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Clock interferometry refers to the coherent splitting of a clock into two different paths and recombining in a
way that reveals the proper-time difference between them. Unlike the comparison of two separate clocks, this
approach allows testing how nonflat space-time influences quantum coherence. Atomic clocks are currently the
most accurate timekeeping devices. Here we propose using optical tweezers to implement clock interferometry.
Our proposed clock interferometer employs an alkaline-earth-like atom held in an optical trap at the magic wave-
length. Through a combination of adiabatic, tweezer-based splitting and recombining schemes and a modified
Ramsey sequence of the clock states, we achieve linear sensitivity to the gravitational time dilation. Moreover,
the measurement of the time dilation is insensitive to relative fluctuations in the intensity of the tweezer beams.
We analyze the tweezer clock interferometer and show that it is feasible with current technological capabilities.
The proposed interferometer could test the effect of gravitational redshift on quantum coherence and implement
the quantum twin paradox.
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I. INTRODUCTION

Atom interferometers (AIFs) are techniques for coherently
manipulating spatial superpositions of atomic wave functions
and measuring their phase difference. AIFs come in many
forms, yet they all share the same basic steps and structure
[1]. An AIF consists of input and output ports, typically two of
each type. The ports may be characterized by the outcome of
different observables, such as position [2], momentum [3,4],
and angular momentum [5]. A single atomic wave packet
populating one of the input ports is coherently split into two
spatially separated wave packets, so that each wave packet
is traveling on a different path. Each path may be under the
influence of a different potential, so that each wave packet
acquires a different phase. After acquiring the phase, the
wave packets are coherently recombined. This process maps
the phase difference between the wave packets to population
probabilities at the output ports. The populations are, in turn,
measured to infer the phase difference.

The most common type of AIF is free-space light-pulse in-
terferometry, such as the Kasevich-Chu interferometer (KCI)
[6]. In such architectures, atoms in free fall are split and
recombined in momentum space through the absorption of
photons, thus creating two possible spatial trajectories. An
alternative approach is to confine the wave packets in a poten-
tial well during all or part of their trajectories. These types of
AIFs, also known as guided AIFs, offer several potential ad-
vantages over traditional light-pulse AIFs, including arbitrary
atom trajectories, precise positioning, long probing times, and
compact experimental setups. An early demonstration of a
guided AIF was conducted with a Bose-Einstein condensate in
a double-well potential [7]. In recent years, several alternative
architectures for guided AIFs have been proposed. Among
the proposed methods for guided atomic interferometry, some
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techniques manipulate atomic trajectories using optical lat-
tices [5,8], while other utilize optical tweezers [2,9,10]. A
significant challenge in guided interferometry lies in fulfilling
the stringent requirement for the intensity stability of the con-
fining optical potential, which is crucial to prevent differential
phase noise.

AIFs, particularly the KCI, have been successfully em-
ployed in numerous precise measurements [11,12]. The fact
that AIFs involve massive particles and can detect extremely
small variations in force fields makes it an excellent choice
for gravitational measurements. Indeed, AIFs have been used
to test the weak-equivalence principle [13] and to determine
the gravitational constant [14,15]. One central tenet of general
relativity is the modification of proper time due to the metric.
Proper time, denoted by τ , is the time measured by an ideal
clock moving with the reference frame. The theory of general
relativity predicts that clocks tick slower near a large mass,
a prediction confirmed in several experiments comparing in-
dependent clocks positioned at different distances relative to
Earth’s mass [16–21].

In principle, time dilation can also be probed using an
AIF. As proper time is inherently tied to the metric in gen-
eral relativity, observing its influence on the wave function’s
interference pattern could probe the regime in which both
general relativity and quantum mechanics have a measurable
effect [22]. As an example, some theories propose treating
proper time as a quantum operator, with mass as its conjugate
[23,24]. In these theories, the uncertainty in proper time is
predicted to affect the visibility of the interference pattern
[25]. Other proposals suggest interferometric measurements
to test the connection between gravity and decoherence on
macroscopic scales [26,27].

The phase of a matter wave φ is connected to its proper
time through [28]

φ = mc2

h̄
τ, (1)

2469-9926/2024/110(3)/032602(10) 032602-1 ©2024 American Physical Society

https://orcid.org/0009-0009-0550-5538
https://orcid.org/0000-0002-3897-1393
https://ror.org/03qryx823
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.032602&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevA.110.032602


ILAN MELTZER AND YOAV SAGI PHYSICAL REVIEW A 110, 032602 (2024)

where m is the mass, c is the speed of light, and h̄ is the re-
duced Planck constant. This relation may lead one to conclude
that it is possible to use the accumulated phase in an AIF as a
means to measure the difference of the proper time. This claim
was made by Müller et al. as they reinterpreted light-pulse
interferometry experiments as a clock ticking in the Compton
frequency and, as such, used its measured phase difference
for calculating the gravitational redshift [29]. However, it
was claimed that the proper time cannot be measured by a
particle with a single internal state [30]. The phase difference
in a light-pulse AIF in free fall is only due to the different
phases of light pulses relative to the atoms accelerated by
gravity g [28]. To ascertain the proper-time difference, it is
necessary to employ a clock, which requires at least two inter-
nal states. While atomic clock interferometry was previously
realized with hyperfine states [31], it has yet to be performed
using states separated by optical transitions. Having a large
transition frequency is a crucial requirement for a feasible
measurement of the gravitational redshift.

A natural choice for clock interferometry is optical atomic
clocks, which are the most accurate man-made timekeeping
devices [32]. These clocks are based on measuring the optical
transitions between long-lived electronic states. Their oper-
ation relies on cold-atom technology, namely, the ability to
precisely control with light the internal and external degrees of
freedom of single atoms [33]. The atoms are held in an optical
potential for long probing durations. To eliminate systematic
shifts due to light shift, a “magic” wavelength is chosen for
the optical potential where the two internal states have equal
polarizability [32]. In most atomic clocks, the potential is
generated by an optical lattice, but recently, the use of optical
tweezers was also reported [34].

A step towards atomic clock interferometry has been taken
using the 1S0 − 3P0 optical clock transition of 88Sr [35–37]. In
these experiments, however, the splitting was accomplished
using a single-photon optical transition. Consequently, the
atoms in each interferometer arm were in one of the clock
states and not in a superposition of them. Therefore, they
did not act as a clock in the sense required for measuring
the proper-time difference between the arms. Guided atomic
clock interferometers (ACIFs) hold great promise for gravita-
tional measurements, in particular for testing the universality
of the gravitational redshift, the principle that the gravita-
tional time dilation is independent of the inner workings of
the clock [38,39]. In most light-pulse interferometers, the
proper-time difference between the arms is zero [28,40,41].
Previous works focused mainly on suggesting ACIFs based on
light-pulse schemes that overcome this difficulty [38,39,42].
Guided interferometers, on the other hand, are inherently
well suited for measuring differences in proper time. [39].
However, a concrete scheme for a guided ACIF using optical
transitions has yet to be proposed.

In this work, we propose an ACIF scheme that uses optical
pulses only to create a balanced superposition of the clock
states in each arm, while the splitting process is achieved by
using adiabatic tunneling transitions between optical tweez-
ers. The scheme achieves linear sensitivity to gravitational
time dilation, providing a significant signal in a realistic ex-
perimental timescale. Importantly, we show that when the
tweezer is at a magic wavelength, the interference signal

is insensitive to relative intensity fluctuations between the
tweezers. This property makes an interferometric measure-
ment of the gravitational redshift with our proposed scheme
feasible with current technological capabilities. The signifi-
cance of this experiment lies in measuring a general gravity
effect with a spatially separated coherent quantum state for
the first time.

The structure of this paper is as follows. In Sec. II we
briefly discuss tweezer atomic interferometry, previously pro-
posed in Ref. [2] in relation to atoms with a single internal
quantum state. In Sec. III we generalize this scheme for
tweezer clock interferometry, using unitary evolution calcu-
lations for the expected interference pattern. In Sec. IV we
analyze the expected signal in a realistic experimental sce-
nario and demonstrate that it can be measured. We conclude
and give an outlook in Sec. V.

II. TWEEZER ATOMIC INTERFEROMETRY

In Ref. [2], we introduced a guided AIF scheme using
optical tweezers. As the ACIF scheme we present in Sec. III
builds upon this concept, we briefly revisit it here for clarity.
In the tweezer AIF, the atom’s motion is controlled throughout
the entire interferometric sequence by manipulating the posi-
tion of the optical tweezers [43]. The sequence starts with the
atoms located in one of the tweezers. Coherent splitting and
recombining are achieved by an adiabatic change in the traps’
positions. We proposed two configurations for the splitters
and combiners, utilizing either a two-tweezer or three-tweezer
setup.

In the two-tweezer scheme, the trap potential is written as

V (x, t ) = −V0
{
e−2 x−d (t )/2

σ2 + [1 − �(t )]e−2 x+d (t )/2
σ2

}
, (2)

where σ is the waist of the Gaussian beam creating each of
the tweezers, V0 is the potential depth, and �(t ) is the relative
depth difference (also referred to as detuning) between the two
traps. Splitting of the wave function is achieved by changing
the separation between the traps d (t ) and detuning in the
following manner:

d (t ) = 1
2 (dmax + dmin) + 1

2 (dmax − dmin) cos (2πt/T ), (3)

�(t ) =
{
�max(1 − 2t/T ) if t < T/2,

0 if t � T/2,
(4)

where T is the total splitting process time and dmax (dmin) is the
initial (shortest) distance between the trap centers. The initial
separation is large enough that tunneling is negligible. The
initial detuning �max is chosen to be the largest possible value
before eigenstates with different vibrational numbers cross.

To explain how the splitting works, we consider a single
atom which is initially placed in the deeper trap. The splitting
sequence is slow enough to be adiabatic and consists of two
parts. First, the traps are brought closer to a distance dmin, and
simultaneously, the detuning is decreased to zero. Then, the
traps are moved back to their initial position while the de-
tuning remains zero. The splitting occurs due to the adiabatic
following of the atom’s wave function—at the beginning of
the process, the atom is in the double trap’s ground state,
located in the deeper trap. The adiabatic modification of the
potential ensures that the final atomic wave function is still the
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trap potential’s ground state, which is a balanced symmetrical
split between the traps. If an atom is initially placed in the
shallower trap, which corresponds to the first excited state of
the initial Hamiltonian, it will end in the antisymmetric split
state.

After the splitting phase, the wave packet in each of the
interferometer arms acquires a phase at a different rate due to
evolution under different potentials. At the end of the phase
acquisition stage, the combiner, which is the time reversal of
the splitter, is applied. If the interferometer arms finish the
process with a relative phase of 0 (π ) rad, the combiner maps
the atom position to the deep (shallow) trap. For any other
phase, the final atomic wave function will be a superposition
of populating each trap, thus achieving a phase-to-population
mapping in the combiner step of an interferometer.

The three-tweezer splitting scheme introduced in Ref. [2]
is similar to the two-tweezer scheme but also allows the detec-
tion of erroneous performance. Within the scope of this paper,
the differences between two- and three-tweezer splitters are
not important, as the operation in both scenarios is described
by the same unitary matrix.

An important feature of the optical tweezer AIF scheme
is that it can be executed with many atoms in a single run
[2]. This is attributable to the fact that the splitting and
recombining schemes can work successfully with different
initial vibrational eigenstates as long as they are still adiabatic.
Running an interferometric measurement with N atoms in
different vibrational states is equivalent to N runs with one
atom each, allowing for an improvement in the signal-to-noise
ratio at a given number of repetitions. Preparation of each
atom in a different eigenstate can be achieved by loading the
tweezer with fermionic atoms in a single spin state [44].

The guided interferometer architecture utilizing optical
tweezers presents several benefits compared to free-fall light-
pulse interferometry. In light-pulse interferometers, the atoms

are in free fall, necessitating a larger apparatus for longer
interrogation times. Conversely, in guided interferometers, the
interrogation time is not dependent on the apparatus size,
enabling a more compact system. Additionally, in a tweezer
AIF, the atom’s position is entirely determined by the tweezer
position, which allows for arbitrary trajectories during phase
accumulation. Due to its enhanced sensitivity and arbitrary
atom trajectory, the tweezer AIF can measure effects in clas-
sical and quantum gravity, e.g., measuring the gravitational
constant G [45], testing the Newtonian law at small distances
[45], measuring the gravitational redshift [39], and searching
for evidence of the gravitational-field quantization [46,47].
Most importantly, in the context of this paper, guided inter-
ferometers are sensitive to proper-time differences between
the arms [39], while existing light-pulse interferometers are
inherently insensitive to proper time [41]. Moreover, an op-
tical tweezer AIF working at a magic wavelength with an
atomic clock is ideally suited to measure the gravitational time
dilation, as we demonstrate in Sec. III.

III. TWEEZER CLOCK INTERFEROMETRY

According to general relativity, the proper time τ is deter-
mined by the metric gμν according to

τ =
∫

�

dτ = 1

c2

∫
�

√
gμν dxμdxν, (5)

where the integration is performed along a path �. Clocks
that follow different paths may experience a difference in their
proper time. In particular, if clocks are positioned at different
locations under the influence of a gravitational field, they
tick at a different rate. This prediction of general relativity
was confirmed using two clocks at different heights [16].
On the other hand, proper time is connected to the matter-
wave phase through Eq. (1). This serves as a motivation for

FIG. 1. The proposed scheme for interferometry with an atomic clock. The black solid lines represent the tweezers’ centers in one
dimension (vertical axis) as a function of time (horizontal axis). The upper trap is denoted as 1, and the lower trap is denoted as 2. Gray
vertical lines represent the optical pulses driving the transitions between the clock states (internal degrees of freedom). The curly brackets
indicate the time under the influence of a certain unitary transformation. The opacity and color of the shaded circles indicate the probability
to find an atom at a particular spatial mode. Uphase(T ) marks the evolution for a duration T of the trapped atoms while they are subjected to
Earth’s gravitational potential. We depict above the interferometer diagram vectors on the Bloch sphere of the atomic states in the spin- 1

2 -like
space spanned by the clock states at each corresponding time. The blue (red) arrows show the state in the upper (lower) arm.
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using a matter-wave interferometer as a probe in situations
where both general relativity and quantum mechanics are
relevant.

Optical tweezer AIFs, like those discussed in Sec. II, can be
used to measure phases arising from proper-time differences if
the atom has at least two internal states. This is due to the fact
that an atom with a single internal degree of freedom cannot
produce the periodic signal necessary for measuring proper
time [30,48]. Interferometers employing only a single internal
state can measure only the effects stemming from a difference
in the gravitational potential at different locations, analogous
to the gravitational Aharonov-Bohm effect [49]. Such obser-
vations were made using atomic and neutron interferometry
[50]. Atomic clock interferometry was previously proposed
as a method to measure proper-time differences [38,39,42,48].
However, these proposals suffered from the same limitation of
free-falling AIFs discussed in Sec. II. Previous discussions of
trapped AIFs [38,39] were mostly concerned with calculating
the redshift-induced phase difference, without considering the
questions of the splitting dynamics or the phase’s measure-
ment protocol. In what follows, we present a proposal for a
guided ACIF using optical tweezers at a magic wavelength,
including an analysis of its available observables. Our scheme
inherits the advantages of the tweezer AIF, namely, long
probing duration and high position accuracy. Additionally, the
measurement of the proper-time difference is insensitive to
relative intensity fluctuations, which makes it applicable to
current tweezer technology.

Our guided ACIF scheme is depicted in Fig. 1. It is a mod-
ification of the scheme discussed in Sec. II and can be applied
with both the two- and three-tweezer approaches. Unlike the
original tweezer AIF, it employs an atom which can be used
as an atomic clock, i.e., with two long-lived internal states,
denoted by |g〉 and |e〉. We choose to have the tweezers operate
at the magic wavelength of the clock, where both clock states
experience the same trap potential. The atom is initially pre-
pared in the ground state |g〉. Before the wave-packet splitting
stage, a π/2 pulse of an optical field, which is resonant with
the |g〉 ↔ |e〉 transition, is applied. This pulse generates the
superposition 1√

2
(|g〉 + |e〉).

Following the π/2 pulse, spatial splitting of the clock wave
function occurs using either two or three tweezers. As detailed
in Sec. II, achieving balanced splitting relies on adiabatic
following to reach the symmetric ground state of a symmet-
ric double-well potential. However, in the modified scheme
the splitting occurs in the direction defined by gravity. The
presence of a gravitational potential disrupts this spatial sym-
metry, potentially leading to imbalanced splitting. Numerical
simulations indicate that Earth’s gravitational potential results
in probability distributions of 44% and 56% for atoms being in
the higher and lower arms, respectively, thus diminishing the
visibility of interference fringes. To counteract this, applying a
magnetic field gradient to negate the gravitational force during
splitting and recombination is effective. Altering the depth of
the tweezers during the operation can also compensate for
the potential imbalance. Alternatively, conducting the splitting
and recombining processes in a plane perpendicular to gravity
and subsequently repositioning the arms at different heights
can eliminate gravity’s influence. For the remainder of this
analysis, we assume the imbalance in splitting is not signif-

icant and proceed with the evaluation using balanced atomic
beam splitters.

Each interferometer arm is moved to a different position
in the gravitational field. Therefore, each part of the clock
wave function experiences a different proper time. Before
the recombining phase, a π pulse on the |g〉 - |e〉 transition is
applied to only one of the arms. This pulse is necessary for
the interferometer fringe visibility to scale linearly with the
redshift, which is essential for making it detectable in a realis-
tic experiment. Since the transitions between the clock states
are driven by an optical field, it is straightforward to overlap
the driving beam with only one of the tweezers to accomplish
this step. The sequence ends with the spatial recombining
of the wave function, as described in Sec. II, followed by
another π/2 pulse on the clock degrees of freedom to close the
Ramsey sequence. The measured observables are the internal
state of the atom and the spatial output port. As we demon-
strate below, both quantities are required for a measurement
of proper-time differences in a coherent superposition of an
atom.

To proceed with the calculation, we use a unitary time-
evolution-operator approach. We label the vectors spanning
the relevant Hilbert space by |k; l〉, where k = g, e and l =
1, 2 denote the internal (clock) and external (paths) degrees of
freedom, respectively. The evolution operators employed in
the description of the interferometer are defined with respect
to the following vectors:

|g; 1〉 ≡ (1, 0, 0, 0),

|g; 2〉 ≡ (0, 1, 0, 0),

|e; 1〉 ≡ (0, 0, 1, 0),

|e; 2〉 ≡ (0, 0, 0, 1). (6)

After the splitting and before the recombining, we define the
energy difference �E (and the corresponding angular fre-
quency ω0) between the two clock states in path 2 as

�E = h̄ω0 = Ee;2 − Eg;2. (7)

We assume that there is a gravitational potential difference
between the paths �ϕ which gives rise to a difference in the
proper time. This means that clocks following the different
paths tick at different rates. Therefore, the transition energy
between the clock states must depend on the path since it can
be used as a clock. We write this explicitly as

Ee;1 − Eg;1 = �E + h̄ε, (8)

with ε = ω0
c2 �ϕ being the angular frequency difference due to

the gravitational redshift. Our goal for the ACIF sequence is
to allow determination of ε. It is important to note that in the
way we wrote Eqs. (7) and (8) we explicitly assumed that the
energy difference between the clock states does not depend on
the depth of the confining optical potential, which is justified
when the trap is operated at the magic wavelength.

To calculate the output of the interferometric sequence, we
define the unitary operations from which it is composed. UBS

is the unitary time-evolution operator corresponding to the
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spatial wave-function beam splitter,

UBS = 1√
2

⎛
⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟⎠. (9)

Uπ/2 corresponds to a π/2 pulse over the internal degree of
freedom for both interferometer arms,

Uπ/2 = 1√
2

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠. (10)

Uπ,l represents a π pulse over the internal degree of freedom
in the lower arm only; the upper arm remains unchanged:

Uπ,l = 1√
2

⎛
⎜⎜⎝

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠. (11)

Uphase(T ) corresponds to the phase-accumulation stage with a
duration T ,

Uphase(T ) =

⎛
⎜⎜⎝

1 0 0 0
0 e−iδT 0 0
0 0 ei(�+ε)T 0
0 0 0 ei(�−δ)T

⎞
⎟⎟⎠, (12)

where we omit the global phase and define the detuning
between the two lower state, δ = (Eg;2 − Eg;1 )/h̄, and the
drive detuning, � = ω − ω0, with ω being the frequency of
the field driving the transitions involving the internal states.
Equation (12) is written in a rotating frame defined by the
transformation

Urot(T ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiωT 0
0 0 0 eiωT

⎞
⎟⎟⎠. (13)

The final state after our proposed ACIF sequence can be
written as

|ψ f 〉 = U †
rot(T )U †

π/2U
†
BSUπ,lUphase(T )UBSUπ/2 |g; 1〉 . (14)

Note that we omit an initial Urot(0) since it is an identity.
Previous proposals of ACIF schemes included only one

available observable for measurements of the interference
pattern of the atomic phase due to proper-time differences
between the arms: either the spatial output port [31,38,42] or
the internal clock state [39]. A unique feature of the proposed
tweezer ACIF is that it has two spatial output ports and a
complete Ramsey sequence over the clock states; both exhibit
coherent oscillations. The probability of the atoms to exit the
interferometer from the upper port is given by

P1(ψ f ) = Pg;1 + Pe;1 = |〈g; 1|ψ f 〉|2 + |〈e; 1|ψ f 〉|2

= 1

2

{
1 − sin

[
T

(
Eg;2 − Eg;1

h̄
− ε

2

)]

× sin

[
T

(
� − ε

2

)]}
. (15)

A crucial requirement for an interferometric measurement is
the ability to verify that the atom was indeed in a coherent
superposition during the sequence. The result of Eq. (15)
allows this since it exhibits coherent oscillations between the
exit ports as a function of T . In contrast, if the wave packet
collapses randomly to one of the paths and the state becomes
completely mixed, the exit-port probability is P1,mixed(ψ f ) =
1
2 . This means that measuring oscillations around a probability
of 1

2 as a function of time verifies the coherence of the atomic
wave function.

The primary drawback of measuring the spatial output port
is its exit probability’s reliance on the difference between
the eigenenergies: Eg;1 − Eg;2. This dependency makes the
observable vulnerable to relative intensity fluctuations of the
trap beams. To address this issue, there are two strategies.
First, one could impose strict requirements on laser-intensity
stability throughout the interferometer’s duration to ensure
minimal noise in this measurement. In conventional atomic
interferometry, this is the sole approach since one needs to
determine the relative phase between the paths, which is done
by measuring the phase of the exit-port oscillations.

In our case, however, we only need to verify the coherence
of the split wave packet, which allows for a simpler approach.
Intensity differences between the tweezers (intentional or
unintentional) can introduce an essentially random phase in
the first sine term of Eq. (15). Given x = 1

2 − A sin(φ), with
A ∈ [0, 0.5] and the phase φ having a uniform random dis-
tribution in [0, 2π ], the probability distribution of x ∈ [0.5 −
A, 0.5 + A] is P(x) = 1

π
√

A2−(0.5−x)2
. In the case of Eq. (15),

A = 1
2 sin[T (� − ε

2 )] is set by the choice of T and � while
ε can be neglected. T and � are well controlled in the exper-
iment, and therefore, A can be regarded as constant. Thus, if
the wave packet is coherently split and maintained, the distri-
bution of the estimator of P1 should align with P(x) across a
sufficiently large dataset. Since P1 changes from run to run,
it is necessary to estimate it with sufficient accuracy in each
run. This requires interferometric runs with several atoms. As
we show in the next section, 10 atoms per run are already
enough to generate a clear distinction between coherent and
noncoherent wave packets.

With this approach we are still able to measure the gravi-
tational redshift ε, thanks to the availability of an additional
observable: the probability of the atoms to be in the clock
ground state at the end of the sequence (regardless of the
output port). It is given by

Pg(ψ f ) = Pg;1 + Pg;2 = |〈g; 1|ψ f 〉|2 + |〈g; 2|ψ f 〉|2

= 1

2

{
1 + sin

[
T

(
� − ε

2

)]
sin

[
T

ε

2

]}
. (16)

As is readily seen from Eq. (16), in contrast to the case of
measuring the spatial output port, the probability to finish in
the ground state depends only on � and ε and not on the
eigenenergies separately. Thanks to that, this observable is
insensitive to relative fluctuations in the depths of the tweez-
ers, which would shift the eigenenergies but do not affect ω0

and �, as long as we operate at the magic wavelength. This
means that for measuring the internal clock state, the main
noise source limiting guided AIFs is highly suppressed.
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The probability to be in the ground state is the same
whether the state is coherent or mixed. Therefore, it is essen-
tial to measure both the spatial output port and the internal
state of the atom. The measurement of the output port will
ensure the coherence of the atomic state, while the measure-
ment of the internal state, which is robust in the presence of
laser-intensity noise, will be used to extract ε.

The redshift is extracted from Eq. (16). By scanning the
waiting time T , the probability to find the atoms in the ground
state oscillates due to interference of the two paths. The os-
cillation frequency of this interference pattern is set by the
detuning of the driving field relative to the clock frequency
� shifted by ε

2 . Choosing � � 2π
T , ε ensures that the os-

cillations can be observed by scanning the time from T to
T + 2π/�, during which the amplitude of the oscillations is
almost constant and is given by

V = sin

(
T

ε

2

)
. (17)

Therefore, a measurement of the amplitude can be used to
determine ε. Importantly, for small redshifts (T ε 	 1), the
visibility scales favorably linearly with ε: V ≈ T ε/2. This
should be contrasted with a similar interferometric sequence
without the π pulse in the lower path. In that case, the visibil-
ity of the interference pattern scales as V ≈ 1 − (T ε)2/8. The
linear scaling of the visibility in our scheme is crucial to make
an experimental observation feasible, as we illustrate below.

IV. FEASIBILITY ANALYSIS

We first estimate the measurable effect in a realistic exper-
imental scenario. The redshift is

ε = ω0

c2
gh , (18)

with h being the height difference between the two interfer-
ometer arms. We take the atom to be 171Yb, with the clock
transition being 1S0 - 3P0. The energy difference between the
clock states corresponds to optical emission with a wavelength
of approximately λ = 578 nm. The magic wavelength of the
tweezer trap for this atom is around λmagic = 759 nm [51].

The resilience of the measurement to differential inten-
sity fluctuations depends on the stability of the tweezer
wavelength. Deviations from the magic wavelength result in
intensity-dependent light shifts in the clock states’ frequen-
cies [52,53], which in turn may reduce the accuracy. The
tweezers’ wavelength can be stabilized to the desired value
with submegahertz resolution [51,54], resulting in frequency
noise on the order of 10−5 Hz. This noise level has no effect
on the measurement accuracy, as we have confirmed through
numerical simulations.

To minimize motional transitions in the tweezer during the
optical pulse, operating within the Lamb-Dicke regime is re-
quired [32]. This regime is characterized by a small η = 2π

λ
x0,

where x0 represents the spatial extent of the atomic wave
function trapped in the tweezer. For a tweezer with a depth
of 300 µK and a waist of 1 µm, the resulting Lamb-Dicke
parameters are approximately η ≈ 0.3 and 0.73 in the radial
and axial directions, respectively. These values fall within the
operational range for optical atomic clocks [34], suggesting
they should be adequate for the interferometer. During the
phase-accumulation stage, in the absence of optical pulses,
a deep trap is unnecessary. To lower the chance of sponta-
neous emission from the tweezer light during this extended
phase, the depth of the tweezers should be reduced and then
increased again just before the recombination stage.

Like in Ref. [2], we assume a separation between the
two tweezer arms of h = 10 mm, aligned in the same di-
rection as Earth’s gravitational acceleration g. Taking a
phase-accumulation duration of T = 10 s, we obtain a visi-
bility of V ≈ 0.02. The oscillating signal appears on top of
a background signal of 0.5. To estimate the number of runs
required to clearly observe the gravitational effect, we perform
a Monte Carlo simulation of the entire experiment. In the
simulation, we set the detuning to � = 2π × 1000 Hz and
scan N1 different durations in the range T ∈ [10, 10 + 2π

�
].

For each of these durations, we simulate the measurement
with Na atoms according to Eqs. (15) and (16). We then repeat
the procedure N2 times for each duration to get an estimator
of Pg(T ) and P1(T ). We fit the fringe of the former, and from
the extracted visibility, we find ε. Additionally, we include

TABLE I. Different possible choices of experimental parameters. In all cases, we assume a separation of h = 10 mm between the
interferometer arms in Earth’s gravitational field. Similar to what we did in Fig. 2, we fix the number of different phases to N1 = 8. The
total runtime takes into account an overhead of 5 s per run. The relative accuracy is defined as one standard deviation of the extracted values
of ε over an ensemble of 1000 Monte Carlo simulation runs, normalized by the theoretical value of ε.

No. of atoms in a run Na

No. of repetitions per
phase and duration N2 Probing duration T (s) Total runtime (days)

Relative accuracy in
extracting ε (%)

100 5000 1 ∼2.8 38.1
100 10 000 1 ∼5.6 28.4
20 5000 3 ∼3.7 28.9
100 5000 3 ∼3.7 12.9
100 10 000 3 ∼7.4 9.8
10 1000 10 ∼1.4 28.4
10 5000 10 ∼7 12.4
20 5000 10 ∼7 8.8
100 1000 10 ∼1.4 9
100 5000 10 ∼7 3.8
100 10 000 10 ∼13.9 2.7

032602-6



ATOMIC CLOCK INTERFEROMETRY USING OPTICAL … PHYSICAL REVIEW A 110, 032602 (2024)

0 0.2 0.4 0.6 0.8 1
T - 10 [s] 10-3

0.485

0.49

0.495

0.5

0.505

0.51

0.515

E
st

im
at

or
 o

f P
g

FIG. 2. Numerical simulation of the interferometric measure-
ment with a separation of h = 10 mm in Earth’s gravitational field. In
this simulation, we used � = 2π × 1000 Hz, Na = 20 atoms per run,
and N2 = 5000 repetitions of each duration. The circles represent
the average of the estimator of Pg, with error bars that represent the
standard error. The solid line is the fit to Eq. (16), with the amplitude
and phase being the free parameters.

intensity fluctuations between the tweezer arms by adding a
random energy shift on the order of h̄� between the Eg;2 and
Eg;1 states.

A typical result of the simulation is shown in Fig. 2. In
this example, we take Na = 20 atoms per run and N2 = 5000
repetitions. Factoring in an overhead of 5 s for each run, the
total duration per run extends to 15 s. Scanning the fringe at
N1 = 8 different phases, as shown in Fig. 2, requires about a
week of data collection. With these parameters, the fringe con-
trast is clearly visible, and the relative accuracy (one standard
deviation) in determining ε is approximately 9%. Importantly,
the accuracy of the extracted ε is not compromised by the
intensity fluctuations between the tweezers. In Table I, we
present the relative accuracy for other realistic choices of
parameters. In all cases, the accuracy allows unambiguous
determination of a gravitational redshift effect.

The Monte Carlo simulations allow us to test our approach
to verify the coherent splitting. The random fluctuations we
introduce in the relative ground-state energies translate into
an essentially random phase of the first sine term in Eq. (15).
In Fig. 3, we plot the histogram of the estimator of P1

(darker shading) for 10 (top) and 100 (bottom) atoms in
each run. For comparison, we also depict the histogram ob-
tained if a collapse randomly occurs in one of the two arms
(brighter shading). The coherent and incoherent histograms
are markedly different. In particular, the probability of find-
ing highly unbalanced splitting between the output ports is
negligibly small when the wave packet decoheres, while it is
maximal if it maintains its coherence. These results prove that
the coherence of the wave packet can be verified even in the
presence of strong intensity fluctuations and with a relatively
small number of atoms.

Operating two optical Ramsey-like pulses coherently over
several seconds requires a narrow linewidth of the clock laser.

Na=10
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FIG. 3. Histograms of the estimator of P1 for coherent and inco-
herent splitting. The histograms are from an ensemble of 1000 Monte
Carlo simulation runs that include strong intensity fluctuations be-
tween the tweezer arms. In the incoherent splitting case (brighter
shading), we assume that the wave packet randomly collapses to one
of the arms after the splitting stage. For both Na = 10 atoms (top)
and Na = 100 atoms (bottom) per run, the coherent and incoherent
histograms are easily distinguished. The parameters in these simu-
lations are T = 10.000 25 s, � = 2π × 1000 Hz, h = 10 mm, and
N2 = 5000. The different discretizations of the x axis are due to the
different Na, which results in a different finite set of possible values
of P1 in each run.

This requirement is similar to what is needed in light-pulse
interferometers using the optical transition in 88Sr [55]. State-
of-the-art laser systems built for atomic clocks can achieve a
linewidth below 10 mHz [56,57]. A recent experiment with a
tweezer atomic clock reported an atom-light coherence time
of 3.6 s [34]. The reduced coherence time relative to the limit
dictated by the laser linewidth is likely due to fluctuations in
the tweezer position or uncontrolled phase noise from envi-
ronmental factors. Even so, as shown in Table I, this time is
sufficient to determine the redshift with an accuracy better
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than 10%. We conclude that the observation of gravitational
redshift with ACIFs is within the reach of current technologi-
cal capabilities.

V. DISCUSSION

We introduced a guided atomic clock interferometer ap-
proach, an extension of our previous tweezer interferometer
method [2], tailored for atoms with two internal states. This
technique employs optical laser pulses to create a superposi-
tion of the internal states and utilizes precise manipulation of
the tweezers’ position and intensity for the spatial adiabatic
splitting and recombining of the wave packet. After comple-
tion of the interferometric scheme, we recorded the population
within each clock state and exit port. The statistical distribu-
tion of the splitting between the two exit ports confirmed the
wave packet’s spatial coherence throughout the experiment.
Oscillations between the internal states revealed time dilation
across the paths. In particular, the visibility of these oscilla-
tions is instrumental in determining the gravitational redshift
between the interferometer arms. Clock interferometry, which
has not been performed to date, is achievable using our pro-
posed scheme with the current state of technology.

Quantum theory has been tested successfully in many ex-
periments, including with atomic interferometry. Similarly,
predictions of general relativity have also been verified,
including measurements of the gravitational redshift using
two separate clocks [16–21]. However, theories concerning
regimes in which both quantum mechanics and general rela-
tivity are relevant remain untested. The proposed ACIF could
probe this unexplored regime for the first time [22].

One theory on the intersection of quantum mechanics
and general relativity suggests that gravitational redshift con-
tributes to the decoherence observed in the classical limit [26].
In the context of a clock interferometer, the gravitational field
causes entanglement between the atom’s internal state and its

spatial wave function. In a larger-scale scenario, a body com-
posed of many such internal degrees of freedom can be viewed
as multiple clocks operating at varying rates, influenced by
the gravitational field. This variance in ticking rates leads to
dephasing among the clocks and, consequently, a reduction in
coherence for the spatial wave function. This offers a potential
explanation for decoherence in the classical limit that does not
rely on interaction with environment. Using an ACIF to test
the case of a single clock is the first step towards testing the
effect of gravity on the coherence of macroscopic objects.

An ACIF experiment may also have implications for theo-
ries of quantum time. In general relativity, time is dynamic
and dependent on the metric, functioning as a dimension.
Conversely, quantum theory treats time as a global parameter.
To resolve this discrepancy between general relativity and
quantum theory, there have been suggestions for a dynamic
quantum time operator [58,59]. Some of these suggestions
advocate for considering proper time as the quantum operator,
with mass being its conjugate. This allows for a quantum
operator representation of mass as well [23,24]. If proper
time is represented by a quantum operator, its uncertainty
could influence the expected visibility of an ACIF exper-
iment. Therefore, measuring deviations from the expected
result could help constrain theories of quantum proper time
[25].
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