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Robust estimation of nonlinear properties of quantum processes
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The accurate and robust estimation of quantum process properties is crucial for quantum information process-
ing and many-body physics. Combining classical shadow tomography and randomized benchmarking, Helsen
et al. introduced a method to estimate the linear properties of quantum processes. In this work, we focus on
the estimation protocols of nonlinear process properties that are robust to state preparation and measurement
errors. We introduce two protocols, both utilizing random gate sequences but employing different postprocessing
methods, which make them suitable for measuring different nonlinear properties. The first protocol offers a
robust and sound method to estimate the out-of-time-ordered correlation, as demonstrated numerically in an Ising
model. The second protocol estimates unitarity, effectively characterizing the incoherence of quantum channels.
We expect the two protocols to be useful tools for exploring quantum many-body physics and characterizing
quantum processes.
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I. INTRODUCTION

With the development of quantum technology, the ability to
control large quantum systems enables us to simulate exten-
sive quantum many-body systems and investigate associated
phenomena. Quantum processes, central to quantum physics,
are mathematically described as quantum channels, which are
completely positive and trace-preserving maps. All properties
of interest within quantum processes are functions of the
quantum channel, such as the scrambling strength [1], the uni-
tarity [2], and the similarity between two quantum processes
[3]. While quantum process tomography [4] offers a straight-
forward approach to estimating all these properties, its com-
plexity grows exponentially with the number of qubits, ren-
dering it impractical even for small-scale quantum systems.

Fortunately, full knowledge of a quantum channel is
not always necessary to estimate some specific proper-
ties. Estimating partial knowledge of quantum channels can
significantly reduce sample complexity compared to full to-
mography. This concept is analogous to progress in quantum
state learning [5], such as classical shadow tomography [6]
and its variations [7–10], which utilize random measurements
for the efficient estimation of state properties. The process
of classical shadow involves applying random unitary evo-
lutions to the target state, followed by computational basis
measurements, allowing for the simultaneous estimation of
multiple state properties. This approach has been adapted for
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channel property estimation through the Choi-Jamiołkowski
isomorphism [11]. Specifically, one inputs random states to
the quantum channel and performs randomized measurements
on output states, equivalent to performing randomized mea-
surements on the Choi state of the target channel. Like state
shadow tomography, this technique allows the simultaneous
estimation of multiple quantum channel properties.

While the aforementioned method can efficiently esti-
mate certain channel properties without exponential sample
complexities, it lacks robustness against state preparation
and measurement (SPAM) errors. In many practical systems,
SPAM errors, particularly measurement errors, can be as
significant as or even surpass quantum gate errors [12,13].
Therefore, accurately estimating channel properties necessi-
tates mitigating the influence of SPAM errors. Randomized
benchmarking serves as a widely adopted protocol for this
purpose, allowing property estimation of quantum channels
while reducing the impact of SPAM errors [14]. However,
conventional randomized benchmarking protocols are limited
in measurable properties, primarily restricted to properties
such as average fidelity [15].

Utilizing group twirling and fitting techniques, Helsen
et al. have combined randomized benchmarking with classical
shadow to estimate arbitrary linear properties of quantum
channels, robust against SPAM errors [16]. However, to fully
explore quantum phenomena and characterize quantum chan-
nels, linear properties alone are insufficient. Many critical
nonlinear properties exist, such as out-of-time-ordered cor-
relation (OTOC) [1], a measure of information scrambling.
The quantity of OTOC is critical in both quantum many-body
physics [17,18] and quantum information [19,20]. Yet, cur-
rent estimation methods for OTOC lack robustness against
SPAM errors [21–27], which poses a challenge to observe
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FIG. 1. The workflow of the nonlinear channel properties estimation via the generalized uniformly independent random sequence protocol
introduced in Secs. III A and III B. In step “a,” we obtain the shadow sequence data (x, g) by implementing random gate sequences and
POVM measurements. For each sequence length m, we measure the same gate sequences for r times and iterate the process with t different
gate sequences. In step “b,” we calculate the correlation function k(m) using the shadow sequence data. The first protocol utilizes data from
independent sequences, while the second protocol involves data from identical sequences. The entire procedure is repeated for several different
sequence lengths m. In step “c,” we perform a fitting of the correlation function k(m) against the sequence length m to extract the desired
nonlinear channel properties. With different group G, the two protocols may be suitable for evaluating different channel properties. In particular,
if G is the global n-qubit Clifford group, protocol 1 can estimate all the properties that protocol 2 can obtain, as discussed in Sec. III C.

information scrambling. In addition, other nonlinear prop-
erties, such as unitarity and nonstabilizerness of a quantum
channel, are also important and widely discussed in the quan-
tum information field [2,28].

Building upon Helsen et al.’s framework [16], we introduce
two protocols to estimate nonlinear properties of quantum
channels with robustness against SPAM errors, as shown in
Fig. 1. Both protocols implement random gate sequences
sampled from a group and perform a positive operator-valued
measure (POVM) to collect shadow data in the first step. Then,
they differ in classical data postprocessing. The first protocol
utilizes correlations between measurement data from inde-
pendently chosen gate sequences, while the second harnesses
correlations from identical gate sequences. The expectation of
the correlation is a multiple exponential decay function with
the circuit depth. Through exponential fitting, one can get non-
linear properties of quantum channels excluding the SPAM
error. Different classical postprocessing procedures make the
two protocols suitable for evaluating different channel prop-
erties and exploring different phenomena within quantum
many-body systems. As an application, we employ the first
protocol to measure OTOC and theoretically analyze its sam-
ple complexity. In a long-range interaction Ising model, we
numerically demonstrate the effectiveness of the protocol and
resilience to SPAM errors. Moreover, we explore the potential
of the second protocol in estimating unitarity [2]. We analyze
the type of channel properties that can be measured with each
protocol when the matrix exponential fitting is allowed. We
find that when the gate sequences are sampled from a unitary
two-design group, such as the Clifford group, the measurable
quantities of the first protocol cover those of the second one.

This work is organized as follows. In Sec. II, we introduce
basic notations and the necessary preliminaries for this work.
In Sec. III, we present two protocols to estimate nonlinear
channel properties, provide two illustrative examples, and
discuss the measurable properties of these two protocols. In

Sec. IV, we showcase the results of our simulations pertaining
to OTOC estimation. We conclude in Sec. V.

II. PRELIMINARIES

In this section, we define key notations and review es-
sential concepts in the Pauli-Liouville representation, the
Clifford group, and the uniformly independent random se-
quence (UIRS) shadow [16].

A. Pauli-Liouville representation

For an n-qubit system, Cd with the dimension d = 2n, the
normalized Pauli group is defined as

Pn =
{

σ√
d

∣∣∣ σ ∈ {I, σx, σy, σz}⊗n

}
. (1)

The elements of this group, I, σx, σy, and σz, represent the
identity operator, and Pauli X , Y , and Z operators, respec-
tively, defined as

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
,

σy =
(

0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2)

In certain contexts, the identity operator is excluded, leading
to the set P 0

n = Pn\ 1√
d

, where we define 1 = I⊗n. The Pauli
group forms an orthonormal basis in the linear operator space
L(Cd ), equipped with the inner product 〈A, B〉 = Tr(A†B).
Consequently, any operator O can be expressed as a sum over
this basis,

O =
∑
σi∈Pn

〈σi, O〉σi. (3)
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The Pauli-Liouville representation vectorizes the opera-
tor space, defined as the linear map |·〉〉 : L(Cd ) → Cd2

, by
assigning |σi〉〉 = ei, where σi ∈ Pn and {ei} forms an orthonor-
mal basis in Cd2

. Furthermore, the inner product in the Hilbert
space Cd2

is represented as 〈〈A|B〉〉 = 〈A, B〉 = Tr(A†B). By
linearity, the Pauli-Liouville representation of an operator O
is expressed as

|O〉〉 =
∑
σi∈Pn

〈σi, O〉|σi〉〉. (4)

For a quantum channel E : L(Cd ) → L(Cd ), it can be rep-
resented as a matrix in the Pauli-Liouville representation. The
elements of this matrix are given by

Ei, j = 〈〈σi|E |σ j〉〉 = 〈〈σi|E (σ j )〉〉 = Tr[σiE (σ j )]. (5)

In this representation, the composition of channels corre-
sponds to matrix multiplication. Specifically, for two quantum
channels E1 and E2 acting on an operator O, the composition
is expressed as

|E1 ◦ E2(O)〉〉 = E1E2|O〉〉. (6)

B. Clifford group

The Clifford group Cn comprises n-qubit unitary operators
that normalize the Pauli group Pn. An operator U is an element
of the Clifford group if and only if, for every Pauli operator
P ∈ Pn, the conjugated operator UPU † is also a Pauli opera-
tor, up to a global phase. Mathematically, this is expressed as
follows: for each P ∈ Pn and U ∈ Cn, there exists P′ ∈ Pn and
a global phase eiθπ such that UPU † = eiθπ P′.

In the Pauli-Liouville representation, the Clifford group de-
composes into two nonequivalent irreducible representations,
∀g ∈ Cn,

ω(g) = τtr (g) ⊕ τad(g), (7)

where τtr is the trivial representation supported on the nor-
malized identity matrix, |1/

√
d〉〉, and τad is the adjoint

representation supported on the traceless matrices. The pro-
jector onto the representation space of τtr is Ptr = |1〉〉〈〈1|/d ,
while the projector onto the irreducible representation space
of τad is given by Pad = ∑

σ∈P 0
n
|σ 〉〉〈〈σ |.

C. Uniformly independent random sequence shadow

The uniformly independent random sequence (UIRS)
shadow [16] can estimate the linear properties of noisy gate
sets by combining the methods of randomized benchmarking
and classical shadow tomography. The protocol starts with the
collection of shadow sequence data obtained from a random
sequence of gates, followed by a POVM measurement. The
subsequent step is computing the correlation function from
the shadow data, which encodes the desired properties of
the gate set. The final step entails estimating the gate set
properties through a fitting process [16]. Notably, the UIRS
protocol exhibits robustness against SPAM errors, similar to
the conventional randomized benchmarking protocol.

Now, we proceed to formalize the UIRS protocol math-
ematically, following the procedures depicted in Fig. 1. Let
g = (g1, . . . , gm) denote a random sequence, comprising m

gates where each gate gi is uniformly and independently
selected from a unitary gate set G. Typically, G is chosen
as a group and we adhere to this convention in our work.
Given an input state ρ and a POVM with a finite-outcomes
set X , {Ex}x∈X , each iteration of the protocol yields a piece
of shadow data, denoted as (x, g). These data contain the
measurement outcome x and the random gate sequence g. The
probability of acquiring this specific data is given by

p(x, g) = 〈〈Ex|E (g)|ρ〉〉, (8)

where E (g) denotes the noisy implementation of the random
sequence g.

In experiments, the presence of noise is inevitable. We
model the noisy initial state and measurement as ρ̃ and {Ẽx},
respectively. Regarding the noisy implementation of the ran-
dom sequence, we assume gate-independent noise, a special
type of Markovian noise. Specifically, for each gate gi in the
random sequence, the ideal unitary implementation is given
by

ω(gi )|ρ〉〉 = |gi(ρ)〉〉, (9)

where ω is the Liouville representation of the group G and
gi(ρ) = UgiρU †

gi
. The actual implementation of the noisy gate

is given by

φ(gi ) = 	Lω(gi )	R, (10)

where 	L and 	R are noise channels independent of the gate
choice. Then, the channel 	 = 	R	L denotes the noise oc-
curring between gates. Consequently, the overall implemented
channel for the random sequence is

E (g) =
m∏

i=1

φ(gi ). (11)

Under these assumptions and considering errors in state and
measurement, the probability of obtaining data (x, g) is given
by

p(x, g) = 〈〈Ẽx|
m∏

i=1

φ(gi )|ρ̃〉〉. (12)

After multiple independent experimental rounds, we ac-
quire a collection of gate-set shadows, {(xi, gi )}S

i=1. From
the shadow data, we aim to extract meaningful informa-
tion, typically in the form of an expectation value of a
sequence correlation function. We consider a correlation func-
tion f (x, g, m) : X × G×m × Z+ → C, with a specific form,

fA(x, g, m) = Tr

[
Bxτ (gm)

m−1∏
i=1

Aτ (gi )

]
, (13)

where τ represents an irreducible representation of group G,
and A and Bx denote preselected operators supported on the
representation space associated with τ . The expectation of
this correlation function across all possible choices of random
gate sequences is given by

kA(m) = E
g∈G×m

∑
x∈X

fA(x, g, m)p(x, g). (14)

The quantity kA(m) is always referred to as the correlator
with sequence correlation function fA. It has been proven that
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kA(m) has an exponential behavior in m [16],

kA(m) = Tr{
({Ex}x, ρ)[�(A,	)]m−1}, (15)

where 
({Ex}x, ρ) is a matrix dependent solely on SPAM
and Bx; �(A,	) is a matrix dependent on G, A, and 	.
If the Liouville representation of G has decomposition,
ω(g) = τ (g)nτ ⊕ ω′(g), where ω′(g) contains no copy of τ (g),
then �(A,	) reduces to

�(A,	)i, j = 1

|Pj |Tr(PjAPi	), (16)

where Pi is the projector onto the ith copy of τ (g) inside
the representation of ω(g) and |Pj | = rank(Pj ) represents
the dimension of τ (g). With the exponential fitting, one can
obtain �(A,	) while excluding the influence of the SPAM,
ρ and Ex. Each matrix element of �(A,	), Tr(PiAPj	), is
a linear function of 	 dependent on A. We can thus estimate
the linear properties of 	.

In reality, we cannot get the correlator kA perfectly due to
the finite sampling, but we can construct an estimator, k̂A(m),
from the shadow data such that k̂A(m) converges to kA(m)
when the number of experiment rounds is sufficiently large.
A standard estimator is given by

k̂A(m) = 1

S

S∑
i=1

fA(xi, gi, m). (17)

When S → ∞, this estimator will converge to kA(m) and
allow one to get �(A,	).

In summary, the UIRS protocol serves as a valuable tool for
estimating linear properties of noise channels associated with
gate sets. Alternatively, when considering a noiseless gate
set G and artificially inserting the noise channel 	 between
two consecutive random gates gi and gi+1, the UIRS protocol
can be interpreted as a method for extracting properties of
any given channel. Typically, 	 can be chosen as a unitary
evolution, which is of particular interest in studies of quantum
many-body systems. In the following section, we will extend
the UIRS protocol to the estimation of nonlinear properties
of quantum channels, focusing on evaluating the OTOC of
unitary quantum evolution and the unitarity of the quantum
channels.

III. NONLINEAR CHANNEL PROPERTIES ESTIMATION
VIA GENERALIZED UIRS

In this section, we present the generalized UIRS protocol
to estimate nonlinear channel properties. Our protocol shares
the quantum procedure with the UIRS protocol, that is, apply-
ing the random gate sequences and measurements to obtain
the shadow data (x, g). The difference lies in the classical
postprocessing stage. In the UIRS protocol, the correlation
function only involves one piece of shadow data, such as
Eq. (13). In our protocol, we evaluate the correlation func-
tion by incorporating two pieces of shadow data instead of
one. The gate sequences in two pieces of shadow data can
be chosen as independent or identical, corresponding to two
different protocols. We study the two cases separately and
draw a comparative analysis.

A. Nonlinear correlation via independent sequences

We first introduce the generalized UIRS protocol utiliz-
ing two pieces of shadow data derived from independent
gate sequences. To illustrate, we provide a specific example
demonstrating the effective estimation of the OTOC within
this protocol.

After obtaining the shadow data, we can construct a se-
quence correlation function that encodes the information of
the desired quantity. In this context, we consider a second-
order sequence correlation function defined as

f (x, y, g1, g2, m) : X × X × G×m × G×m × Z+ → C,

(18)

which depends on two independent random sequences g1 and
g2 and their measurement outcomes x and y. Notice that the
function is analogous to the observable with respect to two
copies of the state in the case of state shadow tomography [6].
The expectation of the correlation function is taken over the
group G×m × G×m and the measurement outcomes,

k f (m) =
∑

x,y∈X
Eg1,g2∈G×m f (x, y, g1, g2, m)p(x, g1)p(y, g2).

(19)

With the sequence shadow data {(xi, gi )}S
i=1, we can construct

an estimator k̂ f (m) for k f (m) as shown below,

k̂ f (m) = 1

S(S − 1)

∑
i = j

f (xi, x j, gi, g j, m). (20)

When the number of samples S tends to infinity, the estimator
k̂ f (m) converges to k f (m).

In this work, we investigate a special kind of correlation
function in the form of

fA(x, y, g1, g2, m)

= Tr

{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]}
,

(21)

where τ1 and τ2 are both irreducible representations of group
G, and A, Bxy are operators supported on the corresponding
representation space of τ1 ⊗ τ2. In this case, the expectation
value k f (m) is denoted as kA(m) since it encodes information
of the operator A. For the special-type correlation function
of Eq. (21), Theorem 1 tells us that the expectation value
kA(m) exhibits an exponential decay behavior with respect
to the sequence length m. The complete proof is available in
Appendix A.

Theorem 1. (Exponential decay). Given a generalized UIRS
protocol with group G, the expectation value kA(m) of the
second-order correlation function given by Eq. (21) has the
following form:

kA(m) = Tr{
({Ex}, ρ)[�(A,	)]m−1}, (22)

where 
({Ex}, ρ) and �(A,	) are induced matrices de-
pendent on SPAM and channel 	, respectively. If ω(g) =
τ1(g)nτ1 ⊕ ω′

1(g) where ω′
1(g) contains no copy of τ1(g) and
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ω(g) = τ2(g)nτ2 ⊕ ω′
2(g) where ω′

2(g) contains no copy of
τ2(g), then the matrix �(A,	) has the element

[�(A,	)]ii′, j j′ = 1

|Pj ||Pj′ |Tr[(Pj ⊗ Pj′ )A
T (Pi ⊗ Pi′ )	

⊗2],

(23)

where Pi and Pj are the projectors onto the ith and jth copies
of τ1 inside the representation ω, respectively, and Pi′ and Pj′

are the projectors onto the i′th and j′th copies of τ2 inside
the representation ω, respectively. In the special case that the
representation ω only has one copy of τ1 and one copy of τ2,
the matrix �(A,	) reduces to a number.

As an application of this generalized UIRS protocol, we
demonstrate that OTOC can be estimated via the generalized
UIRS protocol robust to SPAM errors. We first briefly review
the definition of OTOC, which originates from information
scrambling. Information scrambling is one of the signatures
of quantum chaos in many-body systems, and the strength of
the scrambling can be quantitatively characterized by OTOC
[1,29]. Specifically, for a local operator V , after a unitary
dynamics Ut = e−iHt controlled by a Hamiltonian H , the local
information encoded by V can spread over many sites and
become nonlocal. Assume that there is another operator W lo-
cated in a different position from V and define V (t ) = U †

t VUt .
Initially, V = V (0) is localized and commutes with W , but
V (t ) will be nonlocal and become noncommutative with W
when V (t ) is spread to the position of W . Consequently, the
operator growth associated with Ut can be characterized by
the expectation value of the squared commutator of V (t ) and
W over a state ρ,

C(t ) = 〈[V (t ),W ]†[V (t ),W ]〉ρ. (24)

A closely related quantity is OTOC, defined by

O(t ) = 〈W †V (t )†WV (t )〉ρ, (25)

which satisfies

C(t ) = 2{1 − Re[O(t )]}. (26)

The quantities O(t ) and C(t ) both measure the strength of
information scrambling. Here, we take ρ as the maximally
mixed state, which can also be regarded as the thermal state of
infinite temperature. In this case, OTOC has an explicit form,

O(t ) = 1

d
Tr[W †V (t )†WV (t )]. (27)

Below, we focus on the multiqubit system with dimension
d = 2n. We consider V and W to be nontrivial and unnormal-
ized Pauli operators, V,W ∈ √

dP 0
n . The situation can also be

straightforwardly generalized to the case that V and W are
arbitrary operators, as shown in Appendix B. In the following
theoretical analysis, we assume that the random gate is taken
from the multiqubit Clifford group and is noiseless. To ro-
bustly estimate the OTOC against SPAM errors, we introduce
an adjustment of the generalized UIRS protocol by inserting
a unitary gate Ut (ρ) = UtρU †

t between two random Clifford
gates. This can be interpreted as considering the unitary evo-
lution Ut as the noise, as depicted in Fig. 2. In reality, the
Clifford gates {gi} are also noisy and we can regard their
noises as being absorbed by the unitary gate. For instance,
when considering φ(gi ) = 	Lω(gi )	R such as Eq. (10), we

FIG. 2. Random Clifford gate sequence g1, g2, . . . , gm inter-
twined with a fixed unitary gate, Ut .

can view the inserted gate to be a noisy implementation of
the unitary gate, Ũt = 	RUt	L, which allows us to obtain the
information of the noisy unitary dynamics robust to SPAM
errors. In this sense, the implemented Clifford gate is ideal,
and then our protocol can estimate the OTOC of the noisy
unitary evolution without the influence of Clifford gate noises.
Meanwhile, in practice, one can use an approximate 2-design
gate set to replace the Clifford group in this protocol with-
out compromising the faithfulness of the estimation, which
we will detail in Appendix C. Since an n-qubit approximate
2-design gate set can be implemented in a one-dimensional
O(ln n)-depth Clifford circuit [30], our protocol of OTOC
estimation is also implementable in a short-depth circuit with
restricted connections.

For estimating OTOC, we define the second-order correla-
tion function as

fA(x, y, g1, g2, m)

= Tr

[
Bxyτad

(
g1

m

) ⊗ τad
(
g2

m

) m−1∏
i=1

Aτad
(
g1

i

) ⊗ τad
(
g2

i

)]
,

(28)

where A = (d2 − 1)2 ∑
σ∈P 0

n
Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V ⊗ V |,

Bxy = |ρ〉〉〈〈Ex| ⊗ |ρ〉〉〈〈Ey|, and τad is the adjoint represen-
tation supported on the traceless matrices. After obtaining
shadow sequence data, we can estimate the expectation value
kA(m). Next, we show the relationship between kA(m) and
OTOC.

Corollary 1. The expectation value kA(m) of the second-
order correlation function defined in Eq. (28) has an expo-
nential decay behavior with respect to the sequence length m,
kA(m) = a[dO(t )]m−1. The decay parameter is p(A) = dO(t )
with O(t ) = 1

d Tr[W †V (t )†WV (t )] being OTOC.
The full proof of Corollary 1 is available in Appendix B.

Thus, OTOC can be robustly evaluated with the protocol pro-
posed in this section, with the simulation shown in Sec. IV.

To analyze the sample complexity of this protocol, we
evaluate the variance of the correlation function defined in
Eq. (28). An upper bound is given in the following theorem
and the full proof of the variance is detailed in Appendix D.

Theorem 2. Viewing fA defined in Eq. (28) as a random
variable with probability distribution from the shadow data,
p(x, g1)p(y, g2), the variance of this random variable is upper
bounded by O(d8m−12).

In the experiment, we obtain S shadow data samples to
estimate the expectation value kA(m) through Eq. (20) and
then derive the OTOC. The variance of the estimator k̂A(m)
depends on both S and the variance of the random variable fA

with probability distribution p(x, g1)p(y, g2). As a corollary
of Theorem 2, the variance of the estimator k̂A(m) also has an
upper bound.
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Corollary 2. Suppose the number of samples is S and the
estimator for kA(m, S) is

k̂A(m, S) = 1

S(S − 1)

∑
i = j

f (xi, x j, gi, g j, m). (29)

Then the variance has an upper bound,

Var[k̂A(m, S)]

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

S(S−1) O(d−4) + 2(S−2)
S(S−1) O(d−1), m = 1

1
S(S−1) O(d4) + 2(S−2)

S(S−1) O(1), m = 2

1
S(S−1) O(d8m−12) + 2(S−2)

S(S−1) O(d4m−4), m > 2.

(30)

Particularly, we can estimate OTOC by the ratio
k̂A(2, S)/k̂A(1, S) with S samples. From Corollary 2, the
variance of the estimators k̂A(2, S) and k̂A(1, S) can be
upper bounded by O(d4S−2) + O(S−1) and O(d−4S−2) +
O(d−1S−1), respectively. Then, the variance of the ratio has
an upper bound given by

Var

(
k̂A(2, S)

k̂A(1, S)

)

�
(
E[k̂A(2, S)]

E[k̂A(1, S)]

)2[
Var[k̂A(2, S)]

{E[k̂A(2, S)]}2
+ Var[k̂A(1, S)]

{E[k̂A(1, S)]}2

]

= O

(
d8

S2

)
+ O

(
d5

S

)
, (31)

where the two expectation values can be evaluated by
E[k̂A(2, S)] = O(d−1) and E[k̂A(1, S)] = O(d−2). The de-
tailed calculation of the variances and expectations can be
found in Appendix D. Thus, the number of samples S
only needs to take O( d5

ε
) to evaluate the estimate within

precision ε.

B. Nonlinear correlation via identical sequences

The nonlinear correlation function defined in Eq. (18) is
connected with two independent pieces of sequences. In this
part, we set the two gate sequences to be identical and study
the corresponding second-order correlation function, where
we find that the protocol estimating unitarity robustly pre-
sented in Ref. [2] is a specific instance of this protocol.

Specifically, we consider the second-order correlation
function when the two random gate sequences are chosen to
be the same, i.e., g1 = g2, defining

k f (m) =
∑

x,y∈X
Eg∈G×m f (x, y, g, m)p(x, g)p(y, g). (32)

Similarly to the case for independent sequences, we assume

f (x, y, g, m) = fA(x, y, g, m) = Tr

[
Bxyτ (gm)

m−1∏
i=1

Aτ (gi )

]
,

(33)

where τ is an irreducible representation of the group G, and
A, Bxy are matrices supported on the representation space

associated with τ . The following theorem states that the ex-
pectation value kA(m) = k fA (m) has an exponential decay,
with the proof shown in Appendix E.

Theorem 3. (Exponential decay). Given a generalized UIRS
protocol with respect to the group G, the expectation value
kA(m) defined with Eqs. (32) and (33) has the following form:

kA(m) = Tr{
({Ex}, ρ)[�(A,	)]m−1}, (34)

where 
({Ex}, ρ) and �(A,	) are induced matrices de-
pendent on SPAM and channel 	, respectively. The matrix
�(A,	) = Pτ (A ⊗ 	⊗2)Pτ has the element

[�(A,	)]i, j = 1

|Pj |Tr(PjA
T Pi	

⊗2), (35)

where Pτ = Eg∈Gτ (g) ⊗ ω(g)⊗2, and Pi and Pj are the projec-
tors onto the ith and jth copies of τ inside ω⊗2, respectively.
In the special case that the representation ω⊗2 only has one
copy of τ , the matrix �(A,	) reduces into a number.

Below, we show that the protocol in this section can be
used to estimate unitarity. For the between-gates noise channel
	 : B(Cd ) → B(Cd ), the unitarity of the channel is defined
as the average purity of the output states with the identity part
being subtracted,

u(	) = d

d − 1

∫
dψTr[	′(|ψ〉〈ψ |)†	′(|ψ〉〈ψ |)], (36)

where 	′(A) = 	(A) − Tr	(A)
d 1.

The unitarity can be efficiently and robustly estimated
against SPAM errors through an experimental protocol based
on randomized benchmarking [2]. Here, we prove that uni-
tarity can be estimated under the generalized UIRS protocol
when the two involved random sequences are identical
and the group G is the Clifford group. Again, we as-
sume the noise channel of the Clifford gates to be gate
independent.

Given a state ρ, a sequence of gates, {g1, g2, . . . , gm},
and an observable E = ∑

x Ex with {Ex}x representing a
computational-basis measurement, it has been proven that the
square of the measurement result has an exponential decay
after taking an expectation over the Clifford group G [2],

E
g∈G×m

(
Tr

{
Ẽ

m∏
i=1

φ(gi )[ρ̃]

})2

= a + bu(	)m−1, (37)

where a and b are fitting constants and u(	) is the unitarity
of the noise channel. The notation ·̃ represents the noisy
versions of quantum states, gates, and observables.

We demonstrate that Eq. (37) can be written in the form
of Eq. (32) by properly selecting the operator A and Bxy. Let
A = 1 and Bxy = 1, and set the irreducible representation τ

as the trivial representation of the Clifford group. Then, the
second-order correlation function is

fA(x, y, g, m) = Tr

[
1

m∏
i=1

τtr (gi )

]
= 1. (38)
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Therefore,

kA(m) = E
g∈G×m

∑
x,y

fA(x, y, g, m)p(x, g)p(y, g)

= E
g∈G×m

∑
x,y

Tr

{
Ẽ (x)

m∏
i=1

φ(gi )[ρ̃]

}

× Tr

{
Ẽ (y)

m∏
i=1

φ(gi )[ρ̃]

}

= E
g∈G×m

[
Tr

{
Ẽ

m∏
i=1

φ(gi )[ρ̃]

}]2

. (39)

According to Theorem 3, the quantity kA(m) has an expo-
nential decay with respect to the matrix �(A,	) = Pτ (A ⊗
	⊗2)Pτ , where

Pτ = E
g∈G

τtr (g) ⊗ ω(g)⊗2 (40)

is the projector onto the trivial subspace within ω⊗2. The
explicit form of the projector is

Pτ = |B1 ⊗ B1〉〉〈〈B1 ⊗ B1| + |B1 ⊗ B2〉〉〈〈B1 ⊗ B2|, (41)

where the two operators are

B1 = 1d2

d
, B2 = F − B1√

d2 − 1
. (42)

Here, F is a SWAP operator on the space of 	⊗2. When 	 is
trace preserving,

�(A,	) =
(〈〈B1|	⊗2|B1〉〉 〈〈B1|	⊗2|B2〉〉

〈〈B2|	⊗2|B1〉〉 〈〈B2|	⊗2|B2〉〉
)

=
(

1 0
〈〈B2|	⊗2|B1〉〉 u(λ)

)
(43)

is a 2 × 2 matrix. And the two eigenvalues of matrix � are 1
and u(λ). Thus, there exist constants a and b such that

kA(m) = a + bu(	)m−1. (44)

For different m, we estimate the expectation values kA(m)
and fit these values to Eq. (44). Thus, we can robustly and
efficiently estimate the unitarity with only a single exponential
fitting.

C. Measurable functions via UIRS

In Secs. III A and III B, we have derived the exponential
forms of the expectation values as shown in Theorems 1 and
3. We refer to the two different protocols as independent
UIRS and identical UIRS. It is worth mentioning that in our
protocol, only functions in the form of Eq. (23) can be directly
measured with independent UIRS, and only functions in the
form of Eq. (E2) can be directly measured with identical
UIRS. Due to the existence of the projectors in Eqs. (23) and
(E2), the nonlinear function Tr(AT 	⊗2) can only be measured
when A is inside the span of projectors. Also, owing to the dif-
ferent classical postprocessing procedures of the independent
UIRS protocol and the identical UIRS protocol, the projectors
in Eqs. (23) and (E2) differ from each other. There might exist
some operators that can only be measured by the independent

UIRS and some other operators that can only be measured
by the identical UIRS, which depends on the choice of the
gate set G. Nonetheless, if we assume the matrix exponential
fitting is feasible and the random gates are taken from the
n-qubit Clifford group, we can show that any operators that
identical UIRS can measure can also be measured via inde-
pendent UIRS. Below, we delve into this discussion in detail.

From Eq. (23), when fixing two irreducible representa-
tions τ and τ ′ and a matrix A, one can obtain the value of
Tr[(Pj ⊗ Pj′ )AT (Pi ⊗ Pi′ )	⊗2], where Pi and Pj are projectors
onto the irreducible representation of τ inside the Liouville
representation ω, and Pi′ and Pj′ are projectors onto the irre-
ducible representation of τ ′ inside ω. Thus, independent UIRS
can measure observables in the span of {Pτ ⊗ Pτ ′ }, where
Pτ and Pτ ′ are projectors onto the irreducible representation
space associated with τ and τ ′ in ω, respectively; τ and
τ ′ are arbitrary irreducible representations of group G. If ω

contains several copies of τ , then Pτ = ∑
i Pi is the sum of the

projectors onto each copy of τ , where Pi is the projector onto
the ith copy of τ inside the representation ω. We denote the
span of the projectors in this case as SG

1 = span{Pτ ⊗ Pτ ′ }.
Similarly, from Eq. (E2), identical UIRS can only measure

observables in the span of {Pν}, where Pν is a projector onto
the irreducible representation space associated with ν in ω⊗2;
ν is an irreducible representations of group G. We denote the
span of the projectors in this case as SG

2 = span{Pν}.
Note that SG

1 and SG
2 are related to the group G and would

be larger if G is larger. Below, we consider the case that G is
the n-qubit Clifford group. In this case,

SG
1 = span{Ptr ⊗ Ptr, Ptr ⊗ Pad, Pad ⊗ Ptr, Pad ⊗ Pad}; (45)

SG
2 = span{Pd , Pid , Pr, Pl , P[S], P{S}, P[A], P{A}}. (46)

Here, Ptr and Pad are two distinct irreducible representa-
tions of the Clifford group in ω as introduced in Sec. II B;
Pd , Pid , Pr, Pl , P[S], P{S}, P[A], and P{A} are eight different ir-
reducible representations of the Clifford group in ω⊗2

[31]. Then, the operators that can be measured via the
independent UIRS and the identical UIRS are determined by
Eqs. (45) and (46), respectively.

For OTOC, the first example in this work, the observable
A is (d2 − 1)2 ∑

σ∈P 0
n

Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V † ⊗ V | satisfy-

ing A = P⊗2
ad AP⊗2

ad . Meanwhile, A = Pd APd . Thus, OTOC
can be measured by both the independent UIRS and the
identical UIRS. But the difference is that the former only
requires the single-exponential fitting, and the latter requires
the matrix-exponential fitting as Pd contains multiple copies
of an irreducible representation of G. For unitarity, as dis-
cussed in the previous section, this quantity can be measured
via the identical UIRS. Meanwhile, the unitarity is equal to
〈〈B2|	⊗2|B2〉〉, with B2 defined in Eq. (42), and corresponds
to the observable of |B2〉〉〈〈B2|. Note that |B2〉〉〈〈B2| is inside
Pad ⊗ Pad so unitarity can be also measured via the indepen-
dent UIRS. The difference between the two protocols is the
classical postprocessing and the sample complexity.

Though the two examples in this work can be measured via
both protocols, there exist examples that can only be measured
via independent UIRS. For instance, the observable P⊗2

ad can
only be measured via the independent UIRS, as it does not
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FIG. 3. Convergence of estimated OTOC for (a) three qubits, (b) four qubits, and (c) five qubits. In these figures, the horizontal axis
corresponds to S, the number of sampling sequences in k̂A(m, S). The orange horizontal line denotes the theoretical OTOC value in the ideal
case that we want to obtain. And the blue line represents the average x̄ over {x1, . . . , xN }, for N = 400 and Smax = 60 000 here. Moreover,
the blue vertical line represents the standard deviation for x̄(S). Due to the substantial size of the Clifford group, especially for qubit numbers
beyond two, exhaustive sampling from the entire Clifford group proves challenging. Instead, we opt to randomly select a subgroup from the
n-qubit Clifford group and sample from this subgroup for simulation purposes. Moreover, owing to the extensive size of the Clifford group, the
estimate xi(S) exhibits considerable variation, and x̄(S) deviates from the ideal OTOC when the number of samples S is relatively small. As
the sample size S increases, the estimated result gradually converges towards the ideal value. (d) Variance for two, three, four, and five qubits.
In this figure, we illustrate the variance of x̄(S). As x̄(S) is the mean value of {x1(S), . . . , xN (S)}, the relationship between their variance is that
Var[x̄(S)] = Var[xi (S)]

N , where N = 400 is the size of the estimates. In this figure, the horizontal axis is the logarithm of the sample number S,
and the vertical axis represents the logarithm of the variance for different qubits.

belong to SG
2 . Conversely, we found that there is no example

that can only be measured via identical UIRS for the n-qubit
Clifford group as SG

2 ⊆ SG
1 . This can also be easily seen from

the following equations:

Pid = Ptr ⊗ Ptr,

Pl = Pad ⊗ Ptr,

Pr = Ptr ⊗ Pad,

Pd = Pd · (Pad ⊗ Pad ),

P[S] = P[S] · (Pad ⊗ Pad ),

P{S} = P{S} · (Pad ⊗ Pad ),

P[A] = P[A] · (Pad ⊗ Pad ),

P{A} = P{A} · (Pad ⊗ Pad ). (47)

Thus, for the n-qubit Clifford group, SG
2 ⊂ SG

1 and we con-
clude that the observables that independent UIRS can measure
contain the observables that identical UIRS can measure. This
property comes from the fact the Liouville representation
only contains a trivial representation and another irreducible
representation for the Clifford group. For the same reason,
the property that independent UIRS can measure more ob-
servables than identical UIRS holds for any unitary 2-design
group [32]. Nonetheless, this phenomenon does not hold
for any group. For the Pauli group, identical UIRS can
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FIG. 4. (a) Variation of OTOC with time. In this figure, the horizontal axis is the time and the orange line is the ideal OTOC value. The
blue line is the mean value x̄(S) for N = 400, S = 30 000, and the standard deviation of x̄(S) is shown as the error bar. (b) Compared OTOC
value under SPAM errors. In this figure, the horizontal axis is the probability p in the depolarizing channel, after which the state ρ undergoes
the transformation (1 − p)ρ + p

d 1; the green line is the ideal OTOC value; the orange line is the estimated value of OTOC from our method;
and the blue line is the estimated OTOC from the statistical correlation method [21].

measure more than independent UIRS, as SG
1 ⊂ SG

2 in this
case.

IV. SIMULATION RESULTS AND ANALYSIS

In this part, we present the simulation results leveraging the
generalized UIRS protocol, primarily focusing on the estima-
tion of OTOC. OTOC is defined with a Hamiltonian evolution
and two observables V and W . In our simulation, the evolution
is a unitary dynamics, Ut = e−iHt , where H is a disordered
Ising interaction [33],

Hdisordered Ising =
∑
i< j

Ji, jσ
x
i σ x

j + B

2

∑
i

σ z
i +

∑
i

Di

2
σ z

i ,

(48)

where Ji, j = J0
|i− j|α and Di is uniformly and randomly chosen

from [−Dmax, Dmax]. And we set the random Clifford gates to
be noiseless in the simulation. The observables V and W are
set as Pauli operators with σy on the last qubit and σx on the
next-to-last qubit, respectively. Moreover, the POVM {Ex} is
chosen as the computational-basis measurement and the initial
state ρ is assigned as |0〉〈0|.

As introduced in Eq. (28), to evaluate OTOC, we first cal-
culate the correlation function fA(x, y, g1, g2, m) by sampling
two sequences of Clifford gates with length m, denoted as
(g1, g2). To reduce the computational difficulties, we sim-
plify the expression of Eq. (28), with the results shown
in Appendix F. Then we simulate Eq. (19) by summing
over all measurement results x and y to obtain an estimator
k̂A(m, g1, g2)=∑

x,y fA(x, y, g1, g2, m)p(x, g1)p(y, g2). Then,
we repeat sampling (g1, g2) for S times to obtain the expecta-
tion, which we denote as k̂A(m, S).

As we propose, the value of OTOC is related to the decay
of kA(m). Here, we take m to be 1 and 2 and employ the ratio
of kA(2)

kA(1) to derive the OTOC estimate. From the simulation

process above, we obtain one OTOC estimate, x1(S) = k̂A(2,S)
k̂A(1,S)

.
Subsequently, through the repetition of this process, we accu-
mulate a series of estimates, {x1(S), . . . , xN (S)}. The ultimate
OTOC estimate is then defined as x̄(S) = 1

N

∑N
i=1 xi(S). We

illustrate the estimated OTOC for three-, four-, and five-qubit
systems in Figs. 3(a)–3(c), respectively. The results show that
our protocol can accurately estimate the OTOC. Moreover, if
we denote the variance of x̄(S) as s2 and the variance of xi(S)
as σ 2, then we have s2 = σ 2

N . We show the variance of the
estimate x̄(S) with respect to the sampling sequence number
S for different qubit systems in Fig. 3(d).

Furthermore, since OTOC depends on the evolution time,
we demonstrate how the estimated OTOC changes with time.
We sample 10 timestamps with equal intervals and obtain
the estimated OTOC for each time, as shown in Fig. 4(a).
The results underscore that the estimate captures the temporal
evolution of the OTOC, thereby presenting a valuable tool for
investigating quantum scrambling phenomena within quan-
tum many-body systems.

As we proposed, our method is robust to SPAM error
and we compare it with another method using statistical
correlation in [21], as illustrated in Fig. 4(b). The statisti-
cal correlation method consists of applying a global unitary
to an arbitrary state and then separately measuring 〈W (t )〉
and 〈V †W (t )V 〉 to obtain the OTOC. For the SPAM error,
we introduce the depolarizing channel after state preparation
and before measurement. For the density matrix ρ and the
error probability p, the state undergoes a transformation to
(1 − p)ρ + p

d 1 after the depolarizing channel. The simulation
result highlights the advantageous performance of our proto-
col, particularly when the SPAM errors are large.

V. CONCLUSION

In this work, we propose two generalized UIRS protocols
that can be used to estimate nonlinear channel properties
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robust to SPAM errors. In these protocols, we collect shadow
data by applying random gate sequences and POVM measure-
ment and calculate the expectation of the correlation function
with shadow data from independent or identical gate se-
quences. Then, the expectation exhibits an exponential decay
against the circuit depth, from which we can extract the non-
linear property of quantum channels. We show the application
of our protocols in evaluating OTOC, an important quantity
in quantum many-body systems. From the simulation results,
we demonstrate the efficiency of our protocol and robustness
against SPAM errors. As OTOC is directly related to non-
stabilizerness [28], our protocol can be used to measure this
essential resource in universal quantum computing. Besides
OTOC, we also demonstrate the application of our protocol in
estimating other properties such as unitarity, which character-
izes the incoherence of quantum channels.

Note that in this work, we only study second-order corre-
lation functions. The whole protocol can be generalized to the
case using three or more pieces of shadow data and be used
to investigate higher-order channel properties. Meanwhile, we
can simultaneously estimate many nonlinear properties from
the same shadow data by employing the median of means
estimators [6,16]. The sample complexity would have a loga-
rithmic relationship with the number of estimation properties,
which we will detail in Appendix G. Moreover, the examples
in our work mainly focus on the n-qubit Clifford group. One
can investigate the properties derived with groups G other
than the n-qubit Clifford group and explore the possibility that
G is not a group.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. (Exponential decay). Given a generalized UIRS
protocol with group G, the expectation value kA(m) of the
second-order correlation function given by Eq. (21) has the
following form:

kA(m) = Tr{
({Ex}, ρ)[�(A,	)]m−1}, (A1)

where 
({Ex}, ρ) and �(A,	) are induced matrices de-
pendent on SPAM and channel 	, respectively. If ω(g) =
τ1(g)nτ1 ⊕ ω′

1(g), where ω′
1(g) contains no copy of τ1(g), and

ω(g) = τ2(g)nτ2 ⊕ ω′
2(g), where ω′

2(g) contains no copy of
τ2(g), then the matrix �(A,	) has the element

[�(A,	)]ii′, j j′ = 1

|Pj ||Pj′ |Tr[(Pj ⊗ Pj′ )A
T (Pi ⊗ Pi′ )	

⊗2],

(A2)

where Pi and Pj are the projectors onto the ith and jth copies
of τ1 inside the representation ω, respectively, and Pi′ and Pj′

are the projectors onto the i′th and j′th copies of τ2 inside
the representation ω, respectively. In the special case that the
representation ω only has one copy of τ1 and one copy of τ2,
the matrix �(A,	) reduces to a number.

Proof.

kA(m) =
∑

x,y∈X
E

g1,g2∈G×m
Tr

{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]}〈〈Ẽx|
m∏

i=1

	Lω
(
g1

i

)
	R|ρ̃〉〉〈〈Ẽy|

m∏
i=1

	Lω
(
g2

i

)
	R|ρ̃〉〉

=
∑

x,y∈X
E

g1,g2∈G×m
Tr

⎧⎨⎩[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽy)|]τ1
(
g1

m

) ⊗ τ2
(
g2

m

) ⊗ ω
(
g1

m

) ⊗ ω
(
g2

m

)

×
m−1∏
i=1

(A ⊗ 	⊗2)τ1
(
g1

i

) ⊗ τ2
(
g2

i

) ⊗ ω
(
g1

i

) ⊗ ω
(
g2

i

)}

=
∑

x,y∈X
Tr
{
[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽy)|]Pτ1⊗τ2

[
Pτ1⊗τ2 (A ⊗ 	⊗2)Pτ1⊗τ2

]m−1}
, (A3)

where Pτ1⊗τ2 = Pτ1 ⊗ Pτ2 = Eg1∈G[τ1(g1) ⊗ ω(g1)] ⊗ Eg2∈G[τ2(g2) ⊗ ω(g2)] is the corresponding representation average pro-
jector. If ω(g) = τ1(g)nτ1 ⊕ ω′

1(g) and ω(g) = τ2(g)nτ2 ⊕ ω′
2(g), the rank of Pτ1⊗τ2 is nτ1nτ2 and Pτ1⊗τ2 (A ⊗ 	⊗2)Pτ1⊗τ2 can be

viewed as a matrix � with dimension nτ1nτ2 × nτ1nτ2. The element of � is given by

�i,i′, j, j′ = 1

|Pj ||Pj′ |Tr[(Pj ⊗ Pj′ )A
T (Pi ⊗ Pi′ )	

⊗2], (A4)

where Pi and Pj are the projectors onto the ith and jth copies of τ1 inside the representation ω; Pi′ and Pj′ are the projectors onto
the i′th and j′th copies of τ2 inside the representation ω. In particular, if nτ1 = nτ2 = 1, then the matrix �(A,	) degenerates
into a real number, Tr(Pτ1⊗τ2 AT Pτ1⊗τ2	

⊗2)/(|Pτ1 ||Pτ2 |), with Pτ1 and Pτ2 being the projectors onto the image of τ1 and τ2 inside
ω, respectively. �
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APPENDIX B: PROOF OF COROLLARY 1

Corollary 1. The expectation value kA(m) of the second-
order correlation function defined in Eq. (28) has an expo-
nential decay behavior with respect to the sequence length m,
kA(m) = a[dO(t )]m−1. The decay parameter is p(A) = dO(t )
with O(t ) = 1

d Tr[W †V (t )†WV (t )] being OTOC.
Proof. From Theorem 1, the function kA(m) has an expo-

nential decay with decay parameter as p(A) = Tr(P⊗2
ad AT P⊗2

ad U⊗2
t )

|Pad|2
and Pad is the corresponding projector onto the representation
τad inside ω. Hence, we only need to prove that p(A) = dO(t ).

The projector Pad = ∑
σ∈P 0

n
|σ 〉〉〈〈σ | and |Pad| = d2 −

1. P⊗2
ad = ∑

σ1,σ2∈P 0
n
|σ1 ⊗ σ2〉〉〈〈σ1 ⊗ σ2|. For two Pauli op-

erators, there is Tr(σ1σ2) = δ1,2. Note that AT = (d2 −
1)2 ∑

σ∈P 0
n

Tr(W σW σ )|V ⊗ V 〉〉〈〈σ ⊗ σ |, where W and V are
both nonidentity Pauli operators. Thus, operator AT is sup-
ported on the projection space of P⊗2

ad ,

P⊗2
ad AT P⊗2

ad = AT . (B1)

The decay parameter now becomes p(A) =
1

(d2−1)2 Tr(ATU⊗2
t ). Before calculating p(A), we first prove that

in the expansion, |F (W ⊗ W )〉〉 = ∑
σ∈Pn

Tr(W σW σ )|σ ⊗
σ 〉〉, with F being the SWAP operator. In fact,

〈〈σ1 ⊗ σ2|F (W ⊗ W )〉〉 = Tr[(σ1 ⊗ σ2)F (W ⊗ W )]

= Tr[F (W σ1 ⊗ W σ2)]

= Tr(W σ1W σ2)

= Tr(W σ1W σ1)δ1,2. (B2)

Since F and W are Hermitian matrices, the operator AT can
be written as

AT = (d2 − 1)2[|V ⊗ V 〉〉〈〈F (W ⊗ W )|
− |V ⊗ V 〉〉〈〈1/

√
d ⊗ 1/

√
d|]. (B3)

Therefore,

Tr
(
ATU⊗2

t

)
(d2 − 1)2

= Tr
[|V ⊗ V 〉〉〈〈F (W ⊗ W )|U⊗2

t

]
− Tr

(|V ⊗ V 〉〉〈〈1 ⊗ 1|U⊗2
t

)/
d

= 〈〈F (W ⊗ W )|Ut (V ) ⊗ Ut (V )〉〉
− 〈〈1 ⊗ 1|Ut (V ) ⊗ Ut (V )〉〉/d

= Tr{F [WUt (V ) ⊗ WUt (V )]} − |TrV |2/d

= Tr[WUt (V )WUt (V )] = d · O(t ). (B4)

Then, kA(t ) has exponential decay with the decay parameter
as p(A) = dO(t ). �

Notice that the above derivation can be straightforwardly
generalized to the case that V and W are arbitrary operators
by considering the correction term |TrV |2/d . Thus, the OTOC
estimation protocol can be applied to generic observables V
and W .

APPENDIX C: GENERALIZED UIRS WITH
APPROXIMATE 2-DESIGN

As elaborated in the previous part, the OTOC can be es-
timated via the independent UIRS protocol with the Clifford
group. In practice, one can use the ε-approximate 2-design
gate set to replace the Clifford group. Since normally the
approximate 2-design gate set is easier to implement, this
property can greatly enhance our OTOC estimation practical-
ity. Below, we show the faithfulness of replacing the Clifford
group with the approximate 2-design gate set. Specifically, we
show that the second-order correlation function kA(m) for the
Clifford group and that for the approximate 2-design group
are close.

Recall that the correlation function kA(m) in the indepen-
dent UIRS protocol has the following expression:

kA(m) = Tr
[
B′Pτ1⊗τ2

(
A′Pτ1⊗τ2

)m−1]
,

A′ = A ⊗ 	⊗2, (C1)

B′ =
∑

x,y∈X
Bxy ⊗ |	R(ρ̃ )〉〉〈〈	∗

L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽy)|.

We rewrite the above equation into the following form:

kA(m) = Tr
[
�(B′ ⊗ A′⊗m−1)P⊗m

τ1⊗τ2

]
, (C2)

where � is a permutation rotating the ith part to the (i + 1)-th
part, and the last part to the first part. Recall that Pτ1⊗τ2 =
Pτ1 ⊗ Pτ2 , and ∀i ∈ {1, 2},

Pτi = E
gi∈G

[τi(gi ) ⊗ ω(gi )]. (C3)

For the Clifford group, the irreducible representation τi can
be taken as τtr or τad. Taking τad as an instance, we can
always express τad(gi ) = Padω(gi )Pad, with Pad the projector
into the irreducible representation space of τad. Given an ε-
approximate design gate set {ui}, we can also define τad(ui ) =
Padω(ui )Pad. Note that the ε-approximate 2-design gate set
Sε = {ui} have the following property [30]:

(1 − ε)Egi∈Cnω
⊗2(gi ) � Eui∈Sε ω⊗2(ui )

� (1 + ε)Egi∈Cnω
⊗2(gi ). (C4)

We can deduce that

(1 − ε)PC
τi
� PSε

τi
� (1 + ε)PC

τi
, (C5)

where PC
τi

is the projector Egi∈Cn [τi(gi ) ⊗ ω(gi )] averaging
over the n-qubit Clifford group Cn, and PSε

τi
is that over the

approximate 2-design gate set Sε . As a consequence, we have

(1 − ε)2m
(
PC

τ1⊗τ2

)⊗m �
(
PSε

τ1⊗τ2

)⊗m � (1 + ε)2m
(
PC

τ1⊗τ2

)⊗m
.

(C6)

Hence,∣∣kSε

A (m) − kCn
A (m)

∣∣
= ∣∣Tr

{
�(B′ ⊗ A′⊗m−1)

[(
PSε

τ1⊗τ2

)⊗m − (
PC

τ1⊗τ2

)⊗m]}∣∣
� [(1 + ε)2m − 1]

∣∣Tr
[
�(B′ ⊗ A′⊗m−1)

(
PC

τ1⊗τ2

)⊗m]∣∣
= [(1 + ε)2m − 1]kCn

A (m). (C7)
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Thus, the relative error between the correlation functions evaluated by two gate sets is (1 + ε)2m − 1. Since m is normally a
constant, we only need to set ε sufficiently small to make this relative error small enough and enable the final fitting procedure.
Thus, the approximate 2-design can replace the Clifford group without compromising the faithfulness of the estimation.

APPENDIX D: SAMPLE COMPLEXITY

In this Appendix, we give a bound of the variance in the OTOC measurement protocol, which also characterizes the sampling
complexity. Recall that in the measurement protocol, Bxy = |ρ〉〉〈〈Ex| ⊗ |ρ〉〉〈〈Ey| and

A = (d2 − 1)2
∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V ⊗ V | = (d2 − 1)2[|F (W ⊗ W )〉〉〈〈V ⊗ V | − |1/
√

d ⊗ 1/
√

d〉〉〈〈V ⊗ V |], (D1)

from which we can directly obtain that P⊗2
ad AP⊗2

ad = A. Define the projector

P = E
g∈G

τad(g)⊗2 ⊗ ω(g) = P⊗2
ad ⊗ 1

[
E

g∈G
ω(g)⊗3

]
P⊗2

ad ⊗ 1. (D2)

Since the Clifford group forms a 3-design [34], there is

P =
∑

π,π ′∈S3

Qπ,π ′P⊗2
ad ⊗ 1|π〉〉〈〈π ′|P⊗2

ad ⊗ 1, (D3)

where Q = (Qπ,π ′ ) is the Weingarten matrix, and S3 is the permutation group for three copies of the base Hilbert space, i.e.,

π |i1, i2, i3〉 = |iπ (1), iπ (2), iπ (3)〉 . (D4)

Theorem 4. Viewing fA defined in Eq. (28) as a random variable with probability distribution from the shadow data,
p(x, g1)p(y, g2), the variance of this random variable is upper bounded by O(d8m−12).

Proof.

Var[ fA(m)] = E[ fA(m)]2 − [E fA(m)]2

�
∑
x,y

E
g1,g2∈G×m

(
Tr
{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]})2

p(x, g1)p(y, g2)

=
∑
x,y

Tr
{[

B⊗2
xy ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽy)|]P⊗2([A⊗2 ⊗ 	⊗2]P⊗2)m−1

}
=
∑
x,y

Tr[
xy(Q⊗2�)m−1Q⊗2], (D5)

where 
xy is the corresponding matrix with element



xy
π,π ′,μ,μ′ = 〈〈π ′|[P⊗2

ad |ρ〉〉〈〈Ex|⊗2P⊗2
ad ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽx )|]|π〉〉〈〈μ′|[P⊗2
ad |ρ〉〉〈〈Ey|⊗2P⊗2

ad ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽy)|]|μ〉〉, (D6)

and � is the corresponding matrix with element

�π,π ′,μ,μ′ = 〈〈π ′ ⊗ μ′|A14 ⊗ A25 ⊗ 	3 ⊗ 	6|π ⊗ μ〉〉. (D7)

Here, there are six copies of the base Hilbert space with π, π ′ being permutation operators of copies 123 and μ,μ′ being
permutation operators of copies 456. In addition, the subscripts represent the copies that the operator acts on. For example, A14

is an operator on the first and the fourth copies of the Hilbert space.
Denote ||Am×n|| = max(m, n)maxi, j |Ai j | and, obviously,

TrAm×n � ||Am×n||. (D8)

Suppose B is a n × s matrix, then

||AB|| = max(m, s)max
i,k

∣∣∣∣∣∣
∑

j

Ai jB jk

∣∣∣∣∣∣ � n max(m, s)max
i, j

|Ai j |max
j,k

|Bjk| � max(m, n) max(n, s)max
i, j

|Ai j |max
j,k

|Bjk| = ||A||||B||.

(D9)
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Then, the variance can be further bounded by the inequality

V fA(m) �

∥∥∥∥∥∥
∑
x,y


xy(Q⊗2�)m−1Q⊗2

∥∥∥∥∥∥ � ||
||||Q||2m||�||m−1 � c

(
max

i, j
|
i j |

)(
max

i, j
|Qi j |

)2m(
max

i, j
|�i j |

)m−1

= c

(
d2 − 2

d (d2 − 1)(d2 − 4)

)2m(
max

i, j
|
i j |

)(
max

i, j
|�i j |

)m−1

= O(d−6m)

(
max

i, j
|
i j |

)(
max

i, j
|�i j |

)m−1

, (D10)

where c is a constant independent of the system dimension d and 
 = ∑
x,y 
xy. Thus, we only need to calculate the maximal

element of matrices 
 and �.
Notice that 
 = 
̃⊗2, where the matrix 
̃ has the element


̃π,π ′ =
∑

x

〈〈π ′|[P⊗2
ad |ρ〉〉〈〈Ex|⊗2P⊗2

ad ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽx )|]|π〉〉. (D11)

The maximal element of matrix 
̃ is of the order of d [16]. Thus, maxi, j |
i j | = O(d2).
To calculate the matrix �, we notice that the projector Pad is supported on the space of traceless matrices, that is,

Pad|1〉〉 =
∑
σ∈P 0

n

|σ 〉〉〈〈σ |1〉〉 = 0, 〈〈1|Pad =
∑
σ∈P 0

n

〈〈1|σ 〉〉〈〈σ | = 0. (D12)

The construction of A satisfies that A = P⊗2
ad AP⊗2

ad . Thus, there are four projectors Pad acting on copies 1245 within Eq. (D7).
If one of the copies 1245 remains unchanged under a permutation, then the corresponding matrix elements of � are zero. For
example, we take π = (13) and then

P⊗4
ad (A14 ⊗ A25)P⊗4

ad ⊗ 	3 ⊗ 	6|(13) ⊗ 12 ⊗ μ〉〉 = 0. (D13)

Therefore, the element �π,π ′,μ,μ′ is nonzero iff π, π ′ ∈ {(12), (123), (132)} and μ,μ′ ∈ {(45), (456), (465)}. Next, we leverage
the tool of the tensor network to calculate the element of matrix �. From Eq. (D1), there is A⊗2 = (d2 − 1)4(B + C/d2 − D/d −
E/d ) with

B = |F (W ⊗ W )⊗2〉〉〈〈V ⊗4|, C = |1⊗4〉〉〈〈V ⊗4|, D = |F (W ⊗ W ) ⊗ 1⊗2〉〉〈〈V ⊗4|, E = |1⊗2 ⊗ F (W ⊗ W )〉〉〈〈V ⊗4|.
(D14)

To bound the maximum element of �, we need to calculate the maximal element of the matrices generated by B, C, and D,
respectively. By symmetry, the elements of D and E have the same order.

For B, we first take π = (123), π ′ = (12), μ = μ′ = (456) as an example. There is

〈〈(12) ⊗ (456)|B ⊗ 	3 ⊗ 	6|(123) ⊗ (456)〉〉 = = d
( )2

= d{Tr[	(1)]}2 = d3. (D15)

Similarly,

〈〈(123) ⊗ (456)|B ⊗ 	3 ⊗ 	6|(12) ⊗ (45)〉〉 = = d2
( )2

= d4. (D16)

From the symmetry of the system and these two examples above, we found that the maximum element corresponding to B is
obtained when π = π ′ = (12), μ = μ′ = (45). In this case, there is

〈〈(12) ⊗ (45)|B ⊗ 	3 ⊗ 	6|(12) ⊗ (45)〉〉 = = Tr(V 2)2Tr(W 2)2Tr[	(1)]2 = d6. (D17)

Similarly, we can obtain, for C,

max
π,μ,π ′,μ′

〈〈π ′, μ′|C ⊗ 	3 ⊗ 	6|π,μ〉〉 = 〈〈(12) ⊗ (45)|C ⊗ 	3 ⊗ 	6|(12) ⊗ (45)〉〉 = d6, (D18)
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and for D,

max
π,μ,π ′,μ′

〈〈π ′, μ′|D ⊗ 	3 ⊗ 	6|π,μ〉〉 = 〈〈(12) ⊗ (45)|D ⊗ 	3 ⊗ 	6|(12) ⊗ (45)〉〉 = d5. (D19)

Consequently,

Var[ fA(m)] � O(d8m−12). (D20)

�
From the variance of the single-shot experiment, we first calculate the variance of the estimator given in Eq. (20).
Corollary 3. Suppose the number of samples is S and the estimator for kA(m, S) is

k̂A(m, S) = 1

S(S − 1)

∑
i = j

f (xi, x j, gi, g j, m). (D21)

Then the variance has an upper bound,

Var[k̂A(m, S)] �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

S(S−1) O(d−4) + 2(S−2)
S(S−1) O(d−1), m = 1

1
S(S−1) O(d4) + 2(S−2)

S(S−1) O(1), m = 2

1
S(S−1) O(d8m−12) + 2(S−2)

S(S−1) O(d4m−4), m > 2.

(D22)

Proof. Denote si = (xi, gi ) and the variance is

Var[k̂A(m, S)] = 1

S2(S − 1)2

∑
i = j,i′ = j′

Cov[ f (si, s j ), f (si′ , s j′ )]

= 1

S2(S − 1)2

⎧⎨⎩ ∑
i=i′, j= j′,i = j

Cov[ f (si, s j ), f (si′ , s j′ )] +
∑

i=i′,i = j, j = j′,i = j′
Cov[ f (si, s j ), f (si′ , s j′ )]

+
∑

j= j′,i = j,i =i′,i′ = j

Cov[ f (si, s j ), f (si′ , s j′ )]

⎫⎬⎭
= 1

S2(S − 1)2

⎧⎨⎩∑
i = j

Var[ f (si, s j )] + 2
∑

i = j, j = j′,i = j′
Cov[ f (si, s j ), f (si, s j′ )]

⎫⎬⎭
= 1

S(S − 1)
Var[ f (s1, s2)] + 2(S − 2)

S(S − 1)
Cov[ f (s1, s2), f (s1, s3)]

= 1

S(S − 1)
Var[ fA(m)] + 2(S − 2)

S(S − 1)
Cov[ f (s1, s2), f (s1, s3)]. (D23)

The first term has already been given, and we only need to calculate the second term. When the sample s1 is taken as a fixed
data, f (s1, s2) and f (s1, s3) are independent. Therefore,

Cov[ f (s1, s2), f (s1, s3)] = E
s1,s2,s3

[ f (s1, s2) − kA(m, S)][ f (s1, s3) − kA(m, S)]

= E
s1

(
E

s2,s3

{[ f (s1, s2) − kA(m, S)][ f (s1, s3) − kA(m, S)]
∣∣s1}

)
= E

s1

({
E
s2

[ f (s1, s2)|s1] − kA(m, S)

}{
E
s3

[ f (s1, s3)|s1] − kA(m, S)

})
= Var[ f (s1)], (D24)

where f (s1) = Es2 [ f (s1, s2)|s1] is the conditional expectation when sample value s1 is given. Explicitly,

f (s1) =
∑

y

E
g2∈G×m

Tr

{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]}
p(y, g2)

=
∑

y

Tr

{
[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽy)|][τ1
(
g1

m

) ⊗ P′] m−1∏
i=1

(1 ⊗ P′)(A ⊗ 	)
(
τ1
(
g1

i

) ⊗ P′)}, (D25)
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where

P′ = Pad ⊗ 1
[
E

g∈G
ω(g)⊗2

]
Pad ⊗ 1

= Pad ⊗ 1

⎛⎝ 1

d2
|1⊗2〉〉〈〈1⊗2| + 1

d2 − 1

∑
σ,σ ′∈P 0

n

|σ⊗2〉〉〈〈σ ′⊗2|
⎞⎠Pad ⊗ 1

= 1

d2 − 1

∑
σ,σ ′∈P 0

n

|σ⊗2〉〉〈〈σ ′⊗2|

= 1

d2 − 1
|F − 1⊗2/d〉〉〈〈F − 1⊗2/d| = |B2〉〉〈〈B2|. (D26)

Here, we use the fact that the Clifford group forms a 2-design [16].
To calculate the variance of f (s1), we need to simplify Eq. (D25). Specifically,

(1 ⊗ P′)(A ⊗ 	)
(
τ1
(
g1

i

) ⊗ P′)
=

∑
α,α′,β,β ′,σ∈P 0

n

Tr(W σW σ )(1 ⊗ |α⊗2〉〉〈〈α′⊗2|)(|σ ⊗ σ 〉〉〈〈V ⊗ V | ⊗ 	)
[
τ1
(
g1

i

) ⊗ |β⊗2〉〉〈〈β ′⊗2|]
=

∑
α,α′,β,β ′,σ∈P 0

n

Tr(W σW σ )Tr(σα′)Tr(V β )Tr(α′	(β ))
[|σ 〉〉〈〈V |τ1

(
g1

i

) ⊗ |α〉〉〈〈β ′| ⊗ |α〉〉〈〈β ′|]
=

∑
α,β ′,σ∈P 0

n

Tr(W σW σ )Tr[σ	(V )]
[|σ 〉〉〈〈V |τ1

(
g1

i

) ⊗ |α〉〉〈〈β ′| ⊗ |α〉〉〈〈β ′|]
=

∑
σ∈P 0

n

(d2 − 1)Tr(W σW σ )Tr[σ	(V )]|σ 〉〉〈〈V |τ1
(
g1

i

) ⊗ P′ = A′τ1
(
g1

i

) ⊗ P′, (D27)

where A′ = (d2 − 1)
∑

σ∈P 0
n

Tr(W σW σ )Tr[σ	(V )]|σ 〉〉〈〈V |. Therefore,

f (s1) =
∑

y

Tr

{[
|ρ〉〉〈〈Ex|τ1

(
g1

m

) m−1∏
i=1

A′τ1
(
g1

i

)] ⊗ [|ρ ⊗ 	R(ρ̃)〉〉〈〈Ey ⊗ 	∗
L(Ẽy)|P′]

}
,

=
∑

y

1

d2 − 1

{
Tr[ρ	R(ρ̃)] − 1

d
Tr[	R(ρ̃ )]

}{
Tr[Ey	

∗
L(Ẽy)] − 1

d
TrEyTr[	∗

L(Ẽy)]

}
Tr

[
|ρ〉〉〈〈Ex|τ1

(
g1

m

) m−1∏
i=1

A′τ1
(
g1

i

)]

= O(d−1)Tr

[
|ρ〉〉〈〈Ex|τ1

(
g1

m

) m−1∏
i=1

A′τ1
(
g1

i

)]
. (D28)

When m = 1, there is

Var[ f (s1)] � O(d−2)
∑

x

E
g∈G

〈〈Ex|τ (g)|ρ〉〉2〈〈	∗
L(Ẽx )|ω(g)|	R(ρ̃ )〉〉

= O(d−2)
∑

x

〈〈
E⊗2

x ⊗ 	∗
L(Ẽx )

∣∣P∣∣ρ⊗2 ⊗ 	R(ρ̃)
〉〉

= O(d−2)
∑

x

∑
π∈S3

Qπ,π 〈〈(ExPad )⊗2 ⊗ 	∗
L(Ẽx )|π〉〉〈〈π |(Padρ)⊗2 ⊗ 	R(ρ̃)〉〉

= O(d−2)Tr
̃ = O(d−1), (D29)

where the matrix 
̃ is defined in Eq. (D11) and the elements of this matrix have the order O(d ).
When m � 2, according to the conclusion in Ref. [16], the variance for f (s1) has an upper bound,

Var[ f (s1)] � O(d−4)[11u(A′)(r(A′)m−2 + [2(m − 2)2r(A′)m−3] max{11u(A′), [11u(A′)]2})], (D30)
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where u(A′) = Tr(A′A′†)/(d2 − 1) and r(A′) = u(A′)(1 + 16d−1/3). Since

Tr(A′A′†) = (d2 − 1)2
∑

σ,σ ′∈P 0
n

Tr(W σW σ )Tr(W σ ′W σ ′)Tr[σ	(V )]Tr[σ ′	(V )]Tr(σσ ′)Tr(V 2)

= (d2 − 1)2d
∑
σ∈P 0

n

{Tr(W σW σ )Tr[σ	(V )]}2 = (d2 − 1)2d
∑
σ∈P 0

n

Tr[σ⊗2	(V )⊗2]

= (d2 − 1)2dTr[(F − 1⊗2/d )	(V )⊗2] = (d2 − 1)2d

(
Tr[	(V )2] − 1

d
{Tr[	(V )]}2

)
= O(d6), (D31)

we can obtain u(A′) = O(d4) and r(A′) = O(d4). When m > 2, the variance can be bounded by O(d4m−4). When m = 2, the
variance can be bounded by O(1), which implies that the variance is bounded by a constant. From Eq. (D23), the overall
variance is

Var[k̂A(m, S)] �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

S(S−1) O(d−4) + 2(S−2)
S(S−1) O(d−1), m = 1

1
S(S−1) O(d4) + 2(S−2)

S(S−1) O(1), m = 2

1
S(S−1) O(d8m−12) + 2(S−2)

S(S−1) O(d4m−4), m > 2.

(D32)

�
Next, we calculate the variance of OTOC evaluated by the ratio of kA(2) and kA(1) as shown below,

Ô = k̂A(2, S)

k̂A(1, S)
=

1
S(S−1)

∑
i = j f (xi, x j, gi, g j, 2)

1
S(S−1)

∑
i = j f (xi, x j, gi, g j, 1)

, (D33)

where we assume that the numbers of samples for two cases are both equal to S. For an arbitrary m, the expectation value of
k̂A(m, S) is

Ek̂A(m, S) = kA(m, S) =
∑
x,y

E
g1,g2∈G×m

(
Tr

{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]})
p(x, g1)p(y, g2)

=
∑
x,y

Tr{[Bxy ⊗ |	R(ρ̃ )〉〉〈〈	∗
L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽy)|]P′⊗2([A ⊗ 	⊗2]P′⊗2)m−1}. (D34)

When m = 1, there is

kA(1, S) = 〈〈B2|ρ ⊗ 	R(ρ̃)〉〉2

[∑
x

〈〈Ex ⊗ 	∗
L(Ẽx )|B2〉〉

]2

= O(d−4)

{
Tr[ρ	R(ρ̃)] − 1

d
Tr[	R(ρ̃)]

}2
{∑

x

Tr[Ex	
∗
L(Ẽx )] − 1

d

∑
x

TrExTr[	∗
L(Ẽx )]

}2

= O(d−2). (D35)

When m = 2, there is

kA(2, S) = kA(1, S)
〈〈

B⊗2
2

∣∣A ⊗ 	⊗2
∣∣B⊗2

2

〉〉
= O(d−2)

{〈〈
B⊗2

2

∣∣[|F (W ⊗ W )〉〉〈〈V ⊗ V | ⊗ 	⊗2]
∣∣B⊗2

2

〉〉 − 1

d

〈〈
B⊗2

2

∣∣[|1 ⊗ 1〉〉〈〈V ⊗ V | ⊗ 	⊗2]
∣∣B⊗2

2

〉〉}
= O(d−2)

〈〈
B⊗2

2

∣∣[|F (W ⊗ W )〉〉〈〈V ⊗ V | ⊗ 	⊗2]
∣∣B⊗2

2

〉〉
= O(d−2)

= O(d−2)Tr[W 	(V )W 	(V )] = O(d−1). (D36)

For two random variables X,Y , the uncertainty of the division X/Y is

�

(
X

Y

)
≈
(

μX

μY

)2[
σ 2

X

μ2
X

− 2
Cov(X,Y )

μX μY
+ σ 2

Y

μ2
Y

]
, (D37)
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where μX and μY are the expectation values of X and Y , respectively; σ 2
X and σ 2

Y are the variance values of X and Y , respectively.
In our case, X = k̂A(2, S) and Y = k̂A(1, S). According to Eqs. (D22), (D35), and (D36), there is

μ2
X = O(d−2), μ2

Y = O(d−4), σ 2
X = O(d4S−2) + O(S−1), σ 2

Y = O(d−4S−2) + O(d−1S−1). (D38)

Thus, the uncertainty for the estimator can be bounded by

Var

(
k̂A(2, S)

k̂A(1, S)

)
= Var

(
X

Y

)
�
(

μX

μY

)2[
σ 2

X

μ2
X

+ σ 2
Y

μ2
Y

]
= O

(
d8

S2

)
+ O

(
d5

S

)
. (D39)

APPENDIX E: PROOF OF THEOREM 3

Theorem 3. (Exponential decay). Given a generalized UIRS protocol with respect to the group G, the expectation value kA(m)
defined with Eqs. (32) and (33) has the following form:

kA(m) = Tr(
({Ex}, ρ)[�(A,	)]m−1), (E1)

where 
({Ex}, ρ) and �(A,	) are induced matrices dependent on SPAM and channel 	, respectively. The matrix �(A,	) =
Pτ (A ⊗ 	⊗2)Pτ has the element

[�(A,	)]i, j = 1

|Pj |Tr(PjA
T Pi	

⊗2), (E2)

where Pτ = Eg∈Gτ (g) ⊗ ω(g)⊗2, and Pi and Pj are the projectors onto the ith and jth copies of τ inside ω⊗2, respectively. In the
special case that the representation ω⊗2 only has one copy of τ , the matrix �(A,	) reduces into a number.

Proof.

kA(m) =
∑

x,y∈X
E

g∈G×m
Tr

[
Bxyτ (gm)

m−1∏
i=1

Aτ (gi )

]
〈〈Ẽx|

m∏
i=1

	Lω(gi )	R|ρ̃〉〉〈〈Ẽy|
m∏

i=1

	Lω(gi )	R|ρ̃〉〉

=
∑

x,y∈X
E

g∈G×m
Tr

(
[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽx )| ⊗ |	R(ρ̃ )〉〉〈〈	∗
L(Ẽy)|]τ (gm) ⊗ ω(gm)⊗2

m−1∏
i=1

{A ⊗ 	⊗2[τ (gi ) ⊗ ω(gi )
⊗2]}

)

=
∑

x,y∈X
Tr

(
[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗

L(Ẽx )| ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽy)|]

{
E

g∈G
[τ (g) ⊗ ω(g)⊗2](A ⊗ 	⊗2) E

g∈G
[τ (g) ⊗ ω(g)⊗2)]m−1

})
=

∑
x,y∈X

Tr{[Bxy ⊗ |	R(ρ̃)〉〉〈〈	∗
L(Ẽx )| ⊗ |	R(ρ̃ )〉〉〈〈	∗

L(Ẽy)|][Pτ (A ⊗ 	⊗2)Pτ ]m−1}, (E3)

where Pτ = Eg∈Gτ (g) ⊗ ω(g)⊗2 is a projector. The decay parameter Pτ (A ⊗ 	⊗2)Pτ can be viewed as a matrix � with dimension
rank(Pτ ) × rank(Pτ ) when restricting in the space associated with projector Pτ . The matrix � has the element

[�]i, j = 1

|Pj |Tr(PjA
T Pi	

⊗2), (E4)

where Pi is the projector onto the ith copy of τ inside ω⊗2. �

APPENDIX F: FORMULA SIMPLIFICATION OF EQ. (28)

In this section, we simplify the computation of Eq. (28):

fA(x, y, g1, g2, m) = Tr

[
Bxyτ

(
g1

m

) ⊗ τ
(
g2

m

) m−1∏
i=1

Aτ
(
g1

i

) ⊗ τ
(
g2

i

)]
. (F1)

For the Clifford group element g, with slight abuse of notations, we denote g = ω(g) = Ug and τad(g) = τ (g). Then, g = τ (g) +
1
d |1〉〉〈〈1|. When m = 1, we have

fA(x, y, g1, g2, m) = Tr
[
Bxyτ

(
g1

m

) ⊗ τ
(
g2

m

)] = Tr[|ρ〉〉〈〈Ex| ⊗ |ρ〉〉〈〈Ey|τ (g1) ⊗ τ (g2)]

= Tr[|ρ〉〉〈〈Ex|τ (g1)] · Tr[|ρ〉〉〈〈Ey|τ (g2)] = 〈〈Ex|τ (g1)|ρ〉〉 · 〈〈Ey|τ (g2)|ρ〉〉

= 〈〈Ex|
[
ω(g1) − 1

d
|1〉〉〈〈1|

]
|ρ〉〉 · 〈〈Ey|

[
ω(g2) − 1

d
|1〉〉〈〈1|

]
|ρ〉〉

=
[

Tr(Exg1ρg1†) − 1

d

]
·
[

Tr(Eyg2ρg2†) − 1

d

]
. (F2)

032415-17



WANG, LIU, LIU, TANG, MA, AND DAI PHYSICAL REVIEW A 110, 032415 (2024)

For m � 2, A = (d2 − 1)2 ∑
σ∈P 0

n
Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V ⊗ V |,

fA(x, y, g1, g2, m) = Tr

[
Bxyτ

(
g1

m

) ⊗ τ
(
g2

m

) m−1∏
i=1

Aτ
(
g1

i

) ⊗ τ
(
g2

i

)]

= Tr

⎡⎣Bxyτ
(
g1

m

) ⊗ τ
(
g2

m

) m−1∏
i=1

(d2 − 1)2
∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V ⊗ V |τ(g1
i

) ⊗ τ
(
g2

i

)⎤⎦
= (d2 − 1)2(m−1) · Tr

⎡⎣Bxyτ
(
g1

m

) ⊗ τ
(
g2

m

) ∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉〈〈V ⊗ V |τ(g1
1

) ⊗ τ
(
g2

1

)⎤⎦
×
⎡⎣m−1∏

i=2

〈〈V ⊗ V |τ(g1
i

) ⊗ τ
(
g2

i

) ∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉
⎤⎦. (F3)

For an arbitrary normalized Pauli operator σ , there is g(σ ) = g†σg, g−1(σ ) = gσg†. We have that 〈〈σ |τ (g) = 〈〈g(σ )|, and thus,

τ
(
g1

m

) ⊗ τ
(
g2

m

) ∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉 =
∑
σ∈P 0

n

Tr(W σW σ )
∣∣g1−1

m (σ ) ⊗ g2−1

m (σ )
〉〉
,

〈〈V † ⊗ V |τ(g1
i

) ⊗ τ
(
g2

i

) = 〈〈
g1

i (V ) ⊗ g2
i (V )

∣∣. (F4)

Denote D = (d2 − 1)2(m−1), δi = δg1
i (V ),g2

i (V ). Combine Eqs. (F4) and (F3); then we can obtain that

fA(x, y, g1, g2, m) = DTr

⎡⎣Bxy

∑
σ∈P 0

n

Tr(W σW σ )
∣∣g1−1

m (σ ) ⊗ g2−1

m (σ )
〉〉〈〈

g1
1(V ) ⊗ g2

1(V )
∣∣⎤⎦

×
m−1∏
i=2

〈〈
g1

i (V ) ⊗ g2
i (V )

∣∣ ∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉

= DTr

⎡⎣Bxy

∑
σ∈P 0

n

Tr(W σW σ )
∣∣g1−1

m (σ ) ⊗ g2−1

m (σ )
〉〉〈〈

g1
1(V ) ⊗ g2

1(V )
∣∣⎤⎦ m−1∏

i=2

δg1
i (V ),g2

i (V )Tr
[
W g1

i (V )
]2

= D

{
m−1∏
i=2

δiTr
[
W g1

i (V )
]2

}
Tr

⎡⎣|ρ〉〉〈〈Ex| ⊗ |ρ〉〉〈〈Ey|
∑
σ∈P 0

n

Tr(W σW σ )
∣∣g1−1

m (σ ) ⊗ g2−1

m (σ )
〉〉〈〈

g1
1(V ) ⊗ g2

1(V )
∣∣⎤⎦

= D

{
m−1∏
i=2

δiTr
[
W g1

i (V )
]2

}
〈〈Ex ⊗ Ey|

∑
σ∈P 0

n

Tr(W σW σ )
∣∣g1−1

m (σ ) ⊗ g2−1

m (σ )
〉〉〈〈

g1
1(V ) ⊗ g2

1(V )
∣∣|ρ ⊗ ρ〉〉

= D

{
m−1∏
i=2

δiTr
[
W g1

i (V )
]2

}〈〈
g1

m(Ex ) ⊗ g2
m(Ey)

∣∣ ∑
σ∈P 0

n

Tr(W σW σ )|σ ⊗ σ 〉〉〈〈g1
1(V ) ⊗ g2

1(V )
∣∣|ρ ⊗ ρ〉〉

= D

{
m−1∏
i=2

δiTr
[
W g1

i (V )
]2

}〈〈
g1

m(Ex ) ⊗ g2
m(Ey)

∣∣(|S(W † ⊗ W )〉〉 − 1

d
|I ⊗ I〉〉

)〈〈
g1

1(V ) ⊗ g2
1(V )

∣∣|ρ ⊗ ρ〉〉

= D

{
m−1∏
i=2

δiTr
[
W g1

i (V )
]2

}{
Tr
[
W †g1

m(Ex )W g2
m(Ey)

] − 1

d

}
Tr
[
g1

1(V )ρ
]
Tr
[
g2

1(V )ρ
]
. (F5)

With the equation above, one can quickly evaluate the value of fA(x, y, g1, g2, m).

APPENDIX G: SIMULTANEOUS ESTIMATION OF MANY OBSERVABLES

Here, we discuss that our methods can be used to simultaneously estimate multiple nonlinear observables. We take the
independent UIRS as an example. Concretely, we assume that the to-be-estimated nonlinear properties correspond to a set A of
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operators and, for each A ∈ A, the second-order correlation function is

fA(x, y, g1, g2, m) = Tr
{
Bxy

[
τ1
(
g1

m

) ⊗ τ2
(
g2

m

)] m−1∏
i=1

A
[
τ1
(
g1

i

) ⊗ τ2
(
g2

i

)]}
. (G1)

Assuming that we obtain S = NK samples in experiments, we can divide data {xi}S
i=1 into K groups, and each group contains N

samples. For each observable fA, the median-of-means estimator is defined as

f̂A(N, K ) = Median
{

f̂ (1)
A (N, 1), f̂ (2)

A (N, 1), . . . , f̂ (K )
A (N, 1)

}
, where (G2)

f̂ (k)
A (N, 1) = 1

N (N − 1)

∑
i = j,i, j∈{N (k−1)+1,...,Nk}

fA(xi, x j, gi, g j, m),∀1 � k � K. (G3)

Note that [6]

Var
[

f̂ (k)
A (N, 1)

]
� 2

N

{
Var

[
f 1
A (y, g2, m)

] + Var
[

f 2
A (x, g1, m)

] + 1

N
Var[ fA(x, y, g1, g2, m)]

}
, (G4)

where

f 1
A (y, g2, m) = Ex,g1 fA(x, y, g1, g2, m), (G5)

f 2
A (x, g1, m) = Ey,g2 fA(x, y, g1, g2, m). (G6)

Utilizing the property of the median-of-means estimator, for the level of confidence δ and error ε, it can be shown that [6] when

K = �2 ln(2|A|/δ)�,

N =
⌈

34/ε2 × 8 × max
A∈A

max
{
Var

[
f 1
A (y, g2, m)

]
, Var

[
f 2
A (x, g1, m)

]
,
√

Var[ fA(x, y, g1, g2, m)]
}⌉

, (G7)

there is

Pr
[

max
A∈A

| f̂A − E( fA)| � ε
]

= 1 − δ. (G8)

This indicates that we can simultaneously estimate M properties of the channel while only O(ln M ) samples are needed.
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