that grow exponentially with the number of qubits. To mitigate these shortcomings, in this paper,
we introduce an innovative and effective procedure integrating a physics-informed neural network (PINN) with
a freezing mechanism to learn the Hamiltonian parameters efficiently. Although PINN and experimental data
alone would become impractical as N increases, the mechanism we introduce freezes the interactions of most
of the qubits, leaving just a qubit subsystem to be analyzed by the PINN method. Determination of all physical
parameters is accomplished by analyzing the system by parts until completion. We validated the efficacy of
our method using simulation data obtained from the IBM quantum computer to obtain the training data and we
found that a PINN can learn the two-qubit parameters with high accuracy, achieving a median error of less than
0.1% for systems of up to four qubits. We have successfully combined the PINN analysis of two qubits with the
freezing mechanism in the case of a four-qubit system.

DOI: 10.1103/PhysRevA.110.032607

I. INTRODUCTION

The promise of a revolution in computational capabilities
impels an ever-growing investment in the development of
quantum computers. Precise characterization of the Hamil-
tonian describing such a machine is a prerequisite to the
promised quantum advantage. Obtaining the Hamiltonian
parameters from experimental data is the main challenge
due to the intrinsic high dimensions and complexity of in-
terconnected quantum systems. Several methods to allow
Hamiltonian learning have been proposed [1–10]. A recent
approach involves learning Hamiltonians through derivative
estimation [11]. While this method represents substantial
progress, it is limited to sparsely interacting Hamiltonians.

In Sec. II, we describe the methodology, focusing on the in-
tegration of physics-informed neural networks (PINNs) with
the freezing mechanism. Section III provides analytical so-
lutions for the freezing mechanism. In Sec. IV, we discuss
the practical implementation of general Hamiltonian learning.
In Sect. V, we present numerical results and error analysis,
demonstrating the accuracy of our method. In Sec. VI, we
apply our approach to data obtained from the IBM quantum

*Contact author: lkcastelano@df.ufscar.br

computer. Finally, Sec. VII concludes the paper; we summare
our findings and discuss potential future applications.

II. METHODOLOGY: COMBINING PINNs
WITH THE FREEZING MECHANISM

In this work, we introduce the concept of the freezing
mechanism (FM), a technique that allows isolating qubits
within a quantum system. We demonstrate that the FM com-
bined with PINNs offers a powerful approach for Hamiltonian
learning. The PINN concept has been leveraged so that dif-
ferential equations describing the physics of the problem are
integrated into the training of the neural network [12–14].
This approach offers the advantage of reducing the amount
of training data required, as the neural network is constrained
to satisfy the differential equations that adhere to physical
laws [12–14]. Furthermore, the idea of learning and extracting
information from a collection of data can also be implemented
through the inverse-PINN method [12–14]. In this case, data
are provided along with the equations and physical parameters
can be extracted from the model.

In principle, however, while we could apply the inverse-
PINN method to determine all the parameters of an N-qubit
Hamiltonian, the number of differential equations grows
exponentially with N. Due to the limitations of current com-
putational power to solve the N-qubit Hamiltonian directly
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by the PINN method, we provide a practical solution that
relies on a piecewise analysis of the whole system. Thus, the
Hamiltonian of a subsystem can be learned and this procedure
can be repeated until all parameters are obtained. The success
of our approach comes from a technique, based on the contin-
uous dynamical decoupling [15–19], which is used to isolate
a particular subset of q qubits from N qubits, as we explain in
the following.

In this paper, we combine the FM with the inverse-PINN
method to achieve comprehensive learning of general Hamil-
tonians for N qubits:

H0 = −1

2

3∑
k1,k2,...,kN =0

Jk1,k2,...,kN

(
σ

(1)
k1

σ
(2)
k2

. . . σ
(N )
kN

)
. (1)

The notation σ
( j)
k denotes that the Pauli matrix σk acts only

on the jth qubit and leaves all other qubits intact, for k =
{0, 1, 2, 3}, where σ0 corresponds to the identity matrix. In
principle, we could apply the inverse-PINN method to de-
termine all the coefficients of Eq. (1), but the number of
differential equations grows exponentially as 4N . Due to the
lack of the current computational power to solve the N-qubit
Hamiltonian directly by the PINN method, we provide a
practical solution that relies on a piecewise analysis of the
whole system. For example, the Hamiltonian of a subsystem
can be learned and this procedure can be repeated until all
terms are obtained. Based on continuous dynamical decou-
pling [15–19], we can isolate a particular set of q qubits from
N qubits. The difference from our approach to continuous
dynamical decoupling relates to the qubits where external
fields are applied. In the continuous dynamical decoupling,
external fields act on the qubits of interest at specific time
intervals. Here, external fields are applied to qubits in order
to disconnect their interactions with the qubits of interest,
and the requirement of specific instants of time is no longer
necessary.

III. ANALYTICAL SOLUTIONS FOR
THE FREEZING MECHANISM

Here, we provide analytical solutions for external fields
that, by selectively freezing the dynamics of m (m < N)
qubits, transform an N-local Hamiltonian as Eq. (1) into a
q-local (q = N − m) Hamiltonian. First, we rewrite Eq. (1) in
such a way that operators related to the m qubits are separated
from the rest; thus,

H0 = Hm + Hq, (2)

where Hm is the part of the general Hamiltonian that contains
all terms incorporating interactions with the m qubits selected
to be frozen. The term Hq contains all interactions among the q
qubits of interest, excluding those related to the m qubits. The
total Hamiltonian includes the freezing Hamiltonian Hm

F (t )
and H0; thus,

Htot = H0 + Hm
F (t ), (3)

where

Hm
F (t ) =

m∑
j=1

H ( j)
s (ω j, t ). (4)

The freezing Hamiltonian for m qubits is the summation over
all individual terms, each given by

H ( j)
s (ω j, t ) =

[
i

d

dt
U ( j)

s (ω j, t )

]
U ( j)†

s (ω j, t ), (5)

with

U ( j)
s (ω j, t ) = exp

(−iω jtσ
( j)
3

)
exp

(−i2ω jtσ
( j)
1

)
. (6)

As detailed in Appendix A, this form for the single-qubit
evolution operator is chosen to freeze the m selected qubits
dynamically. To understand the action of the freezing Hamil-
tonian [Eq. (5)], we employ the interaction picture. The total
Hamiltonian written in this representation is

HI (t ) = [
U m

F (t )
]†

HtotU
m
F (t ), (7)

where the freezing unitary operator U m
F (t ) is the product of

the individual evolution operators. Therefore,

U m
F (t ) = U (1)

s (ω1, t )U (2)
s (ω2, t ) · · ·U (m)

s (ωm, t ). (8)

In the interaction representation, the time-evolution equa-
tion becomes

i
∂|�I (t )〉

∂t
= [

U m
F (t )

]†
H0U

m
F (t )|�I (t )〉. (9)

It is important to notice that, in the FM, the total interaction-
picture Hamiltonian decomposes into[

U m
F (t )

]†
H0U

m
F (t ) = [

U m
F (t )

]†
HmU m

F (t ) + Hq, (10)

where terms involving only the q qubits of interest are in-
variant under the freezing unitary transformation represented
in Eq. (8) since they commute with U m

F (t ). We can write a
time-evolution operator for Hm

I (t ) = [U m
F (t )]†HmU m

F (t ) that
satisfies the equation of motion

i
∂U m

I (t, 0)

∂t
= Hm

I (t )U m
I (t, 0). (11)

The Dyson series derived from the above equation is

U m
I (t, 0) = 1 − i

∫ t

0
dt ′Hm

I (t ′)

+ (−i)2

2

∫ t

0
dt ′

∫ t

0
dt ′′T

[
Hm

I (t ′), Hm
I (t ′′)

] + · · · ,

(12)

where T is the time-ordering operator. By following the result
in Appendix A, we have that U m

I (t, 0) ≈ 1, for an appropriate
choice of the magnitude of the freezing Hamiltonian and the
duration of the time evolution. Therefore, we can conclude
that Hm

I (t ) ≈ 0 and that Eq. (9) effectively becomes equiva-
lent to

i
∂|�I (t )〉

∂t
≈ Hq|�I (t )〉. (13)

Because the freezing external fields only act on the m qubits
selected, the above equation is equivalent to an equation for
isolated q = N − m qubits, whose dynamics are now dictated
by a q-local Hamiltonian, Hq. In Fig. 1, we provide a scheme
to visualize the FM. In Fig. 1(a), red spheres represent qubits
connected to their next neighbors through interactions with
similar magnitude. In Fig. 1(b), blue spheres represent the

032607-2



COMBINING PHYSICS-INFORMED NEURAL NETWORKS … PHYSICAL REVIEW A 110, 032607 (2024)

FIG. 1. Schematic picture of the freezing mechanism. We repre-
sent qubits by red spheres and their interaction with the connectors.
In panel (a), the qubits interact with next neighbors with couplings
with the same order of magnitude. In panel (b), we illustrate the FM
by blue spheres inside ice cubes. Local external fields, represented
by the black arrows, are applied to the chosen qubits; we intend to
freeze their interactions with any other qubit. The remaining two red
spheres represent the qubits, whose Hamiltonian can be learned by
the inverse-PINN method.

frozen qubits, whose interactions with their neighbors are
drastically diminished by the local external applied fields.
The remaining two red spheres represent a two-qubit system,
whose Hamiltonian can be learned using the inverse-PINN
method. The coupling interaction between any pair of qubits
is likewise obtained by freezing the other interactions.

IV. PRACTICAL IMPLEMENTATION OF GENERAL
HAMILTONIAN LEARNING

To understand all the procedures mentioned above, we
chose a two-qubit system as the smaller unit for learning all
the parameters characterizing a Hamiltonian of N qubits. In
general, 16 Jk,l terms describe the two-qubit subsystem. The
term J0,0 only provides a reference for the energy and we set
it equal to zero, without loss of generality. The experimental
data can be achieved through the expected value for an ob-
servable, which is defined as

〈
σ

(1)
k1

σ
(2)
k2

〉
(t ) = Tr

[
ρ(t )σ (1)

k1
σ

(2)
k2

]
, (14)

where k1, k3 ∈ {0, 3} and ρ(t ) is the density matrix for two
qubits at time t . The dynamics of the observables is the
quantity that is included in the inverse PINN through the

Heisenberg equation

d〈Ôm〉(t )

dt
= i〈[H, Ôm]〉, (15)

where H is the Hamiltonian in Eq. (1) for N = 2. We adopt
the system of units where h̄ = 1. The differential equation for
〈Ôm〉 is implemented for all 15 physical terms corresponding
to σ

(1)
k1

σ
(2)
k2

different from identity. We end up with 15 cou-
pled ordinary differential equations that must be solved for
a given initial condition, which we set as |+〉(1)|+〉(2), with
|+〉 = (|0〉 + |1〉)/

√
2.

The idea behind the inverse-PINN method is to model the
solutions of the differential equations by a neural network and
to minimize the loss function. Particularly, the loss function
can be written as

L = Lmodel + Ldata, (16)

where

Lmodel =
15∑

m=1

Nc∑
n=1

∣∣∣∣∣∣
(

d〈Ôm〉
dt

− i〈[H, Ôm]〉
)∣∣∣∣∣

tn

∣∣∣∣∣∣
2

. (17)

The loss function associated with the model Lmodel finds the
values of 〈Ôm〉 at Nc collocation points in time; consequently,
the solutions of the differential equations are represented by
the neural network when Lmodel is zero. Here, collocation
points refer to the points in time where the observables are
probed. The loss function Ldata = ∑15

m=1

∑Nc
n=1 |〈Ôexp

m 〉(tn) −
〈Ôm〉(tn)|2 uses data provided by the experiment, denoted by
〈Ôexp

m 〉(tn). This loss function imposes the extra constraint for
the solutions of the differential equations to fit the experi-
mental data at the Nc collocation points. In this sense, the
inverse-PINN method forces the neural network to simul-
taneously solve the differential equations and represent the
experimental data. To satisfy both requirements, the physical
parameters Jk1,k2 must be learned to minimize the total loss
function.

V. NUMERICAL RESULTS AND ERROR ANALYSIS

We analyze the number of points of experimental data
needed. To perform such a task, we provide data without
errors by numerically solving Eq. (15) considering the values
of the parameters Jk1,k2 randomly sorted between [−ω0, ω0],
where ω0 = 2π/T and T is the final time of evolution. The
accuracy of our results is measured through the mean absolute
percentage error (MAPE), which is defined as follows:

MAPE = 1

D

D∑
j=1

∣∣Pexact
j − Ppred

j

∣∣∣∣Pexact
j

∣∣ , (18)

where D is the number of physical parameters sampled, and
Pexact

j (Ppred
j ) denotes the jth exact (predicted) physical pa-

rameter. In Fig. 2(a), we plot the MAPE as a function of
the number of collocation points in time for a two-qubit
Hamiltonian. We use D = 750 samples of random values for
the parameters hereafter and the boxplot method to show the
spread of the data. In Fig. 2(a), the lowest (highest) marker
shows the lowest (highest) data point in the data set excluding
any outliers, which are data points that differ significantly
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FIG. 2. The MAPE as a function of the number of collocation
points (a). The MAPE as a function of the standard deviation for
N = 20 collocation points (b). Both panels are related to the general
two-qubit Hamiltonian and are plotted in logarithmic scale.

from other observations. The lowest (highest) marker in the
blue box is related to the lower (higher) quartile and the
marker inside the blue box indicates the median. Figure 2(a)
demonstrates that the median of the MAPE is lower than
0.1% for Nc = 20 collocation points. To further analyze the
performance of the Hamiltonian learning, we add a random
error drawn from a Gaussian distribution in the observables. In
this case, each experimental data for 〈Om〉(tn) is modified ac-
cording to 〈Om〉(tn) → 〈Om〉(tn) + N (0, σ 2), where N (0, σ 2)
is the normal distribution with zero mean and standard devi-
ation σ . In Fig. 2(b), we use Nc = 20 collocation points and
we include the random Gaussian error in the input data. In this
case, we can see that the median of the MAPE is less than 3%
for a standard deviation of 1%. This result demonstrates that
the inverse-PINN method can learn the general Hamiltonian
with good accuracy considering at least N = 20 collocation
points, even though measurement errors are present. Also, we
notice that the error in the inverse-PINN method increases
with the number of differential equations and/or the number
of parameters to be learned. If the interactions of N qubits
are only between pairs, the MAPE for the whole system is
equivalent to the error for a two-qubit system and thereby is
not dependent on the number of qubits.

Although fundamental interactions between elementary
particles are only between pairs, described by 2-local Hamil-
tonians, effective descriptions in multiple fields of interest,
including condensed-matter physics, consider k-local Hamil-
tonians for convenience. A possible strategy to extract all
coupling constants in Eq. (1), including up to N-body cou-
plings, is to use the PINN and the FM by partitioning the
learning procedure of the Hamiltonian. For example, with
three qubits, a 3-local Hamiltonian involves up to 43 = 64
terms. By successively using the FM to isolate one of the
three qubits and the PINN on the remaining pair of qubits,
we can extract 37 parameters. With the knowledge of these 37
parameters, we can now plug them into the differential equa-
tions and use the PINN to find the remaining 27 parameters,

this time turning off the freezing external fields. In general, for
a system of N qubits containing all the terms of the N-local
Hamiltonian, we have 4N parameters. This number can be
decomposed as follows:

4N =
N∑

k=0

N!

k!(N − k)!
3N−k . (19)

Each term on the right-hand side corresponds to the number of
parameters Jk1,k2,...,kN that contain k zeros in their indexes. For
instance, there are 3N parameters if only interactions among
all N qubits are considered (k = 0). For the general case,
we can use the PINN together with the FM in a bottom-up
approach. Thus, we first determine all 1-local and two-body
parameters and then use these results to find the three-body
coupling constants, and so on. In the final step, after determin-
ing all k-local terms for k < N, we apply the inverse PINN
without the FM to determine the N-local term, utilizing the
previously learned J constants.

Considering the case where only interactions between pairs
are present, we can use the methodology for two qubits for
the learning of an N-qubit system with the help of the FM.
To explain how the freezing of qubits works, we use a four-
qubit system coupled via next-nearest-neighbor interactions,
described by the Hamiltonian

H = −1

2

3
′∑

k1,k2=0

∑
i

(
H (i,i+1)

k1,k2
+ H (i,i+2)

k1,k2

)
, (20)

where

H ( j,l )
k1,k2

= L( j,l )
k1,k2

σ
( j)
k1

σ
(l )
k2

, (21)

L( j,l )
k1,k2

are the physical parameters to be learned, and the prime
on the sum indicates that repeated terms are counted only
once.

To freeze the interactions of the first and fourth qubits with
both the second and third qubits, we have to add a strong and
rapid oscillating external field that acts only in the first and
fourth qubits described by the freezing Hamiltonian

HF (t ) = H (1)
c (ω1, t ) + H (4)

c (ω4, t ), (22)

where

H ( j)
c (ω j, t ) = ω jσ

( j)
3 + 2ω j

(
sin(2ω jt )σ ( j)

2 + cos(2ω jt )σ ( j)
1

)
,

(23)
where ω1 = ω and ω4 = 4ω. By using the freezing Hamilto-
nian of Eq. (22) together with the Hamiltonian of Eq. (20),
we can isolate the second and third qubits from the other
two qubits. In Fig. 3, we plot the difference between the
expected values evaluated for the four- and two-qubit sys-
tems � j = 〈σ (1)

0 σ
(2)
k j

σ
(3)
k j

σ
(4)
0 〉 − 〈σ (1)

k j
σ

(2)
k j

〉, j = 1, 2, and, 3,
as a function of time for distinct values of ω. The values of
〈σ (1)

0 σ
(2)
k j

σ
(3)
k j

σ
(4)
0 〉 are obtained by using the Hamiltonian of

Eq. (20), while the values of 〈σ (1)
k j

σ
(2)
k j

〉 come from having
only the two-qubit system, which is obtained by Eq. (1) with
N = 2. By employing the difference between the expected
values evaluated for the four- and two-qubit systems with the
same parameters related to the qubits of interest, we can infer
the effects caused in the two-qubit system due to the coupling
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FIG. 3. The difference between the expected values evalu-
ated for the four- and two-qubit systems � j = 〈σ (1)

0 σ
(2)
k j

σ
(3)
k j

σ
(4)
0 〉 −

〈σ (1)
k j

σ
(2)
k j

〉, j = 1, 2, and, 3, as a function of time for distinct values
of ω. Panel (a) considers ω = 0, which shows that � j achieves values
bigger than 1, while panel (b) shows a drastic reduction of � j due to
the increasing of the value ω = 30ω0, which is related to the freezing
Hamiltonian.

with the first and fourth qubits. When the magnitude of the
freezing Hamiltonian is ω = 0 [Fig. 3(a)], one can notice
that the first and fourth qubits strongly disturb the other two
qubits due to their mutual coupling. On the other hand, the
results for ω = 30ω0 presented in Fig. 3(b) show that � j is
drastically reduced in comparison to the results obtained for
ω = 0. Thus, the first and fourth qubits decouple substantially
from the other two qubits when the freezing Hamiltonian is
present. Although we show the results only for three partic-
ular cases, similar behavior is found for all other qubit pairs.
The values of � j can be further reduced by increasing the
value of ω. This result demonstrates that the learning of the
Hamiltonian of Eq. (20) can be accomplished by freezing two
qubits, determining the parameters of the other two qubits,
and then repeating the process for all pairs of qubits. This
computation can be parallelized once the experimental data
have been collected.

In Fig. 4, we plot the MAPE distribution for the two qubits
isolated from the four-qubit system as a function of the freez-
ing Hamiltonian amplitude, ω/ω0. As expected, the values of
the physical parameters of the Hamiltonian of the two qubits
of interest are wrongly predicted if ω = 0. As the amplitude
of the freezing Hamiltonian increases, the prediction improves
exponentially, demonstrating the feasibility of learning the
parameters through the examination of the parts.

VI. APPLICATION TO IBM QUANTUM COMPUTER DATA

Finally, we simulate two different Hamiltonians HZ and
HXY Z using the IBM quantum computer Lagos for generating
the simulation data. The first Hamiltonian is given by

HZ = − 1
2

(
J0,3σ

(1)
0 σ

(2)
3 + J3,0σ

(1)
3 σ

(2)
0 + J3,3σ

(1)
3 σ

(2)
3

)
, (24)

0 10 20 30
ω/ω0

1%

10%

100%

M
A

P
E

FIG. 4. The MAPE distribution of the prediction parameters
J ( j,l )

k1,k2
for the four-qubit system as a function of ω/ω0 considering

N = 20 collocation points.

which has been used to fit experimental data related to quan-
tum dots [20]. The second Hamiltonian is the XY Z model
without local terms; thus,

HXY Z = − 1
2

(
J1,1σ

(1)
1 σ

(2)
1 + J2,2σ

(1)
2 σ

(2)
2 + J3,3σ

(1)
3 σ

(2)
3

)
.

(25)
These two Hamiltonians have a simple quantum-gate repre-
sentation and do not require any Trotter approximation. In
Fig. 5, we plot the MAPE for HZ and HXY Z Hamiltonians
as a function of the number of collocation points. The differ-
ence between these results and the previous ones [Fig. 2(a)]
is related to the input data, which were obtained from the
IBM quantum computer. For both Hamiltonians, using five
collocation points, we find that the median of the MAPE
achieves values less than 1% (see Fig. 5). By increasing the
number of collocation points, the median values of the MAPE

0%

0.5%

1.0%

1.5% (a)

5 10 15 20
Number of Collocation Points

0%

1.0%

2.0%

3.0% (b)M
A

P
E

FIG. 5. The MAPE obtained from the data provided by the IBM
quantum computer for (a) the HZ Hamiltonian and (b) for the HXY Z

Hamiltonian as a function of the number of collocation points.
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do not change substantially because the results have already
converged for N = 5.

VII. CONCLUSIONS

Our procedure for learning a general Hamiltonian com-
posed of N qubits is based on the inverse-PINN technique
and the FM. In principle, all physical parameters could be
directly determined by the inverse-PINN technique. Nonethe-
less, currently, the PINN is inefficient for a sufficiently large
number of coupled differential equations and parameters. To
circumvent this difficulty, we propose a mechanism to freeze
the interactions from the surrounding qubits with a small
part of the system. The small part of the system is used to
extract the respective physical parameters and this procedure
can be repeated until all parts have been probed. Here, we
use a two-qubit system as a smaller unit, but bigger systems
could be instead employed (e.g., see the case of three qubits
in Appendix B). We found that the inverse-PINN method
can determine the parameters of the two-qubit Hamiltonian
with great accuracy when the input data are provided without
errors, achieving a median error of less than 0.1%. By consid-
ering a Gaussian dispersion in the experimental data, we still
can estimate the physical parameters with less than 2% accu-
racy on average, if we use at least 20 collocation points and
a standard deviation in the input data of 1%. To demonstrate
the feasibility of the whole procedure, we probed a four-qubit
Hamiltonian, where the freezing external fields are applied to
the first and fourth qubits, to reduce the interactions with the
other two qubits. We verified that the FM successfully works
when the amplitude of the freezing external fields is large
enough to reduce the interactions with the qubits of interest.

Furthermore, use of the input data obtained from the IBM
quantum computer for the HZ and HXY Z Hamiltonians pro-
vides a real test of this approach. In this practical case, we
were able to determine very accurate physical parameters. For
both Hamiltonians, using five collocation points, we achieved
a median error of less than 1%. The integration of the FM with
the inverse PINN presents a robust approach for acquiring
the general Hamiltonian of an N-qubit system, with potential
applications extending beyond its primary domain. For ex-
ample, the inverse-PINN method holds promise for crosstalk
detection [21], while the FM shows potential for crosstalk mit-
igation [22]. This approach can also be extended to learning a
Hamiltonian composed of qudits through the use of the gener-
alized continuous dynamical decoupling technique, primarily
developed to protect the action of an arbitrary multiqudit gate
from noise [18].
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APPENDIX A: DETAILS ABOUT THE
FREEZING MECHANISM

To understand the FM, we consider, for a specific qubit, the
freezing unitary operator factor, Eq. (6), acting on each Pauli
matrix. This task becomes clearer in the interaction picture.
Thus, in general, one finds that

[
U

( j)

s (ω j, t )
]†

σ
( j)
k j

U ( j)
s (ω j, t ) =

3∑
n j=−3

exp(i2n jω jt )Ckj ,n j ,

(A1)
where Ckj ,n j is a linear combination of the Pauli matrices for
n j = ±1, ±2, and ±3, with Ckj ,0 ≡ 0.

By employing the result of Eq. (A1) in Eq. (7), we get

Hm
I (t ) =

m∏
j=1

⎡
⎣ 3∑

n j=−3

exp(i2n jω jt )Ckj ,n j

⎤
⎦

=
3∑

n1,...,nm=−3

exp

⎛
⎝i2t

m∑
j=1

n jω j

⎞
⎠Ck1,n1Ck2,n2 · · ·Ckm,nm .

(A2)

To guarantee that this last Hamiltonian averages to zero in a
period of π/ω, we choose the following relation:

ω j = 4 j−1ω, (A3)

for a given ω. Then, the argument of the exponential term in
Eq. (A2) is proportional to

m∑
j=1

n jω j = ω

m∑
j=1

n j4
j−1. (A4)

Because n j = ±1, ±2, and ±3, for j = 1, 2, . . . , m, we
clearly see that the number

m∑
j=1

n j4
j−1 
= 0 (A5)

for any given choice of (n1, n2, . . . , nm), since this m-tuple
represents a nonzero base-four integer. This sum could only
be zero if all n j = 0, for all j = 1, 2, . . . , m, but this is im-
possible because we have that Ckj ,0 = 0, for k j = 1, 2, and 3
and j = 1, 2, . . . , m.

Now, we want to evaluate the Dyson’s series for the evo-
lution operator associated with Hm

I (t ), given by Eq. (12). The
Hamiltonian Hm

I (t ) in Eq. (7) is a periodic function of period
τ = π/ω; therefore, ∫ τ

0
dt Hm

I (t ) = 0. (A6)

Since Hm
I (t ) is periodic, the relation

U m
I (Nτ, 0) = [

U m
I (τ, 0)

]N
(A7)

is valid for any integer N.

By assuming that g is the largest magnitude among all
parameters Jk1,k2,...,km , and by noticing that it takes a time on
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the order of 1/g for the effects of the undesired interactions to
become apparent, we fix the final time t as a few units of π/g,
say

t = νπ/g, (A8)

where ν ∈ N. By choosing ω = f g, we get t = ν f τ . More-
over, we can relate the final time as a large enough number N
of periods τ plus a fraction ε of the period; thus,

t = (N + ε)τ (A9)

and

ν f = N + ε, (A10)

where 0 � ε < 1. By assuming the above relations, we find
that

U m
I (t, 0) = U m

I (ετ + Nτ, Nτ )
[
U m

I (τ, 0)
]N

≈
[
1 + O

(
ε
νπ

N

)][
1 + O

(
ν2π2

N

)]

≈ 1 + O

(
1

N

)
. (A11)

This last result contains the important information about the
FM; i.e., it affirms that the evolution operator U m

I (t, 0) is ap-
proximately the identity, if we choose a large enough number
of periods τ , and that the frequency must be chosen to exceed
the largest magnitude among all interactions we intend to
freeze.

APPENDIX B: THREE-QUBIT HAMILTONIAN LEARNING
BY THE INVERSE-PINN METHOD

Here, the results of the direct application of the inverse-
PINN technique to a system composed of three qubits are
shown. The Hamiltonian that we intend to learn is

HZ = −1

2

∑
k1,k2,k3=0 or 3

(
Jk1,k2,k3σ

(1)
k1

σ
(2)
k2

σ
(3)
k3

)
, (B1)
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FIG. 6. The MAPE as function of the number of collocation
points (a). The MAPE as a function of the standard deviation for
N = 20 collocation points (b). Both related to the three-qubit Hz
Hamiltonian [Eq. (B1)] with panel (b) plotted with a logarithmic
scale.

where the last term of the summation accounts for three-body
interactions.

In Fig. 6(a), we plot the MAPE as a function of the number
of collocation points in time for the Hamiltonian of Eq. (B1).
Figure 6(a) demonstrates that the median of the MAPE is
lower than 0.04% for Nc = 5 collocation points. In Fig. 6(b),
we use Nc = 20 collocation points and we include the random
Gaussian error in the input data. In this case, we can see that
the median of the MAPE is less than 3% for a standard devi-
ation of 1%. This result demonstrates that the inverse-PINN
method can learn the Hamiltonian for three qubits with good
accuracy considering at least N = 20 collocation points, even
though errors in the measurements are present. Of course, a
higher accuracy can be attained by increasing the number of
collocation points.
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