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Harnessing coherence generation for precision single- and two-qubit quantum thermometry
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Quantum probes, such as single- and two-qubit probes, can accurately measure the temperature of a bosonic
bath. The current investigation assesses the precision of the temperature estimate by using quantum Fisher
information and the accompanying quantum signal-to-noise ratio. Employing an ancilla as a mediator between
the probe and the bath improves thermometric sensitivity by transmitting temperature information into the probe
qubit’s coherences. In addition, we analyze two interacting qubits that were initially entangled or separated
as quantum probes for various environmental configurations. Our findings show that increased precision is
gained when the probe approaches its steady state, which is determined by the coupling between the two qubits.
Furthermore, we can obtain high-efficiency temperature estimation for any low temperature by changing the
interaction between the two qubits.
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I. INTRODUCTION

In real-world circumstances, physical quantum systems
interact with their surroundings, resulting in undesirable out-
comes such as quantum decoherence [1,2]. However, the
interaction between the system and reservoir can also be
used to gain valuable information about quantum reservoirs.
Indeed, examining and characterizing quantum reservoirs is
crucial in both theoretical research and practical applications,
including tasks like quantum reservoir engineering [3,4] and
coherence protection [5,6]. Nevertheless, when dealing with
a complicated quantum reservoir with many degrees of free-
dom, accurately estimating the reservoir’s many properties
becomes a significant difficulty. Quantum probes [7–12] are
an effective solution to overcome this difficulty. In fact, the
use of quantum probes has lately gained popularity as a
noninvasive technique for estimating parameters of interest
without severely disrupting the system being studied, i.e., the
quantum reservoir. The primary strategy is to place a basic
quantum system, such as a qubit or a pair of qubits, in a
predetermined beginning state. The system then interacts with
the quantum reservoir of interest. After the interaction that
imprints information about specific parameters on the state
of the quantum probe, measurements are taken to extract this
information [7,13–16].

Temperature estimation is crucial for assessing compli-
cated environments [17–20]. Assessing the temperature of
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a quantum system is not only a fundamental task, but also
of practical importance. Several quantum technologies ne-
cessitate extremely low temperatures to exploit sensitive
nonclassical properties, requiring accurate temperature es-
timates with little system perturbation. This requirement
corresponds to the goals of quantum thermometry, represent-
ing a rich area of research that merges quantum metrology,
quantum thermodynamics and open quantum systems [19,21].
Recent research on dynamical quantum thermometry using
master equations have provided insights into the nonequilib-
rium (equilibrium) dynamics of quantum systems [22–24].
Additionally, collision models have been employed to study
the thermalization processes and temperature estimation in
open quantum systems [25–27]. Driving techniques have also
been explored to enhance the precision of quantum thermom-
etry by manipulating the energy levels and transitions within
the system [28,29].

The present research employs quantum probes to esti-
mate the temperature of an environment [30,31], which is a
bosonic bath, by inducing dephasing dynamics on the probe
system [32,33]. The research focuses on both single- and
two-interacting qubit systems as quantum probes, optimiz-
ing their initial preparation and performing measurements to
obtain temperature information. In this analysis, we apply a
global Markovian master equation to investigate the dynamics
of the systems. First, the single-qubit probe is evaluated by
comparing quantum Fisher information (QFI) and quantum
signal-to-noise ratio (QSNR) with and without an ancillary.
The probe qubit only interacts with the ancilla qubit, which
dephases as a result of its contact with the sample, leaving
temperature information as coherences in the probe state.
Further, higher precision is achieved by increasing the probe-
ancilla coupling strength. The analysis is then expanded to
include two interacting qubits, taking into account both com-
mon and local baths, as well as whether the qubits are initially
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entangled or separated. When the system enters a steady state,
the greatest accuracy of temperature estimation is achieved.
Fully thermalized estimate efficiency demonstrates that opti-
mal QSNR is determined by the coupling strength between
qubits. This approach leverages the adjustable coupling to
accurately control estimating efficiency at low temperatures.

The paper is structured as follows. In Sec. II, we present
the physical models for single- and two-qubit systems. In
Sec. III, we briefly outline the tools utilized in local estimation
theory and discuss our findings on the precision achieved by
quantum probes in estimating the sample’s temperature. The
final section has a conclusion.

II. PHYSICAL MODEL

Consider a dephasing model that consists of one or two
qubits interacting with a bosonic reservoir. We want to employ
the qubits as quantum sensors to estimate the temperature of
the thermal bath, which is assumed to be in equilibrium at
temperature T , using several strategies. On the one hand, we
employ a single qubit as a quantum probe, both with and with-
out an ancillary system. On the other hand, we investigate the
usage of two interacting qubits as a quantum probe, taking into
account two unique scenarios: one in which the two qubits are
embedded in a common bath, and another in which each qubit
interacts with its corresponding bath.

A. Single qubit with ancilla assistant

We address the scenario where the probing qubit suffers
from decoherence via an intermediate system, namely, ancilla
i.e., a two-level system that is directly coupled to the thermal
bath. The total Hamiltonian of the probe-ancilla bath is de-
fined as [34]

H = HS +
∑

k

ωkb†
kbk + σz

∑
k

gk (b†
k + bk ), (1)

where ωk is the frequency of the reservoir modes, b†
k (bk ) is the

bosonic creation (annihilation) operator for mode k, and gk is
the strength coupling of each mode with the probe qubit. The
probe-ancilla Hamiltonian is given as follows:

HS = h̄

2
ωPσ P

z + h̄

2
ωAσ A

z + κ

2

(
σ (P)

x σ (A)
x + σ (P)

y σ (A)
y

)
. (2)

The probe (ancilla) transition frequency between its ground
and excited states is ωP(ωA), where P and A denote probe
and ancilla, respectively. The last term defines the interaction
Hamiltonian between the probe and the ancilla, with a con-
stant coupling strength κ; σ

( j)
x (σ ( j)

y ) represents the first Pauli
matrix (second Pauli matrix) of the qubit j = {P, A}.

We now examine the case of two interacting qubits coupled
with a thermal bath (bosonic reservoir) that functions as a
quantum probe. However, two unique scenarios emerge: either
the two qubits are coupled to independent local reservoirs, or
they are embedded in a common reservoir.

B. Two qubits in independent reservoirs

In the case where the two qubits are coupled to two identi-
cal and independent reservoirs with the same temperature T .

The total Hamiltonian is given as

H = H (1) + H (2) + H12. (3)

The single-qubit Hamiltonian H (i), where i = 1, 2, is ex-
pressed as

H (i) = ω
(i)
0

2
σ (i)

z +
∑

k

ωkb†(i)
k b(i)

k + σ (i)
z

∑
k

g(i)
k

(
b†(i)

k + b(i)
k

)
,

(4)

H12 is describing the interaction between the two qubits and
given by

H12 = κ

2

(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)
, (5)

with κ is the coupling strength between the two qubits. More-
over, for the sake of simplicity, we assume that the two qubits
have the same transition frequencies ω

(i)
0 = ω0.

C. Two qubits in a common environment

Next, we investigate the situation in which two interacting
qubits are in contact with the same reservoir. The Hamiltonian
for a bipartite qubit with a commun environment is stated as

H =
2∑

i=1

ω
(i)
0

2
σ (i)

z +
∑

k

ωkb†
kbk + H12

+ σ (1)
z

∑
k

g1k (b†
k + bk ) + σ (2)

z

∑
k

g2k (b†
k + bk ), (6)

where H12 is defined in Eq. (5). For simplicity, we assume that
the two qubits are resonant with transition frequency ω0.

The impact of strong coupling is explored in two scenarios
within the framework of a weak system-bath coupling regime:
first, between the probe and the ancilla, and second, between
the two qubits when viewed as a quantum probe. In fact, there
are two main approaches: local and global master equations.
According to the authors of Refs. [35,36], the local master
equations remain valid when the connection between subsys-
tems is weak. In contrast, when the coupling is strong enough,
the global master equations should be employed. To examine
high coupling effects, we use a global approach. The jump
operators are derived from the master equation based on the
system’s entire Hamiltonian eigenstates

ρ̇t = −i[HS, ρt ] + L(ρt ), (7)

where L(ρt ) is the Liouvillian and expressed as

L(ρt ) =
∑

ω

γ (ω)D[A(ω)], (8)

and D [A (ω)] = A (ω) ρt A† (ω) − {A†(ω)A(ω), ρt }/2, with
A(ω) are the jump generators; {., .} is the anticommutator. The
γ (ω) are decoherence rates. A thorough derivation is provided
in Appendix.

III. THERMOMETRIC PERFORMANCE

Estimation theory focuses on inferring a parameter T from
a set of measurement results to minimize estimation error.
In quantum thermometry, a quantum system is utilized to
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estimate an unknown sample’s temperature. We presume that
our thermometry methodology is always separated into three
major steps:

(1) preparing the probe in an appropriate state ρ;
(2) encoding the temperature in the probe through the

probe-bath interaction, transforming the probe into a function
of the temperature of the sample, denoted ρT ;

(3) performing a measurement with positive operator-
valued measure (POVM) elements. As it is well known,
the accuracy of temperature measurement is restricted to the
quantum Cramér-Rao bound [37–39]

T 2

δT 2
� MT 2F[ρT ] ≡ MRT . (9)

Here, M is the number of measurements done, δT 2 is the
temperature variance, and F[ρT ] is the quantum Fisher infor-
mation of the quantum state ρT in relation to the temperature
T . The expression is as follows [40–43]:

F[ρT ] = 2
∑
k,l

| 〈φk|∂T ρT |φl〉 |2
λk + λl

, (10)

φl and λl represent the T -dependent eigenvectors and eigen-
values of ρT , respectively. We will further investigate the
QSNR, RT = T 2F[ρT ] [40] during this research. It signifies
that a greater RT indicates better temperature sensing perfor-
mance.

A. Temperature sensing via quantum probes

This section describes our findings on estimating the tem-
perature of the sample, generally known as the thermal bath.
This is done by evaluating the behavior of the QFI and QSNR
for fixed values of the coupling strength between qubits, de-
noted as κ .

1. Single-qubit thermometry

For single-qubit dephasing, when a quantum probe in-
teracts directly with an Ohmic sample, the ideal initial
preparation is the state |+〉 = (|0〉 + |1〉)/

√
2 [32]. However,

for the case in which the probe qubit is interacting with the
bath via the ancillary system according to their interaction
Hamiltonian, we assume that the probe qubit is prepared in
its ground state |0〉P [44] and we initially prepare the ancilla
system in a pure state depending on the parameter θ

|ψ (0)〉A = cos

(
θ

2

)
|0〉A + sin

(
θ

2

)
|1〉A . (11)

To identify the optimal initial preparation of the ancilla
qubit for boosting the sensitivity of the probe qubit, we re-
port in Fig. 1 (the top panel) the QFI as a function of time
interaction t for different values of the weight θ . The results
demonstrate that the ideal approach for the scenario where the
probe qubit is indirectly connected to the bath via an ancilla
system is in the ground state (|0〉P) and the ancilla system
is in the superposition state, i.e., |+〉 = (|0〉A + |1〉A)/

√
2.

However, our probe is a single qubit positioned outside the
thermal bath, and we aim to do local measurements on it. As

FIG. 1. Top panel: QFI, FT associated with the reduced state of
the probe qubit in Eq. (12) for different initial preparations of the
ancilla for fixed T = 0.4, κ = 0.8, η = 0.01, and � = 10. Lower
panel: QFI associated with probing qubit in the absence of the ancilla
(red-solid curve) and in the presence of the ancilla (blue-dashed
curve) with fixed T = 0.4, κ = 0.8, � = 10, and θ = π/2. All fre-
quencies and energies are expressed in terms of ωA = ωP = 1.

a result, the reduced state of the probe qubit is defined as

ρp(t ) = TrA{ρPA(t )} =
(

(1 + W )/2 X
X ∗ (1 − W )/2

)
, (12)

where the population (diagonal) and coherences (off-
diagonal) terms are specified, respectively, by

W = 1

4

{−2 + (1 + e4iκt )[sinh(B t ) − cosh(B t )]
}
,

X = 1

4
(e−Z2 t − eiZ1 t ), (13)

where

B = 2κ
[
πηe− 2κ

� coth
( κ

T

)
+ i

]
,

Z1 = iπηκe− 2κ
�

[
coth

( κ

T

)
− 1

]
+ κ − 1,

Z2 = πηκeκ( 1
T − 2

� )csch
( κ

T

)
+ i(κ + 1). (14)

The coherences and population terms of the probe qubit
include critical information about the sample’s temperature.
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FIG. 2. Top panel: QFI and QFI/t (inset) of the state specified in
Eq. (12) versus time interaction t for different probe-ancilla coupling
strengths κ . Lower panel: The left plot shows the highest value of
QSNR versus κ . We plot the optimal time, i.e., the moment when
QSNR reaches the highest value, as a function of κ to ensure proper
behavior. We set T = 0.4, η = 0.01, and � = 10. All frequencies
and energies are expressed in terms of ωA = ωP = 1.

This indirect coupling via the ancilla alters the quantum state
of the probe qubit, causing its coherences and population
dynamics to reflect the sample’s thermal parameters. Thus,
seeing these quantum features offers information on the sam-
ple’s temperature within this framework.

In Fig. 1 (the lower panel), we compare the QFI associated
with the probe being directly linked to the bath or uncoupled
from the bath and interacting with an ancilla. Furthermore, it
is believed that the ancilla is connected directly to the sample.
The findings are plotted as a function of interaction time
t . At first, the probe-bath situation, where QFI achieves its
maximum information, holds the majority of the thermometric
information; but, as time passes, the information in the indi-
rect coupling scenario increases. Thus, both situations provide
equivalent information, and over time, the indirect coupling
with considerably higher sensitivity holds the majority of the
information about the sample’s temperature.

Obviously, the ability of the probe qubit in the presence
of an intermediate system (ancilla) to accumulate information
for a very long time allows it to reach a significantly higher
thermometric sensitivity. An interesting feature of this strat-
egy is that, after a certain initial time, a local measurement
on the probe qubit is able to extract substantially all the
information from the state. This allows the thermometer to be
implemented more easily. Thus, for the rest of the manuscript,
we shall focus on the behavior of QFI and QSNR, associated
with the reduced state defined in Eq. (12).

FIG. 3. Parametric plot of optimal QSNR versus maximal coher-
ence generated in the probe qubit [45]. We set η = 0.1, T = 0.4 and
� = 10. All frequencies and energies are in units of ωA = ωP = 1.

Figure 2 illustrates how the coupling strength between our
probe and the ancilla affects the sensitivity of temperature
estimate using QFI, FT . We can clearly see that increasing
the constant coupling probe-ancilla improves the sensitivity
of temperature estimation. Besides, we plot QFI per unit time
(FT /t) versus time t [44] (shown in the inset of Fig. 2),
for various coupling strengths (κ). In short-time interaction,
the sensitivity of FT /t is robust, but decreases sharply over
time. Particularly, stronger coupling maintains robust values
of FT /t . Indeed, FT /t for κ = 0.9 (green line) is notably
more persistent than κ = 0.6. This indicates that stronger
coupling could optimize precision in quantum estimation and
measurement over time. Furthermore, in the lower panel of
Fig. 2 (left plot), we report the highest value of the QSNR,
referred to as Ropt

T , as a function of the coupling strength
κ . As the coupling strength κ grows, so does the value of
Ropt

T . Our findings indicate that a strong coupling between the
probe and ancilla improves thermal sensitivity and accuracy
in temperature estimation.

The time corresponding to the maximum of QSNR,
Ropt

T , is called optimal time, topt. Figure 2 shows that
higher coupling κ values lead to longer optimum times. We
discover a trade-off between optimal QSNR and optimal
encoding time, determined by the coupling strength κ . A
higher optimal QSNR necessitates a longer optimal encoding
duration.

Figure 3 depicts the relationship between optimal QSNR
and maximum generated coherences (Xmax) in the probing
qubit. It is evident that increasing the maximum of created
coherences significantly increases the probe’s thermal sensi-
tivity. As a result, the ancilla converts fundamentally coherent
information about the bath temperature into coherences in the
probe qubit. In fact, the authors of Ref. [46] found that adding
an ancilla as an intermediate increased the probe’s thermal
sensitivity and improved steady-state estimation efficiency.

Determining the best measurement is critical for getting
the maximum possible precision of the estimated parameter in
practical experiments. However, for a single qubit, the Fisher
information related to the measurement can be computed as
[44,47]

IT = 1

〈�X 2〉
(

∂T 〈X 〉
∂T

)2

, (15)
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where 〈X 〉 and 〈�X 2〉 represent the mean and variance of the
measured observable X . The QFI represents the upper limit
of the Fisher information associated with the measurement X ,
i.e.,

FT = max
X

IT = Tr[ρp(t ).�.�],

where � is the symmetric logarithmic derivative (SLD). For
any mixed state, the SLD can be written as [48]

� = 2∂T ρp(t ) − ∂TP
1 − P σyρ

t
p(t )σy, (16)

with P is the purity defined as P = Tr[ρp(t )2], and ρt
p(t )

is the transposed density matrix ρp(t ). Since our probe is a
single qubit, hence, we can rewrite the density matrix of the
probe qubit [Eq. (12)] in the Bloch representation i.e., ρp(t ) =
(I2 + r · σ̂ )/2, where I2 denotes the 2 × 2 identity matrix,
r = (rx, ry, rz ) is the real Bloch vector, and σ̂ = (σ̂x, σ̂y, σ̂z )
denotes the Pauli matrices. Using Eq. (12), we can easily
obtain the elements of Bloch’s vector as follows:

rx = X + X ∗, ry = i(X − X ∗), rz = W, (17)

where X and W are defined in Eq. (13). Using the above
equation, we can straightforwardly derive the SLD as

� = c0I2 + cxσx + cyσy + czσz, (18)

where

c0 = ∂TP
2(P − 1)

, cx = rx∂TP
2 − 2P + ∂T rx,

cy = ry∂TP
2 − 2P + ∂T ry, cz = rz∂TP

2 − 2P + ∂T rz. (19)

The coefficients of the decomposition vary with temperature,
time, and coupling strength, while the projectors are indepen-
dent of all these parameters. However, by calculating the QFI
using the formula (10) and using the SLD [Eq. (18)], one can
easily obtain

FT = Tr[ρp(t ).�.�] = (∂TP )2(1 − |r|2)

4(P − 1)2

+ (∂T rx )2 + (∂T ry)2 + (∂T rz )2, (20)

where |r|2 = r2
x + r2

y + r2
z and P = (1 + |r|2)/2.

By calculating the symmetric logarithmic derivative, we
determine the optimal measurement to be applied to the probe
qubit for inferring the temperature in a bosonic environment.
However, in the context of probe-ancilla coupling, we il-
lustrate in Fig. 4 the optimal QFI and the optimal Fisher
information associated with the measurement using σx, i.e.,
IT = (∂T rx )2/(1 − r2

x ). Clearly, we observe that the max-
imum Fisher information coincides with the optimal QFI.
This demonstrates that excellent temperature estimates at the
quantum limit can be achieved using a practical method that
incorporates specialized measurement techniques after inter-
action with the thermal sample.

2. Two-qubit thermometry

Let’s compare the performance of a two-qubit quantum
probe for temperature estimation while always paying at-
tention to QFI and QSNR behavior. We study the influence

FIG. 4. The optimal Fisher information IT and optimal quantum
Fisher information FT depend on the probe-ancilla coupling. We
used η = 0.01, T = 0.4, and � = 10. All frequencies and energies
are expressed in terms of ωA = ωP = 1.

of qubit-qubit interaction as well as probe interaction with
a common (independent) bath. The concepts of sharing the
same bath or having two independent duplicates of the same
bath do not require different physical systems. In a practical
setting, these situations correspond to the qubits being near to-
gether and interacting with the same piece of the environment,
or being far away with negligible spatial correlations of the
bath. We take the following initial state for the two interacting
qubits:

|ψ (0)〉 = cos

(
θ

2

)
|01〉 + sin

(
θ

2

)
|10〉 . (21)

The plots in Fig. 5 exhibit the fluctuation of the nonequi-
librium QFI, FT , with interaction time t . We observe that
nonequilibrium conditions do not improve the precision of
temperature estimate for the two-qubit system utilized as a
quantum probe. The peak value of FT occurs as the ther-

FIG. 5. QFI for independent and common baths against t using
four different initial sittings of the qubits: two qubits initially in an
entangled or separable state in a common bath, and two qubits in
independent baths initialized in an entangled or separable state. For
fixed T = 0.4, κ = 0.6, η1 = 0.01, and η2 = 0.05. All the frequen-
cies and the energies are in units of ω1 = ω2 = 1.
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mometer enters a steady state. Figure 5 indicates that a
thermometer with two discrete qubits in contact with indepen-
dent thermal baths reaches the maximum QFI faster than other
configurations. Additionally, entanglement does not appear to
greatly improve the probe’s sensitivity.

Given that the maximum QFI for two interacting qubits is
obtained under equilibrium conditions with the same steady
value in both common and local bath situations, regardless
of whether the qubits are initially entangled or separated, we
need to assess the probe’s performance. We will accomplish
this by measuring the QSNR over long encoding durations.
This investigation seeks to provide further information about
the probe’s efficiency for temperature estimation. Thus, the
steady state of the two qubits is as follows:

ρ(∞) = 1

2
(|01〉 〈01| + |10〉 〈10|)

= 1

2
tanh

(−k

T

)
(|01〉 〈10| + |10〉 〈01|). (22)

According to the above expression, the steady state QFI can
be obtained as

FT (t −→ ∞) = FT (∞) = 2κ2

T 4
[
cosh

(
2κ
T

) + 1
] . (23)

To infer the value of temperature in a bosonic environment
in possible experimental implementations, we use the POVM
on the two qubits. By improving the measurement method,
we may make our quantum thermometry technique more
practical, ensuring that the experimental procedures are prac-
ticable and robust under realistic conditions. In this context,
the Fisher information is provided as

FC (T ) =
4∑

i=1

[∂T pi]2

pi
, (24)

pi represents the probability distribution of the alternative
outcomes. Hence, for density matrix Eq. (22), it is straight-
forward to obtain

FC (T ) = 2κ2

T 4
[
cosh

(
2κ
T

) + 1
] ,

which is precisely equivalent to the QFI provided in Eq. (23).
The optimal QSNR [RT (∞)] in lengthy encoding times

can be obtained when tanh( κ
T ) = T

κ
, which is around 0.44.

However, Fig. 6 (top panel) shows the relationship between
steady-state QSNR and the ratio of qubit-qubit coupling (κ)
to temperature (T ). A significant insight emerges: the steady
state RT (∞) is solely defined by the ratio of κ/T , regardless
of the intensity of the dipole interactions. In other words, the
optimal steady QSNR depends simply on the relative values
of coupling κ and temperature T , not their individual mag-
nitudes. This implies that by adjusting the coupling strength
between the qubits to approximately κ/T ≈ 1.2, the sensitiv-
ity of temperature sensing can be enhanced. This enhancement
is shown in lower pane in Fig. 6. Optimizing the ratio of
qubit-qubit coupling to temperature increases the quantum
thermometer’s temperature sensing capacity, particularly at
low temperatures. The aim is to strike the correct balance

FIG. 6. The top panel shows how the steady-state QSNR, in-
dicated as RT (∞), relates to the ratio κ/T . The optimal QSNR
value is highlighted by red-point. The lower panel shows the link
between κ and T at this ideal position. All frequencies and energies
are expressed in terms of ω1 = ω2 = 1.

between coupling strength and temperature to enhance QSNR
and temperature measurement sensitivity.

IV. CONCLUSION

In this paper, we investigated the temperature estimation
of a bosonic reservoir utilizing single- and two-qubit quantum
probes. The thermal bath was viewed as a collection of nonin-
teracting bosonic modes. We examined the QFI and QSNR of
the probes in various beginning states.

On the one hand, we compared the thermometric perfor-
mance of a single qubit with and without an ancilla system,
which acted as a bridge between the probe qubit and the
sample under consideration. Specifically, the ancilla was cou-
pled to the probe qubit via an interaction Hamiltonian and
was directly coupled to the bath. Our findings showed that,
over short periods of time, a qubit directly connected to the
bath was the most effective approach to probe its temperature.
However, the existence of the ancilla system resulted in far
higher precision, as the ancilla imprinted information from
the sample and subsequently mapped it into coherences in
the probe system. Furthermore, by adjusting the probe-ancilla
coupling strength, the ancilla system enabled the probe state
to be significantly more temperature sensitive than the probe
state alone.

In this study of two qubits, two situations were considered:
one with each qubit interacting with its own independent bath
and another with both qubits interacting with a common bath.
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The performance of entangled and separated qubits was com-
pared. The findings revealed that nonequilibrium situations
do not increase temperature estimation precision, since the
QFI for all techniques converges to the same steady value.
Initial correlations between qubits do not improve probe per-
formance, and maximal accuracy was obtained in a relatively
short period when two qubits in independent local baths
are separable. Further research into steady-state efficiency
demonstrated that varying the qubit-qubit interaction intensity
enabled high-efficiency temperature sensing at low tempera-
tures. The proposed approach has substantial applications in
high-resolution quantum thermometry.

For potential realizations, superconducting qubits [49,50],
quantum dots [51,52], and Bose-Einstein condensates (BECs)
[53,54] are promising platforms. In superconducting qubits,
transmons or flux qubits could serve as the probe, with other
qubits or resonators as the ancilla, and resistive elements
as the thermal bath. Quantum dots and BECs can similarly
offer flexible and precise environments for implementing our
quantum thermometer.
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APPENDIX: DERIVATION OF THE GLOBAL
MASTER EQUATION

The global master equation in Eq. (7) is derived using the
methods described in Refs. [1,35] for open quantum systems.
To begin, we define the eigenvalues and eigenvectors of HS ,
or the total Hamiltonian of the two qubits, as follows:

HS |Ei〉 = Ei |Ei〉 , (A1)

such that the associated projection operators are

�(i) = |Ei〉 〈Ei| . (A2)

The interaction Hamiltonian between the system-bath can be
written in a general form

HI = A ⊗ B, (A3)

where A and B are, respectively, the system’s and bath’s
operators. In particular, for the bosonic bath we have B =∑

k gk (b†
k + bk ). The jump operators of the system are defined

as

A(ω) =
∑

Em−En=ω

�(n) A �(m), (A4)

and obeys the following relations:

[A(ω), HS] = ωA(ω),

[A†(ω), HS] = −ωA†(ω). (A5)

The sum in Eq. (A4) includes all energy eigenvalues Em and
En of HS with a constant energy difference of ω = Em − En.
In Eq. (7), the decoherence rates are calculated by following

Refs. [1,55] as follows:

γ (ω) = 2 Re

[ ∫ ∞

0
dτ eiωτ 〈eiHBτ Be−iHBτ B〉

]
. (A6)

By substituting the form of B, we straightforwardly obtain

γ (ω) = 2 Re

[ ∫ ∞

0
dτ eiωτ

∑
k

|gk|2(〈bkb†
k〉 e−iωkτ

+ 〈b†
kbk〉 eiωkτ )

]
. (A7)

Introducing the spectral density J (ω) = ∑
k |gk|2 δ(ω − ωk ),

and assuming that the bath is in a thermal state with a temper-
ature T , we can write the global master equation as

ρ̇t = − i[HS, ρt ]

+
∑

ω

2πJ (ω)n(ω)[A†(ω)ρt A(ω)

− {A(ω)A†(ω), ρt }/2]

+
∑

ω

2πJ (ω)[n(ω) + 1][A(ω)ρt A
†(ω)

− {A†(ω)A(ω), ρt }/2], (A8)

where n(ω) is the average thermal excitation number and
expressed as follows:

n(ω) = (eω/T − 1)−1. (A9)

We will investigate the thermometry of the bath spectral den-
sity, with a particular emphasis on the Ohmic form with a
cutoff frequency �, which is given as [1]

J (ω) = ηωe−ω/�. (A10)

To derive the case where the probe qubit indirectly coupled to
the bath via an ancilla system that is directly coupled to the
bath, we simply replace A(ω) by

∑
Em−En=ω �(n) σ A

z �(m) in
Eq. (A8), where σ A

z = I ⊗ σz.
In the case of two coupled qubits acting as a quantum

probe, we distinct two scenarios i.e., the two interacting qubits
are coupled to a common or each qubit is coupled to its local
bath. However, we begin with the case where each qubit is
coupled to its local bath. Since we are dealing with master
equations in the Born-Markov regime, the dissipators are ad-
ditive [56]. Therefore, the global master equation of the two
interacting qubits coupled to the local bath can be expressed
as follows:

ρ̇t = −i[HS, ρt ] + L1(ρt ) + L2(ρt ), (A11)

where L j (ρt ) with j = {1, 2}, describe the dissipation of the
qubit j due to its local thermal bath, and have the following
form:

L j (ρt ) =
∑

ω

2πJj (ω)n j (ω)[A†
j (ω)ρt A j (ω)

−{Aj (ω)A†
j (ω), ρt }/2]

+
∑

ω

2πJj (ω)[n j (ω) + 1][Aj (ω)ρt A
†
j (ω)

−{A†
j (ω)Aj (ω), ρt }/2], (A12)
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where Jj (ω) = η j ω e−ω/� with η j is the constant cou-
pling between the qubit j and its associated bath; n j (ω) =
(eω/Tj − 1)

−1
is the thermal occupation number of bath

j. The jump operators of the first and second qubit
are A1(ω) = ∑

Em−En=ω �(n) (σz ⊗ I) �(m) and A2(ω) =∑
Em−En=ω �(n) (I ⊗ σz ) �(m), respectively.
In contrast to local baths, the common reservoir shared by

the two qubits will introduce dissipative terms, as is evident
from Eq. (6). These terms include those of the form given in
Eq. (A11), as well as cross terms. Hence,

ρ̇t = −i[HS, ρt ] + LC
1 (ρt ) + LC

2 (ρt ) + LC
12(ρt ), (A13)

here the index C reflecting the common bath. The dissipators
arising from the common baths are given as

LC
j (ρt ) =

∑
ω

2πJj (ω)nC (ω)[A†
j (ω)ρt A j (ω)

−{Aj (ω)A†
j (ω), ρt }/2]

+
∑

ω

2πJj (ω)[nC (ω) + 1][Aj (ω)ρt A
†
j (ω)

−{A†
j (ω)Aj (ω), ρt }/2], (A14)

and LC
12(ρt ) reflects the collective behavior of the two qubits

induced by the common bath, and expressed as

LC
12(ρt ) =

∑
ω

2π �C
12(ω)(nC (ω)[A†

1(ω)ρt A2(ω)

−{A2(ω)A†
1(ω), ρt }/2]

+ [nC (ω) + 1[A2(ω)ρt A
†
1(ω)

−{A†
1(ω)A2(ω), ρt }/2]

+ nC (ω)[A†
2(ω)ρt A1(ω)

−{A1(ω)A†
2(ω), ρt }/2]

+ [nC (ω) + 1][A1(ω)ρt A
†
2(ω)

−{A†
2(ω)A1(ω), ρt }/2]), (A15)

with �C
12(ω) = √

J1(ω) J2(ω). The thermal occupation num-

ber of common bath nC (ω) = (eω/TC − 1)
−1

with TC is the
temperature of the common bath.
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