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We analyze a general bipartite-like representation of arbitrary pure states of N indistinguishable partcles,
valid for both bosons and fermions, based on M- and (N − M )-particle states. It leads to exact (M, N − M )
Schmidt-like expansions of the state for any M < N and is directly related to the isospectral reduced M- and
(N − M )-body density matrices ρ (M ) and ρ (N−M ). The formalism also allows for reduced yet still exact Schmidt-
like decompositions associated with blocks of these densities, in systems having a fixed fraction of the particles in
some single-particle subspace. Monotonicity of the ensuing M-body entanglement under a certain set of quantum
operations is also discussed. Illustrative examples in fermionic and bosonic systems with pairing correlations are
provided, which show that in the presence of dominant eigenvalues in ρ (M ), approximations based on a few
terms of the pertinent Schmidt expansion can provide a reliable description of the state. The associated one- and
two-body entanglement spectrum and entropies are also analyzed.
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I. INTRODUCTION

Quantum entanglement and particle indistinguishability
are undoubtedly among the most fundamental features of
quantum mechanics. Yet the extension of the concept of en-
tanglement to systems of indistinguishable particles is not
straightforward [1]. The standard theory of entanglement [2,3]
was originally devised for systems of distinguishable compo-
nents, where the pertinent Hilbert space has a tensor product
structure which plays an essential role already in the basic
definition: separable states, i.e., those that can be generated by
local operations and classical communication, are just product
states (or convex mixtures of product states in the mixed case),
all remaining states being entangled.

In systems of indistinguishable components all states
are, however, necessarily symmetrized (bosons) or antisym-
metrized (fermions), preventing in principle a direct extension
of previous scheme. The definition of entanglement in these
systems has then followed different approaches, starting from
mode entanglement [4–9], where each side has access to dif-
ferent orthogonal (and hence distinguishable) single-particle
(sp) modes and entanglement is then defined in the stan-
dard form, although it becomes thus dependent on the choice
of sp modes. A distinct approach is the so-called parti-
cle entanglement or entanglement beyond symmetrization
[10–21], which is independent of the choice of basis and
just basic independent particle states [i.e., Slater determinants
(SDs) for fermions] are nonentangled. Other proposals based
on correlations between observables or measurements have
also been discussed [22–26], including the consideration of
symmetrization correlations as entanglement [27–31]. Con-
nections between these distinct forms of entanglement and
their behavior in different contexts have been analyzed by
several authors [1,32–43].

In particular, in [17] we focused on the one-body en-
tanglement in fermion systems, which is determined by the
one-body reduced density matrix (DM) ρ (1) and vanishes just
for SDs (or quasiparticle vacua when extended to states with
no fixed particle number). It also represents the minimum
mode entanglement associated with a sp basis [17] and is
connected to the minimum bipartite mode entanglement in
four-level systems [35]. In [20] we examined its interpretation
as a quantum resource [44,45] in fermion systems, showing
through a general majorization relation that it cannot decrease
under a class of sp measurements, and also identified its rela-
tion with a bipartite-like (1, N − 1) representation of a general
N-fermion state. In [21] we extended the previous scheme to
general M-body entanglement in N-fermion states (M < N),
determined by the M-body DM ρ (M ). Interest in many-body
DMs and their relation with entanglement and characteriza-
tion of correlations has recently increased in different areas
[32,46–49].

The aim of this work is first to extend the formalism
of [21] to the bosonic case, developing a unified second-
quantized formalism valid for both bosons and fermions. The
formalism still conserves, nonetheless, some of the features
of the distinguishable case: Any pure state of N indistin-
guishable particles is shown to admit, for 1 � M � N − 1,
a bipartite-like (M, N − M ) representation and Schmidt-like
decomposition, whose coefficients are independent of the
choice of sp basis and are just the square roots of the eigenval-
ues of the reduced DMs ρ (M ) and ρ (N−M ), isospectral in any
pure state. The ensuing (M, N − M ) entanglement determined
by the mixedness of these eigenvalues is shown, through a
general majorization relation, to be nonincreasing under a
certain set of L-particle operations (and to stay invariant under
unitary sp transformations), thus opening the way to a basic
mode-independent (M, N − M ) quantum resource theory. As
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well, for M > 1 the M-body DMs may exhibit a few large
dominant eigenvalues in correlated states, enabling a reliable
approximation of the state based on just a few terms of the
associated Schmidt expansion.

In addition, we also consider here the case of states having
a fixed fraction of the total number of particles within some sp
subspace. This is a common situation, arising, e.g., in eigen-
states of interacting Hamiltonians conserving the number of
particles within certain sp subspaces, like a set S and a partner
set S̄ of time-reversed sp states in pairing-type Hamiltonians
or Hubbard models, as discussed in Secs. III and IV. It also
emerges, of course, in any bosonic or fermionic entangled
state having fixed number Ni of particles in orthogonal subsets
Si of modes, such as distinct sites. In such cases the M-body
DMs exhibit a blocked structure, and it will be shown that re-
duced but still exact (M, N − M ) bipartite-like expansions and
Schmidt decompositions associated with each of these blocks
are also possible. Moreover, the standard distinguishable bi-
partite case naturally emerges here as a particular instance in
this general formulation.

The general formalism is presented in Sec. II, while the
special case of blocked DMs and reduced exact expansions are
treated in Sec. III. Illustrative examples in finite systems with
pairing correlations are provided in Sec. IV for both fermions
and bosons. They include analytical results and bounds for
the one- and two-body entanglement spectrum in some typical
paired states, as well as numerical results for the latter and the
associated entanglement entropy in the exact GS of a finite
pairing Hamiltonian. These results show the presence of a
characteristic large dominant eigenvalue in the two-body DM
of both fermionic and bosonic paired states, together with a
highly mixed one-body DM, which provides a clear signature
of such states. It is also shown that through such eigenvalue
and the associated eigenvector, a good approximation to the
exact GS of the previous Hamiltonian for all values of the cou-
pling strength can be here achieved with just very few terms of
the pertinent (2, N − 2) Schmidt expansion. Conclusions are
provided in Sec. V.

II. FORMALISM

A. N-particle states in boson and fermion systems

Let us consider a single-particle (sp) space H of finite
dimension d and a set of particle creation and annihilation
operators c†

i , ci, i = 1, . . . , d , satisfying

[ci, c j]± = [c†
i , c†

j ]± = 0, [ci, c†
j ]± = δi j (1)

for bosons (−) or fermions (+), where [a, b]± = ab ± ba. We
define the M-particle creation operators

C(M )†
α = c†n1

1√
n1!

c†n2
2√
n2!

· · · c†nd
d√
nd !

,

d∑
i=1

ni = M, (2)

where ni = 0, 1, 2, . . . for bosons and ni = 0, 1 for fermions,
while α = (n1, . . . , nd ). When applied to the vacuum |0〉,
they create normalized orthogonal M-particle states C(M )†

α |0〉
having ni particles in sp state i. For M � 0 (and M � d for
fermions) these states span the full Fock space F associated

with H, satisfying

〈0|C(M )
α C(M ′ )†

α′ |0〉 = δMM ′
δαα′ . (3)

The subspace FM of M-particle states has dimension
dM = (d + M − 1

M ) for bosons and dM = ( d
M) for fermions and

is generated by the dM operators (2). These operators satisfy
C(M )

α C(M )†
α′ |0〉 = δαα′ |0〉 and (see Appendix A)

∑
α

C(M )†
α C(M )

α =
(

N̂

M

)
(4)

for both fermions and bosons, where N̂ = ∑
i c†

i ci is the
particle number operator and (N̂

M) the operator taking

the value (N
M) = N!

M!(N−M )! when applied to an N-particle

state: (N̂
M)|�〉 = (N

M)|�〉 if N̂ |�〉 = N |�〉. The sum over
α in (4) runs over all dM operators (2), i.e., over all
possible occupations (n1, . . . , nd ) with

∑
i ni = M. For

instance,
∑

α C(2)†
α C(2)

α = ∑
i< j c†

i c†
j c jci +∑

i
c†

i
2

√
2

c2
i√
2

=
1
2

∑
i, j c†

i c†
j c jci = N̂ (N̂−1)

2 = (N̂
2 ) for both bosons, and

fermions (where i = j terms obviously vanish).
An arbitrary normalized pure state |�〉 of N identical par-

ticles (bosons or fermions) can then be written as

|�〉 = 1

N!

∑
i1,...,iN

�i1,...,iN c†
i1

· · · c†
iN

|0〉 (5a)

=
∑

α

�(N )
α C(N )†

α |0〉, (5b)

where �i1,...,iN is a fully symmetric (antisymmetric) tensor
for bosons (fermions) and the sum over each i j in (5a) runs
over all d sp states, whereas that in (5b) over all distinct dN

operators (2), with (see Appendix A)

�(N )
α = 〈0|C(N )

α |�〉 = �i1...iN√
n1! · · · √nd !

, (6)

for c†
i1

· · · c†
iN

= c†n1
1 · · · c†nd

d (and i1 < · · · < iN for fermions).
Here |�(N )

α |2 is the probability of finding the N particle
state C(N )†

α |0〉 “occupied” in |�〉, with 〈�|�〉 = ∑
α |�(N )

α |2 =
1

N!

∑
i1,...,id

|�i1,...,iN |2 = 1.

B. The (M, N − M) representation and Schmidt decomposition
for bosons and fermions

We can rewrite the general N-particle state (5) in a
bipartite-like form involving operators creating M � N and
N − M particles, such that side A refers to M particles (but
not to any specific location in space or any other quan-
tum number) and side B to N − M particles. Starting from
Eq. (4) we obtain

∑
α C(M )†

α C(M )
α |�〉 = (N

M)|�〉. Then |�〉 =
(N
M)−1 ∑

α C(M )†
α C(M )

α |�〉 can be recast in the bipartite-like
form

|�〉 =
(

N

M

)−1 ∑
α,β

�
(M )
αβ

C(M )†
α C(N−M )†

β
|0〉, (7)

for both bosons and fermions, where we have written

C(M )
α |�〉 =

∑
β

�
(M )
αβ

C(N−M )†
β

|0〉, (8)
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and sums over α,β run over all dM and dN−M operators C(M )†
α ,

C(N−M )†
β

, respectively. Here �
(M )
αβ

≡ �
(M,N−M )
αβ

is given by [see
Eq. (3)]

�
(M )
αβ

= 〈0|C(N−M )
β

C(M )
α |�〉, (9)

and is directly related to �i1,...,in in (5a) by Eq. (A5).
Equation (7) is the (M, N − M ) bipartite-like decomposi-

tion of |�〉, expressing it as a linear combination of “products”
of states in FM and FN−M . The coefficients �

(M )
αβ

determine the
remnant N − M particle state (8) after annihilating in |�〉 M
particles in the state labeled by α, with |�(M )

αβ
|2 proportional

to the probability of having M particles in the state α and
N − M in the state β. Equations (7) and (8) imply 〈�|�〉 =
(N
M)−1 ∑

α,β |�(M )
αβ

|2, such that for any normalized state,

Tr
[
�(M )†

�(M )
] =

(
N

M

)
, (10)

for both bosons and fermions.
As done for fermions [21], from the singular value decom-

position (SVD) of the matrix �(M ),

�
(M )
αβ

=
∑

ν

U (M )
αν σ (M )

ν V (N−M )†
νβ

, (11)

where U (M ),V (N−M ) are unitary dM × dM and dN−M × dN−M

matrices and σ (M )
ν > 0 the singular values of �(M ) (square

roots of the nonzero eigenvalues of �(M )†�(M ) or �(M )�(M )†),
we obtain from (7) the Schmidt-like diagonal (M, N − M )
decomposition of a general bosonic or fermionic N-particle
state,

|�〉 =
(

N

M

)−1 nM∑
ν=1

σ (M )
ν A(M )†

ν B(N−M )†
ν |0〉, (12)

where nM is the rank of �(M ) and

A(M )†
ν =

∑
α

U (M )
αν C(M )†

α ,

(13)
B(N−M ) †

ν =
∑

β

V (N−M )∗
βν

C(N−M ) †
β

,

are “collective” operators creating M and N − M particles.
As U (M ) and V (N−M ) are unitary, they are again orthogonal
normalized operators satisfying

A(M )
ν A(M )†

ν ′ |0〉 = δνν ′ |0〉 = B(N−M )
ν B(N−M )†

ν ′ |0〉, (14a)

∑
ν

A(M )†
ν A(M )

ν =
(

N̂

M

)
=
∑

ν

B(N−M )†
ν B(N−M )

ν , (14b)

for both bosons and fermions. Moreover, Eqs. (8) and (9)
become diagonal in terms of these normal operators:

A(M )
ν |�〉 = σ (M )

ν B(N−M )†
ν |0〉, (15a)

〈0|B(N−M )
ν A(M )

ν ′ |�〉 = δνν ′ σ (M )
ν , (15b)

such that B(N−M )†
ν |0〉 is the state of remaining N − M parti-

cles after destroying M particles in the state labeled by ν.
These states are orthogonal according to Eq. (14a), in anal-
ogy with the standard Schmidt decomposition and in contrast
with the states (8) [see Eq. (16a)]. On the other hand, the

full terms A(M )†
ν B(N−M )†

ν |0〉 are not necessarily orthogonal for
different ν.

The singular values σ (M )
ν in (12) are characteristic of the

state, i.e., independent of the choice of sp basis used to repre-
sent it [see (A6) in Appendix A]. For N = 2 Eq. (12) becomes
equivalent to the normal forms of Refs. [10,11].

C. The M-body density matrix and operator

The bipartite tensor �
(M )
αβ is directly connected to the M-

body density matrix ρ (M ), of elements [50,51]

ρ
(M )
αα′ := 〈�|C(M )†

α′ C(M )
α |�〉 (16a)

=
∑

β

�
(M )
αβ

�
(M )∗
α′β = (�(M )�(M )†)αα′ , (16b)

i.e., ρ (M ) = �(M )�(M )† for both bosons and fermions, where in
(16b) we used Eqs. (3)–(8). Here ρ (M ) is a dM × dM positive
semidefinite matrix, representing the Hermitian covariance
matrix of the linearly independent operators C(M )

α in the state
|�〉. Equation (10) implies

Tr ρ (M ) =
(

N

M

)
, (17)

for both bosons and fermions, in agreement with Eq. (4) [52].
The average of any bosonic or fermionic M-body operator can
then be expressed as〈∑

α,α′
O(M )

αα′ C(M )†
α C(M )

α′

〉
= Tr

[
ρ (M )O(M )

]
. (18)

Since Eq. (7) implies �(N−M ) = (±1)M(N−M )�(M ) t for
bosons (+) or fermions (−), the partner DM ρ

(N−M )
ββ′ =

�(N−M )�(N−M )† is just �(M )t�(M )∗.
From (11) we note that the squared singular values

λ(M )
ν = (

σ (M )
ν

)2
, (19)

arising from the Schmidt decomposition (12), are precisely
the nonzero eigenvalues of �(M )�(M )† = ρ (M ) or equivalently
�(M )t�(M )∗ = ρ (N−M ), i.e., of the M and N − M-body DMs,
which then have the same nonzero eigenvalues in any N-
particle pure state |�〉, for both bosons and fermions [53],
with U (M ) and V (N−M )∗ the corresponding eigenvector ma-
trices. This result is analogous to that of the distinguishable
bipartite case [2].

Moreover, the normal operators (13) are precisely those
which diagonalize ρ (M ) and ρ (N−M ), constituting the M and
(N − M )-body “natural orbitals”:

〈�|A(M )†
ν ′ A(M )

ν |�〉 = λ(M )
ν δνν ′

= 〈�|B(N−M ) †
ν ′ B(N−M )

ν |�〉, (20)

as follows from (14) and (15).
For M = N , ρ (N ) has just a single eigenvalue λ

(N )
1 = 1 cor-

responding to the operator A(N ) †
1 = ∑

α �(N )
α C(N )†

α creating the
state (5b), whereas for M = 1 we recover the one-body DM
ρ

(1)
i j = 〈�|c†

j ci|�〉 = (�(1)�(1)†
)i j , with Tr ρ (1) = N , isospec-

tral with ρ (N−1) [20]. In this case A†
ν = c†

ν are the standard

032414-3



J. A. CIANCIULLI et al. PHYSICAL REVIEW A 110, 032414 (2024)

sp “natural” creation operators diagonalizing ρ (1): 〈c†
ν ′cν〉 =

δνν ′λ(1)
ν .

We also mention that in an N-particle Fock state |�β〉 =
C(N )†

β
|0〉 = c

†n1
1√
n1!

. . .
c

†nd
d√
nd

|0〉 (β = (n1, . . . , nd ),
∑

i ni = N),

i.e., a permanent (bosons) or SD (fermions), ρ (M ) is diagonal

in the standard basis of operators C(M )†
α = c

†m1
1√
m1!

. . .
c

†md
d√
md !

(α =
(m1, . . . , md ),

∑
i mi = M), having just integer eigenvalues:

〈
C(M )†

α C(M )
α′
〉
β

= δαα′λ(M )
α , λ(M )

α =
∏

i

(
ni

mi

)
, (21)

which in the fermionic case reduce just to (N
M) eigenvalues

λ(M )
α = 1 [21]. In both cases they verify

∑
α λ(M )

α = (N
M). In

the bosonic case the lowest rank obviously corresponds to a
condensate (e.g., ni = Nδi1) where there is a single nonzero
eigenvalue λ

(M )
1 = (N

M).
We can also define the M-body density operator (DO)

ρ̂ (M ) =
∑

β

C(N−M )
β

|�〉〈�|C(N−M )†
β

(22a)

=
∑
α,α′

ρ
(M )
αα′ C(M )†

α |0〉〈0|C(M )
α′ , (22b)

where in (22b) we used Eq. (8) for M → N − M and (16b). It
is the unique mixed M-particle state fulfilling

Tr
[
ρ̂ (M )C(M )†

α′ C(M )
α

] = ρ
(M )
αα′ (23)

∀α,α′, for both bosons or fermions. Its diagonal form is

ρ̂ (M ) =
∑

ν

λ(M )
ν A(M )†

ν |0〉〈0|A(M )
ν , (24)

in terms of the normal operators (13), such that
ρ̂ (M )A(M )†

ν |0〉 = λ(M )
ν A(M )†

ν |0〉, having obviously the same
eigenvalues as its matrix representation ρ (M ). For M = N it
reduces to ρ̂ (N ) = |�〉〈�|.

Thus, the operation in (22a) can be seen as a partial trace
over N − M particles, leading to the reduced state ρ̂ (M ) of
Eq. (22b) which determines the average of any M-body [and
hence L-body for L < M; see (29)] operator, in analogy with
the standard distinguishable case.

Under unitary sp transformations of the state, |�〉 → Û |�〉
with Û = e−ı

∑
i j hi j c

†
i c j , all ρ (M ) and ρ̂ (M ) will transform unitar-

ily [see (A7)].

D. Measurements, M-body DMs, and M-body entanglement

For both bosons and fermions, the operators

Mβ :=
(

N

M

)−1/2

C(N−M )
β

(25)

can be considered as Kraus operators when acting on the
subspace of states with definite particle number N , since by
Eq. (4), they satisfy ∑

β

M†
β
Mβ = 1N , (26)

i.e.,
∑

β M
†
β
Mβ|�〉 = |�〉 ∀ N-particle state |�〉. Then

they define a measurement on N-particle states in which

N − M particles are annihilated [see also (B7) in Appendix B
for a number-conserving implementation]: |�〉 → Mβ|�〉 ∝
C(N−M )

β
|�〉, with probabilities

pβ = 〈�|M†
β
Mβ|�〉 = ρ

(N−M )
ββ

/(
N

M

)
, (27)

determined precisely by the (N − M )-body DM.
According to Eqs. (22a)–(25), the ensuing postmeasure-

ment state
∑

β Mβ|�〉〈�|M†
β

(without postselection) is just
the normalized M-body DO ρ̂ (M )

n :

ρ̂ (M )
n :=

(
N

M

)−1

ρ̂ (M ) =
∑

β

Mβ|�〉〈�|M†
β
, (28)

which satisfies Tr ρ̂ (M )
n = 1. The basic case is that of sp mea-

surements (N − M = 1, Mi = ci/
√

N), with N − M-body
measurements based on the operators (25) being just compo-
sitions of sp measurements.

Regarding the L-body DM ρ (L) for L � M, we first note
that using Eqs. (22a) and (4), it can be obtained from ρ̂ (M ) as
(see Appendix A)

ρ
(L)
γγ ′ =

(
N − L

N − M

)−1

Tr
[
ρ̂ (M )C(L)†

γ ′ C(L)
γ

]
(L � M ). (29)

Then the expansions (22a) or (28) imply (see Appendix A)

ρ̂ (L)
n =

∑
β

pβ ρ̂
(L)
βn , (30)

where ρ̂ (L)
n = ρ̂ (L)/(N

L ) is the normalized L-body DO in the

original state |�〉 and ρ̂
(L)
βn = ρ̂

(L)
β

/(M
L ) those in the posts-

elected normalized M-particle states |�β〉 = Mβ|�〉/√pβ,
with pβ the probabilities (27) of outcome β. Thus, for any
L � M, the normalized DM ρ (L)

n is the average of the normal-
ized postmeasurement DMs ρ̂

(L)
βn in the postselected states.

This result is important since it implies the general ma-
jorization relation [21]

λ
(
ρ (L)

n

) ≺
∑

β

pβλ
(
ρ̂

(L)
βn

)
(31)

between the sorted (in decreasing order) eigenvalue spectrum
λ of the original DM ρ (L)

n and those of ρ̂
(L)
βn (see, e.g., [54,55]

for majorization properties). It entails the general entropic
inequality

S
(
ρ̂ (L)

n

)
�
∑

β

pβS
(
ρ̂

(L)
βn

)
, (32)

between the entropy of the original normalized L-body DM
ρ (L)

n and the average entropy of the normalized L-body DMs in
the postmeasurement states. It is valid for any concave entropy
S(ρ), like the von Neumann entropy S(ρ) = −Tr ρ log2 ρ, or
in general any trace-form entropy S f (ρ) = Tr f (ρ) with f
concave and f (0) = f (1) = 0 [56], in both boson and fermion
systems.

This result means that for L � M, the L-body entangle-
ment, determined by the mixedness of the normalized L-body
DM [21] and quantified by the associated entropy

E (L)(|�〉) = S
(
ρ̂ (L)

n

) = S
(
ρ̂ (N−L)

n

)
, (33)
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cannot increase (and will typically decrease) on average un-
der the N − M-body operation determined by the operators
(25), for both bosons and fermions, and for any choice of
entropy. This is in agreement with the fact that such measure-
ment decreases the uncertainty about which L-body states are
occupied.

Equations (26)–(33) remain valid for measurements based
on the normal operators (13), M̃ν = (N

M)−
1
2 B(N−M )

ν , as they
are unitarily related to the Mβ: just replace β → ν,
with pβ → pν = λ(N−M )

ν /(N
M) and |�β〉 → |�ν〉 = A(M )†

ν |0〉
(∝ B(N−M )

ν |�〉) in (30)–(32).
Hence, a resource theory based on the previous quantum

operations (plus free operations like unitary sp transforma-
tions) is in principle feasible, with the L-body entanglement,
determined by the mixedness of the reduced densities ρ̂ (L)

n
(which is fully independent of the choice of sp modes) as a
basic resource which cannot increase on average under these
operations (see also Appendix B).

III. REDUCED EXACT DECOMPOSITIONS

The presence of symmetries in |�〉 can simplify the DMs
ρ (M ) into a blocked structure in an obvious basis, reducing the
effective number of nonzero elements. A common example
is the conservation of the number of particles in a certain
subspace S ⊂ H of sp modes,

N̂S =
∑
i∈S

c†
i ci, (34)

as in the case of eigenstates |�〉 of Hamiltonians satisfying
[H, N̂S ] = 0, such that

N̂S |�〉 = NS |�〉. (35)

If |�〉 has definite particle number N , (35) also implies
N̂S̄ |�〉 = NS̄ |�〉 for NS̄ = N − NS the number of particles
in the orthogonal complement S̄ , such that H = S ⊕ S̄ .

Common well-known cases are, e.g., systems with pairing-
type two-body couplings, where the number of particles in
positive and negative quasimomentum states NS , N̄S , are con-
served (see Sec. IV), Hubbard-type Hamiltonians in solid
state physics [46,57,58], which conserve the number of parti-
cles Nσ = ∑

i c†
iσ ciσ with definite spin component σ , and the

strong nuclear force in an atomic nucleus within the isospin
formalism [50], which conserves Tz = N−Z

2 , i.e., the number
of neutrons N = ∑

k c†
k+ck+ and protons Z = ∑

k c†
k−ck− for

N + Z fixed and k denoting remaining quantum numbers. It is
also the case of any system with fixed number of particles
at distinct sites (corresponding to orthogonal sp subspaces
Si), like entangled states of spatially separated M and N − M
particles, where the standard distinguishable scenario emerges
naturally as a special case (Sec. III D).

Equation (35) implies that elements of ρ (M ) which do
not conserve the number of particles in S will vanish:
〈C(M )†

α C(M )
α′ 〉 = 0 if [C(M )†

α C(M )
α′ , N̂S ] �= 0, leading to a blocked

ρ (M ) where each block corresponds to a fixed number m of op-
erators c†

i∈S , ci′∈S in C(M )†
α , C(M )

α′ . We show here that reduced
exact (M, N − M ) expansions of |�〉 associated with each of
these blocks are also feasible.

A. One-body case

We start with the simplest case M = 1. It is easily seen that
Eq. (35) implies the following blocked form of the one-body
DM ρ (1):

ρ (1) =
(

ρ
(1)
S 0

0 ρ
(1)
S̄

)
, (36)

where (ρ (1)
S )i j = 〈c†

j ci〉, (ρ (1)
S̄ )i j = 〈c†

j̄
cī〉 are the one-body

DM’s in each subspace, since remaining contractions 〈c†
i c j̄〉

vanish due to the conservation of N̂S . These blocks have a
fixed trace Tr ρ

(1)
S = NS , Tr ρ

(1)
S̄ = NS̄ .

Moreover, if NS � 1, NS̄ � 1, each block can be associ-
ated to an own (1, N − 1) expansion and Schmidt decomposi-
tion of |�〉: Starting from (35), |�〉 = 1

NS
N̂S |�〉, and writing

ci|�〉 = ∑
β �

(1)
iβ C(N−1)†

β
|0〉 with �

(1)
iβ = 〈0|C(N−1)

β
ci|�〉, we

obtain the reduced exact expansion

|�〉 = N−1
S

∑
i∈S,β

�
(1)
iβ c†

i C(N−1)†
β

|0〉 (37a)

= N−1
S
∑
ν∈S

σ (1)
ν a†

νB(N−1)†
ν |0〉, (37b)

which just involves the block �
(1)
S of elements �

(1)
i∈S,β

of
the full �(1) in (7), where β spans (N − 1)-particle states
with NS − 1 particles in S and NS̄ in S̄ . In (37b), σ (1)

ν

are the singular values of �
(1)
S and aν = ∑

i∈S U (1)
iν c†

i , B†
ν =∑

β V (N−1)∗
βν

C(N−1)†
β

the associated normal operators (13)

(M = 1). It leads to 〈c†
j ci〉 = (�(1)

S �
(1)†
S )i j for i, j ∈ S and

hence to the upper block of ρ (1),

ρ
(1)
S = �

(1)
S �

(1)†
S , (38)

with eigenvalues λ(1)
ν = (σ (1)

ν )2 for ν ∈ S .
Similar expressions with S → S̄ in (37) and (38) obviously

hold for the expansion of |�〉 associated with the second
block ρ

(1)
S̄ in (36), determined by �

(1)
S̄ of elements �

(1)
ī∈S̄,β

.

Both expansions, Eq. (37) and the analogous one based on S̄ ,
are exact but run in general over distinct singular values σ (1)

ν ,
σ

(1)
ν̄ and operators aν , aν̄ . For composite systems with NSi � 1

particles in n orthogonal subspaces Si, analogous expansions
hold for each subspace.

Equation (35) also leads to a similar blocked structure of
the partner isospectral (N − 1)-body DM,

ρ (N−1) =
(

ρ
(N−1)
S 0

0 ρ
(N−1)
S̄

)
, (39)

where ρ
(N−1)
S = �

(1)T
S �

(1)∗
S contains just those elements

ρ
(N−1)
β′β with β,β′ involving NS − 1 particles in S , and

ρ
(N−1)
S̄ = �

(1)T
S̄ �

(1)∗
S̄ those with NS̄ − 1 particles in S̄ (and

hence NS in S). Notice, however, that ρ
(1)
S and ρ

(1)
S̄ are not

isospectral in general.

B. Two-body case

The implications of (35) become even more important for
the two-body DM. For NS � 2, NS̄ � 2, Eq. (35) entails that
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the full ρ (2) will have three principal blocks:

ρ (2) =

⎛
⎜⎜⎝

ρ
(2)
S 0 0

0 ρ
(2)
SS̄ 0

0 0 ρ
(2)
S̄

⎞
⎟⎟⎠, (40)

where(
ρ

(2)
S
)

i j,kl
= 〈c†

kc†
l c jci〉,

(
ρ

(2)
S̄
)

ī j̄,k̄l̄
= 〈c†

k̄
c†

l̄
c j̄cī〉 (41)

contain the contractions within S and S̄ respectively (includ-
ing diagonal elements (ρ (2)

S )ii,kl = 〈c†
kc†

l c2
i 〉/

√
2, (ρ (2)

S )ii,kk =
〈c†2

k c2
i 〉/2, etc., in the bosonic case) and(

ρ
(2)
SS̄
)

i j̄,kl̄ = 〈c†
kc†

l̄
c j̄ci〉, (42)

those involving one particle in S and one in S̄ . All remaining
contractions vanish due to the conserved NS . These blocks
have fixed traces

Tr ρ
(2)
S =

(
NS
2

)
, Tr ρ

(2)
S̄ =

(
NS̄
2

)
, Tr ρ

(2)
SS̄ = NSNS̄ ,

(43)
verifying (NS

2 ) + (NS̄
2 ) + NSNS̄ = (NS + NS̄

2 ).
Moreover, Eq. (35) implies∑

α∈S
C(2)†

α C(2)
α |�〉 =

(
NS
2

)
|�〉, (44)

for C(2)†
α∈S ≡ c†

i c†
j (i < j) or (c†

i )2/2, with a similar expression
for S → S̄ , and∑

γ∈SS̄

C(2)†
γ C(2)

γ |�〉 = NSNS̄ |�〉 (45)

for C(2)†
γ∈SS̄ ≡ c†

i c†
j̄
. Then the tensor �(2) will also have three

corresponding blocks �
(2)
S , �

(2)
SS̄ and �

(2)
S̄ , each of them gener-

ating an exact reduced expansion and Schmidt decomposition
of |�〉: The first one, emerging from (44),

|�〉 =
(

NS
2

)−1 ∑
α∈S,β

(
�

(2)
S
)
αβ

C(2)†
α C(N−2)†

β
|0〉 (46a)

=
(

NS
2

)−1 ∑
ν∈S

σ (2)
ν A(2)†

ν B(N−2)†
ν |0〉, (46b)

where (�(2)
S )αβ = 〈0|C(N−2)

β
C(2)

α∈S |�〉 and σ (2)
ν are the singular

values of �
(2)
S , is related to ρ

(2)
S = �

(2)
S �

(2)†
S and its eigenvalues

λ(2)
ν = (σ (2)

ν )2 for ν ∈ S . The third one is analogous for S →
S̄ and is related to ρ

(2)
S̄ = �

(2)
S̄ �

(2)†
S̄ .

Finally, the second one, emerging from (45),

|�〉 = 1

NSNS̄

∑
γ∈SS̄,β

(
�

(2)
SS̄
)
γβ

C(2)†
γ C(N−2)†

β
|0〉 (47a)

= 1

NSNS̄

∑
ν̃

σ
(2)
ν̃ A(2)†

ν̃ B(N−2)†
ν̃ |0〉, (47b)

where (�(2)
SS̄ )γβ = 〈0|C(N−2)

β
C(2)

γ∈SS̄ |�〉 and σ
(2)
ν̃ are the sin-

gular values of �
(2)
SS̄ , determines the central block ρ

(2)
SS̄ =

�
(2)
SS̄�

(2)†
SS̄ and its eigenvalues λ

(2)
ν̃ = (σ (2)

ν̃ )2. It exposes the

two-body correlations between the particles in S and those
in S̄ . Summing the three previous expansions with their
relative weights pS = (NS

2 )/(N
2 ), pS̄ = (NS̄

2 )/(N
2 ), and pSS̄ =

NSNS̄/(N
2 ) leads to the original expansion (7) for M = 2.

Previous blocked structure and expansions also hold for the
partner (N − 2)-body DM ρ (N−2), with ρ

(N−2)
S = �

(2)T
S �

(2)∗
S ,

ρ
(N−2)
SS̄ = �

(2)T
SS̄ �

(2)∗
SS̄ and ρ

(N−2)
S̄ = �

(2)T
S̄ �

(2)∗
S̄ containing el-

ements involving NS − 2, NS − 1 and NS particles in S ,
respectively.

The expansion (47) is convenient when ρ
(2)
SS̄ possesses one

or a few large dominant eigenvalues λ
(2)
ν̃ > 1 which absorb

most of the sum (see Sec. IV), and which reflect pairing-like
correlations between particles in S and those in S̄ [48,59,60].
For any “product” state

|�〉 = A(NS )†
S B(NS̄ )†

S̄ |0〉, (48a)

where A(NS )†
S (B(NS̄ )†

S̄ ) creates an arbitrary state of NS (NS̄ )

particles in S (S̄), ρ
(2)
SS̄ becomes a direct product of one-body

densities in both fermion and boson systems,(
ρ

(2)
SS̄
)

i j̄,kl̄ = (
ρ

(1)
S
)

ik

(
ρ

(1)
S̄
)

j̄ l̄
, (48b)

becoming diagonal in the natural sp bases which diagonalize
ρ

(1)
S and ρ

(1)
S̄ : (ρ (2)

SS̄ )i j̄,kl̄ = δikδ j̄ l̄λ
(1)
i λ

(1)
j̄

, with λ
(1)
i λ

(1)
j̄

� 1 for
fermions.

Hence an immediate consequence for fermions is the fol-
lowing: If in a state with definite fermion numbers NS , NS̄ in
orthogonal sp subspaces S , S̄ , the joint two-body DM ρ

(2)
SS̄

has an eigenvalue λ(2)
ν > 1, there is bipartite entanglement

between the NS and NS̄ fermions, in the sense of not being
a product state (48a) (see Sec. III D).

Such a dominant eigenvalue also indicates that |�〉 can-
not be an independent fermion state (SD) either, since in
these states all nonzero eigenvalues of ρ (2) have the value
1. Moreover, if |�〉 is a SD ((ρ (1) )2 = ρ (1)) and NS , NS̄ are
conserved, then (48a) necessarily holds, with A(NS )†

S = C(NS )†
α∈S ,

B(NS̄ )†
S̄ = C(NS̄ )†

β∈S̄ simple product operators of the form (2),

since the blocked structure (36) then implies (ρ (1)
S )2 = ρ

(1)
S ,

(ρ (1)
S̄ )2 = ρ

(1)
S̄ , entailing that both A(NS )†

S |0〉, B(NS̄ )†
S |0〉 are SDs.

C. General M-body case

For a general M-body DM in a system with NS � M parti-
cles in S and NS̄ � M in S̄ , Eq. (35) implies that ρ (M ) will be
blocked into M + 1 subdensities ρ

(m,l )
SS̄ involving m particles

in S and l = M − m particles in S̄ , with m = 0, 1, . . . , M:

ρ (M ) =

⎛
⎜⎜⎜⎜⎝

ρ
(M,0)
S 0 · · · 0

0 ρ
(1,M−1)
SS̄ · · · ...

... · · · . . .
...

0 · · · 0 ρ
(0,M )
S̄

⎞
⎟⎟⎟⎟⎠, (49)

where (ρ (m,l )
SS̄ )αα′ = 〈C(m,l )†

α′ C(m,l )
α 〉, with C(m,l )†

α = C(m)†
α∈SC(l )†

ᾱ∈S̄
creating m particles in S and l in S̄ . The blocked form (49)
is equivalent to the condition

[ρ̂ (M ), N̂S ] = 0 (50)
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on the m-body density operator (22), implied by a state fulfill-
ing Eq. (35). The operators C(m,l )†

α satisfy∑
α

C(m,l )†
α C(m,l )

α =
(

N̂S
m

)(
N̂S̄
l

)
. (51)

Therefore, each block in (49) has a definite trace Tr ρ (l,m) =
(NS

m )(NS̄
l ). For M = 1 and 2 we recover the blocks of Eqs. (36)

and (40).
The tensor �(M ) will also be decomposed into M + 1

blocks �(m,l ), each one generating an exact expansion and
Schmidt-like decomposition of |�〉, since for each m, l
Eq. (51) implies

∑
α C(m,l )†

α C(m,l )
α |�〉 = (NS

m )(NS̄
l )|�〉 for states

satisfying (35). Thus, we obtain

|�〉 = 1(NS
m

)(NS̄
l

) ∑
α,β

�
(m,l )
αβ

C(m,l )†
α C(NS−m,NS̄−l )†

β
|0〉, (52a)

= 1(NS
m

)(NS̄
l

) ∑
ν

σ (m,l )
ν A(m,l )†

ν B(NS−m,NS̄−l )†
ν |0〉, (52b)

with �
(m,l )
αβ

= 〈0|C(NS−m,NS̄−l )
β

C(m,l )
α |�〉, such that

C(m,l )
α |�〉 = ∑

β �
(m,l )
αβ

C(NS−m,NS̄−l )†|0〉 and ρ (m.l ) =
�(m,l )�(m,l )†. In (52b) σ (m,l )

ν are the singular values of �(m,l )

and A(m,l )†
ν , B(NS−m,NS̄−l )†

ν the normal operators obtained from
its SVD. These block-DMs and their eigenvalues can be used
to characterize the M-body correlations between particles at
S and S̄ .

The (m, l )-body density operator corresponding to such
block can be likewise obtained as

ρ̂ (m,l ) =
∑

β

C(NS−m,NS̄−l )
β

|�〉〈�|C(NS−m,NS̄−l )†
β

=
∑
α,α′

ρ
(m,l )
αα′ C(m,l )†

α |0〉〈0|C(m,l )
α′ . (53)

Similarly, reduced measurements based on the operators

M(m,l )
α =

[(
NS
m

)(
NS̄
l

)]−1/2

C(m,l )
α , (54)

which satisfy
∑

α M(m,l )†
α M(m,l )

α = 1NSNS̄ on the subspace of
states with definite particle number N and subsystem particle
number NS , become feasible, leading to a direct extension of
Eqs. (27)–(33). The associated entanglement, i.e., the mixed-
ness of each of these blocks, will not increase on average
under these measurements and can then be also considered
as a resource in this scenario.

D. Connection with entanglement
between distinguishable systems

In the special case M = NS , the expansion (52) associated
with the first block (m = M, l = 0) in (49) becomes

|�〉 =
∑

α∈S,β∈̄S

�
(NS )
αβ

C(NS )†
α C(NS̄ )†

β
|0〉 (55a)

=
∑

ν

σ (NS )
ν A(NS )†

ν B(NS )†
ν |0〉, (55b)

with �
(NS )
αβ

≡ �
(NS ,NS̄ )
αβ

= 〈0|C(NS )
β

C(NS )
α |�〉 for α ∈ S , β ∈ S̄ .

Eq. (55a) is just the standard decomposition of a bipartite state

of two distinguishable systems (the NS particles at S and the
NS̄ at S̄) in terms of local states (C(NS )†

α∈S |0〉 and C(NS̄ )†
β∈S̄ |0〉)

expressed in second quantized form. The NS particles at S
can be distinguished from the NS̄ at S̄ since they occupy
orthogonal subspaces and have then a distinct quantum num-
ber. The diagonal representation (55b) is the standard Schmidt
decomposition, with Eq. (48a) corresponding to the separable
case.

Accordingly, all terms in the sums (55a) and (55b) are now
mutually orthogonal. The associated isospectral NS - and NS̄ -
body densities,

ρ
(NS )
S = �(NS )�(NS )†, ρ

(NS̄ )
S̄ = �(NS )t�(NS )∗, (56)

where ρ
(NS )
S = ρ

(m,0)
S is the first block in (49), represent

the standard local isospectral density matrices of the NS
particles at S and those at S̄ , having the same eigen-
values λ(NS )

ν = (σ (NS )
ν )2 and satisfying Tr ρ

(NS )
S = (NS

NS
) = 1,

Tr ρ
(NS̄ )
S̄ = (NS̄

NS̄
) = 1, with

ρ̂
(NS )
S =

∑
β∈S̄

C(NS̄ )
β

|�〉〈�|C(NS̄ )†
β

, (57a)

ρ̂
(NS̄ )
S̄ =

∑
α∈S

C(NS )
α |�〉〈�|C(NS )†

α , (57b)

the corresponding local reduced states. Their common entropy
is the standard bipartite entanglement entropy of the NS and
NS̄ particles:

E (S, S̄ ) = S
(
ρ̂ (NS )) = S

(
ρ̂ (NS̄ )). (58)

We finally notice that for a quantum operation transform-
ing an N particle state |�0〉 with support on a sp subspace
S0 ≡ S̄ , to a state |�〉 with M = NS particles in a subspace
S orthogonal to S̄ , and NS̄ = N − M particles in S̄ , satisfying
then Eq. (35), the result derived in [21] for fermions also holds
for bosons: The entropy of the original normalized M-body
DM ρ

(M )
0n in |�0〉 is an upper bound to the average bipartite

entanglement (58) in the final states (see Appendix B).

IV. EXAMPLES

We now discuss some examples illustrating previous con-
siderations in both boson and fermion systems. We focus on
N-particle paired states, which arise as ground states (GS)
of systems with attractive pairing interactions. The latter are
well known to be most relevant in several distinct contexts,
from the standard BCS theory of superconductivity [61] and
its extension for describing He3 superfluidity [62], to the
description of pairing effects in nuclear systems and neutron
stars [50,63], including also ultracold quantum gases [64].
BCS-like pairing models for bosons have also been considered
[65–67]. Such paired states are strongly correlated, requiring,
as is well known, at least a particle number violating BCS [61]
or Bogoliubov approach [50] for an approximate treatment
at the mean field level. We will here consider exact results
in finite N-particle systems, focusing on the eigenvalues of
the one- and, especially, two-body DM and on the associated
entropies and bipartite expansions, of some typical paired
states, including the GS of a finite pairing model.
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A. Maximally paired states in fermionic
and bosonic systems

We start from the uniform pair creation operator

A† = 1√
n

n∑
k=1

c†
kc†

k̄
, (59)

where k, k̄ label n orthogonal sp states belonging to orthog-
onal subspaces S and S̄ respectively (e.g., k, k̄ may label
opposite quasimomentum states) and c†

k , c†
k̄

can be either
bosonic or fermionic creation operators. It creates a max-
imally entangled pair state |�1〉 = A†|0〉 = 1√

n

∑
k c†

kc†
k̄
|0〉,

both in the sense of leading to a maximally mixed one-body
DM ρ (1) = 1/n for 2 particles in 2n levels, i.e., maximal
one-body entanglement E (1) in Eq. (33) for L = 1, as well as
maximum bipartite entanglement between the two particles
(which occupy orthogonal subspaces), i.e., maximally mixed
ρ̂ (NS ), ρ̂ (NS̄ ) in (57) and hence maximal E (S, S̄ ) in (58), for
NS = NS̄ = 1.

The operator (59) fulfills the commutation relation (in what
follows + corresponds to bosons, − to fermions)

[A, A†] = 1 ± N̂/n, (60)

where N̂ = ∑
k c†

kck + c†
k̄
ck̄ = N̂S + N̂̄S is the total number

operator. Using (60) it is straightforward to show that the
ensuing normalized m-pair state created by (A†)m is

|�m〉 := 1

m!

√
nm

Nm
(A†)m|0〉 (61a)

= 1√
Nm

∑
m1,...,mn∑

k mk =m

|m1, . . . , mn〉, (61b)

where mk is the number of pairs in states (k, k̄), with mk =
0, 1, 2, . . . for bosons and mk = 0, 1 for fermions. In (61b),
Nm = (n + m − 1

m ) (bosons) or Nm = (n
m) (fermions) is the num-

ber of ways of distributing m indistinguishable pairs in n pair
states (with single occupancy in the fermion case and m � 0
for bosons, 0 � m � n for fermions), and

|m1, . . . , mn〉 =
n∏

k=1

(c†
kc†

k̄
)mk

mk!
|0〉 = sαC(m)†

α C(m)†
ᾱ |0〉 (62)

are basic normalized m-pair states, with C(m)†
α = ∏

k
(c†

k )mk√
mk !

,

C(m)†
ᾱ = ∏

k
(c†

k̄
)mk√

mk !
for α = (m1, . . . , mn) and sα = ± a phase

factor for the fermionic case.
Hence, the states (61) are just a uniform superposition of

these Nm basic m-pair states, satisfying Eq. (35),

N̂S |�m〉 = N̂S̄ |�m〉 = m|�m〉. (63)

They arise as exact GS of simple pairing Hamiltonians in the
strong coupling limit (see Sec. IV C). From (60) and (61) it
can be shown that

A†|�m−1〉 =
√

m

(
1 ± m − 1

n

)
|�m〉, (64a)

A†A|�m〉 = m

(
1 ± m − 1

n

)
|�m〉, (64b)

with A|�m〉 =
√

m(1 ± m−1
n )|�m−1〉, such that A†A counts es-

sentially the number m of pairs for n � m.
The states (61) have again maximum one-body entangle-

ment (for fixed N = 2m particles) for both fermions and
bosons: Eq. (63) implies ρ (1) has the blocked form (36), with
ρ

(1)
S , ρ

(1)
S̄ diagonal and maximally mixed, as all sp states k, k̄

have the same occupation:

ρ
(1)
S = ρ

(1)
S̄ = λ(1) 1, λ(1) = m/n, (65)

i.e., 〈c†
kck′ 〉 = 〈c†

k̄
ck̄′ 〉 = δkk′λ(1), verifying Tr ρ

(1)
S = Tr ρ

(1)
S̄ =

1
2 Tr ρ (1) = m and leading to maximum E (1) in (33), i.e.,
E (1) = log2(2n) for the von Neumann entropy.

Similarly, the states (61) have also maximum bipartite en-
tanglement E (S, S̄ ) in Eq. (58), between the NS = m particles
in S and the m ones in S̄ , for both fermions and bosons:
Eqs. (61b)–(62) are already the Schmidt decomposition for
such partition, |�m〉 = 1√

Nm

∑
α sαC(m)†

α C(m)†
ᾱ |0〉 with |sα| =

1, hence leading to maximally mixed reduced densities ρ
(m)
S =

ρ
(m)
S̄ = N−1

m 1 and maximum entanglement entropy

E (S, S̄ ) = log2 Nm. (66)

On the other hand, the two-body DM ρ (2) determined by
the state (61) is not maximally mixed, as can be seen from
its eigenvalues λ

(2)
i : Eq. (63) ensures it will have the blocked

structure of Eq. (40), with still maximally mixed diagonal
blocks ρ

(2)
S , ρ

(2)
S̄ [of length n(n ± 1)/2],

ρ
(2)
S = ρ

(2)
S̄ = λ

(2)
2 1, λ

(2)
2 = m(m − 1)

n(n ± 1)
, (67)

since 〈c†
kc†

k′ck′′′ck′′ 〉 = δkk′′δk′k′′′λ
(2)
2 for k < k′, k′′ < k′′′, and

additionally 〈 c† 2
k√
2

c2
k′√
2
〉 = δkk′λ

(2)
2 for bosons (see Appendix A),

with identical expressions in S̄ , verifying Tr ρ
(2)
S = Tr ρ

(2)
S̄ =

(m
2 ) for bosons and fermions.

However, the remaining block ρ
(2)
SS̄ in (40), of length n2 for

bosons and fermions, becomes itself blocked in two submatri-
ces (see Eq. (A14) in Appendix A),

〈c†
kc†

k̄′ck̄′′′ck′′ 〉 = (1 − δkk′ )δkk′′δk′k′′′λ
(2)
2 (68a)

+ δkk′δk′′k′′′

[
m(n ± m)

n(n ± 1)
+ δkk′′λ

(2)
2

]
, (68b)

where the first block (68a) is diagonal and similar to (67),
while the second block (68b), of length n, is nondiagonal and
exposes the two-body pairing correlations between particles
in S and S̄ . It has two distinct eigenvalues: one given again
by λ

(2)
2 , Eq. (67), n − 1 degenerate in this subblock, while the

remaining one (see Appendix A),

λ
(2)
1 = m

(
1 ± m − 1

n

)
, (69)

is the single dominant nondegenerate eigenvalue of ρ (2),
satisfying λ

(2)
1 � m for bosons and λ

(2)
1 � 1 for fermions

(with λ
(2)
1 > m for bosons if m > 1 and λ

(2)
1 > 1 for fermions

if 1 < m < n). It corresponds to the flat normal operator
A(2)†

1 = A† of ρ (2), as A†A|�m〉 = λ
(2)
1 |�m〉 [Eq. (64b)] and

hence 〈A†A〉 = λ
(2)
1 .
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Thus, for n � m, λ
(2)
1 ≈ m is essentially the number m

of pairs while λ
(2)
2 ≈ (m/n)2 becomes small, in agreement

with the approximate bosonic interpretation of A† for n � N
[Eq. (60)], in which case the state (61a) can be seen as an
m-boson condensate. Nonetheless, their exact values are re-
quired for fulfilling Eqs. (17)–(43): Tr ρ (2) = λ

(2)
1 + (n(2n ±

1) − 1)λ(2)
2 = (2m

2 ), Tr ρ
(2)
SS̄ = λ

(2)
1 + (n2 − 1)λ(2)

2 = m2, and
are important when m ∼ n or m > n (bosonic case). In the
fermionic case Eq. (69) is also the largest value the maximum
eigenvalue of ρ (2) can reach among any state of N = 2m
particles in a 2n-dimensional sp space [48,59].

We can now verify expansions (37) and (46)–(47).
Blocks ρ

(1)
S and ρ

(1)
S̄ generate similar (1, N − 1) uni-

form expansions (37b) of |�m〉: From (61a), ck (A†)m|0〉 =
m√

n
c†

k̄
(A†)(m−1)|0〉, such that (15a) is verified for M = 1,

A(1)
ν = ck: ck|�m〉 =

√
λ(1)B(2m−1)†

k |0〉, with B(2m−1)†
k |0〉 =

c†
k̄√

1± m−1
n

|�m−1〉 the normalized state of remaining parti-

cles after one in state k is annihilated. Equation (37b) is
then fulfilled: 1

m

√m
n

∑
k c†

kB(2m−1)†
k |0〉 = A†|�m−1〉√

m(1± m−1
n )

= |�m〉,
according to (64a).

Likewise, blocks ρ
(2)
S , ρ

(2)
S̄ generate similar uniform

expansions (46) of |�m〉: for k �= k′, ck′ck (A†)m|0〉 =
m(m−1)

n c†
k̄′c

†
k̄
(A†)(m−2)|0〉 and hence ck′ck|�m〉 =√

λ
(2)
2 B(2m−2)†

k′k |0〉, where B(2m−2)†
k′k |0〉 = c†

k̄′ c
†
k̄
|�2m−2〉

〈ck̄ck̄′ c†
k̄′ c

†
k̄
〉1/2 is the

normalized state of remaining particles after annihilating
two particles in states k, k′. Equation (46) is then verified:√

λ
(2)
2

m(m−1)

∑
k,k′ c†

kc†
k′B

(2m−2)†
k′k |0〉 = |�m〉.

On the other hand the expansion (47) based on ρ
(2)
SS̄ has

here a single dominant term: Eq. (64a) is just (15a) for
the main eigenvalue λ

(2)
1 and eigenvector A(2)

1 = A: A|�m〉 =√
λ

(2)
1 |�m−1〉, with B(N−2)†

1 ∝ (A†)m−1. Moreover, the first
term alone in (47b) is already proportional to the exact state,
as A†A|�m〉 ∝ |�m〉 according to (64b). The sum of all re-
maining terms in (47b) is in this case proportional to this first
term.

B. General paired states

Let us now consider the general m-pair state

|�m〉 =
∑

α

�αC(m)†
α C(m)†

ᾱ |0〉 (70a)

=
∑

m1 ,...,mn∑
k mk =m

�m1...mn |m1, . . . , mn〉, (70b)

where |m1, . . . , mn〉 are the previous states (62) and �α =
�m1...mn arbitrary coefficients satisfying

∑
α |�α|2 = 1, with

mk = 0, 1, 2, . . . (0,1) for bosons (fermions). Like (61), these
states contain all N = 2m particles in m pairs (k, k̄) and arise
as GS of pairing Hamiltonians at finite couplings strengths
(see Sec. IV C). They satisfy Eqs. (35)–(63), then leading
to the same blocked structure (36)–(40) of ρ (1) and ρ (2) for
fermions and bosons, with ρ (1) and ρ

(2)
S , ρ

(2)
S̄ again diagonal

in the standard basis:

〈c†
kck′ 〉 = 〈c†

k̄
ck̄′ 〉 = δkk′λ

(1)
k , (71a)

〈c†
kc†

k′ck′′′ck′′ 〉 = δkk′′δk′k′′′λ
(2)
kk′ , (71b)

for k < k′, k′′ < k′′′, and similarly for k → k̄, with λ
(2)
k̄k̄′ = λ

(2)
kk′

and λ
(2)
kk = 1

2 〈c†2
k c2

k〉 = λ
(2)
k̄k̄

for bosons. For ρ
(2)
SS̄ , Eq. (68) is

replaced by

〈c†
kc†

k̄′ck̄′′′ck′′ 〉 = (1 − δkk′ )δkk′′δk′k′′′λ
(2)
kk′ (72a)

+ δkk′δk′′k′′′ρ
(2)
c kk′′ (72b)

such that ρ
(2)
SS̄ = (ρ (2)

d 0

0 ρ
(2)
c

)
, with ρ

(2)
d the diagonal subblock

(72a) having the same elements (71b), and ρ (2)
c the nondiago-

nal n × n “collective” subblock (72b) containing the two-body
pairing contractions 〈c†

kc†
k̄
ck̄′ck′ 〉.

In the fermionic case, this subblock yields itself to an exact
(2, N − 2) reduced expansion of |�m〉 containing at most n
terms, since N̂p ≡ ∑

k c†
kc†

k̄
ck̄ck just counts for fermions the

number of pairs, satisfying N̂p|�m〉 = m|�m〉. Thus, |�m〉 =
1
m N̂p|�m〉 can be expanded as

|�m〉 = 1

m

∑
k,β

�
(2)
kβ

c†
kc†

k̄
B(N−2)

β
|0〉 (73a)

= 1

m

∑
ν̃

σ
(2)
ν̃ A(2)†

ν̃ B(N−2)†
ν̃ |0〉, (73b)

where we have written ck̄ck|�m〉 = ∑
β �

(2)
kβ

B(N−2)†
β

|0〉 with

�
(2)
kβ

= 〈0|B(N−2)
β

ck̄ck|�m〉 the elements of the “collective”

subblock �(2)
c of the full �

(2)
SS̄ in (47), such that �(2)

c �(2)†
c =

ρ (2)
c in (72). In (73b) σ (2)

ν are the singular values of this
subblock, with λ(2)

ν = (σ (2)
ν )2 the eigenvalues of ρ (2)

c and
A(2)†

ν , B(N−2)†
ν the associated normal operators determined by

its SVD. In the presence of a dominant eigenvalue, a good
approximation to |�m〉 can be obtained with just a few terms
in (73) (see Sec. IV C).

In particular, for a pair creation operator of the form

A† =
m∑

k=1

σkc†
kc†

k̄
, (74)

where
∑

k |σk|2 = 1 and we can set σk real � 0 by adjusting
the phases of the c†

k , an example of (70) is

|�m〉 = 1

m!
√
N ′

m

(A†)m|0〉

= 1√
N ′

m

∑
m1,...,mn∑

k mk=m

σ
m1
1 . . . σ mn

n |m1, . . . , mn〉, (75)

where N ′
m = ∑

m1,...,mn
σ

2m1
1 . . . , σ 2mn

n (with the same previous
restrictions on the mk for bosons or fermions). These states
are just particle number projected BCS-like states: |�m〉 ∝
Pm|BCS〉, where |BCS〉 ∝ exp[A†]|0〉 = ∏

k exp(σkc†
kc†

k̄
)|0〉

[38,50] (= ∏
k (1 + σkc†

kc†
k̄
)|0〉 for fermions) and Pm is the

projector onto m-pair (2m-particle) states.
We now prove that in all states (75) [but not (70)] the

largest eigenvalue λ
(2)
1 of ρ

(2)
SS̄ [stemming from ρ (2)

c in (72)]
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satisfies

λ
(2)
1 �

{
m (bosons)
1 (fermions) , (76)

for arbitrary {σk}: A straightforward evaluation of the average
in the state (75) yields (see (A15)–(A16) in Appendix A),

〈A†A〉 = m ± (m − 1)
∑

k

σ 2
k 〈c†

kck〉 (77a)

= 1 + (m − 1)

(
1 ±

∑
k

σ 2
k 〈c†

kck〉
)

, (77b)

for bosons (+) or fermions (−), such that (77a) implies
〈A†A〉 � m for bosons and (77b) 〈A†A〉 � 1 for fermions
(where

∑
k σ 2

k 〈c†
kck〉 �

∑
k σ 2

k = 1). This proves Eq. (76)
since the largest eigenvalue λ

(2)
1 of ρ

(2)
SS̄ should satisfy λ

(2)
1 �

〈A†A〉.
To see it does not hold for all states (70), just take

a superposition of states with orthogonal sp support, e.g.,
1√
2
(
∏m

k=1 c†
kc†

k̄
+∏2m

k=m+1 c†
kc†

k̄
)|0〉, for which the nonzero

eigenvalues of ρ (2) are just all 1/2 for both bosons and
fermions ∀ m � 2. �

Equation (77) also shows that A†A has itself a largest
eigenvalue λN

max � m (1) for bosons (fermions) among N =
2m-particle states, since again λN

max � 〈A†A〉 for the average
taken in any N particle state. Notice, however, that for general
σk the state (75) is no longer an exact eigenstate of A†A, nor is
A† a normal mode of the associated ρ̂ (2).

In the uniform case σk = 1/
√

n ∀ k, 〈c†
kck〉 = m/n ∀ k and

we recover from (77) the result (69). Moreover, while (as
previously mentioned) in fermion systems this is the maxi-
mum value λ

(2)
1 can reach among all 2m-particle states in a

2n-dimensional sp space, in boson systems Eq. (69) represents
the minimum value reached by the maximum eigenvalue λ

(2)
1

among the states (75): Since for nonuniform σk > 0, 〈c†
kck〉 >

〈c†
k′ck′ 〉 if σk > σk′ while

∑
k〈c†

kck〉 = m and
∑

k σ 2
k = 1 are

fixed, we obtain, writing 〈c†
kck〉 = m/n + δk , with

∑
k δk = 0,

the bound
∑

k σ 2
k 〈c†

kck〉 � m/n, such that (77a) and previous
fermionic result imply, for all states (75),

λ
(2)
1 � m

(
1 + m − 1

n

)
(bosons)

λ
(2)
1 � m

(
1 − m − 1

n

)
(fermions),

(78)

which for bosons is stronger than (76). Maximum λ
(2)
1 in the

bosonic case among the states (75) is obtained when all pairs
are in a single state k (λ(2)

1 = m2).
Finally, we recall that in the fermion case any pair creation

operator A† = 1
2

∑
i, j �i jc

†
i c†

j (with � ji = −�i j) can be writ-
ten in the previous normal form (74) [11] (directly related to
the normal form (12) for N = 2, M = 1 of the state A†|0〉),
with σk the singular values of � and the c†

k , c†
k̄
, unitarily related

to the c†
i .

C. Finite pairing system

We finally consider the exact ground state (GS) of a fi-
nite discrete pairing model. Such a model describes finite

superconducting systems in the fermionic case (see, e.g.,
[50,68,69]), while its bosonic version has also been con-
sidered [65–67]. Studies of entanglement in such systems
have mainly focused on mode-type entanglement in the ap-
proximate BCS GS [70–73] or on the fermionic one-body
entanglement and concurrence [38]. Here we will concentrate
on the two-body entanglement determined by ρ (2) and the
associated state expansions, in both the fermionic and bosonic
version of the model.

As in previous examples, we will work within an effective
single-particle subspace of dimension 2n, spanned by n states
k and n states k̄, with sp levels of energies εk = εk̄ . The
Hamiltonian is

H =
∑

k

εk (c†
kck + c†

k̄
ck̄ ) −

∑
k,k′

Gkk′c†
k′c

†
k̄′ck̄ck, (79)

where the second term is the pairing interaction. It conserves
the number of particles in states k (subspace S) and k̄ (sub-
space S̄), satisfying

[H, NS ] = [H, NS̄ ] = 0. (80)

Hence its exact eigenstates, and in particular its GS, will
satisfy Eqs. (35)–(63). For even N = 2m and Gkk′ > 0 ∀k, k′,
the exact GS will be of the form (70) for both bosons and
fermions, since in order to minimize its energy it will have all
N particles in m pairs (k, k̄), without broken pairs.

In what follows we consider a constant sp spacing εk+1 −
εk = ε ∀k and uniform coupling strength Gkk′ = G � 0
∀ k, k′, such that the interaction in (79) becomes nGA†A with
A† the uniform pair creation operator (59).

Thus, for g ≡ G/ε → ∞, the GS of H will approach that
of −nGA†A, which is the maximally paired state |�m〉 ∝
(A†)m|0〉, Eq. (61), as it maximizes 〈A†A〉 for any fixed N =
2m. For a uniform spectrum centered at 0, εk = ε(k − n+1

2 ),
k = 1, . . . , n, the energy Em = 〈�m|H |�m〉 of such a state is
[Eqs. (64b)–(69)]

Em = −nGλ
(2)
1 = −mG[n ± (m − 1)], (81)

where + (−) is for bosons (fermions).
On the other hand, for g → 0+ the GS will approach

|�0
m〉 = |m, 0, . . . , 0〉 for bosons, |�0

m〉 = |11 . . . 1m, 0, . . . 0〉
for fermions [in terms of the paired states (62)], with
E0

m = 〈�0
m|H |�0

m〉 = −m[ε(n − a) + bG] and a = 1 (m), b =
m (1) for bosons (fermions). Therefore, Em − E0

m = m(ε −
G)(n − a) < 0 already for G > ε. The exact GS for finite n, m
will then evolve continuously from |�0

m〉 to the state (61) as g
increases from 0 to ∞, through states of the form (70).

1. Fermionic system

We have analyzed in [38] the one-body entanglement deter-
mined by ρ (1) in the fermionic version of this system, together
with the fermionic concurrence of the reduced state of four
modes and other related aspects. We will here focus on the
two-body DM and the associated entanglement entropy and
exact expansions of the GS.

We first depict in Fig. 1 the exact eigenvalues (i.e., the
entanglement spectrum) of the one- and two-body DMs in the
fermionic case as a function of g = G/ε. We have considered
a half-filled system N = 2m = n, with n = 10. At g = 0 the

032414-10



BIPARTITE REPRESENTATIONS AND MANY-BODY … PHYSICAL REVIEW A 110, 032414 (2024)

FIG. 1. Eigenvalues of the one-body (top) and two-body (center
and bottom) density matrices ρ (1) and ρ (2) as a function of the
scaled coupling strength g = G/ε (dimensionless) in the GS of the
Hamiltonian (79) for a finite half-filled fermionic case (n = 10).
The central panel depicts those of the central block ρ

(2)
SS̄ in (40),

containing the dominant eigenvalue λ
(2)
1 � 1, and the bottom panel

those of ρ
(2)
S = ρ

(2)
S̄ .

GS |�m
0 〉 has just the bottom half levels occupied, such that

all eigenvalues of ρ (1) and ρ (2) start from 1 or 0 at g = 0. Both
the eigenvalues λ

(1)
k of ρ

(1)
S (top panel) and λ

(2)
kk′ of ρ

(2)
S (bottom

panel), Eq. (71), identical to those of ρ
(1)
S̄ , ρ (2)

S̄ , become “more
mixed” and <1 as the coupling g increases, reflecting the de-
parture of the GS from a SD as all levels above the Fermi level
start to be occupied. They exhibit maximum variation around
the transition region g ≈ 1 and approach the maximally mixed
limit (for such N) for g → ∞, where they all coalesce with the
values (65)–(67), i.e., λ(1)

k → 1/2, λ(2)
kk′ → 1

4
1−2/n
1−1/n ≈ 1

4 (1 − 1
n )

in the half-filled case. These results imply a monotonously
increasing one- and two-body entanglement within S for in-
creasing pairing strength, saturating for g → ∞.

FIG. 2. The entropy increment (82) of the normalized one- and
two-body DMs as a function of the scaled strength g = G/ε in the
fermionic case of Fig. 1. The top panel depicts results for that of ρ

(1)
S

(�S(1)
S ) and of the two-body block ρ

(2)
S (�S(2)

S ) in (40), and the bottom
panel those of the central block ρ

(2)
SS̄ and its collective subblock ρ (2)

c

(�(2)′
SS̄ ), Eq. (72b). The dashed lines indicate their maximum values

(reached for a maximally mixed DM).

In contrast, the two-body DM block ρ
(2)
SS̄ (central panel)

exhibits instead a single dominant eigenvalue λ
(2)
1 > 1 ∀g >

1 which departs from the rest (that behave as those of ρ
(2)
S )

and increases for increasing g, approaching the limit (69) (=
n
4 + 1

2 in the half-filled case) for g → ∞. It is characteristic
of pairing correlations and stems from the collective subblock
ρ (2)

c , Eq. (72b), reflecting for large g the “multiple occupation”
of the collective pair state created by A†. It prevents this block
from becoming more mixed as g increases, implying a two-
body SS̄ entanglement below maximum for g → ∞.

In Fig. 2 we depict the associated one- and two-body en-
tropy increments (α = S or SS̄ , i = 1, 2)

�S(i)
α = S

[
ρ (i)

nα (g)
]− S

[
ρ (i)

nα (0)
]
, (82)

which quantify the entanglement generated by the coupling,
where S(ρ) = −Tr ρ log2 ρ and ρ (i)

nα (g) denotes the normal-
ized i-body DM of block α at coupling g. Accordingly, for ρ

(1)
S

and ρ
(2)
S (upper panel) this difference increases monotonously

from 0 as g increases, reaching its saturation value for g →
∞, where �

(1)
S → log2

2n
n = 1, �

(2)
S → log2[(n

2)/(n/2
2 )] ≈ 2 +

1
n ln 2 in the half-filled case.

In contrast, for ρ
(2)
SS̄ (bottom), though increasing with g,

�
(2)
SS̄ stays below the saturation value log2

n2

(n/2)2 = 2 due
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to the dominant eigenvalue λ
(2)
1 , reaching for g → ∞ the

lower limit −p log2 p − (1 − p) log2
1−p
n2−1 − 2 log2

n
2 ≈ 2 −

log2(n/e)
n , where p = λ

(2)
1

(n/2)2 with λ
(2)
1 given by (69).

We also depict in the lower panel the entropy increment
�

(2)′

SS̄ of the collective n × n subblock ρ (2)
cn of ρ

(2)
SS̄ , contain-

ing just the contractions 〈c†
kc†

k̄
ck̄′ck′ 〉 [Eq. (72b)] and hence

the dominant eigenvalue, which best reflects its effect. This
increment actually becomes negative for large g, approaching
≈ − 1

2 log2
n
16 + O( log2 n

n ) for large n, well below its saturation
value log2

n
n/2 = 1. Thus, in this limit the entropy of this

subblock becomes lower than in the noninteracting case, re-
flecting the “separable-like” (2, N − 2) form of the limit state
(61a).

2. Bosonic system

Figures 3 and 4 depict previous quantities in the bosonic
case. The main difference is the behavior for weak coupling,
since for g → 0+ all m pairs now fall to the lowest sp level.
This implies a dominant eigenvalue in all blocks ρ

(1)
S , ρ

(2)
S

and ρ
(2)
SS̄ at low g, with λ

(1)
k → n

2δk1, λ
(2)
kk′ → δkk′δk1(n/2

2 ) and

ρ
(2)
ckk′′ = δkk′′δk1( n

2 )2 for g → 0 in (71)-(72). As g increases
all levels become occupied and all eigenvalues of ρ

(1)
S , ρ

(2)
S

become <1 for large g, approaching for g → ∞ the max-
imally mixed limits (65)–(67) (λ(1)

k → 1
2 , λ

(2)
kk′ → 1

4
1−2/n
1+1/n ≈

1
4 (1 − 3

n )). However, in ρ
(2)
SS̄ the dominant eigenvalue λ

(2)
1 ,

though also decreasing for increasing g, stays well above
m = n/2, approaching (69) (= 3n

4 − 1
2 for N = n) for g → ∞.

This reflects the strong deviation of the GS from a permanent
as g increases, becoming approximately a bosonic coboson
condensate, where a prominent eigenvalue remains in ρ (2) but
not in ρ (1), in contrast with a standard condensate. The paired
structure of the bosonic GS for large g can thus be also clearly
identified through the spectra of ρ (2) and ρ (1).

The associated entropies (using the normalized DM
blocks) are depicted in Fig. 4. Now they all vanish for g → 0,
while for g → ∞ behave as in the fermionic case: those of ρ

(1)
S

and ρ
(2)
S approach their saturation values (S(ρ (1)

Sn ) → log2 n,
S(ρ (2)

Sn ) → log2
n(n+1)

2 ), while those of ρ
(2)
SS̄n

and the collec-
tive subblock ρ (2)

cn stabilize well below their maximum values
(log2 n2 and log2 n, dashed lines), reaching the lower limits
≈ log2 n2 − 3

n log2
3n
2 and ≈ 1

4 log2 9.5n (plus O(n−1) terms)
respectively, reflecting the effect of the remnant dominant
eigenvalue.

3. Approximate expansions

Finally, we depict in Fig. 5 the overlap between the exact
GS |�〉 and the approximate normalized GS |�k〉 obtained by
taking just the first k terms in the Schmidt-like (2, N − 2) ex-
pansion of Eq. (47b), |�k〉 ∝ ∑k

ν̃=1 σ
(2)
ν̃ A(2)†

ν̃ B(N−2)†
ν̃ |0〉, based

on the two-body DM block ρ
(2)
SS̄ . Terms are sorted in decreas-

ing order of σ
(2)
ν̃ , i.e., of the eigenvalues λ(2)

ν = (σ (2)
ν )2 of this

block. For fermions the expansion can be reduced to the sum
(73b) based on the collective subblock ρ (2)

c , involving just n
terms. In particular, for k = 1 the approximation corresponds
to the dominant eigenvalue λ

(2)
1 and is determined by its

FIG. 3. Eigenvalues of the one-body (top) and two-body (center
and bottom) density matrices ρ

(1)
S and ρ

(2)
SS̄ , ρ

(2)
S as a function of the

scaled strength G/ε in the GS of Hamiltonian (79) for the N = n
bosonic case. Details are similar to those of Fig. 1. The dominant
eigenvalue of each block is indicated.

normal eigenvector A(2)†
1 :

|�1〉 ∝ σ
(2)
1 A(2)†

1 B(N−2)†
1 |0〉, (83)

where σ
(2)
1 B(N−2)†

1 |0〉 = A(2)
1 |�〉 [Eq. (15a)].

It is first verified that the full sum always yields the ex-
act GS in all expansions. Nonetheless, for those based on
ρ

(2)
SS̄ (or ρ (2)

c for fermions), already the k = 1 approximation
(83) is seen to provide a very good overlap |〈�|�k〉| � 0.9
for all values of g, minimum just at the transition region
around g ≈ 1. Moreover, this approximation becomes exact
for both g → ∞ and g → 0 in both the fermionic and bosonic
systems, since in these limits the exact GS becomes of the
form (75), i.e., Eq. (83) with B(N−2)†

1 = (A(2)†
1 )m−1 and A(2)†

1

eigenvector of ρ (2): For g → ∞, A(2)†
1 becomes the uniform

pair creation operator (59), as the GS approaches the state
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FIG. 4. The entropies S(i) = S(ρ (i)
Sn) (top) and S(ρ (2)

SS̄n
) (bottom)

of the normalized one- and two-body DM blocks in the bosonic case
of Fig. 3. The bottom panel also depicts that of the normalized col-
lective subblock (72b), S(2)′

SS̄ = S(ρ (2)
cn ). Dashed lines indicate again

their maximum values.

(61a), whereas for g → 0, A(2)†
1 → c†

1c†
1̄

for bosons while

A(2)†
1 → 1√

m

∑m
k=1 c†

kc†
k̄

for fermions (as the SD |�0
m〉 can be

written as mm/2

m! (A(2)†
1 )m|0〉). In the fermionic system the k = 2

approximation in (73b) further improves the k = 1 result in
the transition region, also staying reliable for large g, while
for bosons more terms are required for obtaining a better
approximation for all g. As the terms in these expansions are
not necessarily linearly independent, the convergence to the
exact |�〉 is not necessarily monotonous as k increases for all
values of g.

V. CONCLUSIONS

We have presented a unified formalism for analyzing gen-
eral pure states of systems of N indistinguishable particles
in terms of exact bipartite-like (M, N − M ) decomposi-
tions, valid for both fermions and bosons. It is directly
connected with the isospectral M and N − M-body DMs,
whose eigenvalues acquire here meaning also as coeffi-
cients of the associated diagonal Schmidt decomposition.
The ensuing M-body entanglement, quantified through the
entropy of the normalized M-body DM, was shown to ful-
fill general monotonicity relations under certain quantum
operations.

We have analyzed in addition the exact reduced expansions
emerging when the number of particles in a certain subspace S

FIG. 5. The overlap 〈�|�k〉 between the exact GS |�〉 and the
approximate GS |�k〉 obtained by conserving just the first k terms
in the 2 − (N − 2) Schmidt-like expansion (47b) associated with the
central block ρ

(2)
SS̄ in (40) of the two-body DM, as a function of the

scaled strength G/ε, in the fermionic (top) and bosonic (bottom)
systems of previous figures. Saturation 〈�|�k〉 = 1 (thin line) is
always reached for the full expansion associated with this block. In
the fermionic case the reduced expansion (73b) can be used instead
of (47b).

of the full sp space is fixed, which are associated with the en-
suing blocks of the DMs. Then both local (in S) and “mixed”
(in S and its complementary subspace S̄) DMs and corre-
sponding exact (M, N − M ) expansions arise in connection
with these blocks, whose eigenvalues and Schmidt decom-
position characterize the system correlations. The standard
reduced DMs and Schmidt decomposition of distinguish-
able bipartite systems emerge as a particular case in this
scenario.

As example, we have analyzed in detail the behavior of the
one- and two-body DMs in the GS a finite pairing system.
These systems are characterized by a large dominant eigen-
value of ρ (2) in the superfluid phase, which in the present
formalism enables a reliable description of the exact GS with
just a few terms (in fact just one term) of the associated
(2, N − 2) expansion, in both fermion and boson systems. We
have also provided exact results for the eigenvalues of ρ (2)

in the maximally paired states for bosons and fermions, as
well as bounds for its dominant eigenvalue in some general
paired states, again for both bosons and fermions. Applica-
tions to more complex systems and further analysis of the
role of present mode-independent entanglement measures in
quantum information are under investigation.
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APPENDIX A: PROOFS OF MAIN EXPRESSIONS

In order to prove Eq. (4), we first show that

1

M!

∑
i1,...,iM

c†
i1

· · · c†
iM

ciM · · · ci1 =
(

N̂

M

)
(A1)

for both fermions and bosons, where the sum over each i j ( j =
1, . . . , M) runs over all d sp states and N̂ = ∑

i c†
i ci is the

particle number operator.
Proof. When applying the sum in (A1) to an arbitrary N

particle state |�〉 with N � M for N < M we set (N
M) = 0],

the innermost sum
∑

im
c†

im
cim = N̂ takes the value N − M +

1, and then, successively, the sums
∑

i j
c†

i j
ci j take the values

N − j + 1 for j = M, . . . , 1. This leads to Eq. (A1). Then,
using relations (1),

∑
i1,...,iM

c†
i1

· · · c†
iM

ciM · · · ci1

M!
=

∑
i1�i2...�iM

c†
i1

· · · c†
iM

ciM · · · ci1

n1! . . . nd !

=
∑

n1 ,...,nd
n1+···+nd =M

c†n1
1 · · · c†nd

d cnd
d · · · cn1

1

n1! · · · nd !

=
∑

α

C(M )†
α C(M )

α , (A2)

where the sum in (A2) runs over all dM operators (2), which
leads to Eq. (4). Here n j ( j = 1, . . . , d) is the number of
times sp state j appears in the string (i1, . . . , iM ), such that
c†

i1
· · · c†

iM
= c†n1

1 · · · c†nd
d , with n1 + · · · + nd = M. The sum

over the ordered i j’s is equivalent to that over these oc-
cupations with previous constraint, with each configuration
(n1, . . . , nd ) appearing M!

n1!···nd ! times in the first unrestricted
sum. These arguments hold for both bosons and fermions, but
for the latter are trivial as ni = 0, 1. �

We now prove Eqs. (5b)–(6). Using the same previous
reasoning, we obtain, for a completely symmetric (bosons) or
antisymmetric (fermions) tensor �i1,...,iN ,

1

N!

∑
i1,...,iN

�i1...iN c†
i1

· · · c†
iN

|0〉 =
∑

i1�...�iN

�i1,...,iN

c†
i1

· · · c†
iN

n1! · · · nd !
|0〉

=
∑

n1 ,...,nd∑
j n j =N

�n1,...,nd

c†n1
1 · · · c†nd

d

n1! · · · nd !
|0〉

=
∑

α

�(N )
α C(N )†

α |0〉, (A3)

where �n1,...,nd = �i1,...,iN if c†
i1

· · · c†
iN

= c†n1
1 · · · c†nd

d (i1 �
· · · � iN for fermions) and �(N )

α = �n1 ,...,nd√
n1!···√nd !

. �

Relation between �
(M )
αβ

and �i1,...,iN . Rewriting (A3) as

|�〉 = M!(N − M )!

N!

∑
i1�...�iM ,

iM+1�···�iN

�i1,...,iM iM+1···iN

× c†
i1

. . . c†
iM

c†
iM+1

· · · c†
iN

n1! · · · nd ! n′
1! · · · n′

d !
|0〉

=
(

N

M

)−1 ∑
n1 ,...,nd ,n′

1 ,...,n′
d∑

j n j =M,
∑

j n′
j =N−M

�
(M )
n1,...,nd ,n′

1,...,n
′
d

× c†n1
1 · · · c†nd

d c
†n′

1
1 · · · c

†n′
d

d

n1! · · · nd ! n′
1! · · · n′

d !
|0〉

=
(

N

M

)−1 ∑
α,β

�
(M )
αβ

C(M )†
α C(N−M )†

β
|0〉, (A4)

where �
(M )
n1,...,nd ,n′

1,...,n
′
d

= �i1,...,iM ,iM+1···iN for n j , n′
j the number

of times sp state j appears in (i1, . . . , iM ) and (iM+1, . . . , iN )
(i1 < · · · < iM , iM+1 < · · · < iN for fermions) such that∑

j n j = M,
∑

j n′
j = N − M, it is seen that

�
(M )
αβ

=
�

(M )
n1,...,nd ,n′

1,...,n
′
d√

n1! · · · nd !
√

n′
1! · · · n′

d !
. (A5)

Behavior under unitary sp transformations. If

ci → Û †ciÛ =
∑

k

Ukick, Û = e−ı
∑

i. j hi j c
†
i c j , (A6)

where h† = h, U is the matrix U = exp[−ıh] and (A6) holds
for both bosons and fermions, the operators C(M )

α transform
unitarily: C(M )

α → Û †C(M )
α Û = ∑

α′ U
(M )
α′α C(M )

α′ for U (M ) a uni-
tary symmetrized or antisymmetrized tensor product of M
matrices U . This implies �(M ) → U (M )∗�(M )U (N−M )†, then
leaving its singular values σ (M )

ν unchanged ∀ M. And under
similar sp transformations of the state,

|�〉 → Û |�〉, Û = e−ı
∑

i. j hi j c
†
i c j , (A7)

we have 〈Ô〉 → 〈Û †ÔÛ 〉 and hence ρ (M ) →
U (M )tρ (M )U (M )t†, with ρ̂ (M ) → Û ρ̂ (M )Û † as is apparent
from (22). Its eigenvalues λ(M )

ν remain then unchanged, in
agreement with their direct relation with σ (M )

ν .
Proof of Eqs. (29)–(30). From Eq. (22a) we ob-

tain Tr ρ̂ (M )C(L)†
γ ′ C(L)

γ = ∑
β〈�|C(N−M )†

β
C(L)†

γ ′ C(L)
γ C(N−M )

β
|�〉

= ( N − L
N − M)ρ (L)

γγ ′ for L � M � N , by using Eq. (4) for∑
β C(N−M )†

β
C(N−M )

β
applied on the N − L-particle state

C(L)
γ |�〉, with ρ

(L)
γγ ′ = 〈�|C(L)†

γ ′ C(L)
γ |�〉. This leads to Eq. (29).

Then, by replacing expression (22a) or (28) in (29), we obtain,
for the normalized DM ρ (L)

n = ρ (L)/(N
L ),

ρ (L)
n =

(N
M

)(M
L

)
(N

L

)(N−L
N−M

) ∑
β

pβ ρ
(L)
βn , (A8)

where ρ
(L)
βn = ρ

(L)
β

/(M
L ) are the normalized L-body DMs in

the normalized M-particle states |�β〉 = 1√
pβ
Mβ|�〉, with
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pβ the probabilities (27). This leads to Eq. (30) since

(N
M)(M

L )/[(N
L )( N − L

N − M)] = 1, in agreement with normalization:

Tr ρ (L)
n = Tr ρ

(L)
βn = 1 = ∑

β pβ. �
We now prove the contractions and results (65), (67),

and (68) in the maximally paired state (61) for bosons and
fermions. The number of states with m pairs (k, k̄) in a sp
space of n sp states k and n sp states k̄ is

Nn,m =
{(n+m−1

m

)
(bosons)(n

m

)
(fermions)

, (A9)

where m � 0 for bosons and 0 � m � n for fermions. Then,
for averages 〈O〉 = 〈�m|O|�m〉 in the state (61), we obtain in
the first place the expected obvious result

〈c†
kck′ 〉 = δkk′

∑
l

l Nn−1,m−l

Nn,m
= m

n
(A10)

for both bosons and fermions, where the sum runs over l =
0, 1, 2, . . . , m for bosons and l = 0, 1 for fermions. The same
holds for k → k̄. For two body contractions, assuming in what
follows k �= k′, we obtain

〈c†
k c†

k′ck′ck〉 =
∑
l,l ′

ll ′Nn−2,m−l−l ′

Nn,m
= m(m − 1)

n(n ± 1)
= λ

(2)
2 ,

(A11)

where the sum runs over l + l ′ � m for bosons (+) and
l = l ′ = 1 for fermions (−). This same result is obtained for

〈c†
kc†

k̄′ck̄′ck〉, 〈 c† 2
k c2

k
2! 〉 (boson case) and k, k′ → k̄, k̄′. On the

other hand,

〈c†
k c†

k̄
ck̄ck〉 =

∑
l

l2 Nn−1,m−l

Nn,m
= m(n + m − 1 ± m)

n(n ± 1)
,

(A12)

〈c†
k c†

k̄
ck̄′ck′ 〉 =

∑
l,l ′

l (l ′ + 1)Nn−2,m−l−l ′

Nn,m
= m(n ± m)

n(n ± 1)
.

(A13)

These exact results lead to Eqs. (65)–(68).
Then blocks ρ

(2)
S and ρ

(2)
S̄ of ρ (2) become here identical and

proportional to λ
(2)
2 1, whereas the mixed block ρ

(2)
SS̄ becomes

itself blocked in two submatrices:

ρ
(2)
SS̄ =

(
λ

(2)
2 1 0
0 ρ (2)

c

)
, (A14)

where ρ (2)
ckk′ = 〈c†

kc†
k̄
ck̄′ck′ 〉 = aδkk′ + b(1 − δkk′ ) is the n × n

block containing the two-body pairing correlations, with a, b
given by (A12) and (A13). Its eigenvalues are then λ

(2)
1 =

(n − 1)b + a, Eq. (69), nondegenerate and dominant, and
λ

(2)
2 = a − b, Eqs. (67)–(A11), n − 1-fold degenerate. �

Proof of Eq. (77). For bosons, a direct evaluation of 〈A†A〉
in the state (75), with A given by (74), yields

〈A†A〉 =
∑

k

σ 2
k

〈
m2

k

〉+∑
k �=k′

σ 2
k 〈(mk + 1)mk′ 〉

= m + (m − 1)
∑

k

σ 2
k 〈c†

kck〉, (A15)

where we used
∑

k σ 2
k = 1,

∑
k mk = m and 〈mk〉 = 〈c†

kck〉 =
〈c†

k̄
ck̄〉. Similarly, for fermions we obtain

〈A†A〉 =
∑

k

σ 2
k 〈mk〉 +

∑
k �=k′

σ 2
k 〈(1 − mk )mk′ 〉

= m − (m − 1)
∑

k

σ 2
k 〈c†

kck〉. (A16)

Equations (A15)–(A16) then lead to Eq. (77). �

APPENDIX B: M-BODY ENTANGLEMENT AND BOUNDS
TO BIPARTITE ENTANGLEMENT AFTER PARTICLE

TRANSFER

Let us consider a general initial state [Eq. (7)]

|�0〉 =
(

N

M

)−1 ∑
αβ∈S0

�
(M )
α,β

C(M )†
α C(N−M )†

β
|0〉 (B1)

of N indistinguishable particles (fermions or bosons), occupy-
ing sp states just within a subspace S0 ⊂ H of the full sp space
H. We then consider a completely positive trace-preserving
(CPTP) operation T which transfers M < N particles from
S0 to an initially empty subspace S orthogonal to S0 (e.g., M
particles from a group of N localized within some bounded
region of space to a distinct nonoverlapping region, or from
low-lying energy levels to higher orthogonal levels). For this
purpose we define the M-body operators T̂r such that

T̂r |�0〉 =
(

N

M

)−1/2 ∑
γ∈S,α∈S0

Trγα
C(M )†

γ C(M )
α |�0〉 (B2a)

=
∑

γ∈S,β∈S0

�(M )
rγβ

C(M )†
γ C(N−M )†

β
|0〉 (B2b)

is a state satisfying (35) for NS = M, where �(M )
r =

(N
M)−1/2Tr�

(M ) [Eq. (8)]. If we now assume
∑

r T †
r Tr = 1 and

use Eq. (4) for N → M, then for any such |�0〉,∑
r

T̂ †
r T̂r |�0〉 = |�0〉, (B3)

since C(M )
γ ′ C(M )†

γ C(M )
α |�0〉 = δγ ′γC(M )

α |�0〉 for γ ′, γ ∈ S , α ∈
S0, for both fermions and bosons. Hence, we can consider the
set of operators T̂r as a quantum operation mapping |�0〉 to
states |�r〉 ∝ T̂r |�〉 with probabilities

pr = 〈�0|T̂ †
r T̂r |�0〉 = Tr

[
�(M )†

r �(M )
r

]
, (B4)

satisfying
∑

r pr = Tr [�(M )†�(M )]/(N
M) = 1.

Using result (56), the reduced state of the NS = M particles
at S in the normalized state |�r〉 is ρ

(M )
Sr = �(M )

r �(M )†
r /pr .

Since the nonzero eigenvalues of �(M )
r �(M )†

r are the same as
those of �(M )†

r �(M )
r and since

∑
r �(M )†

r �(M )
r = �(M )†�(M )/(N

M)
has then the same nonzero eigenvalues as the normalized DM
ρ

(M )
0n = �(M )�(M )†/(N

M) in the original state |�0〉, we obtain the
following majorization relation:

λ
(
ρ̂

(M )
0n

) ≺
∑

r

prλ
(
ρ̂

(M )
Sr

)
(B5)

between the sorted eigenvalues of ρ
(M )
0n and those of ρ

(M )
Sr ,

the latter determining the entanglement between the M = NS
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particles at S and the remaining N − M particles at the orthog-
onal subspace S0. It implies the following entropic inequality:

S
(
ρ̂

(M )
0n

)
�
∑

r

prS
(
ρ̂

(M )
Sr

)
(B6)

between the entropy of the normalized DM ρ
(M )
0n in |�0〉,

which measures its M-body entanglement, and the average
entanglement entropy between the (now distinguishable) M
particles at S and the remaining N − M particles at S0 in the
postselected states |�r〉, which then cannot surpass the origi-
nal M-body entropy. It is valid again for any concave entropy

S. All other results derived in [21] for the conversion |�〉 →
{|�r〉} in fermion systems remain then valid for bosons.

Finally, note that if Trγα
= Tγαδrα (α ∈ S0), then

T̂α|�0〉 =
(

N

M

)−1/2 ∑
γ∈S

TγαC(M )†
γ C(M )

α |�0〉, (B7)

with
∑

γ |Tγα|2 = 1 and hence
∑

α T̂ †
α T̂α|�0〉 = |�0〉. Thus,

this map implements the measurement based on the operators
(25) (for N − M → M) on S0 through a particle number-
conserving map in the full system S0 ⊕ S , transferring M
particles from S0 to S .
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