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Experimental investigation of quantum discord in spin-orbit X states
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We perform an experimental study of quantum discord on spin-orbit modes of an intense laser beam, analogous
to different X states. These modes are prepared through the incoherent superposition of different intense laser
beams, encoding a two-qubit system in both polarization and the first-order Hermite-Gaussian modes [as
proposed in Phys. Rev. A 103, 022411 (2021)]. We characterize these modes by using all-optical tomography and
calculated entropic quantum discord. Remarkably, even for high-fidelity mode reconstruction, the computation
of quantum discord showed significant deviations from theoretical expectations. Then, we proposed a simple
model based on noisy measurements that showed a small degradation of the fidelity of the output modes, giving
rise to the strong deviation of the discord. Our results, both experimental data and the theoretical predictions,
demonstrate good agreement.
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I. INTRODUCTION

Quantum discord (QD) [1] is an important resource for
quantum computation and quantum information [2], exploring
a diverse range of scenarios where the relation of classical
correlations and quantum mutual information is pivotal. These
scenarios include applications such as remote-state prepara-
tion for quantum communication [3,4], critical systems [5],
mixed-state metrology [6], spin models [7], and multiqubit
systems [8]. In the QD dynamics scenario, investigations have
been conducted on two-qubit systems in non-Markovian sce-
narios [9,10], as well as in the context of photonic crystals
[11] and two-photon states [12].

Recently, QD has been an essential tool for different quan-
tum tasks, such as quantum key distribution protocols [13,14]
and quantum metrology [15]. Studies of correlations such
as contextuality [16] and coherence, entanglement, and QD
relation of X states [17] were developed. Such correlations
lead to exploring quantum thermodynamics [18].

Considering some cases of mixed states for a given amount
of classical correlation, it is important to maximize QD. This
task was achieved using an unbalanced Bell state, giving rise
to the maximally discordant mixed state (MDMS) [19]. Such
states were generated by using dissipative schemes [20]. Two
separable qubits presented QD quantified by local operations
[21]. Lately, necessary conditions were demonstrated for ob-
taining maximally discordant, separable two-qubit X states
[22]. The X states scenario is, indeed, a fertile environment
for QD studies [23–25].

The use of structured light stands between the main plat-
forms for implementing protocols and studies on quantum
information and quantum computation. By associating the
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polarization degree of freedom (DoF) and first-order trans-
verse mode, we can prepare the well-known spin-orbit (SO)
mode [26]. The quantum-classical analogy, presented by a
laser beam prepared in nonseparable spin-orbit modes, has
been investigated in experiments that showed violation of Bell
inequality, pointing out the similar structure of nonseparable
SO modes with entangled states [27–29]. By adding the path
DoF, a tripartitelike state was prepared, and it was an observed
violation of Mermin’s inequalities [30]. These SO modes have
also been used to study other correlations, such as contextu-
ality [31]. Genuine entanglement between different DoF of a
single photon emerges from quantization of SO modes [32].

Similarly, this platform has been employed to emulate
various quantum information and quantum computation pro-
tocols, including quantum key distribution without referential
frame [33], teleport protocol between DoF of light [34],
and quantum channels [35]. Fundamental aspects have been
explored as environment-induced entanglement [36] and non-
Markovian signatures [37]. A seminal contribution was made
through the optical simulation of quantum thermal machines
[38]. We cannot forget the various implementations of logic
gates exploiting structured light [39–41].

The study of QD presented in this paper is grounded in
X state preparation using SO modes [42]. Different state
preparation optical circuits were proposed for various states,
including Werner states and other incoherent superpositions.
A linear optical circuit for tomography of spin-orbit DoF
was introduced. The preparation and characterization were
computationally performed, and the calculated QD exhib-
ited a remarkable agreement with theoretical expectations.
Maximally discordant mixed states were proposed [43], ne-
cessitating the preparation of an unbalanced nonseparable
mode, recently achieved experimentally [44]. However, to
the best of our knowledge, no experimental studies on the
quantum discord of spin-orbit X states have been performed.
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FIG. 1. Experimental setup to generate ρ1 = [(c/2, 0, 0, c/2);
(0, 0, 0, 0); (0, 0, 0, 0); (c/2, 0, 0, 1 − c/2)]. Li (i = 1, 2)
stands for lasers. MHG stands for the holographic mask. NF stands
for the variable neutral filter. BS stands for beam splitter. SWP
stands for S-wave plate.

In this work we perform an experimental study of QD
of spin-orbit modes of an intense laser beam analogous to
different spin-orbit X state classes. We perform spin-orbit to-
mography. The effect of a nonfaithful reconstruction of those
of the states in QD is investigated. The paper is organized
as follows. In Sec. II we present a theoretical review, present
QD calculation, and investigate spin-orbit modes. Section III
presents the optical circuits for spin-orbit X states preparation
and for performing spin-orbit tomography. The experimental
results are presented and discussed in Sec. IV. Section V
presents a model to study QD behavior, considering fidelity
degradation induced by experimental errors. This study is nec-
essary to understand our results. Finally, concluding remarks
are presented in Sec. VI.

II. THEORETICAL REVIEW

A. Quantum discord

QD [1] is widely discussed in the literature, having appli-
cations in the development of quantum technologies and the
study of the fundamentals of quantum mechanics. In techno-
logical contexts, QD serves as a quantum resource, enabling
the exploration of quantum processing capabilities necessary

FIG. 2. Experimental setup to generate ρ2 = [(c/2, 0,

0, c/2); (0, (1 − c)/2, (c−1)/2, 0); (0, (c − 1)/2, (1 − c)/2, 0);
(c/2, 0, 0, c/2)]. Li (i = 1, 2) stands for lasers. PBS stands for
polarized beam splitter. BS stands for beam splitter. HWP stands for
half wave plate. SWP stands for S-wave plate.

FIG. 3. Experimental setup to generate ρ3 = [((1 − c)/3,

0, 0, 0); (0, 1/3, −1/3, 0); (0, −1/3, 1/3, 0); (0, 0, 0, c/3)]. Li

(i = 1, 2, 3) stands for lasers. MHG stands for holographic mask.
NF stands for the variable neutral filter. BS stands for beam splitter.
SWP stands for S-wave plate. BB stands for beam block.

to achieve advantages in specific tasks [3,45,46]. Moreover,
quantum discord (QD) is interpreted as an indicator of the
system’s quantum nature, effectively distinguishing between
quantum and classical correlations [5,47]. Due to the com-
plexity of the quantum realm, there are numerous definitions
of quantum discord, including entropic QD and geometric
QD [48].

For instance, for a bipartite system described as a density
operator ρAB, the entropic QD is defined as

Q(ρAB) := I (ρAB) − CC (ρAB), (1)

where I (ρAB) is the usual quantum mutual information, and
CC (ρAB) is the classical correlation given by

CC (ρAB) = S (ρA) − min
{Bi}

∑

i

S (ρA|{Bi}), (2)

with S (ρA) and S (ρA|{Bi}) the von Neumann entropy of subsys-
tem A before and after performing a local measurement Bi on
subsystem B, respectively. So the term S (ρA|{Bi}) is interpreted
as a measurement-induced conditional entropy which, for a
two-qubit system, can be expressed as

S (ρA|{Bi}) = p0S(ρ0) + p1S(ρ1). (3)

FIG. 4. Experimental setup to perform tomography. CL stands
for cylindrical lenses. DP stands for Dove prism. HWP stands for
half-wave plate. QWP stands for quarter-wave plate. MZIM stands
for Mach-Zehnder interferometer with one additional mirror. M
stands for mirror. PZT stands for mirror with a piezoelectric ceramic.
PBS stands for polarized beam splitter. BS stands for beam splitter.
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FIG. 5. Recorded images (false color) for ρ1 in the case c = 0, corresponding to the separable mode |V v〉 for tomographic measurements.
Within the parenthesis, we provide the experimental (Iexp) and the theoretical (ITheo) normalized intensities. The pair (Iexp, ITheo) corresponds to
experimental and theoretical normalized values, respectively, for the correspondent basis element.

Note that p0 and p1 are the probabilities of finding sys-
tem A at the states ρ0 and ρ1 after performing a local von
Neumann measurement {Bi} on subsystem B. Equation (2)
illustrates the necessity of a minimization procedure over all
sets of von Neumann measurement operators {Bi}, which can
be prohibitively hard to solve analytically, and for this reason,
a general formula for two-qubit quantum discord is lacking.
Despite this limitation, our work focuses on studying QD in
the context of two-qubit X states, a well-known class of states
for which a QD formula was derived in Ref. [24]. However,
due to experimental errors in the state tomography process,
the reconstructed state will not have an exact X form, inval-
idating the use of such formulas. Consequently, employing
numerical methods to estimate QD is ultimately necessary. In
this approach, classical correlation is obtained by numerically
searching for the set of von Neumann measurements that max-
imizes the quantity given by Eq. (2). For this reason, precise
knowledge of the system’s density operator is critical for QD
computation.

Even considering other approaches aimed at minimiz-
ing the measurement process, particularly in the context of
geometric-based QD estimation [49], it remains necessary to

employ a complete tomography process for estimating en-
tropic QD. For instance, in Ref. [50], a proposal is presented
for obtaining QD through an alternative method, which in-
volves the explicit measurement of system B on an optimal
basis followed by a tomography process on subsystem A.
The optimal basis is defined as the one that maximizes the
quantity expressed by Eq. (2). Following Eq. (2), we can
perform tomography on the reduced subsystem A before and
after the local measurement on B, allowing us to compute the
von Neumann entropy and subsequently estimate the classical
correlation. However, it is important to note that even in this
alternative approach, knowledge of the total density matrix
remains indispensable once quantum mutual information de-
pends on it.

B. Studied mixed spin-orbit X states

Spin-orbit modes can be understood as an integrated de-
scription of the electromagnetic field by polarization and
transverse-mode DoF [26]. The most general SO modes are
linear polarization ê and first-order Hermite-Gaussian (HG)
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FIG. 6. Theoretical (left) and experimental (right) density matrix for the mode ρ1 in the case c = 0 corresponding to the separable
mode |V v〉. The experimental result led us to ρ1 = [(0 + 0i, 0 + 0i, 0 + 0i, −0.03 − 0.02i); (0 + 0i, 0 + 0i, 0.02 − 0.03i, 0 + 0.05i); (0 +
0i, 0.02 − 0.03i, 0.04 + 0i, 0.02 − 0.02i); (−0.03 + 0.02i, 0 − 0.05i, 0.02 + 0.02i, 0.96 + 0i)]. Fidelity of the reconstructed mode is F =
0.963 ± 0.004.

modes, which can be written as

�ESO(�r) = αHG10(x, y)êH + βHG10(x, y)êV

+ γ HG01(x, y)êH + δHG01(x, y)êV , (4)

where the Greek coefficients are complex numbers that obey
the relation |α|2 + |β|2 + |γ |2 + |δ|2 = 1. When such a base
is used for the quantization of the electromagnetic field, we
can write the quantum state of the electromagnetic field as

|ψSO〉 = aHh |Hh〉 + aHv |Hv〉 + aV h |V h〉
+ aV v |V v〉 , (5)

where we used the notation êH ≡ H , êV ≡ V for polariza-
tion DoF, and HG01(�r) ≡ h, HG10(�r) ≡ v for transverse-mode
DoF. The probabilities amplitudes ai j (i − H,V, j = h, v) are
normalized.

Following the proposal of Ref. [42], the emulation of
quantum mixed states can be accomplished by combining
independent laser beams, with each beam encoding a pure
state of two qubits. Once the lasers are independent, there is
no well-defined phase relation between them and they do not
interfere. So the measurement outcomes will be the sum of the
contribution of intensity of each beam, providing the statistics
of a mixed state.

The mixed modes experimentally investigated are the fol-
lowing:

ρ1 = c |φ+〉 〈φ+| + (1 − c) |V v〉 〈V v| , (6)

ρ2 = c |φ+〉 〈φ+| + (1 − c) |ψ−〉 〈ψ−| , (7)

ρ3 = 1
3 [c |V v〉 〈V v| + (1 − c) |Hh〉 〈Hh| + 2 |ψ−〉 〈ψ−|],

(8)

where c ∈ [0, 1]. Here, |φ+〉 = 1√
2
(|Hh〉 + |V v〉) and |ψ−〉 =

1√
2
(|Hv〉 − |V h〉) are the maximally nonseparable mode, ana-

log of Bell states [27]. Once we need the density matrix to
compute quantum discord, we must implement a two-qubit,
quantumlike state tomography process to estimate the density
matrix.

III. EXPERIMENT

A. State preparation

To prepare the states ρ1, ρ2, and ρ3, given, respectively,
by Eqs. (6), (7), and (8), we use the circuits represented
in Figs. 1–3, respectively. All those optical circuits operate
similarly: we prepare ensembles of pure states encoded in
independent beams, which are combined to produce a mixed
state.

The optical circuit for preparing the state ρ1, given by
Eq. (6), is shown in Fig. 1, illustrating an S-wave plate with
the axis on angle @0◦ (SWP@0◦) with the horizontal acts
converting a vertically polarized input laser beam (L1) into
a maximally nonseparable spin-orbit mode |φ+〉. The neutral
filter NF@a1 with adjustable transmittance (Ta1 ) is used to
control the intensity of mode |φ+〉.

On the other branch, an independently operated laser beam
(L2), vertically polarized, illuminates a holographic mask
MHG01 to prepare the HG01 ≡ v mode. The neutral filter
NF@a2 with adjustable transmittance (Ta2 ) is used to control
the intensity of mode |V v〉.

Both independent pure modes are superposed in a 50/50
beam splitter (BS) to produce mixed spin-orbit modes ρ1. By
controlling the transmittance Ta1 and Ta2 of the neutral filters,
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FIG. 7. Recorded images (false color) for maximally nonseparable state |φ+〉 tomographic measurements. Within the parenthesis, we
provide the experimental (Iexp) the theoretical (ITheo), and normalized intensities. The pair (Iexp, ITheo) corresponds to experimental and
theoretical normalized values, respectively, for the correspondent basis element.

the suit intensity proportions are adjusted to get the desired
mixed state. To reproduce the mode class given by Eq. (6), we
set Ta1 = c and Ta2 = 1 − c.

For the ρ2 mode, given by Eq. (7), the preparation requires
the combination of two independent, maximally nonseparable
modes, |φ+〉 and |ψ−〉. Then, as shown in Fig. 2, a ver-
tically polarized laser beam is directed through an S-wave
plate (SWP@0◦) to prepare the mode |φ+〉. The neutral
filter NF@a1 controls the intensity using its transmittance
Ta1 . A second vertically polarized laser (L2) has intensity
controlled by the neutral filter NF@a2 with transmittance
Ta2 , which is directed through a second S-wave plate at 90◦
(SWP@90◦) to prepare the mode |ψ−〉. A 50/50 BS is used
superpose the mixed mode ρ2 also by setting Ta1 = c and
Ta2 = 1 − c.

Finally, to prepare the mode ρ3 given by Eq. (8), we used
the optical circuit presented in Fig. 3. Note that the modes
class ρ3 is composed of a fixed fraction (2/3) of the maxi-
mally nonseparable mode |ψ−〉, and the remaining 1/3 of the

intensity is composed by a variable convex combination of
separable modes |Hh〉 and |V v〉.

A laser (L1) then has its vertical polarization rotated 90◦
by the HWP@45◦, and the MaskHG10 produces the h HG
mode that completes the |Hh〉 mode preparation. Its intensity
is controlled by the neutral filter NF@a1 with transmittance
Ta1 . A second laser (L2) prepares the mode |V v〉 by us-
ing the MaskHG01 and has its intensity controlled by the
neutral filter NF@a2 with transmittance Ta2 . A third laser
(L3) vertically polarized shines the SWP@90◦ to produce the
maximally nonseparable mode |ψ−〉, which has its intensity
controlled by NF@a3 with transmittance Ta3 . The three modes
are superposed in 50/50 BS, and the transmittances are ad-
justed as Ta3 = 2/3 of the total intensity, Ta1 = c/3 and Ta2 =
(1 − c)/3.

The prepared state can be characterized by a tomography
process, enabling us to reconstruct the state by accessing
statistics obtained by a set of projective measurements on a
different basis, as mentioned earlier.
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FIG. 8. Theoretical (left) and experimental (right) density matrix for ρ1 in the case c = 1, corresponding to the maximally nonsepara-
ble mode |φ+〉. From the experimental result we have ρ1 = [(0.49 + 0i, −0.03 + 0.01i, 0 − 0.05i, 0.35 − 0.02i); (−0.03 − 0.01i, 0.02 +
0i, 0.03 + 0.02i, −0.03 − 0.03i); (0 + 0.05i, 0.03 − 0.02i, 0.01 + 0i, 0 + 0.05i); (0.35 + 0.02i, −0.03+0.03i, 0−0.05i, 0.47+0i)]. The
fidelity for reconstructed mode is F = 0.898 ± 0.005.

B. Optical circuits for spin-orbit tomography

The spin-orbit mode tomography process can be imple-
mented optically by the setup in Fig. 4, following [42]. This
setup enables state reconstruction through a series of inten-
sity measurements, which are used to calculate all Stokes
parameters, Si j [51], where i, j = 0, 1, 2, 3. The labels i and j
are associated with polarization and transverse mode, respec-
tively.

The MZIM (Mach-Zehnder interferometer with an addi-
tional mirror) associated with polarized beam splitters 1 and
2, PBS1 and PBS2, measure the two-qubit computational basis
{Hh, Hv, V h, V v}. The parity selection performed by the
MZIM associated with PBSs gives us four intensity outputs
Ii j related to the projections in each computational basis com-
ponent. The outputs illuminate a screen that is captured by a
monochromatic CCD camera. This setup provides an image
recording the four intensities simultaneously, allowing us to
calculate the probability of each basis component as follows:

Pi, j = Ii, j

IT
, (9)

where Ii, j (i = H,V ; j = h, v) is the gray scale intensity in-
tegration of each component i j given by the image recorded
by the CCD camera in the output i j. IT is the total gray scale
intensity obtained by the sum of the four outputs.

The measurement in the rotated basis of polarization DoF
is performed by adding alternately in the input state path
a half-wave plate at 22.5◦ (HWP@22.5◦) and a quarter
wave plate at 90◦ (QWP@90◦). To measure the diagonal–
antidiagonal (D/A) basis we include only the HWP@22.5◦.
For measurements in the right–left circular basis (R/L), we

used both HWP@22.5◦ and QWP.@90◦ associated with
MZIM and PBS units.

For the d/a and r/l basis for transverse-mode DoF, a
Dove prism with its base rotated by 22.5◦ plays an analog
role of HWP@22.5◦ for h and v HG modes. The π/2 mode
converter composed of two cylindrical lenses plays the role
of QWP.@90◦. It is worth mentioning that to satisfy the
mode-matching requirement for the π/2 mode converter it is
necessary to associate a pair of spherical lenses, denoted as
SL1 and SL2, as shown in Fig. 4. This is a sensitive point and
a source of the most pronounced experimental error.

A detailed description of all tomographic measurement sets
for each Stokes parameter for spin-orbit tomography can be
found in the proposal of Ref. [42].

It is worth emphasizing the need for a set of lenses to
control the laser waists, as we need to superimpose the modes
of each independent laser to prepare the states. Most critically,
for tomography, all modes must satisfy the mode-matching
conditions of the cylindrical lens telescope and be aligned
simultaneously in the MZIM. These lens assemblies are not
shown in the experimental setups. Such control is fundamental
for the measurement.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results for
spin-orbit mixed-state tomography performed on the states
theoretically described by Eqs. (6), (7), and (8).

A. Recovered spin-orbit mode density matrix

First, we present the results for the state ρ1. We will present
the obtained images for c = 0, c = 0.5, and c = 1.
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FIG. 9. Recorded images (false color) for ρ1 in the case c = 0.5, corresponding to a balanced mixed mode for tomographic measurements.
Within the parenthesis we provide the experimental (Iexp) and the theoretical (ITheo) normalized intensities. The pair (Iexp, ITheo) corresponds to
experimental and theoretical normalized values, respectively, for the correspondent basis element.

Figure 5 presents the recorded images (false color) for the
tomographic measurement for c = 0 that corresponds to the
separable mode |V v〉 for each set of basis. The image labeled
as IV v is the intensity recorded in the output for the com-
ponent |V v〉, corresponding to the set of the computational
basis for polarization {H,V } and transverse mode {h, v}. The
image labeled as ILa corresponds to measurement on a rotated
basis, which is the intensity recorded in the output for the
component |La〉, corresponding to the mode with left circular
polarization (|L〉), corresponding to component L measured
with a set of rotated basis right–left ({R, L}) for polarization
and the transverse mode |−〉 corresponding to the component
“a” of the measurement in the diagonal–antidiagonal basis
{d, a}. Then, all labels indicate one result of the 36 combined
measurements in the three bases for each DoF required for
tomography [42].

The parenthesis below each image presents experimental
and theoretical normalized intensities, in pairs (Iexp, ITheo),
respectively, for the correspondent basis element. Although
the values are generally close, certain deviations can be at-
tributed to previously mentioned experimental errors. As the
number of optical elements increases, deviations are ampli-

fied, as expected. Particularly, measurements on the basis set
{Rr, Rl, Lr, Ll} exhibit more deviations as it requires more
optical elements. These measurements are notably affected by
astigmatic optical devices such as the mode converter and the
Dove prism complicating the alignment process and insert-
ing aberrations in DoF. It is important to stress Dove prism
slightly affects the polarization DoF. Consequently, some out-
puts that ideally should have no intensity are observed to be
illuminated. This will impact the quantum state tomography
process, leading to a decrease in fidelity.

Figure 6 presents the theoretical (left) and experimental
(right) density matrix of the mode c = 0. As we can see, we
obtained a good agreement with theoretical expectations. The
fidelity of the reconstructed mode is F = 0.963 ± 0.004. The
error was estimated using Monte Carlo simulations, consid-
ering the uncertainty in intensity measurements. The same
approach was used to calculate the errors of all experimen-
tal data. Mode |V v〉 is not hard to prepare, and its fidelity
would be closer to unity. This points out that the main ques-
tion for fidelity in this case is not the mode preparation but
the tomography process that requires astigmatic components.
All these difficulties discussed above introduce noise in the
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FIG. 10. Theoretical (left) and experimental (right) density matrix for ρ1 in the case c = 0.5, corresponding to a balanced mixed mode given
by Eq. (6). The experimental result give ρ1 = [(0.28 + 0i, −0.02 + 0.01i, 0 − 0.02i, 0.16 − 0.02i); (−0.02 − 0.01i, 0.02 + 0i, 0.03 +
0.03i, 0 + 0.01i); (0 + 0.02i, 0.03 − 0.03i, 0.05 + 0i, 0.01 + 0.03i); (0.16 + 0.02i, 0 − 0.01i, 0.01 − 0.03i, 0.66 + 0i)]. The fidelity for
the reconstructed mode is F = 0.95 ± 0.01.

measurements and impose a limit on the fidelity of the recon-
structed density matrix.

Let us present the results for the mode with c =
1.00, corresponding to the maximally nonseparable pure
mode |φ+〉. Figure 7 presents the recorded image (false
color) obtained for the tomographic measurement. The pair
(Iexp, ITheo) corresponds to experimental and theoretical nor-
malized values, respectively, for the correspondent basis
element.

Theoretical (left) and experimental (right) density matrix
for the mode ρ1 with c = 1 (|φ+〉) is presented in Fig. 8.
As shown, we observe good agreement between theory and
experiment with fidelity F = 0.897 ± 0.005. The mode |φ+〉
was prepared with an S-wave plate, which presents high con-
version efficiency. We believe the limitation of the fidelity is
due to tomographic measurements.

Let us present the results for ρ1 in the case c = 0.5, which
corresponds to a balanced mixed mode. Figure 9 presents the
captured images. Note that we can identify the composition
of the intensities shown in Figs. 5 and 7 images, once the
intensities coming from each laser are added to the CCD.
We verify an agreement between experimental results and
theoretical expectations for normalized intensity as shown at
the bottom of each image.

The obtained density matrix for ρ1, given by Eq. (6), for
c = 0.5 is shown in Fig. 10. Theoretical (left) and experi-
mental (right) results agree with fidelity 0.95 ± 0.01. In the
previous case, we have a decrease in the coherence terms and
a variation in the phase, as explained above.

Let us show the obtained density matrix for the other two
investigated mixed modes. Figure 11 shows the theoretical
(left) and experimental (right) density matrix for the mode ρ1,

given by Eq. (6), for c = 0.25 and c = 0.75. The results are in
good agreement, and the fidelity is above 0.95.

Figure 12 shows the results for the density matrix of
the mode ρ2, given by Eq. (7), for c = 0.25, c = 0.5, and
c = 0.75. Good agreement between the experimental results
(right) and the theoretical expectations (left) was observed,
with fidelity around 0.90.

Finally, results for the density matrix of the mode ρ3

[Eq. (8)] are presented in Fig. 13. Again, we can see a good
agreement between the experimental results (right) and theo-
retical expectations (left) for c = 0.25, c = 0.5, and c = 0.75.
Fidelity is higher than 0.90.

In our optical experimental setup (which involves prepara-
tion and tomography), several typical sources of error exist,
including imperfections in optical elements, misalignment,
and imperfect mode matching for the mode converter. Fur-
thermore, the errors increase with the number of optical
components required for a measurement. For example, the
measurement in the y basis requires numerous optical el-
ements, employing astigmatic optical elements such as the
mode converter, significantly contributing to errors in density
matrix estimation. Such experimental errors affect the fidelity
of the reconstructed density matrix and, as we will see in the
sequence, deeply affect the QD calculation.

B. Experimental quantum discord for spin-orbit modes

Once the density operator is obtained, the computation of
QD can be performed numerically as explained in Sec. II A.
Figure 14(a) presents the QD for the mode ρ1 as a func-
tion of c. Experimental results are represented by the dots
for c = 0.0, 0.25, 0.5, 0.75, and 1.0, while the solid line
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FIG. 11. Density matrices for state ρ1. For c = 0.25 we have ρ1 = [(0.11 + 0i, 0 + 0i, 0 − 0.01i, 0.07 − 0.02i); (0 + 0i, 0 +
0i, 0.01 + 0.02i, 0 + 0.03i); (0 + 0.01i, 0.01 − 0.02i, 0.05 + 0i, 0.01 − 0.04i); (0.07 + 0.02i, 0 − 0.03i, 0.01 + 0.04i, 0.84 + 0i)]; and
for c = 0.75, ρ1 = [(0.41 + 0i, −0.02 + 0.04i, 0.01 − 0.05i, 0.28 + 0.02i); (−0.02 − 0.04i, 0.02 + 0i, 0.02 + 0.05i, −0.01 −
0.02i); (0.01 + 0.05i, 0.02 − 0.05i, 0.04 + 0i, 0.01 + 0.03i); (0.28 − 0.02i, −0.01 + 0.02i, 0.01 − 0.03i, 0.53 + 0i)]. The weights
are represented in the top left side. The theoretical matrices are on the left side, while the experimental one is on the right.

represents the quantum theory prediction. The mean fidelity
for the prepared modes of the class ρ1 was F = 0.95. As
we can see, the experimental results agree with theory until
c ≈ 0.5, and a disclosing is observed with experimental data
varying less than theoretical prediction.

The same analysis can be performed for the class of
modes ρ2, as shown in Fig. 14(b). The experimental re-
sults agree with the theoretical expectation for 0.2 < c < 0.8.
The mean fidelity for this class of states is F = 0.90. How-
ever, for c → 0 and c → 1, we also observe a noticeable
discrepancy between theory and experiment, with a signifi-
cant degradation of QD. By comparing with ρ1 we realized
that as the mode approaches a nonseparable spin-orbit mode

that is maximally coherent the experiment diverges from
theory.

Finally, for ρ3, Fig. 14(c) shows the results for the class
ρ3. Here we have the worst results compared with the the-
ory. Even with a high mean fidelity (F = 0.95) we do not
observe any intersection between theory and experiment. It
is worth mentioning that such states present a fixed term pro-
portional to Bell-like modes, which is maximally discordant
and presents maximal coherence.

In the next section we discuss the degradation of QD
even for modes with high fidelity and propose a simple
model to explain the apparent mismatch between theory and
experiment.
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FIG. 12. Density matrices for state ρ2. For c = 0.25 we have ρ2 = [(0.09 + 0i, −0.01 − 0.01i, −0.01 + 0.04i, 0.05 −
0i); (−0.01 + 0.01i, 0.41 + 0i,−0.24 − 0i, 0.01 + 0.01i); (−0.01 − 0.04i, −0.24 + 0i, 0.39 + 0i, 0−0.01i); (0.05+0i, 0.01−0.01i, 0 +
0.01i, 0.11 + 0i)]; for c = 0.5, ρ2 = [(0.23 + 0i, −0.02 − 0.02i, 0 + 0i, 0.18 − 0i); (−0.02 + 0.02i, 0.26 + 0i, −0.16 + 0.01i, 0 −
0.01i); (0 − 0i, −0.16 − 0.01i, 0.27 + 0i, 0 − 0.03i); (0.18 + 0i, 0 + 0.01i, 0 + 0.03i, 0.24 + 0i)], and for c = 0.75, ρ2 = [(0.4 +
0i, −0.02 + 0.03i, 0.01 − 0.04i, 0.27 + 0.16i); (−0.02 − 0.03i, 0.12 + 0i, −0.04 − 0.09i, −0.02 − 0.03i); (0.01+0.04i, −0.04 + 0.09i,
0.13 + 0i, 0 + 0.03i); (0.27 − 0.16i, −0.02 + 0.03i, 0 − 0.03i, 0.35 + 0i)]. The weights and fidelity are represented at the top. The
theoretical matrices histogram is on the left side, while the experimental one is on the right.

V. QUANTUM DISCORD DEGRADATION
FOR HIGH-FIDELITY STATES

Taking into account the experimental errors during the real-
ization of the experiment, we realized that astigmatic elements

cause us to have nonzero intensities in outputs where we
expected zero intensity. Then, one potential model involves
decoherence effects that result in the intended state as a com-
bination of the considered density operator and a white noise
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FIG. 13. Density matrices for state ρ3. For c = 0.25 we have ρ3 = [(0.26 + 0i, 0 − 0.01i, −0.01 + 0i, −0.02 − 0i); (0 + 0.01i, 0.34 +
0i, −0.22 + 0i, 0.02 + 0.05i); (−0.01 − 0i, −0.22 − 0i, 0.32 + 0i, 0 + 0i); (−0.02 + 0i, 0.02 − 0.05i, 0 + 0i, 0.08 + 0i)]; for c = 0.5,
ρ3 = [(0.15 + 0i, 0 + 0i, −0.01 + 0i, −0.02 + 0i); (0 + 0i, 0.36 + 0i, −0.21 + 0i, 0.01+0.05i); (−0.01+0i, −0.21 − 0i, 0.34+0i, 0 +
0i); (−0.02 + 0i, 0.01 − 0.05i, 0 + 0i, 0.16 + 0i)]; and for c = 0.75, ρ3 = [(0.06 + 0i, 0 + 0i, −0.01 + 0i, −0.01 − 0.01i); (0 + 0i,
0.36 + 0i, −0.2 + 0.01i, 0.01 + 0.05i); (−0.01 + 0i, −0.2 − 0.01i, 0.35 + 0i, 0 − 0.01i); (−0.01 + 0.01i, 0.01 − 0.05i, 0 + 0.01i, 0.24
+ 0i)]. The weights are represented in the top. The theoretical matrices histogram are on the left side, while the experimental one is on the
right.

term. Then, to study this effect, we insert an identity term
with a controllable weight in states ρ1, ρ2, and ρ3. We have,
therefore, a state perturbed ρ ′ defined as

ρ ′ = (1 − α)ρ + αI, (10)

where α is the weight of the identity term. We used α =
0; 0.1; 0.2; 0.3. This new noisy term will introduce a degra-
dation of the fidelity of the prepared state and consequently, a
degradation in the QD calculation.
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FIG. 14. Figures 14(a)–14(c) show graphs comparing the QD
curves with experimental data (circles) for states ρ1, ρ2, and ρ3,
respectively. The QD curve expected by quantum theory is shown
by the solid line (red online).

Figure 15 presents the results for QD of ρ1. The theoret-
ical expectation is observed for fidelity = 1.00 (solid line,
red online). The mean fidelity F decreases as α increases,
which leads to a sharp degradation of QD, as we can see
for the studied cases of F = 0.92 (α = 0.1, dotted line, blue
online), F = 0.85 (α = 0.2, dashed line, green online), and
F = 0.80 (α = 0.4, dashed-dotted line, black online). For
c > 0.1, quantum discord (QD) degrades sharply as fidelity
decreases. The QD of a pure Bell state (c = 1) shows more
sensitivity to the loss of fidelity, where for a loss of ≈20%
in the fidelity we observed a degradation higher than 80%
for QD.

Figure 16 presents the results for ρ2 (mixing of two Bell-
like modes). For c = 0.5, QD is null as expected, and the
QD degrades fast for c < 0.4 and c > 0.6. As c approaches

FIG. 15. QD in function of the weight c for state ρ1 combined to
identity. Mean fidelity = 1.00; 0.92; 0.85; 0.80 corresponds to α =
0; 0.1; 0.2; 0.3, respectively.

0 or 1, QD degrades more deeply (≈80% for α = 0.3) when
fidelity also declines, however, with less intensity (≈18% for
α = 0.3). Again, pure Bell-like modes are more affected by
noises.

Finally, for ρ3 where we have a fixed term 2
3 |ψ−〉 〈ψ−|,

which guarantees QD never vanishes, Fig. 17 shows we have
a more degrading behavior of QD concerning fidelity. Note
that for F = 0.9 QD partially vanishes independently of c’s
values.

For the three modes studied, even with a high fidelity, an
appreciable degradation of the QD is observed. The effect is
more pronounced for coherent states. Such analysis helps us
to interpret our experimental results. This model captures with
good approximation the experimental data behavior.

Let us fit the experimental results with our model. For this
purpose, for each class of states, we take the mean fidelity
and use the curve of our model that corresponds to this mean
fidelity. In Fig. 18(a) we show the fitting of experimental dots
by the expected theoretical curve with fidelity F = 0.95, the
mean fidelity obtained for ρ1. As can be seen, our results are
consistent with the expected QD for the experimental mean
fidelity. The fitting for ρ2 is shown in Fig. 18(b) with the
theoretical curve for the mean fidelity F = 0.90, also in good

FIG. 16. QD as a function of the weight c for state ρ2 combined
to identity. Mean fidelity = 1.00; 0.92; 0.86; 0.82 corresponds to
α = 0; 0.1; 0.2; 0.3, respectively.
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FIG. 17. Discord as a function of the weight c for state ρ3

combined to identity. Mean fidelity = 1.00; 0.96; 0.92; 0.89 corre-
sponds to α = 0; 0.1; 0.2; 0.3, respectively.

FIG. 18. QD fitting curve obtained for states ρ1, ρ2, and ρ3 in this
order from top to bottom. The fitting was done for ρ1, ρ2, and ρ3 by
considering the mean fidelity of 0.94, 0.95, and 0.95, respectively.

agreement with what is theoretically expected in our model.
Finally, for ρ3 [Fig. 18(c)], the more critical experimental
divergence, the theory is consistent with the experiment.

This analysis allows us to visualize the effects caused by
experimental errors that reduce fidelity and significantly im-
pact the calculation of QD. It is important to emphasize that
numerous steps in QD computation propagate errors into the
final result. In this way, any small error on the density matrix
is propagated on all those steps, resulting in the behavior
observed. Consequently, even for a high level of fidelity we
observed a substantial deviation in QD value as shown in the
curves above.

VI. CONCLUSIONS

This work successfully demonstrates the experimental
preparation and characterization of three distinct classes of
mixed spin-orbit modes. We employed all-optical tomography
to fully characterize these modes in both polarization and
transverse-mode degrees of freedom. By reconstructing the
density matrices of these X states, we were able to quantify
their QD.

Considering the performed optical experiment, our circuit
prepares and characterizes output measurements with high
fidelity exceeding 90%, showing an outstanding performance.
The primary source of errors is primarily attributed to the
presence of the astigmatic elements that, unfortunately, distort
the wavefront.

By comparing the experimental and theoretical QD, we
observed a strong sensitivity of QD to experimental errors in
the density matrix. This translates to a significant degradation
of QD even for high-fidelity states. To address this, we have
proposed a simple model to fit QD which is consistent with
the theoretical predictions. This highlights the importance of
considering the QD’s sensitivity in future experimental de-
signs and suggests the potential of our model for mitigating
the impact of such errors in other research.

Our work yields noteworthy results by experimentally
studying spin-orbit X states, an important platform for quan-
tum information processing. Our findings not only shed light
on the QD of these states but also delineate the crucial im-
portance of overcoming limitations in experimental density
matrix reconstruction, which is essential for measuring quan-
tum correlations.

Finally, our model paves the way for further research and
enhancements, including the strong sensitivity of entropic
QD with fidelity, which can be explored in future theoretical
research, expanding and generalizing our proposed model.
Additionally, our findings highlight the demand for enhanced
methods for performing measurements and unitary transfor-
mations, particularly in the transverse modes of spin-orbit
modes. This capability is critical for fully exploration the
potential of this platform in quantum information processing.
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