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Simulating optically active spin defects with a quantum computer
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There is a pressing need for more accurate computational simulations of the optoelectronic properties of
defects in materials to aid in the development of quantum sensing platforms. In this work, we explore how
quantum computers could be effectively utilized for this purpose. Specifically, we develop fault-tolerant quantum
algorithms to simulate optically active defect states and their radiative emission rates. We employ quantum
defect embedding theory to translate the Hamiltonian of a defect-containing supercell into a smaller, effective
Hamiltonian that accounts for dielectric screening effects. Our approach integrates block-encoding of the
dipole operator with quantum phase estimation to selectively sample the optically active excited states that
exhibit the largest dipole transition amplitudes. We also provide estimates of the quantum resources required to
simulate a negatively charged boron vacancy in a hexagonal boron nitride cluster. We conclude by offering a
forward-looking perspective on the potential of quantum computers to enhance quantum sensor capabilities and
identify specific scenarios where quantum computing can resolve problems traditionally challenging for classical
computers.
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I. INTRODUCTION

Quantum defects in solid materials are promising platforms
to develop quantum technologies including solid-state qubits,
single-photon emitters, and quantum sensors [1–3]. Well-
known examples of quantum defects include the nitrogen- and
silicon-vacancy in diamond and also divacancies and transi-
tion metal impurities in silicon carbide [3,4]. More recently,
the possibility of creating point defects in two-dimensional
materials with narrow photoluminescence lines and weak
phonon sidebands has opened the possibility to design quan-
tum sensors for detecting small electric and magnetic fields
[5,6]. However, a key condition to unlock these applications
is the existence of robust high-spin states that can be optically
controlled. These are referred to as spin-active quantum de-
fects.

Experiments to discover spin-active defects are challenging
as they are influenced by their distribution and inhomo-
geneities in the sample material [6]. A key quantity to identify
a spin-active defect is the optically detected magnetic reso-
nance (ODMR) contrast, which indicates the variation in the
intensity of the photoluminescence (PL) peak as a function
of the frequency of an external microwave field [7]. The
position of the prominent features in the PL spectrum is
determined by the energy of the lowest-lying excited states
of the defect and the frequency at which the contrast signal
is detected (ODMR frequency) corresponds to the energy
spacing between the spin sublevels. While the energies of the
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excited states are of the order of a few electron volts, the
energy difference between the spin sublevels can be five to
six orders of magnitude smaller [8,9]. Consequently, ODMR
experiments combine laser and microwave pulses to access
the defect excited states while pumping excitations between
the spin sublevels to measure the ODMR spectrum [6,10].

Simulating accurately the low-lying excited states of de-
fects is crucial for their optical characterization and to
simulate the fine-structure of the defect states. For example,
the components of the zero-field splitting (ZFS) tensor depend
on the electronic structure of the defect states [11]. While the
ZFS tensor can be computed for the defect ground state using
density functional theory (DFT), it is generally unknown for
the excited states [7]. Furthermore, accurate calculations of
the radiative decay and intersystem crossing rates between
the defect states, which is key to investigate the ODMR ac-
tiveness, must accurately capture electronic correlations at the
level of excited states [2].

The required large size of the defect-containing super-
cells makes the application of highly accurate classical
wave-function methods (e.g., full configuration interaction,
multireference perturbation theory) [12] prohibitively expen-
sive. Recently, a complete active space (CAS) approach
utilizing the density-matrix renormalization group (DMRG)
method was stretched to the limit to simulate a negatively
charged boron vacancy in hexagonal boron nitride (hBN)
by considering an active space consisting of 27 Kohn-Sham
(KS) orbitals out of the several hundred supercell bands
[9]. An important drawback of this approach is that CAS
neglects the screening effects due to the host material on
the electronic structure of the quantum defect. However,
time-dependent density functional theory (TDDFT) approx-
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imations can handle supercells with thousands of atoms [13].
However, TDDFT does not give access to the excited state
wave functions, and its accuracy is limited by the approximate
density functional and the adiabatic approximation [14]. More
accurate calculations of the excited states can be done by
using the GW approximation and the Bethe-Salpeter equa-
tion [15], but this method is computationally expensive, and
still affected by the underlying DFT approximation [16].

Quantum embedding methods [17–23] offer an avenue for
simulating quantum defects in materials using wave-function-
based methods that are appealing to quantum computing.
Crucially, they allow us to construct an effective Hamiltonian
described using many less orbitals than the entire periodic
supercell. Given the long runtimes for fault-tolerant quantum
simulations of solids with even a small number of atoms in
the unit cell [24], this step considerably reduces the computa-
tional burden while retaining high accuracy. This is achieved
by partitioning the system into a small active region describing
the defect and the environment consisting of the host material.
In this framework, the electronic structure of the defect can
be treated by using a many-body approach run on a quan-
tum computer, while accounting for the dielectric screening
generated by the environment using lower-level classical sim-
ulations such as Hartree-Fock or DFT.

The development of fault-tolerant quantum algorithms to
simulate the excited states and optical properties of quantum
systems is a nascent area of research. Prior work computed
the Green’s function or polarizability tensor, which indirectly
involved the dipole transition amplitudes [25,26]. However,
these studies only discussed the straightforward application
of available tools to these computational problems, without
any resource estimation or optimization, raising questions
about their practicality and the improvements required to
implement them on quantum computers. Previous work also
proposed quantum algorithms to compute the expectation
values of arbitrary observables other than the Hamiltonian
[27]. Other related works include variational approaches to
these problems [28,29], which were not guaranteed to suc-
ceed to the desired accuracy and suffered from scalability
issues.

In this work, we develop quantum algorithms suitable
for a future fault-tolerant quantum computer for estimating
the energies of optically active excited defect states and the
ground-to-excited-state dipole transiton amplitudes. Our al-
gorithms utilize optimized circuits for the block-encoding of
the electric dipole operator leading to lower costs. Further, we
show how to efficiently perform an amplitude estimation step
that scales linearly, instead of quadratically, with the error, but
requires a longer circuit depth and several controlled opera-
tions. We demonstrate how to control the involved subroutines
only when necessary, saving gates and qubits. Thanks to the
detailed compilation and constant factor resource estimation,
we are able to accurately estimate the number of gates and
qubits used by our algorithms to simulate the excited states
and compute their energies and dipole transition amplitudes.
Notwithstanding these cost reductions, our resource estima-
tions indicate that further work is needed for our approach to
be suitable for early fault-tolerant quantum computers.

The paper is structured as follows. Section II describes
the basics of the quantum embedding theory used to build

the Hamiltonian of the quantum defect and the observables
required by the quantum algorithms. In Sec. III we present
the developed quantum algorithms. In Sec. IV we validate the
embedding approach to build the Hamiltonian for a negatively
charged boron vacancy in an hBN cluster. The contributions
of Secs. II to IV are summarized in Fig. 1. In Sec. V we
perform constant factor resource estimation for the developed
algorithms. Finally, Sec. VI summarizes the main conclusions.

II. THEORY

A promising quantum defect for sensing applications
should exhibit the following key properties [2,30,31].

(1) A strong and narrow optical emission line.
(2) An ODMR spectrum with distinctive features at fre-

quencies that are correlated with the magnitude of an external
perturbation (e.g., magnetic field) to calibrate the quantum
sensor.

Full simulation of the ODMR spectrum is challenging as
it requires computing the rates of radiative and nonradiative
transitions between the defect states [2,9,32]. Here, we fo-
cus on the simulation of the excited states for the optical
characterization of quantum defects. We propose quantum
algorithms to calculate the energies of the low-lying brightest
excited states determining the position of the main peaks in
the absorption or emission spectrum. To that aim, we sample
the eigenstates of the defect Hamiltonian with the largest
dipole transition amplitudes, which can be used to estimate
the radiative decay rates and lifetimes of the excited states.

To enable quantum simulations of the optoelectronic prop-
erties of spin defects, it is crucial to work with a Hamiltonian
whose size is significantly reduced compared with the Hamil-
tonian of the entire defect-containing supercell. Here we use
the quantum defect embedding theory (QDET) [19] to con-
struct a significantly smaller (effective) Hamiltonian that can
be simulated in a quantum computer with modest resources.
We summarize the basics of the QDET methodology in the
next section, and define the dipole moment operator used by
the quantum algorithm in Sec. III to sample the optically
active defect states.

A. Effective Hamiltonian of the quantum defect

The QDET method starts with a KS-DFT simulation of the
supercell to compute the energy bands at the � point by us-
ing an approximate exchange-correlation density functional.
The other usual approximations like the Born-Oppenheimer,
the choice to treat nuclei as point charges, pseudopotentials,
and a finite basis function expansion of the KS orbitals are
imposed at this stage. The optimized KS states φn(r) are used
to compute the localization factor [19]

Ln =
∫

VD

|φn(r)|2dr, (1)

to identify the single-particle states localized within the defect
region with volume VD. For a threshold value of Ln, we can
select N-localized states with the largest localization factor
to represent the many-electron wave function of the quantum
defect. The number of electrons populating the selected defect
states is determined by the occupation of the KS orbitals.
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FIG. 1. Overview of our approach combining quantum defect embedding theory (QDET) with a fault-tolerant quantum processing unit
(QPU) to simulate the optically active excited states of a spin defect in a material. (a) The effective Hamiltonian Heff is constructed using
simulations on a classical high performance computer (HPC) by considering the screened Coulomb interactions between electrons occupying
local defect orbitals. This process is described in Sec. II A and demonstrated practically in Sec. IV. (b) The energy levels Ei, eigenstates |Ei〉,
and ground-to-excited-state transition amplitudes |Di0|2 are evaluated using the quantum algorithms described in Sec. III. Optically active
excited states are sampled from the QPU with a probability proportional to |Di0|2.

Before proceeding, it is important to acknowledge that neither
the localization factor nor the direct use of KS orbitals are
the only methods available for determining and describing
electronic defect states. A recent detailed study compared the
computed optical properties of defects using different orbital
selection schemes, revealing that different methods affect the
convergence rate of excitation energies [33]. Another ap-
proach not covered in Ref. [33], specific to periodic systems,
is the use of a Wannier function basis [18]. This method can
provide a more compact and localized description of defect
states than the raw KS orbitals.

Now, the QDET method is applied to build the effective
Hamiltonian describing the interacting electrons in the quan-
tum defect. The dielectric screening due to the surrounding
material is included at the level of the G0W0 approximation
[19]. The output of this calculation is the second-quantized
electronic Hamiltonian given by

Heff =
N∑

p,q=1

∑
σ

t eff
pq a†

pσ aqσ

+ 1

2

N∑
p,q,r,s=1

∑
σ,σ ′

veff
pqrsa

†
pσ a†

qσ ′arσ ′asσ , (2)

where the indices p, q, r, s run over the selected localized
states, a and a† are, respectively, the electron annihilation and
creation operators, and σ denotes the spin quantum numbers.
The two-body matrix elements veff

pqrs in Eq. (2) are defined as

veff
pqrs = [W E]pqrs

:=
∫

dr1dr2φ
∗
p(r1)φ∗

q (r2)W E(r1, r2)φr (r2)φs(r1), (3)

where W E describes the Coulomb interaction between the
electrons in the quantum defect screened by the response of
the polarizable environment [18,19]. This stage requires a de-
composition of WE in the projective dielectric eigenpotential

(PDEP) basis [19] This introduces a step where we must check
for convergence of the eventual defect excited state energies
with respect to the number of PDEPs in the expansion. How-
ever, the one-body matrix elements t eff

pq are calculated as [19]

t eff
pq = HKS

pq − tdc
pq, (4)

where HKS
pq denotes the matrix elements of the KS Hamilto-

nian and t d
pq is the so-called double counting correction term

whose expression can be exactly derived within the G0W0

approximation [19]. This correction removes the contributions
of the Hartree and exchange-correlation potentials, included
in the DFT calculations of the supercell, from the effective
Hamiltonian of the defect that will be simulated using the
quantum algorithms.

While Hartree and exchange-correlation terms are exactly
eliminated from the defect Hamiltonian, residual depen-
dence on the choice of functional persists. This manifests
in three ways. First, the exact form of the KS orbitals
used to construct the effective Hamiltonian will slightly vary
with different functionals. Second, indirect effects of the
exchange-correlation functional influence the kinetic and ex-
ternal potential terms, as both are functionals of the density
evaluated using the self-consistently determined density for
a given exchange-correlation potential. This density varies
among different functionals. Additionally, the pseudopoten-
tials, which are significant to the external potential term, are
generated using a specific exchange-correlation functional.
This effect is not eliminated. Lastly, the optimized geometry
of the defect-containing supercell is obtained with a particular
functional. However, it is important to note that the impact
on defect state excitation energies due to different exchange-
correlation functionals was previously studied within QDET
[19], revealing that a transition from generalized gradient
approximation (GGA) functionals to hybrid functionals incurs
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an error of ∼0.1 eV in the lowest-lying excited state energies
[19].

The steps detailed in this section are illustrated in Fig. 1(a).

B. Optically active defect states

Simulating the optical properties of the quantum defect
requires access to certain eigenvalues Ek and eigenstates |Ek〉
of the effective Hamiltonian. The optically active states of
the defect are identified by computing the dipole transition
amplitude between the ground |E0〉 and the excited |Ei〉 states

|Di0|2 = |〈Ei|D|E0〉|2, (5)

where D is the electric dipole moment operator [34]

D = −
Ne∑

i=1

ri. (6)

In Eq. (6) Ne denotes the number of active electrons occupying
the localized states in the defect and r the position operator. In
the second quantization, the dipole observable in Eq. (6) is
written as

D =
N∑

p,q=1

∑
σ

d pqa†
pσ aqσ , (7)

where d pq is the matrix element

d pq = −
∫

φ∗
p(r)rφq(r)dr. (8)

The position of the main peaks in the absorption or emis-
sion spectra of the quantum defect are determined by the
energy of the excited states with the largest dipole transi-
tion amplitude |Di0|2. These amplitudes can also be used to
compute the radiative decay rates and lifetimes of the defect
excited states. The rate (in atomic units) of spontaneous emis-
sion from the ith excited state to the ground state of the defect
is calculated as [35]

γi = 4

3
(αwi0)3|Di0|2, (9)

where α is the fine-structure constant and wi0 := �Ei0 = Ei −
E0 is the excitation energy. Accordingly, the lifetime of the
excited states is given by the inverse of the rate τi = 1/γi. We
show in Sec. III how to estimate both the excitation energy and
the dipole amplitude on a quantum computer with guaranteed
precision.

III. QUANTUM ALGORITHMS

This section explains the quantum algorithms developed
to compute the optically active excited states of the defect
|Ei〉 and energies Ei up to chemical accuracy, as determined
by their dipole transition amplitudes |Di0|2 = | 〈Ei|D|E0〉 |2. A
brief review of the circuits and cost of the quantum algorithm
subroutines used throughout this work may be found in Ap-
pendix A. A schematic showing the output of our algorithms
is show in Fig. 1(b).

The basic idea is the application of quantum phase estima-
tion (QPE) on the state D|E0〉. Since D|E0〉 can be expanded in
the Hamiltonian basis states |Ei〉, the output of the QPE circuit

allows us to sample the eigenvalues Ei of Heff with the prob-
ability distribution given by the dipole transition amplitude
|Di0|2. We propose two approaches depending on the difficulty
to compute a good approximation to the ground state. The
first solution, termed the “loaded state” approach, leverages
classical methods to prepare D|E0〉 while potentially sacrific-
ing accuracy. The second method performs all calculations on
the quantum computer, thereby referred to as the “prepared
state” approach. The key routine used in both methods is the
simulation of the time evolution dictated by the Hamiltonian.
In particular, Hamiltonian simulation is the core subroutine of
quantum phase estimation (QPE), used to measure the energy
and project onto |Ei〉〈Ei|.

Both algorithms require the same number of qubits, as
determined by QPE, but the prepared state approach has a
higher gate cost. However, the loaded state approach suffers
from a potentially uncontrolled error on the D|E0〉 approxi-
mation. Therefore, the loaded state algorithm is recommended
for quantum defects with strongly correlated excited states but
weakly correlated ground states, where |E0〉 can be classically
estimated accurately.

To enter the region where our quantum algorithm may
provide an advantage over purely classical approaches, the
system of interest must meet two essential criteria. First,
the number of orbitals in the active space and the number
of electrons should generate a determinant space that is too
large for brute-force methods like full CI to handle. Based
on recent large-scale classical simulations in this area [36],
we estimate that approximately 50 active orbitals (equivalent
to 100 spin orbitals) and around half as many electrons are
required. This criterion is often met for various spin defects in
solids, depending on the approach used to construct the active
space used in the creation of effective defect Hamiltonian. As
we will see in the results of Sec. IV, had we employed alter-
native criteria for selecting active spaces [33], which means
additional unoccupied states near the conduction band edge
(see Fig. 3) were included, the total number of determinants
would quickly approach this threshold.

Second, the excited states of the effective Hamiltonian
must exhibit strong electron correlation, rendering them
unsuitable for accurate simulation by lower-level theories.
Localized electronic states, often resulting from vacancies and
substitutional defects, are characteristic indicators of strong
electron correlation. This is particularly true for defects in-
volving transition metals or rare-earth elements, where the
presence of localized d and f electrons further exacerbates
the correlation. In such cases, lower-level theories are likely
to fail. The presence of d and f electrons, as identified by the
localization criterion for active-space selection, also increases
the required size of the active space. This makes defects
involving one or more transition metal or rare-earth atoms
particularly challenging for accurate classical computation.

We now discuss our quantum algorithms in more detail,
leaving a complete description and resource estimation to
Appendix B.

A. Loaded state approach

The steps to compute |Di0|2 are shown in Algorithm 1. The
algorithm also computes Ei and |Ei〉 up to chemical accuracy.
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FIG. 2. Top view of the structural model used to simulate a
negative boron vacancy V −

B in the center of a hBN cluster using an
orthogonal supercell that includes a vacuum layer of 10 Å inserted
in each direction. The cluster edges were passivated with hydrogen
atoms. A sphere with radius 1.9 Å centered around the vacancy was
used to compute the localization factor of the Kohn-Sham states to
identify the defect localized states.

We make a few remarks on the implementation of each
step and the cost. The first step requires the preparation of
the ground state in a given spin sector. This avoids mixing
states with different spin quantum numbers, which allows

FIG. 3. Localization factor Ln of the KS orbitals of the defect-
containing hBN cluster. Small and faded black markers indicate
states which are treated as delocalized environment orbitals while
larger hollow black markers represent localized states in the active
region at NA = 18. KS energies εn are plotted relative to the Fermi
energy EF . The horizontal lines show that lowering the threshold
value of Ln increases the number of states in the active region from 9
to 18.

ALGORITHM 1. Quantum algorithm to compute excited states,
excitation energies, and dipole transition amplitudes.

1: Prepare |E0〉 on the classical computer for chosen values of the
total spin S and total spin projection MS , e.g., S = 1 and
MS ∈ {0, ±1}. Typically, this state is expressed as a sum of
Slater determinants [37].

2: Compute D|E0〉 on the classical computer.
3: Use the Sum-of-Slaters (SoS) algorithm [37] to efficiently load

D|E0〉 onto the quantum computer.
4: Apply QPE(Heff ) on D|E0〉.
5: Measure the energy register and repeat steps 3 and 4 K times,

letting Ki be the number of instances having measured Ei.
6: Output Ki/K as the estimate for |Di0|2/‖D|E0〉‖2.

us to resolve different eigenstates when applying QPE with
chemical accuracy. For simplicity, we assume that excitation
energies are separated by more than chemical accuracy ε

within a given sector (S, MS) for total spin S and total spin
projection MS ∈ {−S,−S + 1, . . . , S − 1, S}. In the rare case
that two or more eigenstates have identical (S, MS ) numbers
and are ε- close in energy, the algorithms introduced in this
section still work correctly, with the degenerate spaces playing
the role of single eigenstates.

We note that a low-quality ground state ˜|E0〉 has still the
potential to improve the estimation of matrix elements over
classical methods. Indeed, the algorithm eventually computes
| 〈Ei|D|Ẽ0〉 |2 for a chemically accurate excited state |Ei〉,
which can reduce the error over classical methods due to their
additional error in estimating the excited state |Ei〉. Future
work should analyze the ground-state quality needed to es-
timate ODMR quantities of interest accurately; we refer the
reader to Ref. [37] for a related discussion.

The second step in Algorithm 1, i.e., the computation of
D|E0〉 on the classical computer, only needs to be done once
because the result can be stored in memory, saving significant
costs. However, it must still be reloaded on the quantum
computer. To implement QPE (Heff), we need to simulate
the evolution of the Hamiltonian. Here, we use the double-
rank factorization algorithm refined in Ref. [38]. The starting
point of this algorithm is a linear combination of unitaries
(LCU) decomposition Heff = ∑

i ciUi with an associated LCU
1-norm λHeff = ∑

i |ci| that impacts the cost. This simulation
is typically much more costly than theSoS protocol, which
simply loads the initial state on the quantum computer. The
total gate cost C of the algorithm is obtained by

C = κi(CQPE + CSoS), (10)

where CQPE is the cost of QPE(Heff), CSoS is the cost of the
SoS algorithm and costs O[L log2(L)] Toffoli gates, and L is
the number of Slater determinants representing D|E0〉. Lastly,
κi is the number of samples needed to compute |Di0|2 with
error ε, determined by the user.

More concretely, we need to compute the sampling prob-
ability |Di0|2/D2

0, where D0 := ‖D|E0〉‖, with error at most
εD−2

0 . As explained in the Sec. II B, dipole transition ampli-
tudes determine the radiative decay rate and lifetimes of the
excited states, which typically span several orders of magni-
tude in the nanosecond timescale [39,40]. Thus, we set ε such
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that τ is estimated within 1 ns. Following this assumption, we
show in Appendix B 7 that κi = O(F 2

i ), for

Fi = D0/(wi0|Di0|)3. (11)

Using amplitude estimation, we can achieve κi = O(Fi ),
which comes with a larger depth, as explained in Appendix C.
Using the asymptotic cost of the double-factorization algo-
rithm [38], the algorithm has asymptotic gate complexity

C = Õ

(
D0

(wi0|Di0|)3
(N3/2λHeff/ε + CSoS)

)

= Õ

(
D0N3/2λHeff

(wi0|Di0|)3ε

)
, (12)

where λHeff is the LCU 1-norm and ε ∼ 1.6 × 10−3 Hartree
(chemical accuracy). In Eq. (12) we assume that CSoS 	 CQPE,
which is the case in practice. As the SoS algorithm eventually
liberates any used auxiliary qubits, the QPE subroutine de-
termines the qubit complexity. This implies a qubit costing
of Õ(N3/2), with typically large constant overheads due to
the qubit or gate trade-off by a key subroutine, the quantum
read-only memory (QROM). QROMs play a pivotal role in
the double-factorization algorithm simulating the evolution of
the Hamiltonian. Lastly, we discuss the practicality of this
algorithm in certain scenarios.

This algorithm’s cost would considerably increase for ex-
cited states with small dipole matrix elements since estimating
dipole transition amplitudes would require many samples.
However, the dipole transition amplitudes of the lowest-
lying defect excited states show large values, as discussed in
Sec. IV. In addition, due to the finite (chemical accuracy) res-
olution of the energies, one can expect a significant binning of
the results in the higher-energy eigenspace where the density
of energy levels with small Di0 increases. On top of this bin-
ning, keeping the dipole amplitude fixed as a function of the
ground-state energy gap decreases the sampling complexity κi

and cost.
We also note that evaluating the cost in Eq. (12) requires

prior information about the system, such as wi0, |Di0|. This
may seem problematic as we need the algorithm result to
estimate its runtime. In practice, one would first check the
maximum circuit depth implementable on the quantum com-
puter and compare it to CQPE + CSoS or κ̃i(CQPE + CSoS), for
some estimate of κi (for example, using less accurate classical
methods). Thus we either continually sample or implement
the amplitude estimation (AE) approach with larger and larger
depths until some convergence criterion or a maximum run-
time budget is reached. The same principle applies to other
algorithms presented in this work.

B. Prepared state approach

In the prepared state approach, we still start from an
approximate ground state ˜|E0〉 uploaded on the quantum com-
puter and refine it through coarse QPE [37] or any other
quantum-based method. The main assumption in this ap-
proach is that we have only a quantum access to a high-quality
ground-state approximation |E0〉.

Therefore, to implement D|E0〉 on the quantum com-
puter, we block-encode the electric dipole operator (see

Appendix B). Block-encoding is a method allowing the
transformation of states by nonunitary operators. The block-
encoding of nonunitary operators comes with a success
probability. In this case, the success probability being esti-
mated is D2

0/λ
2
D, where λD is the LCU 1-norm of D. Given that

the QPE sampling estimates |Di0|2/D2
0, the product of these

two estimations yield an estimate for |Di0|2/λ2
D. Hence, the

resource estimation involves an iterative sampling procedure
that yields an estimation error of ελ−2

D . As a consequence, the
complexity is scaled by κi = O(F 2

i ) for Fi = λD/(wi0|Di0|)3,
or O(Fi ) if using the amplitude estimation method discussed
in more detail in Appendix C.

However, we adopt a cheaper alternative to this sampling
method, where we first measure the block-encoding success or
failure and implement the last QPE if successful. The savings
in cost is on the order of

Fi = (|Di0| + D0)/(wi0|Di0|)3, (13)

compared to the simultaneous measurement approach where
Fi = λD/(wi0|Di0|)3. Since λD 
 D0, the cost reduction could
be significant as the sampling complexity is of the same order
as in the loaded state approach as |Di0| < D0.

Overall, the cost of the prepared state approach is given by

C = κi(CQPE + CD), (14)

where CD is the cost of block-encoding the dipole operator,
which is smaller than CQPE. Using the double factorization
algorithm and block-encoding resource estimation of D in
Appendix B, we obtain the asymptotic scaling

C = O

(
D0

(wi0|Di0|)3
(CQPE + CD)

)

= Õ

[
D0

(wi0|Di0|)3

(
N3/2λHeff

ε
+ N

)]
. (15)

As in the loaded state approach, the qubit complexity scales
as Õ(N3/2), determined by the QPE routine. The QPE and
block-encoding costs can be computed in terms of the
system size and coefficients of Heff and D. However, the
matrix element parameter |Di0| or excitation energies wi0

are system-dependent and like p0, cannot be approximated
a priori. Thus, in practice, we proceed as in the loaded
state algorithm, iteratively sampling or implementing AE
with larger depths, until convergence is achieved or budget
exhaustion.

Lastly, we note one limitation of our resource estimation in
this and the previous approach; we do not take into account
the exact classical or quantum cost of the preparation of the
ground state, as this is a hard problem for which there is
no universally agreed efficient method and requires its own
study [37]. Particularly for the prepared state approach, we
mentioned beforehand that we simply assume quantum access
to the ground state. This may be achieved through various
means, e.g., adiabatically or through QPE, and in each case,
there would be additional costs. For the example of QPE, the
failure probability in the initial state preparation scales the
algorithmic cost overhead by 1/p0, where p0 = | 〈E0|Ẽ0〉 |2
is the overlap of the approximate ground state ˜|E0〉 with
|E0〉. While one must be aware of this cost scaling, it is
most often the case that they cannot be numerically evaluated
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beforehand. Hence, following the convention used in
Ref. [41], we do not take this factor into account in our
resource estimation.

IV. APPLICATION: A NEGATIVE BORON VACANCY IN A
2D HBN CLUSTER

In this section, we accomplish two things. First, we validate
the accuracy of our approach for generating QDET effective
Hamiltonians as was detailed in Sec. II A. Second, the gener-
ated Hamiltonians and classically computed dipole transition
amplitudes are to be used in the quantum resource estimations
contained in Sec. V. Our system of interest for perform-
ing these computations is the negatively charged Boron
vacancy (V−

B ) in two-dimensional hexagonal Boron nitride
(hBN).

Two-dimensional hBN is a wide band-gap material that
can host a variety of spin defects [5]. Recently, the optical
properties of the negatively charged boron vacancy were ex-
perimentally investigated for quantum sensing applications
[7,10]. The simplicity of this defect makes it an ideal use case
to benchmark the quality of the embedding approach used to
build the system Hamiltonian and to estimate the resources
required to implement our quantum algorithms.

The effective Hamiltonian Heff used for the quantum simu-
lations is constructed with the QDET method, as implemented
in the WEST code (version v5.5) [42,43]. To validate the em-
bedding approach we carry out exact diagonalization of Heff

and compare the excitation energies with previous results in
the literature [44]. In addition, we compute the electric dipole
transition amplitudes between the ground and lowest-lying
excited states and estimate their radiative decay rates and
lifetimes.

Figure 2 shows the supercell structural model of the defect-
containing material. The negative boron vacancy was created
in the center of a two-dimensional hexagonal boron nitride
cluster consisting of 195 atoms with hydrogen-terminated
edges (B79N80H36). Within QDET, periodic boundary con-
ditions are assumed to simulate the isolated defect in an
extended material. We use an orthogonal supercell with prim-
itive vectors a = L(1, 0, 0), b = L(0, 1, 0), c = L(0, 0, 0.5),
where the lattice constant L = 40.25 Å includes a vacuum
layer of 10 Å inserted in each direction to avoid spurious
interaction between periodic images and account for the finite
size of the cluster.

DFT calculations were performed using the QUANTUM

ESPRESSO package (version v7.2) [45]. The core electrons
of the atomic species were replaced with scalar relativistic
norm-conserving pseudopotentials [46]. The overall charge of
the system was set to −1 to account for the charge state of the
boron vacancy, and the PBESol [47] density functional was
used to estimate electronic exchange and correlation effects.
The optimized KS orbitals were represented in a plane-wave
basis truncated using a kinetic energy cutoff of 75 Ry. With
the defect center constrained to the D3h symmetry, the cluster
structure was relaxed within spin-unrestricted DFT until ionic
forces were less than 10−3 eV/Å. The ground-state occu-
pations of the spin orbitals confirmed a triplet ground state
at the level of DFT. Finally, the KS orbitals at the � point
were recomputed in the restricted open-shell framework with

FIG. 4. Spectrum of electronic excitations of the quantum defect
as the number of localized states N used to compute the effective
Hamiltonian is increased. Excitation energies were computed at the
level of FCI in different sectors of the total spin with S = 1 and S=0.
Triplet and singlet states are distinguished in the plot by using solid
(red) and dotted (blue) lines, respectively.

a band occupation fixed in the spin triplet configuration as
to avoid spin contamination in the forthcoming many-body
simulations.

Figure 3 plots the localization factor Ln [Eq. (1)] of the
Kohn-Sham states. The integration volume VD used to com-
pute Ln was defined by a sphere with radius 1.9 Å centered at
the position of the boron vacancy. This region encompasses
the three nearest nitrogen sites to the vacancy. We observe
nine strongly localized states with Ln > 0.2. Three of them
are deep energy states appearing at ∼14 eV below the Fermi
energy (EF ), while the other six states emerge in the energy
gap of the cluster. By gradually decreasing the threshold value
of Ln we can increase the number of single-particle states used
to construct the effective Hamiltonian of the quantum defect.

We built Hamiltonians of increasing sizes by consider-
ing active spaces with N = 6, 9, 11, 16, and 18 KS orbitals.
The occupation of the KS states determines the number of
electrons for each case. For this system, the two orbitals
closest to the Fermi level are singly occupied while the other
lower-energy states are doubly occupied. From Fig. 3 we see
that decreasing the threshold localization factor adds doubly
occupied orbitals in the valence band. For example, the largest
set of localized states corresponds to an active space with 34
electrons and 18 KS orbitals (34, 18).

Figure 4 shows the spectra of vertical electronic excitations
of the defect computed by using the full configuration inter-
action (FCI) method [12]. The ground and excited states are
calculated using PYSCF’s implementation of FCI as enabled
using the westpy [48,49] interface. The eigenstates with total
spin S = 1 and S = 0 are reported in Fig. 4 using solid and
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TABLE I. Excitation energies �Ei0 = Ei − E0, electric dipole
transition amplitudes |Di0|2, and estimated lifetimes of the defect
excited states. E0 is the lowest-energy state within each sector of the
total spin S.

�Ei0 (eV) |Di0|2 (a.u.) τi (s)

3.0586 2.4914 5.29 × 10−9

3.4999 2.4487 3.66 × 10−9

3.5467 0.0314 2.14 × 10−5

S = 1 3.7889 0.0280 2.20 × 10−5

3.9820 0.0833 2.14 × 10−6

5.1002 0.0083 1.04 × 10−4

5.2692 0.0385 4.33 × 10−6

5.4493 0.0227 1.13 × 10−5

0.1160 1.8726 1.72 × 10−4

2.3852 2.1241 1.54 × 10−8

2.7287 0.0231 8.65 × 10−5

S = 0 2.9724 0.0661 8.20 × 10−6

3.1547 0.0425 1.66 × 10−5

4.4798 0.0003 1.58 × 10−1

4.5825 0.0409 5.82 × 10−6

4.7794 0.0621 2.23 × 10−6

dotted lines, respectively. For all cases we find that the ground
state of the defect is a triplet state. We observe small variations
in the energies of the states with E < 5 eV as we include states
less strongly localized around the defect. The first excited
states are singlet states with energies 0.8327 eV and 0.9487 eV
relative to the triplet ground state. A qualitatively similar
result is reported for a smaller cluster simulated with DMRG
within a CAS formalism [44]. Higher-energy states exhibit a
different structure as compared with the results reported in
Ref. [44]. However, a direct comparison with these results
is not possible since we are simulating a larger system, and
more importantly, we are including the effects of dielectric
screening due to the host material via the embedding method
while CAS does not.

We use the eigenstates of the effective Hamiltonian for the
largest active space (34, 18), to calculate the electric dipole
transition amplitudes |Di0|2 using Eq. (7). This allows us to
identify the optically active states within each sector of the
total spin (S = 1, 0), and to estimate the radiative lifetimes of
the lowest-lying excited states of the defect. The numerical
results are reported in Table I. The triplet states with the
largest dipole amplitudes indicate spin-conserving transitions
with energies of 3.06 eV and 3.5 eV. However, the brightest
state with S = 0 is obtained at 2.38 eV. These excitation
energies shed light on the position of the luminescence peaks
associated with different deexcitation pathways via the triplet
or the singlet channel. These predictions overestimate the
position of 800 nm (1.55 eV) V −

B luminescence peak [7]. More
accurate predictions would require optimizing the geometry
for the excited states and computing the zero-phonon line
[13]. Furthermore, because of the dependence of the DFT
exchange and correlation functional on the quality of Heff,
higher rung functionals are likely to provide better results.
Finally, the estimated radiative lifetimes for these states are of
the order of a few nanoseconds, which is in good agreement
with the reported values in the literature [39,40].

V. RESOURCE ESTIMATION

With the cost estimations in previous sections and the more
accurate constant factor resource estimation carried out in the
appendices, we provide a close estimate of the resources used
by our algorithms.

We report in Table II the number of logical qubits and
Toffoli gates used to compute the excitation energy and the
dipole transition amplitude |Di0|2 of the brightest excited state
with S = 1 for the V −

B defect in the hBN cluster described in
Sec. IV. We estimate the costs for both the loaded and pre-
pared state approaches, and for different sizes of the effective
Hamiltonian.

In Table II, we consider two strategies: the standard sam-
pling approach which has a smaller quantum circuit depth
(mentioned under “Depth”) but more repetitions (“Samples”),
and the amplitude estimation (AE) which has a longer-depth
circuits than the sampling approach, by a factor of about 5π

(Appendix C), but requiring quadratically less many samples.
The costs mentioned so far correspond to the largest depth
and sampling complexity across the three axes for the dipole
operator. However, the total gate complexity (“Total”) for
both sampling and AE is computed by adding up the product
of depth and sampling complexities for all three axes. Note
that the qubit complexity (“Qubits”) is constant across all
approaches, but it is much larger than N due to the large
overhead caused by the QROM in the double-factorization
algorithm. In contrast, the gate and sampling complexities
generally increase with system size. Lastly, we remark that
the “Depth” for both the loaded and prepared state approaches
are the same up to the three largest digits in the table. This
is expected as the computational depth is overwhelmingly
determined by the QPE, and not the block-encoding circuit
employed exclusively in the second approach.

Beyond the sampling overhead, the cost is dominated by
the QPE (Heff) cost, which was studied extensively in the
literature [41,50]. This implies that one area of focus for future
research should be more efficient sampling strategies. How-
ever, there are statistical limits to the sampling complexity, at
least in the current framework, and the QPE is the subrou-
tine that requires the largest computational volume (number
of gates times the number of qubits). Therefore, to obtain
a practical algorithm most efforts should be focused on the
latter.

Overall, the amplitude estimation approach does not reduce
the total complexity enough to make our algorithm suitable
for early fault-tolerant quantum computers. Indeed, given the
small size of the investigated defect, one should expect higher
costs for classically intractable systems. In summary, despite
the use of embedding methods to significantly reduce the
size of the target Hamiltonian, Table II shows that quantum
algorithmic improvements are still needed to make quantum
computers useful for simulating quantum defects of increas-
ing complexity.

VI. CONCLUSION AND OUTLOOK

In this work, we investigated the application of quantum
algorithms to simulate optically active excited state properties
of quantum defects. To mitigate the significant computational
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TABLE II. Constant factor resource estimation to compute the lowest-lying triplet excited state with the largest dipole transition amplitude
|Di0|2 for the V −

B in the hBN cluster described in Sec. IV, for an increasing number of localized states N . Total qubit and gate complexities are
reported for the easiest case (lowest cost) of estimating |Di0|2 within an error threshold ε, determined such that the lifetime τi0 is computed
within 1-ns accuracy. Depth and samples report the maximum depth and samples for computing the contribution of each component to the
dipole transition amplitude.

Loaded state approach Prepared state approach

Standard sampling Amplitude estimation Standard sampling Amplitude estimation

N qubits Depth Samples Total Depth Samples Total Depth Samples Total Depth Samples Total

9 523 1.42 × 108 35 5.26 × 109 2.23 × 109 6 1.79 × 1010 1.42 × 108 76 1.11 × 1010 2.23 × 109 9 2.46 × 1010

11 608 2.39 × 108 116 3.08 × 1010 3.75 × 109 11 6.00 × 1010 2.39 × 108 205 5.24 × 1010 3.75 × 109 15 7.50 × 1010

16 1465 7.39 × 108 2880 2.13 × 1012 1.16 × 1010 54 6.62 × 1011 7.39 × 108 3070 2.31 × 1012 1.16 × 1010 56 6.85 × 1011

18 1633 1.12 × 109 4850 5.45 × 1012 1.76 × 1010 70 1.35 × 1012 1.12 × 109 5610 6.35 × 1012 1.76 × 1010 75 1.44 × 1012

demands of simulating the entire defect-containing supercell,
we employed QDET to build compact embedded Hamilto-
nians that encapsulate the effective screened interactions of
electrons proximal to defect sites. These Hamiltonians were
then utilized within the QPE sampling framework to selec-
tively probe excited states with the largest dipole transition
amplitudes from the ground state.

Using our framework, we estimated the quantum re-
sources required to treat the negatively charged boron vacancy
in hexagonal boron nitride. Although our estimates align
with those of other QPE-based algorithms in quantum
chemistry [24,27], our findings indicate that existing algo-
rithmic approaches need further refinement to adapt to early
fault-tolerant platforms. This need arises primarily because,
although QPE is a cornerstone routine, its implementation
(especially when paired with qubitization and double rank
factorization) incurs substantial overhead. Additionally, our
AE QPE variant introduces a compounded cost due to its
nested QPE subroutines [27]. Future efforts should aim at
significant reductions in computational overhead, potentially
through minimizing the resources for a single QPE sample and
decreasing the number of necessary samples by eliminating
or suppressing the higher-energy dipole transitions which are
not of interest. Another avenue would be to find an alterna-
tive to the QPE sampling strategy altogether. Despite these
challenges, the present work shows the potential for quantum
algorithms to simulate complex quantum defects that are hard
to treat with classical methods. By integrating embedding
techniques with quantum computation, we can achieve ac-
curate simulations of quantum defects with tightly controlled
algorithmic error.

Extensions to this work could include the treatment
of other processes which are key to discovering new
ODMR-active defects. This includes determination of the
fine-structure of the defect levels, as generated by a multitude
of phenomena including spin-spin, spin-orbit, and hyperfine
interactions, as well as those produced by external fields. With
fine-structure-resolved energy levels, ODMR frequencies may
now be accurately predicted. Two more vital components
that should be addressed are intersystem crossing and mag-
netic dipole coupling between spin sublevels. The first is
responsible for providing a pathway which ultimately permits
an ODMR contrast signal, while the second influences the
rate of electron spin resonance. Moreover, considering the

role of phonons, including electron-phonon interactions and
phonon-assisted transitions, is essential for a comprehensive
understanding of ODMR activity.

Overall, our findings and proposed extensions could posi-
tion quantum computers to help advance technologies reliant
on quantum defects, such as quantum sensors, single-photon
sources, quantum memories, and even spin qubit-based quan-
tum computers themselves. Our method provides a framework
for precisely evaluating defect performance in scenarios
challenging for classical approaches. Particularly, defects con-
taining transition metals or rare-earth elements, which are
stable in host materials like silicon carbide [51–53], two-
dimensional (2D0 transition metal dichalcogenides [54–56],
and various yttrium-based compounds [57–59], exhibit com-
plex behaviors due to the presence of localized and strongly
correlated d and f electrons. These defects are challenging to
accurately simulate even when they involve just a single sub-
stitutional site. Exploring more intricate defect configurations,
including those with multiple defect sites, adjacent vacancies,
and interstitial defects, further exposes the limitations of clas-
sical computational methods, thereby underscoring the critical
role of our approach in bridging these gaps.
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APPENDIX A: BACKGROUND ON QUANTUM
ALGORITHMS

Here, we briefly review the subroutines used in the quan-
tum algorithms and discuss their cost. We start with state
preparation subroutines. A QROM is one such cornerstone
subroutine. For a state represented by d qubits with am-
plitudes given up to b bits accuracy, the preparation costs
O(�2d/x� + bx) T gates [60], where x represents an arbi-
trary power of 2 chosen to minimize the cost. QROM is
based on the combination of SELECT and SWAP subroutines,
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and allows trading T gates with qubits that need not be
initialized. T gates, along with Toffoli gates, belong to the
class of non-Clifford gates, which cannot be transversally
and fault-tolerantly implemented in most topological error
codes, and consequently carry most of the implementation
cost. Another important state preparation subroutine is known
as Sum-of-Slaters [37]. As the name suggests, it is tailored to
prepare classically computed states represented with a small
number L of Slater determinants, each of which may require
many qubits. It leverages QROM, and has a Toffoli cost of
(2 log2 L + 3)L.

We also need to probabilistically implement nonunitary op-
erators, achievable with a technique known as block-encoding
[61]. Specifically, given a nonunitary operator O, block-
encoding means finding states |G〉 and unitary operators U
such that

O = (〈G| ⊗ 1)U (|G〉 ⊗ 1). (A1)

In our case, we use block-encodings of the dipole operator D,
the spin-spin Hamiltonian, HSS , and the electronic Hamilto-
nian Heff. In all those cases, we implement the block-encoding
by first decomposing the operator to a linear combination of
unitaries (LCU). The coefficients of such a linear combination
become amplitudes in a superposition that are prepared in a
PREP subroutine. After that, we apply the unitaries controlled
on the basis states of said superposition, through a so-called
SELECT subroutine. We finish the block-encoding undoing
the PREP, as suggested by Eq. (A1). The result is a block-
encoding, where |G〉 = |0〉 in the superposition register, and
U represents the PREP, SELECT, and PREP† unitaries.

Block-encoding and LCUs form the backbone of qubitiza-
tion, one of the most popular techniques to implement Hamil-
tonian simulation [61]. This is, in turn, a core component of
quantum phase estimation (QPE), a key algorithm. The lat-
ter approximates the transformation |�〉 = ∑

j α j |0〉|Ej〉 →∑
j α j |Bit(Ej )〉|Ej〉. In other words, it outputs the bit-string

representation |Bit(Ej )〉 of energy Ej of each eigenstate |Ej〉
in |�〉. By sampling the energy register sufficiently many
times, one can obtain the energy of a target eigenstate |Ej〉,
and estimate the probability |α j |2 = | 〈Ej |�〉 |2. This method
will allow us to estimate transitions of quantum operators.
Since it is based on sampling, its cost scales as O(ε−2) with
the desired error ε. To reduce that scaling, one may use ampli-
tude estimation, which combines quantum phase estimation
with amplitude amplification to achieve a O(ε−1) scaling, at
the expense of a larger depth by the same factor [62] (see
Appendix C).

As mentioned, to implement QPE for a Hamiltonian H ,
one needs to simulate the evolution operator e−iHt . This is
performed using qubitization [61], which builds upon the
block-encoding technique. The technique has many variants,
and we use a state-of-the-art block-encoding called “double
rank factorization” [38,63]. Double rank factorization writes
the Hamiltonian as a sum of quadratic terms, subsequently
diagonalized via basis rotations. Among its advantages, it
achieves a gate cost close to Õ(N1.5), with a similar number of
qubits. QPE requires O(λH/ε) controlled applications of the
block-encoding, scaling the subroutine cost to Õ(N1.5λH/ε).
Here, λH is the sum of the coefficients in the LCU, also called

the LCU 1-norm, and ε is the tolerated error, often set at
chemical accuracy ∼1.6 × 10−3 Hartree for our applications.

Put together, the block-encoding of D, quantum phase es-
timation of Heff and the sampling of the energy register is the
pipeline we employ to prepare |Ej〉, compute Ej , and estimate
| 〈Ej |D|E0〉 |2.

APPENDIX B: QUANTUM ALGORITHM FOR DIPOLE
TRANSITIONS

Here, we discuss the block-encoding of D in full details
along with the resource estimation.

1. Overview: Block-encoding of dipole D

Assume NS
2 = N spatial orbitals indexed by p, q, and NS

total spin orbitals indexed with pσ , where σ ∈ {0, 1}. Let

D :=
∑
p,q,σ

dpqapσ a†
qσ (B1)

be the dipole operator on one of the axes x, y, or z. Note that
the algorithm must be implemented for each axis. Diagonaliz-
ing yields

D =
∑

k∈[NS],σ

λD
k nk,σ , (B2)

where nk,σ = bkσ b†
kσ

and bkσ = ∑
p βkpσ apσ . Following

Ref. [63] (see also Ref. [[38], Sec. II.D]), the number operator
can be expressed through a series of Givens rotations starting
at the first register, as follows:

nkσ = U †
kσ

n1σUkσ , (B3)

where Ukσ is given by NS
2 Givens rotations, Ref. [[63], Lemma

8]. Recall n1σ = (1 − Z1σ )/2 which leads to the following
LCU:

D = tr(D)1 +
∑
k,σ

λD
k

2
U †

kσ
(−Z1σ )Ukσ , (B4)

with the associated 1-norm λD = tr(D) + ∑
k,σ

|λD
k |
2 =

tr(D) + ∑
k |λD

k |, as σ ∈ {0, 1}. That being the case, we
instead choose a less efficient LCU for now, which helps
make the PREP state preparation process simpler

D =
∑
k,σ

λD
k

2
1 + λD

k

2
U †

kσ
(−Z1σ )Ukσ , (B5)

with λD = 2
∑

k |λD
k |.

We now compute the costs of each subroutine. Notice there
are no reflections. Only the cost of PREP and its inverse, along
with SELECT. We aim to implement

〈0|PREP† × SEL × PREP|0〉 = D

λD
. (B6)

2. PREP

We need to prepare the state

|+〉
∑
p,σ

√∣∣λD
p

∣∣
2λD

|θp〉|pσ 〉, (B7)
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where θp is the sign qubit for λD
p , and we note the change of

variable from k → p.

a. Gate cost

We shall compute the prepare and unprepare cost to-
gether. We start by preparing the nontrivial superposition over

|p〉, meaning
∑

p,σ

√
2|λD

p |
λD

|p〉, which is done using advanced
QROM (QROAM) and coherent alias sampling. Following
QROAM most efficient clean ancilla implementations from
Ref. [[50], Appendixes B and C], the Toffoli cost for the
QROAM involved in this preparation is

⌈
NS

2k1

⌉
+ m(k1 − 1), (B8)

and for the unpreparation is

⌈
NS

2k2

⌉
+ k2, (B9)

where 1 < k1, k2 < NS/2 are chosen powers of two (if
k1, k2 = 1, we have the schemes in Ref. [[41], Fig. 7] with
Toffoli and ancilla cost NS/2 − 1, �log2(NS/2)�) and m is the

output size computed as

m = nNS + N + 1, (B10)

where nNS := �log2( NS
2 )� is the number of bits used for the

alt values and N is the number of bits used for the keep
values (determining accuracy) and one is for |θp〉. We take
N ∼ �log2(1/ε)� where ε is the desired target error. Notice
there is no λD in this expression, as we are simply attempting
to succeed at one application of block-encoding and the target
error is not for the unnormalized but normalized D/λD. There
are less significant costs, including the following.

(1) Preparing the uniform superposition over NS basis
states |θp〉|pσ 〉 for coherent alias sampling, requiring 3(nN +
1) − 3v2(NS ) + 2br − 9 Toffolis, where v2(NS ) is the largest
power of two factoring NS , and br is a number of bits used
for rotation of an ancilla qubit to improve the amplitude of
success. This cost is multiplied by 2 for unpreparation.

(2) The inequality test on the keep register, consuming 2N
Toffolis in total for preparation and reverse.

(3) The controlled SWAP done on the result of this inequal-
ity test is 2nNS for computation and uncomputation. Notice we
do not swap the sign register as we can use the result of the
inequality test to apply the required Z gate.

(4) Finally, the introduction of the first and last registers
can be simply done using two Hadamard gates.

In total, the Toffoli cost of PREP and its uncompute are

⌈
NS

2k1

⌉
+ m(k1 − 1) +

⌈
NS

2k2

⌉
+ k2 + 2(3(nNS + 1) − 3v2(NS ) + 2br − 9) + 2N + 2nNS . (B11)

b. Qubit cost

For the qubit costings the following applies.
(1) (1 + nNS + 2) + (nNS + 1) + N + N + 1 for the first

|+〉 register and index, alt, keep, the register compared to
keep, and the inequality test result registers, respectively.

(2) QROAM needs m(k1 − 1) + �log2[NS/(2k1)]� ancillas
which are rezeroed and k2 + �log2[NS/(2k1)]� for the uncom-
putation which are also rezeroed. We only need the maximum
of these two

QPREP = max{m(k1 − 1) + �log2[NS/(2k1)]�,
× k2 + �log2[NS/(2k1)]�}. (B12)

(3) There is one qubit needed for the rotations involved in
the uniform superposition over N basis states.

(4) The phase gradient state using br qubits.
In total,

(3 + nNS ) + (nNS + 1) + N + N + 1 + QPREP + 1 + br .

(B13)

3. SELECT

The SELECT operation involves the following steps.
(1) Using QROAM to output the Givens rotations angles

by reading |pσ 〉. There are NS
2 rotation angles, each given with

accuracy M, giving an output ⊗NS/2
j=1 |θ (pσ )

j 〉 with size NSM

2 . The
accuracy is determined later in Appendix B 5.

(2) The implementation of said Givens rotations on their
respective registers |·〉( j−1)σ |·〉 jσ . Notice the dependence of
the registers on σ . Therefore, we make a CSWAP of the two
contiguous registers controlled on σ ∈ {0, 1} to a working reg-
ister and then apply the rotations. Notice we start at j = N/2
and we need to CSWAP back and forth to the working register
for each new j.

(3) Once having reached j = 1, controlled on the first
PREP register |+〉, apply the Z1σ gate on the second working
register. This is a simple CZ gate.

(4) Apply the inverse of the Givens rotations on the work-
ing register while CSWAPping back and forth from the system
into the working register.

(5) Apply the inverse of QROAM.
(6) Finally, apply the Z gate on |θp〉.

a. Gate cost

Each step has the following costs. The Toffoli cost for the
QROAM is

⌈
NS

k′
1

⌉
+ NSM

2
(k′

1 − 1), (B14)
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with uncomputation cost⌈
NS

k′
2

⌉
+ k′

2. (B15)

The implementation of the Givens rotations has Toffoli cost
NS (M − 2)/2 with the same Toffoli cost for uncomputation,
thus with total

NS (M − 2). (B16)

Each CSWAP requires one Toffoli gate and each time we need
to CSWAP two contiguous registers back and forth. We do this
for all values of j, σ and the whole process gets repeated to
CSWAP back. Thus, we have in total

2(NS × 2 × 2) = 8NS. (B17)

All the above brings the total SELECT Toffoli cost to⌈
NS

k′
1

⌉
+NSM

2
(k′

1 − 1) +
⌈

NS

k′
2

⌉
+ k′

2 + NS (M − 2) + 8NS .

(B18)

b. Qubit cost

The ancilla and output cost for the QROM is NSM

2 (k′
1 −

1) + �log2(NS/k′
1)�, NSM

2 , and the ancilla cost for its uncom-
putation is �log2(NS/k′

2)� + k′
2. Again, we only need the max-

imum of the computation and uncomputation ancilla costs,

called

QSEL = max

(
NSM

2
(k′

1 − 1) + �log2(NS/k′
1)�, k′

2

+ �log2(NS/k′
2)�

)
. (B19)

The phase gradient state for the Givens rotations uses M

qubits. The system register qubit cost is NS and the working
register is 2. In total we have

QSEL + NSM

2
+ NS + M + 2 . (B20)

4. Total costs

a. Gate cost

This is simply the sum of Eqs. (B11) and (B18).

b. Qubit cost

Note that the QROAM ancillas in SELECT are rezeroed,
similar to the QROAMs in the PREP part. We can therefore
take a maximum between these ancilla costings. More pre-
cisely, replace NSM

2 (k′
1 − 1) with

QQROM = max(QPREP, QSEL). (B21)

Note that choosing even k′
1 = 2, is highly likely to make QSEL

the maximum. The total qubit cost is

[(3 + nNS ) + (nNS + 1) + N + N + 1 + 1 + br] + [NS + M + 2] + QQROM . (B22)

5. Error estimation

There are three finite precision register size parameters.
There is br , which is set to 7 to ensure a high success rate,
so that its error has a negligible impact. Then we have an
approximation for the PREP state and an approximation on
the SELECT for the Givens rotations. We have the following
inequality:∥∥∥∥∥

∑
�

ρ�U� −
∑

�

ρ̃�Ũ�

∥∥∥∥∥ �
∑

�

ρ�‖U� − Ũ�‖ +
∑

�

|ρ� − ρ̃�|

� ε, (B23)

here � = (p, σ, x) where x = 0, 1 is used to denote identity
or Z1σ , respectively, ρ� = |λD

p |/(2λD), and
∑

ρ� = ∑
ρ̃� =

1. There are L = 2NS many indices. For x = 0, there is no
approximation since SELECT is the identity.

First let us treat the approximation by the Givens rotations.
We know that each Givens rotation angle is approximated by
M bits, which implies that, for each � with x = 1, we have
‖U� − Ũ�‖ � NS

π
2M due to the total NS many Givens rotations

(with their inverse), obtaining an overall SELECT error of

⎛
⎝∑

p,σ

|λD
p |

2λD

⎞
⎠NS

2
× π

2M
= 1

2
× NS × π

2M
(B24)

For the PREP part error εPREP := ∑ |ρ� − ρ̃�|, let us denote
by δ = max� |ρ� − ρ̃�|. We know that εPREP � δL = δ(2NS ).
So to achieve a desired target εPREP, we can set a target of
δ = εPREP

2N . By the coherent alias sampling process, Ref. [[41],
Eq. (35)], we know

1

2NL
� δ ⇒ 2NS

εPREP2NS
� 2N, (B25)

and therefore, by simply picking N = �log2(1/εPREP)�, we
can achieve the desired PREP error.

The two PREP and SELECT errors should sum to less than
the desired ε, thus

1

2N
+ NSπ

2M+1
� ε. (B26)

Since M is involved in one of the most costly QROMs (out-
putting Givens rotations angles), we decide to concentrate
90% of the accuracy on N, thus

N =
⌈

log2

(
10

ε

)⌉
, M =

⌈
log2

(
9

10
× NSπ

2ε

)⌉
. (B27)

6. Resource estimation parameters

In our resource estimation code, we choose the following:
(1) k1 = 2�log2(�(

√
NS/(2m)�)�;
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(2) k2 = 2�log2(�(
√

N/2�)�;
(3) k′

1 = 1;
(4) k′

2 = 2�log2(�(
√

NS�)�;
(5) and target chemical accuracy ε = 1.6 × 10−3.

7. Error analysis of sampling

We analyze the prominent error sources in estimating the
dipole transition amplitude from ground to excited states us-
ing our prepared state algorithm approach.

We assume access to an accurate ground state. We also as-
sume that chemical accuracy used in the QPE can distinguish
different energies in the lower eigenspace in each total spin
sector S. Otherwise, the calculations below can be adapted by
including a sum of |Di0|2 for |Ei〉 inside a QPE bin of length
ε.

There are two ways to perform the measurements in our
computation. One way is to observe the success or failure of
D’s block-encoding first, and if not failed, then continue with
the QPE and the measurement on its energy register. The other
is to both measurements at the same time at the end of the
computation. Intuitively, the first should have the lower cost
as we do not need to perform a QPE in the failed instances
of the block-encoding. However, its error analysis is slightly
more involved. For the sake of completeness, we show how to
analyze both cases, but our resource estimation is only for the
previous approach.

a. Successive measurements

We have a first error ε1 in the estimation of (‖D|ψ〉‖/λD)2

as a result of the success or failure in the block-encoding.
Henceforth, we let D0 := ‖D|ψ〉‖. The second error ε2 is
through our sampling after the QPE, in the estimation of
(|Di0|/D0)2. Through our sampling, we estimate the dipole
transition amplitude by computing

λ2
D[(|Di0|/D0)2 + ε2][(D0/λD)2 + ε1]. (B28)

We would like the above to be ε close to |Di0|2, where ε is to
be determined later. Taking the first-order terms, the following
should hold:

λ2
D(|Di0|/D0)2ε1 + D2

0ε2 < ε, (B29)

where ε shall be determined later. Notice that each εi deter-
mines a sampling complexity scaling with 1/ε2

i . The sampling
complexity for estimating a probability p with error ε0 is
p(1−p)

ε2
0

<
p
ε2

0
. Given that these two samplings happen in a se-

quence, and the QPE measurement happens only after the
success of the block-encoding, with probability (D0/λD)2, the
number of samplings |Di0|2

D2
0ε

2
2

done for the QPE satisfies

D2
0

λ2
D

× D2
0

λ2
Dε2

1

= |Di0|2
D2

0ε
2
2

⇒ ε2 = λ2
D|Di0|
D3

0

ε1. (B30)

Hence the block-encoding success probability estimation er-
ror ε1 must satisfy

ε1 < ε
(λ2

D|Di0|2 + λ2
D|Di0|D0

D2
0

)−1
. (B31)

This yields

CTotal �
( |Di0|(|Di0| + D0)

ε

)2

× (CQPE + CBlock-Encode(D))

+
(

λD|Di0|(|Di0| + D0)

ε

)2

CBlock-Encode(D), (B32)

where the first term estimates the cost of when block-encoding
is successful and followed by the QPE calculations, with

sampling complexity D2
0

λ2
D

× D2
0

λ2
Dε2

1
, and the second where it

fails, with sampling complexity upper bounded by D2
0

λ2
Dε2

1
.

Asymptotically speaking, we observe that one can safely drop
the last term as even with the λD scaling, due to CQPE 

CBlock-Encode(D), the first term is by far larger than the second.
Lastly, we recall that the total complexity scales linearly if
using amplitude estimation.

b. Simultaneous measurement

As we perform the QPE, the probability we estimate is
(|Di0|/D0)2(D0/λD)2 = |Di0|2/λ2

D. The question is how many
samples we need to achieve later to determine error ε in
estimating |Di0|2. Formally,∣∣λ2

D

(∣∣Di0

∣∣2
/λ2

D + ε0
) − |Di0|2

∣∣ � ε ⇒ ε0 = ελ−2
D . (B33)

Recall that the sampling complexity for estimating a probabil-
ity p with error ε0 is p(1−p)

ε2
0

<
p
ε2

0
; this assumes that we do not

use the amplitude estimation technique which scales as 1/εi

but has higher depth and constant factors.
So for p = |Di0|2

λ2
D

, we get the following cost estimate of our
algorithm:

CTotal �
( |Di0|λD

ε

)2

(CQPE + CBlock-Encode(D)), (B34)

where we compute the block-encoding cost of D computed
in the previous sections, and the QPE cost is the cost of
performing QPE on H with chemical accuracy using the
double-factorization algorithm.

c. Choosing ε

Now let us determine ε. We set a target of 1 ns error in the
lifetime calculation, and compute the necessary ε. Accounting
for all the units, the lifetime τi0 is related to Di0 by [35]

τi0 = 3A

4(αwi0)3|Di0|2 , (B35)

where A = 2.4189 × 10−17, α = 1
137 are constants, and wi0 =

Ei − E0 is the gap between the excited and ground states.
Targeting a 10−9 error in this approximation implies∣∣∣∣ 3A

4(αwi0)3(|Di0|2 ± ε)
− 3A

4(αwi0)3|Di0|2
∣∣∣∣ < 10−9, (B36)

which simplifies to

ε < 10−9 4(αwi0)3||Di0|2 ± ε||Di0|2
3A

∼ 10−9 4(αwi0)3|Di0|4
3A

,

(B37)
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where the last estimation is reasonable as ε is unlikely to be
on the same scale as |Di0|. Substituting the values for A, α,

ε = 10−9 × 4 × 3.889 × 10−7 × w3
i0|Di0|4

3 × 2.4189 × 10−17

= 2.149 × 10 × w3
i0|Di0|4. (B38)

d. Total cost

The total cost for the first measurement approach is esti-
mated as

CTotal �
( |Di0| + D0

2.149 × 10 × w3
i0|Di0|3

)2

× (CQPE + CBlock-Encode(D)), (B39)

while for the simultaneous measurement approach, it is esti-
mated as

CTotal �
(

λD

2.149 × 10 × w3
i0|Di0|3

)2

× (CQPE + CBlock-Encode(D)). (B40)

We emphasize that the above equations apply when using the
prepared state approach. Assuming classical access to D|ψ〉
and therefore D0, we simply need to replace λD by D0 in the
last cost formulas and drop the block-encoding cost, meaning

CTotal �
(

D0

2.149 × 10 × w3
i0|Di0|3

)2

× CQPE. (B41)

APPENDIX C: AMPLITUDE ESTIMATION

An alternative to sampling is to use amplitude estimation.
As we see in Eq. (B34), we want to estimate p = |Di0|2

λ2
D

to error

ε. Such probability translates into an amplitude a = √
p =

|Di0|
λD

. Then, Ref. [[62], Theorem 12] indicates that, for any
k ∈ N, the amplitude estimation algorithm with M evaluations
of the function returns an estimation ã = √

p̃ fulfilling

| p̃ − p| � 2πk

√
p(1 − p)

M
+ k2 π2

M2
� ε0, (C1)

with probability at least 8/π2 if k = 1 and 1 − 1
2(k−1) if k � 2.

Choosing k = 1,

M � 2πk

ε0

(√
p(1 − p) + kπ

2M

)
� 2πk

√
p

ε0
= 2πka

ε0
. (C2)

From Eq. (B33),

M � 2πk|Di0|λ2
D

ελD
= 2π |Di0|λD

ε
. (C3)

Similar equations apply for the loaded and prepared state so-
lutions where we use the successive measurements approach.

Amplitude estimation on U |φ〉 requires a walk operator
W = URφU †R†

φ that includes the state preparation Rφ|0〉 =
|φ〉, which, in our case, would be the SoS algorithm, and the
U itself, which would be potentially the block-encoding of D
followed by the QPE on Heff. Performing QPE on W requires
controlling the operations in W .

The QPE subroutine inside U may be controlled by con-
trolling just the initial Hadamard gates and the Hadamard
gates in the QFT. Overall this amounts to twice as many
Toffoli gates as the number of measurement qubits of the QPE,
which is negligible compared to the actual cost of simulating
the evolution. Similarly, the Sum-of-Slaters technique may be
controlled by controlling the application of the first QROM,
and in particular, its initial SELECT component, duplicating
its cost. Finally, to control the block-encoding of D and H ′

SS,
we only need to control the multicontrolled-Z gates in their
SELECT component, detailed in Appendix B 3 and Fig. 16
of Ref. [38], respectively. In all instances of our approaches,
given that CQPE(Heff ) overwhelmingly determines the overall
cost, and given its occurrence twice in W (once in U and
once in U †), we conclude that the factor 5π instead of 2π in
Eq. (C3) is a good estimate for an upper bound of the constant
factor as a result of using the AE approach. Indeed, 2 × 2π

to account for how many times CQPE(Heff ) is repeated, and one
more π factor to account for the control on the Hadamards,
and the controlled SoS and D’s block-encoding algorithm. For
example, Eq. (B34) becomes

CTotal �
( |Di0|λD

ε

)
× (5πCQPE + CBlock-Encode(D)). (C4)
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