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We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial
transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermion-
number parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative
answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we
prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and
inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and
lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1 + M )-mode case is
also presented, and our results generalize some known findings.
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I. INTRODUCTION

Quantum entanglement plays a fundamental and important
role in quantum information theory [1,2]. Various measures
to quantify the degree of entanglement have been proposed
[3,4]. Among these, one of the most frequently mentioned
quantifications is the entanglement negativity [5,6], which
is based on an operation called the partial transpose [7,8].
As a result, the partial transpose and entanglement nega-
tivity were introduced into bosonic systems. For bosons,
the partial transpose of any bipartite density operator ρAB =∑

i jkl ρi jkl |eA
i , eB

j 〉〈eA
k , eB

l | with respect to subsystem A is given
by

ρ
TA
AB =

∑
i jkl

ρi jkl

∣∣eA
k , eB

j

〉〈
eA

i , eB
l

∣∣, (1)

where |eA
i , eB

j 〉 is a chosen product basis. The related entan-

glement negativity is defined as N (ρAB) = (‖ρTA
AB‖1 − 1)/2

[3]. It has turned out to be even more useful than in the case
of systems of distinguishable particles: Entanglement nega-
tivity became an exhaustive bipartite entanglement witness
for Gaussian states and particle-number-conserving states of
two-mode bosonic systems [9,10]. Subsequently, this result
was generalized to any (1 + M )-mode bosonic Gaussian state
[11] and any (1 + M )-mode bosonic state with a conserved
particle number [12]. However, in the attempt to introduce
partial transpose and entanglement negativity in fermionic
systems, things became exceptionally confusing [13–16]. For
example, with the definition of simply swapping the indices
of the first subsystem as in Eq. (1), the partial transpose is not
Gaussian preserving [13,14], and the entanglement negativity
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cannot witness any entanglement in the topological phase of
the Kitaev Majorana chain [15,16]. Therefore, the authors of
[15] introduced a new definition of the partial transpose called
the fermionic partial transpose. The new definition overcomes
the issues mentioned earlier and performs well in many re-
spects [17]. In [18], the authors proved that the entanglement
negativity based on the fermionic partial transpose, called
fermionic entanglement negativity, once again becomes an
exhaustive entanglement witness in the (1 + M )-mode case a
parity constraint is considered [19]. As expected, for general
bipartite fermionic systems, some entangled states for which
the fermionic entanglement negativity is zero exist, and thus,
this new negativity fails to capture entanglement in them.
However, due to the parity constraint, the authors of [18]
believed that the following conjecture is true.

Conjecture 1. The states which mix local fermion-number
parity (the definition will be presented below) must have a
nonvanishing fermionic entanglement negativity [18].

One of the main purposes of the present paper is to give an
affirmative answer to the above conjecture, but we do much
more. In fact, we introduce the so-called phase partial trans-
pose and phase entanglement negativity for each real number
θ . The fermionic entanglement negativity can be considered
a special case of the phase entanglement negativity with
θ = π/2 (up to a local unitary transformation called partial
particle-hole transformation [17]). And the ordinary entangle-
ment negativity corresponds to the case of θ = kπ , k ∈ Z.
Based on the study of the behavior of positive linear maps in
fermionic systems, we find that a universal way to improve the
entanglement detection of a given positive linear map between
fermion algebras exists. This enables us to show that every
state which mixes local fermion-number parity has nonvan-
ishing nontrivial phase entanglement negativity. Furthermore,
we establish several equalities and inequalities concerning
the phase partial transpose and phase entanglement negativ-
ity and prove that the phase entanglement negativity is an
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entanglement monotone. We also find the relation between
the ordinary entanglement negativity and the phase entangle-
ment negativity and provide some lower and upper bounds of
fermionic entanglement negativity. For the case of a (1 + M )-
mode fermionic system, more precise results are obtained,
part of which generalize and strengthen some known results
obtained in [18].

This paper is organized as follows. In Sec. II, we mainly
give some preliminaries for the second quantization and
fermionic systems. In Sec. III, we introduce the phase par-
tial transpose and phase entanglement negativity. Based on
the discussion on positive linear maps in fermionic systems,
we provide a sufficient condition for a fermionic state to
be entangled. Then we apply it to the phase entanglement
negativity and answer the conjecture proposed in [18] affir-
matively. Section IV is devoted to giving some equalities and
inequalities related to the fermionic entanglement negativity
and provides lower and upper bounds of the fermionic entan-
glement negativity, in particular, for the (1 + M )-mode case.
A short discussion and summary are given in Sec. V.

II. PRELIMINARIES

In this section, we recall some basic notions about and
notations for fermionic systems with N modes, where 2 �
N � ∞.

A. Fermionic Fock spaces

The second-quantization description for an N-mode
fermionic system is associated with fermion creation opera-
tors f †

j and annihilation operators f j of each mode j. These
operators act on the fermionic Fock space H and satisfy the
canonical anticommutation relations

{ f j, f †
k } = δ jk, { f j, fk} = { f †

j , f †
k } = 0, 1 � j, k � N.

Here, {x, y} stands for the Jordan product xy + yx. The Fock
vacuum |0〉 is defined as the vector state that is annihilated
by all f j . The subspace H(1) of one fermion, called the one-
fermion space, is the closed linear subspace of H spanned by
the basis vectors f †

j |0〉, 1 � j � N . Similarly, for each posi-
tive integer k, H(k) stands for the k-fermion space, which is
the subspace spanned by the basis vector ( f †

1 )n1 · · · ( f †
N )nN |0〉

with nj ∈ {0, 1} and
∑N

j=1 n j = k. Note that H(0) is the one-
dimensional subspace spanned by the vacuum |0〉. Thus, the
fermionic Fock space H is the Hilbert space H = ⊕N

k=0H(k),
which has an orthonormal basis called the Fock basis,

|n1, . . . , nN 〉 = |{n j}〉 := ( f †
1 )n1 · · · ( f †

N )nN |0〉,
where n j ∈ {0, 1} is the occupation number of the jth
mode and

∑N
j=1 n j < ∞. Clearly, if N < ∞, H is finite-

dimensional with dim H = 2N . Sometimes, we say that H is
the fermionic Fock space with the one-fermion space H(1).

Denote by G(H) the algebra of all bounded linear opera-
tors on H. For any θ ∈ R, the real-number field, the unitary
operator on H(1), defined by

|φ(1)〉 �→ eiθ |φ(1)〉, |φ(1)〉 ∈ H(1),

together with the graded structure of the Fock space, allows
an extension �(eiθ ) to H by a method called the second

quantization [20]. Note that �(eiθ ) ∈ G(H) is unitary, which
induces a ∗-automorphism of G(H) by

Uθ : X �→ �(eiθ )X�(e−iθ ), X ∈ G(H).

Clearly, Uθ satisfies

Uθ ( f †
j ) = eiθ f †

j , 1 � j � N.

A very special and important case is θ = π . �(eiπ ) is called
the parity operator and is often written as (−1)F . The parity
operator (−1)F is an involution and determines Z2 gradings
[21] in H and G(H) as

H0 := {|φ〉 ∈ H | (−1)F |φ〉 = |φ〉},
H1 := {|φ〉 ∈ H | (−1)F |φ〉 = −|φ〉}

and

G0(H) := {X ∈ G(H) | (−1)F X (−1)F = X },
G1(H) := {X ∈ G(H) | (−1)F X (−1)F = −X },

respectively.

B. Physical maps

The physical operators of a fermionic system are those
operators in G(H) which commute with the parity operator,
i.e., the operators in G0(H). A state of fermions is described
by a density operator ρ which is physical, positive, and has a
trace of 1. This physical restriction, known as the parity su-
perselection rule, can be regarded as a reasonable requirement
from various perspectives [22,23]. We denote the set of states
of fermions by

S (H) := {ρ ∈ G0(H) | ρ � 0 with Tr ρ = 1},
where ρ � 0 means that ρ is positive, i.e., ρ = ρ†, with the
spectrum falling in the interval [0,+∞). ρ is a pure state if
ρ = ρ2; otherwise, ρ is a mixed state [1].

The universally existing Z2 gradings in fermionic systems
suggest an additional requirement for maps between fermion
operator algebras. In this paper, H and K are fermionic
Fock spaces with, respectively, the separable complex Hilbert
spaces H(1) and K(1) as the one-fermion space if no specific
assumption is made. A map � : G(H) → G(K) is said to be
physical (i.e., Z2 symmetric [24] or grading equivariant [25])
if

� ◦ UH
π = UK

π ◦ �,

where UH
π and UK

π are implemented, respectively, by the par-
ity operators (−1)FH and (−1)FK . A linear map � : G(H) →
G(K) is said to be positive if X ∈ G(H) is positive, implying
that �(X ) is positive in G(K). It is clear that a physical
positive linear map transforms physical (Hermitian, positive)
operators into physical (Hermitian, positive) operators.

C. Bipartite fermionic systems

To study the quantum correlations of fermions, one needs
to consider composite fermionic systems. Here, we adhere to
the mode-based approach to fermionic entanglement theory
[26–31]. For the particle-based approach, see Refs. [32–36]
or the review paper in [37].
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Let us start by splitting the set of modes {1, . . . , N} into
two disjoint subsets A = { j1, . . . , jmA} and B = { j′1, . . . , j′mB

},
with mA + mB = N . Then the Fock space H is naturally iso-
morphic to the tensor product HA ⊗ HB of Fock spaces HA

and HB of subsystems A and B in the following way:

|{n j}A, {n j}B〉 �→ {n j}A ⊗ {n j}B, (2)

where

|{n j}A, {n j}B〉 = ( f †
j1

)n j1 · · · ( f †
jmA

)n jmA
(

f †
j′1

)n j′1 · · · ( f †
j′mB

)n j′mB |0〉.
(3)

In terms of creation operators, this isomorphism can be simply
expressed as (see [38], Theorem 7.14)

|0〉 �→ |0〉A ⊗ |0〉B, f †
j �→

{
f̃ †

j ⊗ IB for j ∈ A,

(−1)FA ⊗ f̃ †
j for j ∈ B,

where (−1)FA is the parity operator of A, IB is the identity
operator of B, and { f̃ †

j } j∈A/B is the set of creation operators

of subsystem A or B, which satisfies f̃ †
j |0〉A/B = f †

j |0〉. With
Eq. (2), the set of fermionic states S (H) can be identified as
S (HA ⊗ HB) in the following way:

|{n j}A, {n j}B〉〈{n j}A, {n j}B| �→ |{n j}〉A〈{n j}| ⊗ |{n j}〉B〈{n j}|.
(4)

Hereafter, we will use this identification to denote states of a
bipartite fermionic system until the end of Sec. III. Finally, it
is worth noting that

S (HA) ⊗ S (HB) ⊆ S (HA ⊗ HB).

Separable states. A fermionic state ρ ∈ S (HA ⊗ HB) is
said to be separable if ρ can be approximated in the trace
norm by states of the form{

n∑
k=1

pkρ
A
k ⊗ ρB

k : pk > 0 with
n∑

k=1

pk = 1,

ρA
k ∈ S (HA), ρB

k ∈ S (HB)

}
. (5)

Otherwise, ρ is called entangled [30]. Note that Eq. (5) re-
stricts the possible convex decomposition by the condition
that ρA

k and ρB
k must be fermionic states on the subsystems,

and so the definition is different from the separability in
systems of distinguishable particles [28]. Some detailed ex-
planations can be found in [28,30].

Fermionic partial transpose. The fermionic partial trans-
pose was first introduced in [15] and has various repre-
sentations [15,17]. For our purposes, it is more useful and
convenient to present it in the occupation-number basis. The
fermionic partial transpose with respect to subsystem A in the
occupation-number basis (3) is defined as

(|{n j}A, {n j}B〉〈{n̄ j}A, {n̄ j}B|)TA

= (−1)φ({n j },{n̄ j})U †
A |{n̄ j}A, {n j}B〉〈{n j}A, {n̄ j}B|UA, (6)

where the phase factor (−1)φ({n j },{n̄ j}) is determined by

φ({n j}, {n̄ j}) = (τA + τ̄A) mod 2

2

+ (τA + τ̄A)(τB + τ̄B), (7)

τA(B) =∑ j∈A(B) n j , τ̄A(B) =∑ j∈A(B) n̄ j , and UA =∏ j∈A( f †
j +

f j ) is the partial particle-hole transformation, which is a local
unitary operator [17]. As far as our research is concerned, UA

can be ignored. In fact, for physical operators, as τA + τ̄A +
τB + τ̄B is always an even number, one sees that the phase
factor in Eq. (6) actually has only two values,

(−1)φ({n j},{n̄ j}) =
{

1 if τA + τ̄A is even,

−i if τA + τ̄A is odd.
(8)

Fermionic entanglement negativity. The fermionic entan-
glement negativity of a fermionic state ρ is formally defined
as

N (ρ) = ‖ρTA‖1 − 1

2
, (9)

where ρTA is the fermionic partial transpose of ρ and ‖ · ‖1

is the trace norm. Similarly, one can consider the logarith-
mic negativity E (ρ) = log2 ‖ρTA‖1. Note that the fermionic
partial transpose of a Hermitian operator may no longer be
Hermitian, and so its eigenvalues may not be real, which poses
additional difficulties.

Mixed local fermion-number parity. A fermionic state ρ ∈
S (HA ⊗ HB) is said to have a mixed local fermion-number
parity if

[ρ, (−1)FA ] �= 0, (10)

where [·, ·] stands for the commutator. Clearly, such fermionic
states must be entangled [18]. Furthermore, the authors of [18]
conjectured that such entangled states can be witnessed by
fermionic entanglement negativity. In this paper, we will give
an affirmative answer to this.

For simplicity, we write

ρc = 1
2 [ρ + (−1)FAρ (−1)FA ],

ρa = 1
2 [ρ − (−1)FAρ (−1)FA ]. (11)

Notice that ρc � 0 with Tr(ρc) = 1 and ρa is Hermitian with
Tr(ρa) = 0. Moreover, Eq. (10) holds if and only if ρa �= 0.

Local operations and classical communication (LOCC).
In a fermionic system, a physical LOCC is a transformation
determined by


(ρ) =
∑

k

EkρE†
k , (12)

where the Kraus operators Ek satisfy
∑

k E†
k Ek = I and Ek =

EA
k ⊗ EB

k for some EA
k ∈ Gr (HA) and EB

k ∈ Gs(HB), in which
r, s ∈ {0, 1} [23,39].

III. PHASE PARTIAL TRANSPOSE AND PHASE
ENTANGLEMENT NEGATIVITY

In this section, we discuss the behavior of positive linear
maps in fermionic systems. Based on this, we establish a
sufficient condition for a bipartite fermionic state with one
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subsystem of finite modes to be entangled. A characteriza-
tion of the states which mix local fermion-number parity
is provided, and as an application, an affirmative answer to
the conjecture proposed in [18] is achieved. In addition, we
consider a more generalized entanglement negativity called
phase entanglement negativity and obtain some properties.

We start with a one-body fermionic system described by
the fermionic Fock space H.

The Z2 grading of G(H) allows us to write any X ∈ G(H)
as

X = X0 + X1, X0 ∈ G0(H), X1 ∈ G1(H),

and define a transformation on G(H) as

Rθ (X ) = X0 + eiθ X1 ∀ θ ∈ R.

Obviously, Rθ is physical and trace preserving, and the
restriction of Rθ on the Hilbert space C2(H), the Hilbert-
Schmidt class of H, is unitary. In fact, we have

Tr[Rθ (X )†Rθ (Y )] = Tr(X †Y ) ∀ X,Y ∈ C2(H).

To see this, one needs to note only that

Tr(X0Y1) = Tr[(−1)F X0(−1)FY1]

= Tr[X0(−1)FY1(−1)F ] = − Tr(X0Y1),

and thus,

Tr(X0Y1) = 0

for all Hilbert-Schmidt classes X0 ∈ G0(H) and Y1 ∈ G1(H).
In addition,

Rπ = Uπ , R2
π/2 = Rπ/2 ◦ Rπ/2 = Uπ .

However, Rθ is not Hermitian preserving unless θ = kπ, k ∈
Z. In the case θ = kπ , one can see that Rkπ = Uπ or I , the
identity operation.

Now, let us consider another fermionic system described
by the Fock space K. For any positive linear map � : G(H) →
G(K) and any θ ∈ R, we define a linear map

�θ := � ◦ Rθ . (13)

Then it is easily observed that �θ is the same as � on physical
operators in G(H) as

�θ (X ) = �(X ) ∀ X ∈ G0(H).

However, when we consider a composite fermionic system
and regard �θ as a local operation on one of the subsystems,
the situation is completely different.

Assume that H = HA ⊗ HB is the fermionic Fock space
corresponding to a bipartite fermionic system with HB being
finite-dimensional, and consider the operation

�θ ⊗ I : G(HA ⊗ HB) → G(K ⊗ HB),

where I is the identity operation on HB. Let ρ ∈ S (HA ⊗ HB)
be a fermionic state. As ρ ∈ C2(HA ⊗ HB) and dim HB <

∞, there are two finite sequences of Hermitian operators
{X A

k }n
k=1 ⊂ C2(HA) and {X B

k }n
k=1 ⊂ C2(HB) such that

ρ =
n∑

k=1

X A
k ⊗ X B

k =
n∑

k=1

(
X A

0,k ⊗ X B
k + X A

1,k ⊗ X B
k

)
,

where X A
0,k ∈ G0(HA) and X A

1,k ∈ G1(HA) are both Hermitian
operators [40]. A straightforward computation shows that

(�θ ⊗ I )ρ =
n∑

k=1

[
�
(
X A

0,k

)⊗ X B
k + eiθ�

(
X A

1,k

)⊗ X B
k

]
.

It follows that

(�θ ⊗ I )ρ = (� ⊗ I )ρc + eiθ (� ⊗ I )ρa, (14)

where ρc and ρa are defined in Eq. (11). As � is positive, one
can observe that, for any θ �= kπ, k ∈ Z,

(�θ ⊗ I )ρ � 0 ⇐⇒
{∑

k �
(
X A

1,k

)⊗ X B
k = 0,∑

k �
(
X A

0,k

)⊗ X B
k � 0,

which is equivalent to

(�θ ⊗ I )ρ � 0 ⇐⇒
{

(� ⊗ I )ρa = 0,

(� ⊗ I )ρc � 0.
(15)

Thus, through positivity, any entangled state that can be
detected by � must also be detected by �θ . Hence, we
have proved the following sufficient criterion for a bipartite
fermionic state to be entangled in terms of positive linear
maps.

Theorem 1. Let H = HA ⊗ HB be a fermionic Fock space
with dim HB < ∞ and ρ ∈ S (HA ⊗ HB) be a fermionic state.
Then the following statements are equivalent.

(1) A positive linear map � : G(HA) → G(K) exists for
some fermionic Fock space K such that either (� ⊗ I )ρa �= 0
or (� ⊗ I )ρc �� 0.

(2) A positive linear map � : G(HA) → G(K) exists for
some fermionic Fock space K and some θ ∈ R with θ �=
kπ, k ∈ Z, such that (�θ ⊗ I )ρ �� 0.

In addition, if one of the above statements holds, then ρ

must be entangled.
The next result provides a criterion for states which mix

local fermion-number parity.
Theorem 2. Let H = HA ⊗ HB be a fermionic Fock space

with dim HB < ∞. Then a fermionic state ρ ∈ S (HA ⊗ HB)
has a mixed local fermion-number parity if and only if, for any
trace preserving positive linear injective map � : G(HA) →
G(HA) and for any θ ∈ R with θ �= kπ, k ∈ Z,

‖(�θ ⊗ I )ρ‖1 > 1.

Proof. For the “if” part, take � = I , the identity map, and
θ = π/2. Then

‖(�π/2 ⊗ I )ρ‖1 = ‖ρc + iρa‖1 > 1,

which implies ρa �= 0 as ‖ρc‖1 = Tr(ρc) = 1.
To check the “only if” part, assume ρa �= 0. Then for any

trace preserving positive linear injective map � : G(HA) →
G(HA), we have (� ⊗ I )ρa �= 0. If θ �= kπ, k ∈ Z, we see
that (�θ ⊗ I )ρ is not positive by Theorem 1. Furthermore,
since � is trace preserving, we have

Tr[(� ⊗ I )ρc] = Tr(ρc) = 1

and

Tr[(� ⊗ I )ρa] = Tr(ρa) = 0,

which imply Tr[(�θ ⊗ I )ρ] = 1.
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Here, we need a result from mathematics which states that,
for any trace-class operator X , one always has ‖X‖1 � | Tr X |,
and ‖X‖1 = Tr X if and only if X � 0 (see [41], Lemma 2.2).
With this result, we obtain

‖(�θ ⊗ I )ρ‖1 > 1

as (�θ ⊗ I )ρ is not positive. �
Note that, restricted to physical operators, the fermionic

partial transpose of the first subsystem up to a local unitary
transformation is exactly the operation

Tπ/2 ⊗ I : G(HA ⊗ HB) → G(HA ⊗ HB),

where T : G(HA) → G(HA) is the usual transpose with re-
spect to the Fock basis of HA. Clearly, T is injective, positive,
and trace preserving. The fermionic entanglement negativity
of a fermionic state ρ is the same as

N π
2
(ρ) = ‖ρT1‖1 − 1

2
, (16)

where ρT1 = (Tπ/2 ⊗ I )ρ is the fermionic partial transpose of
ρ [here, we keep the symbol N (ρ) for the usual entanglement
negativity, and T1 is the fermionic partial transpose with re-
spect to the first subsystem, A]. Similarly, one can consider
the logarithmic negativity E π

2
(ρ) = log2 ‖ρT1‖1.

More generally, for any real number θ , we can define the
phase partial transpose with respect to θ of ρ by ρT1 (θ ) =
(Tθ ⊗ I )ρ and define the phase entanglement negativity, de-
noted by Nθ (ρ), as

Nθ (ρ) = ‖ρT1 (θ )‖1 − 1

2
.

From the proof of Theorem 2, it is clear that Nθ (ρ) � 0 for
all ρ.

Note that the ordinary partial transpose of ρ is exactly
ρT1 (0), which differs from ρT1 (kπ ), k ∈ Z, by (at most) a
local unitary transformation. So we have

Nkπ (ρ) = N0(ρ) = N (ρ).

We say that a phase entanglement negativity Nθ is nontrivial
if θ �= kπ for some k ∈ Z.

The phase partial transpose of the second subsystem
ρT2 (θ ) is defined similarly by ρT2 (θ ) = (I ⊗ Tθ )ρ. Clearly,
[ρT1 (θ )]T2 (−θ ) = ρT.

A direct application of Theorem 2 gives

‖ρT1 (θ )‖1 = ‖(Tθ ⊗ I )ρ‖1 > 1

for all ρ with ρa �= 0 and θ ∈ R with θ �= kπ, k ∈ Z. There-
fore, we have proved the following result.

Theorem 3. Let H = HA ⊗ HB be a fermionic Fock space
with dim HB < ∞. For any θ ∈ R with θ �= kπ, k ∈ Z, the
phase entanglement negativity Nθ (ρ) of any fermionic state
ρ ∈ S (HA ⊗ HB) with mixed local fermion-number parity
is nonvanishing. Particularly, the conjecture of [18] has an
affirmative answer.

In addition, our result says that the conjecture is true even
for the case dim HA = ∞. Also, note that the phase partial
transpose is usually not Hermitian preserving, but the posi-
tivity of the phase partial transpose is equivalent to the zero
negativity based on it.

Now, we show further that the phase entanglement negativ-
ity is an entanglement monotone.

Theorem 4. Let H = HA ⊗ HB be a fermionic Fock space
with dim HB < ∞ and θ ∈ R. Then, for any fermionic
state ρ ∈ S (HA ⊗ HB) and any physical LOCC 
(·) =∑

k Ek (·)E†
k , we have

Nθ (ρ) �
∑

k

Tr(EkρE†
k )Nθ

(
EkρE†

k

Tr(EkρE†
k )

)
� Nθ (
(ρ)).

The proof is given in Appendix.
Therefore, the nontrivial phase entanglement negativity is

a genuine fermionic entanglement measure for any (1 + M )-
mode fermionic system with 1 � M < ∞ (this can be easily
seen from Proposition 3 in Sec. IV and Theorem 3 in [18]).

At the end of this section, we provide an example to illus-
trate how the phase entanglement negativity varies with the
angle θ for a given fermionic state.

In (1 + 1)-mode fermionic systems, a generic fermionic
state ρ can be written in the occupation-number basis
{|00〉, |10〉, |01〉, |11〉} as

ρ = ρ(p, μ, η, υ, ϕ) =

⎡
⎢⎢⎢⎢⎣

p cos2 υ 0 0 pμ cos υ sin υ

0 (1 − p) cos2 ϕ (1 − p)η cos ϕ sin ϕ 0

0 (1 − p)η̄ cos ϕ sin ϕ (1 − p) sin2 ϕ 0

pμ̄ cos υ sin υ 0 0 p sin2 υ

⎤
⎥⎥⎥⎥⎦, (17)

where υ, ϕ ∈ [0, π/2]; μ, η ∈ C with 0 � |μ|, |η| � 1; and 0 � p � 1. The above ρ reduces to a pure fermionic state if p =
|μ| = 1 or 1 − p = |η| = 1. For any θ ∈ R, the phase partial transpose of ρ associated with θ is

ρT1 (θ ) =

⎡
⎢⎢⎢⎢⎣

p cos2 υ 0 0 eiθ (1 − p)η cos ϕ sin ϕ

0 (1 − p) cos2 ϕ eiθ pμ cos υ sin υ 0

0 eiθ pμ̄ cos υ sin υ (1 − p) sin2 ϕ 0

eiθ (1 − p)η̄ cos ϕ sin ϕ 0 0 p sin2 υ

⎤
⎥⎥⎥⎥⎦.
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So

‖ρT1 (θ )‖1 =
√

p2 + 1
2 [|x2 − e2iθ |η|2y2| − (x2 − |η|2y2)]

+
√

(1 − p)2 + 1
2 [|y2 − e2iθ |μ|2x2| − (y2 − |μ|2x2)], (18)

where x = p sin 2υ and y = (1 − p) sin 2ϕ. In particular, for θ = kπ, k ∈ Z, we see that

‖ρT1 (kπ )‖1 =
√

p2 + max{0, |η|2y2 − x2} +
√

(1 − p)2 + max{0, |μ|2x2 − y2},
and for θ = π/2 + kπ, k ∈ Z, we get

‖ρT1 (π/2 + kπ )‖1 =
√

p2 + |η|2y2 +
√

(1 − p)2 + |μ|2x2.

So it is clearly seen that the ordinary entanglement negativ-
ity N (ρ) vanishes if and only if |η|y � x and |μ|x � y, but
the fermionic entanglement negativity N π

2
(ρ) vanishes if and

only if |η|y = |μ|x = 0; i.e., ρ is in a diagonal form [18,28].
Therefore, the ordinary partial transpose cannot capture en-
tanglement as well as before [15]. For example,

ρ =

⎡
⎢⎢⎢⎢⎢⎣

3
8 0 0

√
3

8

0 3
8

√
3

8 0

0
√

3
8

1
8 0

√
3

8 0 0 1
8

⎤
⎥⎥⎥⎥⎥⎦

is entangled, which cannot be captured by the ordinary par-
tial transpose as N (ρ) = 0. However, we notice that all the
nontrivial phase entanglement negativity (i.e., θ �= kπ, k ∈ Z)
can effectively distinguish entangled fermionic states in this
simple situation, and θ = π/2 + kπ, k ∈ Z, is the largest one
for the value of ‖ρT1‖1 (the same as the phase entanglement
negativity introduced by it) among them.

Thus, we achieve the following result.
Proposition 1. For any (1 + 1)-mode fermionic state ρ and

any θ ∈ R, we have

N (ρ) � Nθ (ρ) � N π
2
(ρ).

Proposition 1 reveals that the fermionic entanglement neg-
ativity N π

2
is the best one to detect entanglement in the

fermionic states. However, this does not mean that the intro-
duction of the phase entanglement negativity is nonessential.
In the process of quantum computation, the input quantum
state ρ is transformed into σ = UρU † through the quantum
gate U . During the evolution of a closed quantum system, the
system evolves from the initial state ρ to σ = ρt = UtρU †

t at
time t . Generally, we need to know the change in σ , that is, to
distinguish σ from ρ. However, since σ is unitarily equivalent
to the state ρ, it has the same eigenvalues as ρ, and only
the eigenvectors can undergo changes. Therefore, the task of
distinguishing quantum states with the same eigenvalues is
fundamental. We provide some specific examples to illustrate
that Nθ can distinguish fermionic states that N and N π

2
can-

not.
In the following, we use σ (ρ) to denote the eigenvalues

of ρ.

Example 1. Consider (1 + 1)-mode fermionic states

ρ1 = 1

4

⎡
⎢⎢⎢⎣

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

⎤
⎥⎥⎥⎦, ρ2 = 1

3

⎡
⎢⎢⎢⎢⎣

1 0 0 1√
2

0 1 1√
2

0

0 1√
2

1
2 0

1√
2

0 0 1
2

⎤
⎥⎥⎥⎥⎦.

It is clear that ρ2 = Uρ1U † as

σ (ρ1) =
{

1

2
,

1

2
, 0, 0

}
= σ (ρ2).

For any θ ∈ R, we have

Nθ (ρ1) = 1
2 (
√

1 + | sin θ | − 1)

and

Nθ (ρ2) = 1

2

(√
1 + 8

9
| sin θ | − 1

)
.

Hence, N (ρ1) = Nkπ (ρ1) = 0 = Nkπ (ρ2) = N (ρ2), and N
cannot distinguish ρ1 from ρ2. But Nθ (ρ1) > Nθ (ρ2) for θ �=
kπ .

Example 2. Consider (1 + 1)-mode fermionic states

ρ1 =

⎡
⎢⎢⎢⎢⎣

1
5 0 0 1

10

0 1
3

√
5

6 0

0
√

5
6

5
12 0

1
10 0 0 1

20

⎤
⎥⎥⎥⎥⎦,

ρ2 = 1

2

⎡
⎢⎢⎢⎢⎢⎣

1
6 0 0

√
2

6

0 9
10

3
√

6
10 0

0 3
√

6
10

3
5 0

√
2

6 0 0 1
3

⎤
⎥⎥⎥⎥⎥⎦.

In this case, we have

σ (ρ1) = { 3
4 , 1

4 , 0, 0
} = σ (ρ2),

and ρ1 is unitarily similar to ρ2. It is easily checked that

Nθ (ρ1) = 1

2

(√
1097

3600
+ f (θ ) +

√
1153

3600
+ f (θ ) − 1

)
,
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with

f (θ ) = 1

3

√
7853

11250
− 1

10
cos 2θ,

and

Nθ (ρ2) = 1

2

(√
1097

3600
+ g(θ ) +

√
1153

3600
+ g(θ ) − 1

)
,

with

g(θ ) = 1

10

√
29837

4050
− 3

2
cos 2θ.

It follows that f (θ ) = g(θ ) = 67/225 if θ = π/2 + kπ ,
and consequently, Nπ/2(ρ1) = Nπ/2(ρ2). However, Nθ (ρ1) �=
Nθ (ρ2) for θ �= π/2 + kπ . This reveals that the phase en-
tanglement negativity can distinguish ρ1 from ρ2 but the
fermionic entanglement negativity cannot.

Example 3. Consider (1 + 1)-mode fermionic states

ρ1 =

⎡
⎢⎢⎢⎢⎢⎣

2+√
3

8 0 0 1
8

0 2+√
3

8
1
8 0

0 1
8

2−√
3

8 0
1
8 0 0 2−√

3
8

⎤
⎥⎥⎥⎥⎥⎦

and

ρ2 = 1

8

⎡
⎢⎢⎢⎢⎢⎣

1 + 1√
5

0 0 2√
5

0 3 +
√

41√
5

2√
5

0

0 2√
5

3 −
√

41√
5

0
2√
5

0 0 1 − 1√
5

⎤
⎥⎥⎥⎥⎥⎦.

Note that

σ (ρ1) = { 1
2 , 1

2 , 0, 0
}
, σ (ρ2) = { 3

4 , 1
4 , 0, 0

}
,

which implies that ρ1 is majorized by ρ2. For this case, we
have

Nθ (ρ1) = 1

2

(√
1 + 1

4
| sin θ | − 1

)

and

Nθ (ρ2) = 1

2

(√
1

16
+ 1

20
| sin θ | +

√
9

16
+ 1

20
| sin θ | − 1

)
.

Thus, N (ρ1) = N (ρ2) = 0, and N π
2
(ρ1) = N π

2
(ρ2) =

(
√

5 − 2)/4, which means that both N and N π
2

cannot
distinguish ρ1 from ρ2. However, for θ �= kπ/2, Nθ can
distinguish ρ1 from ρ2 as Nθ (ρ1) �= Nθ (ρ2).

IV. BOUNDS OF FERMIONIC
ENTANGLEMENT NEGATIVITY

In this section, we discuss further the fermionic entangle-
ment negativity. We first give an expression of the fermionic
partial transpose in terms of creation and annihilation oper-
ators. Keep in mind that the fermionic partial transpose is
defined only on the subalgebra of physical operators which
includes all states of fermions.

Let N be a positive integer and consider the N-mode
fermionic system H with annihilation operators { f j}N

j=1. Con-
sider a bipartition (J1, J2) of N modes, that is, divide the set
of modes {1, . . . , N} into subsets J1 = { j1, . . . , jN1} and J2 =
{ j′1, . . . , j′N2

}, with N1 + N2 = N . Obviously, from Eq. (6), the
fermionic partial transpose of any operator X ∈ G0(H) can be
expressed in terms of the creation and annihilation operators.
In fact, by writing X = Xc + Xa, we have

Xc = 1

2
[X + (−1)F1 X (−1)F1 ]

=
∑

L,L′⊆J1:|L|+|L′|=even

PLP̄Lc XPL′ P̄L′c

and

Xa = 1

2
[X − (−1)F1 X (−1)F1 ]

=
∑

L,L′⊆J1:|L|+|L′|=odd

PLP̄Lc XPL′ P̄L′c ,

where (−1)F1 =∏ j∈J1
(−1) f †

j f j , PL =∏ j∈L f †
j f j , P̄L =∏

j∈L f j f †
j , P∅ = P̄∅ = I , Lc = J1\L is the relative

complement of L in J1, |L| denotes the cardinality of the
subset L, and the summation is taken over all possible subsets
L and L′ of J1.

As the range of PLP̄Lc is spanned by basis vectors

|{n j} j∈J1 , {n j} j∈J2〉, n j =

⎧⎪⎨
⎪⎩

1, j ∈ L,

0, j ∈ Lc,

0 or 1, j ∈ J2,

it follows from Eq. (6) that

(PLP̄Lc XPL′ P̄L′c )T1

=
{

C†
L′CLPLP̄Lc XPL′ P̄L′cC†

L′CL if |L| + |L′| is even,

−iC†
L′CLPLP̄L′c XPL′ P̄L′cC†

L′CL if |L| + |L′| is odd,

where C†
L denotes the product of f †

j for j ∈ L on the same

order as Eq. (3) and C†
∅ = I .

Note that CLPL = P̄LCL = CL. Thus, we have

PLP̄Lc = C†
LP̄LcCL = C†

LP̄Lc P̄LCL = C†
LP̄J1CL,

C†
L′CLPLP̄Lc = C†

L′CLC†
LP̄J1CL

= C†
L′ P̄LP̄J1CL = C†

L′ P̄J1CL,

and

PL′ P̄L′cC†
L′CL = C†

L′ P̄J1CL′C†
L′CL

= C†
L′ P̄J1 P̄L′CL = C†

L′ P̄J1CL.

Then the fermionic partial transpose of PLP̄Lc XPL′ P̄L′c can be
reduced to

(PLP̄Lc XPL′ P̄L′c )T1

= (C†
LP̄J1CLXC†

L′ P̄J1CL′ )T1

=
{

C†
L′ P̄J1CLXC†

L′ P̄J1CL if |L| + |L′| is even,

−iC†
L′ P̄J1CLXC†

L′ P̄J1CL if |L| + |L′| is odd.
(19)
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Indeed, Eq. (19) provides a precise expression for the
fermionic partial transpose of any physical operator X with
respect to the first subsystem with

X T1 = (Xc)T1 + (Xa)T1

=
∑

L,L′⊆J1:|L|+|L′|=even

C†
L′ P̄J1CLXC†

L′ P̄J1CL

− i
∑

L,L′⊆J1:|L|+|L′|=odd

C†
L′ P̄J1CLXC†

L′ P̄J1CL. (20)

Since

[(−1)F1 X (−1)F1 ]T1 = (−1)F1 X T1 (−1)F1 (21)

and

(X T1 )† = (−1)F1 (X †)T1 (−1)F1 ,

the fermionic partial transpose of a Hermitian operator is
pseudo-Hermitian with respect to (−1)F1 [42,43] (an operator
D is said to be pseudo-Hermitian if some invertible Hermitian
operator η exists such that D† = ηDη−1).

The relations (Xc)T1 = (X T1 )c and (Xa)T1 = (X T1 )a allow
us to simply write them as X T1

c and X T1
a , respectively. If X is

Hermitian, then Eq. (20) implies that

X T1
c = 1

2
[X T1 + (X T1 )†]

=
∑

L,L′⊆J1:|L|+|L′|=even

C†
L′ P̄J1CLXC†

L′ P̄J1CL

is Hermitian and

X T1
a = 1

2
[X T1 − (X T1 )†]

= −i
∑

L,L′⊆J1:|L|+|L′|=odd

C†
L′ P̄J1CLXC†

L′ P̄J1CL

is skew Hermitian.
As mentioned above, each physical operator X ∈ G0(H)

can be written in the form X = Xc + Xa. In addition, each X
also admits a direct sum decomposition

X = X�+ + X�−,

where �± = 1
2 [1 ± (−1)F ]. {�+,�−} forms a complete set

of orthogonal projections, and both commute with X .
Lemma 1. The equality∥∥X T1

c

∥∥
1 + ∥∥X T1

a

∥∥
1 = ‖(X�+)T1‖1 + ‖(X�−)T1‖1 (22)

holds for all X ∈ G0(H).
Proof. Equation (20) implies that

‖(X�+)T1‖1 = ∥∥X T1
c �+ + X T1

a �−
∥∥

1

= ∥∥X T1
c �+

∥∥
1 + ∥∥X T1

a �−
∥∥

1

and

‖(X�−)T1‖1 = ∥∥X T1
c �− + X T1

a �+
∥∥

1

= ∥∥X T1
c �−

∥∥
1 + ∥∥X T1

a �+
∥∥

1.

Hence,

‖(X�+)T1‖1 + ‖(X�−)T1‖1

= ∥∥X T1
c �+

∥∥
1 + ∥∥X T1

a �−
∥∥

1 + ∥∥X T1
c �−

∥∥
1 + ∥∥X T1

a �+
∥∥

1

= (∥∥X T1
c �+

∥∥
1+
∥∥X T1

c �−
∥∥

1

)+ (∥∥X T1
a �−

∥∥
1+
∥∥X T1

a �+
∥∥

1

)
= ∥∥X T1

c �+ + X T1
c �−

∥∥
1 + ∥∥X T1

a �− + X T1
a �+

∥∥
1

= ∥∥X T1
c

∥∥
1 + ∥∥X T1

a

∥∥
1,

where we used the property that X T1
c and X T1

a commute with
�+ and �−. �

From the proof of Lemma 1, one can see that Eq. (22) also
holds for any phase partial transpose.

On the other hand, for a given fermionic state ρ ∈ S (H),
one may write

ρ = ρ �+ + ρ �− = p+ρ+ + p−ρ−,

where ρ± are the normalized states of ρ�± with probabilities
p± = Tr(ρ�±). Now, we define

N s(ρ) := p+Nθ (ρ+) + p−Nθ (ρ−).

It is clear that Nθ (ρ) = N (ρ) for ρ with ρa = 0; i.e., Nθ (ρ)
does not change with θ for such states.

Note that Eq. (21) holds for any phase partial transpose,
which implies

ρT1
c = ρT1

c (θ ) = ρT1 (θ ) + (−1)F1ρT1 (θ )(−1)F1

2
and

eiθρT1
a = ρT1

a (θ ) = ρT1 (θ ) − (−1)F1ρT1 (θ )(−1)F1

2
,

where the first partial transpose is the ordinary one. By the
convexity and unitary invariance of the trace norm, we see

max
{∥∥ρT1

c

∥∥
1,
∥∥ρT1

a

∥∥
1

}
� ‖ρT1 (θ )‖1,

which provides an upper bound and a lower bound of the
phase negativity Nθ by

N (ρc) � Nθ (ρ) � N s(ρ). (23)

It is surprising that N s is independent of θ .
Proposition 2. The equality

N s(ρ) = N (ρc) + 1
2

∥∥ρT1
a

∥∥
1 (24)

holds for all ρ ∈ S (H), where N (ρc) is the ordinary entan-
glement negativity of ρc and

∥∥ρT1
a

∥∥
1 =

∥∥∥∥∥∥
∑

L,L′⊆J1:|L|+|L′|=odd

C†
L′ P̄J1CLρ C†

L′ P̄J1CL

∥∥∥∥∥∥
1

.

Proof. Equation (22) implies that

‖(ρ�+)T1‖1 − p+ + ‖(ρ�−)T1‖1 − p−
2

=
∥∥ρT1

c

∥∥
1 − 1 + ∥∥ρT1

a

∥∥
1 − 0

2
.

By the definition of N s, Eq. (24) holds. �
The following result reveals that N s is also a quantification

of the fermionic positive partial transpose (PPT) property.
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Proposition 3. For any θ ∈ R, with θ �= kπ , k ∈ Z,
Nθ (ρ) = 0 if and only if N s(ρ) = 0.

Proof. The “if” part is clear from Eq. (23).
For the “only if” part, assume Nθ (ρ) = 0. Then, by Theo-

rem 3, ρ cannot have a mixed local fermion-number parity,
that is, ρa = 0. Thus, from Eq. (24), we see that N s(ρ) =
N (ρ) = Nθ (ρ) = 0. This completes the proof. �

The above proposition leads to a result which is parallel to
the known fact that ρ is separable if and only if both ρ+ and
ρ− are separable.

Proposition 4. For any nontrivial phase partial transpose, a
fermionic state ρ is phase PPT if and only if both ρ+ and ρ−
are phase PPT.

In addition, we can provide upper and lower bounds for
fermionic entanglement negativity of a special class consist-
ing of those states ρ with ρc PPT, which widely occurs in the
case of (1 + M )-mode partition.

Proposition 5. For any finite-mode bipartite fermionic state
ρ with ρc PPT, the following inequalities hold:√

1 + ∥∥ρT1
a

∥∥2

1 − 1

2
� N π

2
(ρ) � 1

2

∥∥ρT1
a

∥∥
1. (25)

Proof. The right side of the inequality is clear from
Eq. (24). For the left, we use the mathematical result: If
X = X1 + iX2 is an operator in the trace class with X1 being
positive and X2 being Hermitian, then ‖X‖2

1 � ‖X1‖2
1 + ‖X2‖2

1
(see Ref. [44], Theorem 1.2). �

To illustrate how to use Eqs. (20) and (25) to estimate N π
2
,

we give an example here.
Consider the special case in which J1 = {1}. The key terms

in Eq. (20) that need to be calculated are

C†
L′ P̄J1CL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1 f †
1 , L = L′ = ∅,

f †
1 f1, L = L′ = J1,

f †
1 , L = ∅, L′ = J1,

f1, L = J1, L′ = ∅,

and thus,

ρT1
c = f1 f †

1 ρ f1 f †
1 + f †

1 f1ρ f †
1 f1,

ρT1
a = −i( f †

1 ρ f †
1 + f1ρ f1).

Hence, ρT1
c is positive, and∥∥ρT1

a

∥∥
1 = ‖ f †

1 ρ f †
1 + f1ρ f1‖1

= ‖( f †
1 + f1)( f †

1 ρ f †
1 + f1ρ f1)( f †

1 + f1)‖1

= ‖ f1 f †
1 ρ f †

1 f1 + f †
1 f1ρ f1 f †

1 ‖1

= ‖ f1 f †
1 ρ f †

1 f1‖1 + ‖ f †
1 f1ρ f1 f †

1 ‖1,

where we used the property that { f †
1 f1, f1 f †

1 } forms a com-
plete set of orthogonal projections and f †

1 + f1 is a unitary
operator. Meanwhile, because

‖ f1 f †
1 ρ f †

1 f1‖1 = ‖ f †
1 f1ρ f1 f †

1 ‖1

= ‖( f †
1 + f1) f †

1 f1ρ f1 f †
1 ( f †

1 + f1)‖1

= ‖ f1ρ f1‖1, (26)

one gets ‖ρT1
a ‖1 = 2‖ f1ρ f1‖1. It follows from Eq. (24) that

N s(ρ) = ‖ f1ρ f1‖1.

Thus, applying Eq. (25) gives√
1 + 4‖ f1ρ f1‖2

1 − 1

2
� N π

2
(ρ) � ‖ f1ρ f1‖1. (27)

Moreover, from the Hölder inequality, we see that

‖ f1ρ f1‖1 = ∥∥ f1ρ
1
2 ρ

1
2 f1

∥∥
1 �

∥∥ f1ρ
1
2
∥∥

2

∥∥ρ 1
2 f1

∥∥
2,

where ‖A‖2 = [Tr(A†A)]
1
2 is the Hilbert-Schmidt norm, and

with the mean inequality, we have

‖ f1ρ f1‖1 � Tr(ρ f †
1 f1) + Tr(ρ f1 f †

1 )

2
= 1

2
.

Equation (27) provides a relatively accurate estimate for
N π

2
in the case when J1 contains one mode.

If we denote the difference between the upper bound and
lower bound of Eq. (27) by

�(ρ) = ‖ f1ρ f1‖1 −
√

1 + 4‖ f1ρ f1‖2
1 − 1

2
,

then the monotonic increasing property of the function

f (t ) = 1 + t −
√

1 + t2

implies that

�(ρ) = f (2‖ f1ρ f1‖1)

2
� f (1)

2
= 2 − √

2

2
.

Equation (27) also implies that the following conditions are
equivalent: (1) N π

2
(ρ) = 0, (2) f1ρ f1 = 0, (3) [ρ, (−1) f †

1 f1 ] =
0, and (4) ρ is separable [see Eq. (26)]. Thus, we have proved
the following results.

Proposition 6. Consider the N-mode fermionic system with
annihilation operators { f j}N

j=1 and a bipartition of modes J1 =
{ j0} and J2 = { j : j �= j0}. Then the inequalities√

1 + 4
∥∥ f j0ρ f j0

∥∥2

1 − 1

2
� N π

2
(ρ) �

∥∥ f j0ρ f j0

∥∥
1

hold for all N-mode fermionic states ρ. In addition, the fol-
lowing statements are equivalent:

(1) ρ is separable.
(2) N π

2
(ρ) = 0.

(3) [ρ, (−1) f †
j0

f j0 ] = 0.
(4) f j0ρ f j0 = 0.
We point out that the fact (1) ⇔ (2) ⇔ (3) was also

obtained in [18]. But our approaches here are different and
seem simpler.

At the end of this section, we remark that N s has many
properties similar to the fermionic negativity N π

2
, such as

Proposition 3 and monotonicity. N s is independent of the
choice of the partial transpose (fermionic or not) and is a
sum of the symmetric and asymmetric parts relative to the
local parity operator. In many situations, N s(ρ) is easier to
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calculate [see the (1 + M )-mode case]. So it may be more
convenient in some scenarios to utilize the symmetry-resolved
negativity N s in place of the fermionic entanglement negativ-
ity N π

2
.

V. CONCLUSION

Finally, we give a brief conclusion and discussion.
Since the ordinary partial transpose and the entanglement

negativity do not work well for fermionic systems, the concept
of fermionic partial transpose and the corresponding entangle-
ment negativity were proposed in [15]. Under these notions,
some results similar to the ordinary entanglement negativity
were obtained in [18] for (1 + M )-mode fermionic systems
with M < ∞, and a conjecture for general (N + M )-mode
systems was raised which states that the states which mix local
fermion-number parity must have a nonvanishing fermionic
entanglement negativity.

To answer the conjecture, we generalized the notion of
the fermionic partial transpose to the phase partial transpose
AT1 (θ ) of physical operators A with any real number θ , and
the fermionic partial transpose was the same as AT1 (π/2).
Accordingly, we introduced the phase entanglement nega-
tivity Nθ (ρ). We discussed the behavior of positive linear
maps and established a sufficient criterion for a bipartite
fermionic state to be entangled. This enabled us to show
that every fermionic state which mixes local fermion-number
parity must have nonvanishing nontrivial phase entangle-
ment negativity and, in particular, gives an affirmative answer
to the conjecture mentioned above. In addition, we proved
that the phase entanglement negativity is an entanglement
monotone and established some equalities and inequalities
related to the phase entanglement negativity which, in par-
ticular, provide some upper bounds and lower bounds of
the fermionic entanglement negativity. Furthermore, we in-
troduced a symmetry-resolved entanglement negativity N s,
which is an upper bound of Nθ , has properties similar to Nθ ,
and is independent of the choice of θ . We also provided some
interesting equalities and inequalities concerning negativities,
in particular, for the (1 + M )-mode case. These relationships
can easily reflect the results obtained in [18].

Some interesting questions remain. The positive map cri-
terion of entanglement for distinguishable systems is not
valid for fermionic systems any longer. Theorem 1 in the
present paper suggests a possible version of the positive map
criterion for fermions and is worth pursuing. Also, what
does a reasonable fermionic entanglement witness criterion
looks like?
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APPENDIX: A PROOF OF THEOREM 4

In this Appendix, we give a proof of Theorem 4, i.e., the
monotonicity for the phase entanglement negativity. We need
two lemmas.

Lemma 2. Let H = HA ⊗ HB be a fermionic Fock space
with dim HB < ∞ and ρ ∈ S (HA ⊗ HB) be a fermionic
state. Then for any operators X A,Y A ∈ Gr (HA) and X B,Y B ∈
Gs(HB), with r, s ∈ {0, 1}, and every θ ∈ R,

[(X A ⊗ X B)ρ(Y A ⊗ Y B)]T1 (θ )

= [(Y A)T ⊗ X B]ρT1 (θ )[(X A)T ⊗ Y B],

where ρT1 (θ ) is the phase partial transpose of ρ with respect
to the real number θ .

Proof. Assume that ρ ∈ S (HA ⊗ HB) is a fermionic state.
First, one may write

ρ =∑k ZA
0,k ⊗ ZB

k +∑k ZA
1,k ⊗ ZB

k ,

where ZA
0,k ∈ G0(HA) and ZA

1,k ∈ G1(HA). Then

[
(X A ⊗ X B)

(
ZA

0,k ⊗ ZB
k

)
(Y A ⊗ Y B)

]T1 (θ )

= [(Y A)T ⊗ X B]
[(

ZA
0,k

)T ⊗ ZB
k

]
[(X A)T ⊗ Y B]

and [
(X A ⊗ X B)

(
ZA

1,k ⊗ ZB
k

)
(Y A ⊗ Y B)

]T1 (θ )

= [(Y A)T ⊗ X B]
[
eiθ
(
ZA

1,k

)T ⊗ ZB
k

]
[(X A)T ⊗ Y B].

As (
ZA

0,k ⊗ ZB
k + ZA

1,k ⊗ ZB
k

)T1 (θ )

= (ZA
0,k

)T ⊗ ZB
k + eiθ(ZA

1,k

)T ⊗ ZB
k ,

by the linearity of the phase partial transpose, this completes
the proof. �

Lemma 3. Let H = HA ⊗ HB be a fermionic Fock space
with dim HB < ∞ and ρ ∈ S (HA ⊗ HB) be a fermionic state.
Then for any sequences of operators {X A

k }∞k=1 ⊂ Gr (HA) and
{X B

k }∞k=1 ⊂ Gs(HB), with ‖∑∞
k=1(X A

k ⊗ X B
k )†(X A

k ⊗ X B
k )‖ <

∞, r, s ∈ {0, 1}, and any θ ∈ R, we have∥∥∥∥∥
∞∑

k=1

[(
X A

k ⊗ X B
k

)
ρ
(
X A

k ⊗ X B
k

)†]T1 (θ )

∥∥∥∥∥
1

�
∞∑

k=1

∥∥[(X A
k ⊗ X B

k

)
ρ
(
X A

k ⊗ X B
k

)†]T1 (θ )
∥∥

1

�

∥∥∥∥∥∥
[ ∞∑

k=1

(
X A

k ⊗ X B
k

)†(
X A

k ⊗ X B
k

)]T1

(θ )

∥∥∥∥∥∥‖ρT1 (θ )‖1,

where ‖ · ‖ is the operator norm and ‖ · ‖1 is the trace norm.
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Proof. By the convexity of the trace norm, the first inequality is clear. For the second, by Lemma 2, we see
∞∑

k=1

∥∥[(X A
k ⊗ X B

k

)
ρ
(
X A

k ⊗ X B
k

)†]T1 (θ )
∥∥

1

=
∞∑

k=1

∥∥{[(X A
k

)†]T ⊗ X B
k

}
ρT1 (θ )

[(
X A

k

)T ⊗ (X B
k

)†]∥∥
1

=

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

{[(
X A

1

)†]T ⊗ X B
1

}
ρT1 (θ )

[(
X A

1

)T ⊗ (X B
1

)†] · · · 0 · · ·
...

. . .
...

...

0 · · · {[(
X A

k

)†]T ⊗ X B
k

}
ρT1 (θ )

[(
X A

k

)T ⊗ (X B
k

)†] · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
1

�

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

{[(
X A

1

)†]T ⊗ X B
1

}
ρT1 (θ )

[(
X A

1

)T ⊗ (X A
1

)†] · · · {[(
X A

1

)†]T ⊗ X B
1

}
ρT1 (θ )

[(
X A

k

)T ⊗ (X B
k

)†] · · ·
...

. . .
...{[(

X A
k

)†]T ⊗ X B
k

}
ρT1 (θ )

[(
X A

1

)T ⊗ (X B
1

)†] · · · {[(
X A

k

)†]T ⊗ X B
k

}
ρT1 (θ )

[(
X A

k

)T ⊗ (X B
k

)†] · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

[(
X A

1

)†]T ⊗ X B
1

...[(
X A

k

)†]T ⊗ X B
k

...

⎤
⎥⎥⎥⎥⎦ρT1 (θ )

[(
X A

1

)T ⊗ (X B
1

)† · · · (X A
k

)T ⊗ (X B
k

)† · · · ]
∥∥∥∥∥∥∥∥∥∥

1

�
∥∥∥∥∥

∞∑
k=1

[(
X A

k

)†
X A

k

]T ⊗ (X B
k

)†
X B

k

∥∥∥∥∥‖ρT1 (θ )‖1 =
∥∥∥∥∥∥
[ ∞∑

k=1

(
X A

k ⊗ X B
k

)†(
X A

k ⊗ X B
k

)]T1

(θ )

∥∥∥∥∥∥‖ρT1 (θ )‖1,

where we used the properties of the trace norm ‖XY X †‖1 � ‖X‖‖Y ‖1‖X †‖ = ‖X †X‖‖Y ‖1 and ‖∑k PkXPk‖1 � ‖X‖1 for any
set of mutually orthogonal projections {Pk} (see [45], Theorem 5.1). �

Proof of Theorem 4. Now, consider physical LOCC transformations:

ρ �→
∑

k

(
X A

k ⊗ X B
k

)
ρ
(
X A

k ⊗ X B
k

)†
,

where the Kraus operators X A
k ⊗ X B

k satisfy
∑

k (X A
k ⊗ X B

k )†(X A
k ⊗ X B

k ) = I and X A
k ∈ Gr (HA) and X B

k ∈ Gs(HB), with r, s ∈
{0, 1}. By Lemma 3 and the fact that IT1 (θ ) = I , we can conclude that the phase entanglement negativity is nonincreasing under
such transformations; i.e., the phase entanglement negativity is an entanglement monotone. �
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Phys. Rev. A 64, 022303 (2001).
[33] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein,

Ann. Phys. (NY) 299, 88 (2002).
[34] G. C. Ghirardi and L. Marinatto, Phys. Rev. A 70, 012109

(2004).

[35] C. V. Kraus, M. M. Wolf, J. I. Cirac, and G. Giedke, Phys. Rev.
A 79, 012306 (2009).

[36] A. P. Majtey, P. A. Bouvrie, A. Valdés-Hernández, and A. R.
Plastino, Phys. Rev. A 93, 032335 (2016).

[37] F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino,
Phys. Rep. 878, 1 (2020).

[38] A. Arai, Inequivalent Representations of Canonical Commu-
tation and Anti-commutation Relations (Springer, Singapore,
2020).

[39] Z. Ma, C. Han, Y. Meir, and E. Sela, Phys. Rev. A 105, 042416
(2022).

[40] J. Hou and Y. Guo, Int. J. Theor. Phys. 50, 1245 (2011).
[41] Y. Li and Y.-E. Li, Linear Algebra Appl. 484, 396 (2015).
[42] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[43] H. Shapourian, P. Ruggiero, S. Ryu, and P. Calabrese,

SciPost Phys. 7, 037 (2019).
[44] R. Bhatia and X. Zhan, J. Operator Theory 50, 67

(2003).
[45] I. C. Gohberg and M. G. Krein, Introduction to the Theory of

Linear Nonselfadjoint Operators in Hilbert Space (American
Mathematical Society, Providence, RI, 1969).

032417-12

https://doi.org/10.1088/1367-2630/18/3/033014
https://doi.org/10.1103/PhysRevA.104.032411
https://doi.org/10.1088/1367-2630/14/12/123026
https://doi.org/10.1007/s00220-012-1506-z
https://doi.org/10.1103/PhysRevA.65.042101
https://doi.org/10.1088/0305-4470/39/14/017
https://doi.org/10.1103/PhysRevA.76.022311
https://doi.org/10.1103/PhysRevA.87.022338
https://doi.org/10.1103/PhysRevA.89.032326
https://doi.org/10.1088/1751-8113/49/30/305303
https://doi.org/10.1103/PhysRevA.64.022303
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1103/PhysRevA.70.012109
https://doi.org/10.1103/PhysRevA.79.012306
https://doi.org/10.1103/PhysRevA.93.032335
https://doi.org/10.1016/j.physrep.2020.07.003
https://doi.org/10.1103/PhysRevA.105.042416
https://doi.org/10.1007/s10773-010-0534-8
https://doi.org/10.1016/j.laa.2015.07.011
https://doi.org/10.1063/1.1418246
https://doi.org/10.21468/SciPostPhys.7.3.037

