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Quantum resource theory of coding for error correction

Dong-Sheng Wang ,1,2,* Yuan-Dong Liu,1,2,† Yun-Jiang Wang,3,4,5,‡ and Shunlong Luo6,§

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3School of Telecommunication Engineering, Xidian University, Xi’an, Shann Xi 710071, China
4Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China

5Hangzhou Institute of Technology, Xidian University, Hangzhou, Zhejiang 311231, China
6Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

(Received 22 January 2024; revised 29 January 2024; accepted 29 August 2024; published 12 September 2024)

Error-correction codes are central for fault-tolerant information processing. Here we develop a rigorous
framework to describe various coding models based on quantum resource theory of superchannels. We find, by
treating codings as superchannels, a hierarchy of coding models can be established, including the entanglement
assisted or unassisted settings, and their local versions. We show that these coding models can be used to classify
error-correction codes and accommodate different computation and communication settings depending on the
data type, side channels, and pre-/postprocessing. We believe the coding hierarchy could also inspire new coding
models and error-correction methods.
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I. INTRODUCTION

To protect information against noises, error-correction
codes are needed [1]. This is important for both reliable
computation and communication. A fundamental quantity of
a noise channel is its capacity, which is the maximal rate of
information transmission. Shannon’s classical channel coding
theorem shows that the capacity is given by the maximal
mutual information I (A : B) between the sender Alice, A,
and receiver Bob, B, over all possible inputs [2]. Quantum
noises are mathematically modeled as quantum channels, and
a variety of capacities can be defined [3–6].

A notable difference between the classical and quantum
cases are the nonadditivity of some channel capacities [7,8],
leading to many interesting phenomena [9,10]. The primary
setting of quantum communication is the direct transmission
of quantum data, with the asymptotic coherent information
as the measure of its quantum capacity [4]. Many efforts
have been devoted to understand this. For instance, it has
been shown that weakly noisy channels are limited in their
nonadditivity [11], and many nonadditive examples have been
constructed [12]. It was found that adding forward classical
communication does not make a difference, but the back
communication can increase its quantum capacity [13]. Mean-
while, other quantities have also been explored, such as the
reverse coherent information [14] and Rains information [15].

In recent years, the quantum resource theory (QRT) has be-
come a unifying framework to characterize quantum features
[16]. A notable example is bipartite entanglement, for which
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the bipartite separable states are free, i.e., of zero resource,
and stochastic local operations with classical communication
are free operations that cannot increase entanglement [17].
For quantum computation, we recently developed the QRT
of modeling and logical gates [18–20], which can be used to
classify universal quantum computing models and predict new
ones.

There have been a few resource-theoretic approaches for
quantum communication, e.g., Refs. [21–24], and they are
mostly QRTs of channels [16]. In these approaches, some
channels are identified as useless for communication tasks,
such as the set of replacement channels [22] and unitary chan-
nels, with maximal quantum capacity for a given dimension,
will be the most resourceful. However, this cannot identify
the codings that achieve a quantum capacity of a channel as
resources. This motivates us to consider the QRT of codings,
which are actually superchannels [25].

In this paper, we develop a QRT of codings which are
relevant to quantum communication and error correction, and
especially can be applied to various situations. A coding,
including a pair of encoding and decoding operations, is a
superchannel which converts a channel into another. A free
set is the codings that do not work well for a given noise
channel, and resources are those that indeed work. The one-
side computational ability of Alice and Bob also matters,
and different codes can be chosen for different purposes [1].
We find this can be characterized by a hierarchical family of
coding models.

We develop a hierarchy of coding models that includes
the standard settings for quantum communication and the
entanglement-assisted (EA) one [7], and also our two recent
refined models [26]. The hierarchy is defined according to two
notions of locality, a one-side computational locality, relevant
to Alice’s and Bob’s computational ability, and a communi-
cation locality, relevant to the entanglement assistance. The
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TABLE I. A table of the channel capacities studied and mentioned in this paper.

Model I Model II Model III Model IV

Quantum QI = I (�) QII = [log2 d + I (�)]/2 QIII = limn→∞
Ic (�⊗n )

n QIV = J (�)/2
Classical CI = χORT(�) CII = log2 d + I (�) CIII = limn→∞

χ (�⊗n )
n CIV = J (�)

Private PI = �CI PII = [log2 d + I (�)]/2 PIII = �CIII PIV = J (�)/2

hierarchy has a nontrivial structure. This can be seen by their
capacities. A capacity can be understood as a measure of the
maximal resource of codings in a coding model. The quantum
capacities of a channel � are I (�), ( log2 d + I (�))/2, Ic(�),
and J (�)/2, respectively, for models from I–IV, and for I (�)
as the coherent information with the maximally mixed state
as input, Ic(�) denoting the asymptotic coherent information,
and J (�) as the quantum mutual information (see Table I).
However, Ic(�) is nonadditive and there is no definite order
between Ic(�) and ( log2 d + I (�))/2. Therefore, models I,
II, and IV form a subhierarchy, and models I, III, and IV
also form a subhierarchy. Moreover, there could also be more
models in this coding family based on our study of the gaps
among those capacities.

This paper contains the following parts. Section II pro-
vides the necessary background and Sec. III introduces our
definition of coding models. The quantum capacities of these
four models are studied in Sec. IV, and the resource theory of
them are established in Sec. V. We also carry out numerical
simulation to study the gaps among these quantum capacities
for the qubit case in Sec. VI. We conclude in Sec. VII.

II. PRELIMINARIES

A. Quantum channels and superchannels

A quantum channel � acting on a finite-dimensional
Hilbert space X is a completely positive, trace-preserving
(CPTP) map of the form

�(ρ) =
∑

i

KiρK†
i , (1)

with Ki known as Kraus operators satisfying
∑

i K†
i Ki = 1d

(identity operator of dimension d = dimX ), and states ρ ∈
D(X ) as trace-class nonnegative semidefinite operators. We
often ignore the subscript of 1d if there is no confusion.
Also, we will use πd to denote the completely mixed state of
dimension d , and simply as π if the dimension is implicit. The
above formalism can also be extended to describe channels
� ∈ C(X ,Y ) that do not necessarily preserve dimension.

A different representation of channel � is an isometry
V with �(ρ) = trEV ρV † for E denoting an environment (or
Eve). The isometry V is formed by Kraus operators V =∑

i |i〉 ⊗ Ki for |i〉 as orthogonal states of E. The isometry V
forms a part of a unitary circuit U with V = U |0〉 for |0〉 as a
state of E. A complementary channel �c can be defined as the
map from the input to E, and the state of E is

ρE =
∑

i j

tr(ρK†
i Kj )| j〉〈i|. (2)

The notable channel-state duality [27–30] also enables the
representation of � as a state

ω� := (� ⊗ 1)(ω), (3)

usually known as a Choi state, for ω := |ω〉〈ω|, and |ω〉 :=∑
i |ii〉/

√
d is known as the ebit. The rank of the channel r(�)

is the rank of ω�.
The operations on Choi states are further known as quan-

tum superchannels [25]. For notation, we use a hat on the
symbols for superchannels. The circuit representation of a
superchannel is

Ŝ (�)(ρ) = traV � U (ρ ⊗ |0〉〈0|). (4)

Here U and V are unitary operators, and a is an ancilla. See
Fig. 1 for an illustration. The dimension of V can be larger
than U [31], but we do not need the details here. It is clear that
higher-order superchannels can also be defined by an iterative
use of the channel-state duality, and this will be used for our
resource theory of superchannels.

B. Quantum resource theory

We follow standard QRT [16] and our recent framework
[18–20]. Given a set D, a resource theory on it is defined by a
tuple

(F ,O,R), (5)

with F ⊂ D as a set of free elements, O : F → F the set of
free operations, and R := D\F the set of resources [16]. The
framework of QRT is quite broad. For instance, set D can be
the set of density operators acting on a Hilbert space or a set
of unitary operators. A measure of resource can be defined but
here we do not need to review it.

A universal resource theory is further defined as

(F ,O,R,U ), (6)

with an additional set U ⊂ R as the set of universal resource
compared with a usual resource theory. The universality
means that O(F ⊗ U ) can simulate any other process O(F ⊗
R) efficiently. Here, efficiency means that the costs for the
free operations O, free elements F , and universal resources U
all do not grow exponentially fast with the size of the given

FIG. 1. A schematic of quantum superchannel Ŝ (grey area) con-
taining a pre U and a post V unitary operation (boxes) acting on a
channel � (circle)
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process. Another way to see this is that universal resource U
optimizes the resource measure in R.

For a given total set D, we can define a hierarchy of
resource theories. If F1 ⊂ F2 for two resource theories, then
O1 ⊂ O2 and R1 ⊃ R2, i.e., more elements are treated as re-
sourceful in the first theory. However, to achieve universality,
more resource power is needed for the first theory, denoted as
U1 � U2. Then there exist the following conversions between
two universal resources:

(O2\O1)u2 = u1, O1u1 = u2 (7)

for universal resource u1,2 ∈ U1,2, modulo free elements.

C. Entropy and distance measures

The von Neumann entropy is defined as

H (ρ) = log2 d − R(ρ‖πd ), (8)

for the quantum relative entropy R(ρ‖σ ) = trρ log2 ρ −
trρ log2 σ , ∀ρ, σ ∈ D(X ) (see Ref. [7] for more details). It
is monotonic H (�(ρ)) � H (ρ) under unital channels � but
not for nonunital ones. Actually, this is a simple example of a
QRT, with πd as the free set, unital channels as free operations,
and R(ρ‖πd ) as a measure of resource for all nonidentity
states ρ.

Given a channel �, the coherent information Ic(ρ,�) is
defined as [4]

Ic(ρ,�) := H (�(ρ)) − H (� ⊗ 1d (|ϕρ〉)) (9)

for |ϕρ〉 as a purification of ρ. The quantity

J (ρ,�) := H (ρ) + Ic(ρ,�)

is the quantum mutual information, which is always nonnega-
tive. Let

I (�) := Ic(πd ,�), (10)

which, plus log2 d , is the quantum mutual information con-
tained in the Choi state ω�. It is clear it is additive.
Also, J (�) := maxρ J (ρ,�) is additive [32] but Ic(�) :=
maxρ Ic(ρ,�) is not. These quantities are used to define quan-
tum capacities.

To quantify the distance between channels, we use the
fidelity between Choi states,

FE (�,
) := F (� ⊗ 1(ω), 
 ⊗ 1(ω)), (11)

for the fidelity F (ρ, σ ) := ‖√ρ
√

σ‖2
1, with ‖ · ‖1 denoting

the trace norm.

III. CODING MODELS

A coding task refers to the conversion of n uses of a noise
channel � into k approximate uses of the identity channel.
The noise channel may depend on some parameters, μ, but
we will simply denote it as �. The value r := k/n is called
the coding rate for the encoding of k qubits into n � k qubits.
The operations on channels are, in general, superchannels; see
Fig. 2.

Definition 1 (Quantum coding). A coding scheme for a
channel � is a superchannel Ŝ satisfying

FE (1⊗k, Ŝ (�⊗n)) � 1 − ε, (12)

FIG. 2. A schematic of quantum coding with a superchannel Ŝ
serving as the coding operation converting n uses of a channel � into
k uses which approximates the identity channel.

with ε ∈ [0, 1] and positive integers n and k.
Note a primary requirement on the coding is that the

tight error bound ε should be smaller than 1 − FE (�⊗k,1⊗k ),
which we name the bare error of the channel. The coding
scheme Ŝ may also contain tunable parameters, λ. A code is
approximate, in general, since the coding error ε is not zero
but is called quasiexact [33] if ε(μ, λ, k, n) → 0 occurs in
the parameter space of (μ, λ, k, n). It becomes exact when
ε is exactly zero, corresponding to the exact error-correction
condition [34].

An important fact is that realizing superchannels requires
an ancillary system which is assumed to be noise-free [31].
Therefore, to justify a coding scheme, it should fit into the
physical settings properly. This actually leads to different
types of channel capacities and the use of QRT to characterize
them. Here we define four coding models via two notions of
locality.

Definition 2 (Transmission locality). A quantum commu-
nication task from Alice to Bob is transmissionally local if
there is no preshared entanglement between them.

When Alice and Bob both are multipartite and there is a
separable partition of their subsystems, we can define a logical
locality.

Definition 3 (Logical locality). A quantum communica-
tion task from Alice to Bob is logically local if there is no
entanglement among the subsystems of Alice and the subsys-
tems of Bob.

These localities can be well understood by treating them
as variations of the locality or separability to define entangle-
ment [17]. We can then introduce four coding models shown
in Fig. 3, forming a coding family. Roughly speaking, model
I is both spatially and logically local, model II is logically or,
equivalently, spatially, semilocal, model III is spatially local
but logically nonlocal, model IV is both spatially and logically
nonlocal. There can also be other models and, in principle,
there could be an indefinite number of models in the family.
For instance, there are settings when model III is assisted by
one-way or two-way classical communication [13].

Models I and II are defined in our recent paper [26], and
was called the refined setting [26], but here we call it local for
model I, and semilocal for model II. They can be treated as the
local versions of models III and IV, respectively. Model III is
the standard setting for quantum capacity [6] and model IV is
the standard entanglement-assisted setting [5].

IV. QUANTUM CAPACITIES

In this section, we study quantum capacities in these four
models. A quantum capacity can, in general, be defined as
follows.
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FIG. 3. Four models of quantum coding. (a) Model I: Spatially and logically local. The quantum capacity is given by I (�). (b) Model II:
Bipartite correlation between code blocks are allowed, and both the encoding and decoding are logically semilocal. The correlation between
code blocks within a player can simulate spatial correlation between corresponding code blocks for the two players. Here the correlation can
be simply understood as ebits. The quantum capacity is given by (I (�) + log2 d )/2. (c) Model III is the standard setting for quantum capacity.
It is logically nonlocal. (d) Model IV is the standard setting for entanglement-assisted quantum capacity. It is both spatially and logically
nonlocal. Notation: Red balls are a few parallel use of noise channels, blue boxes are local coding, the giant green boxes are nonlocal coding,
and yellow curves are entanglement assistance.

Definition 4 (Quantum capacity of a channel). Let
� ∈ C(X ,Y ) be a channel and k = �αn� for all but finitely
many positive integers n and an achievable rate α � 0, there
exists a coding superchannel Ŝ defined in a coding model
such that

FE (1⊗k, Ŝ (�⊗n)) � 1 − ε (13)

for every choice of a positive real number ε and the quantum
capacity of �, denoted Q(�), is defined as the supremum of
all α.

A. Models I and III

For models I and III, the coding splits into a pair of encod-
ing E and decoding D operations. The quantum capacity in
model III is the standard notion of quantum capacity and has
been proven to equal to the entanglement generation capacity
[6]. Model I is a special case of model III, and its capacity
has been proven to be equal to an ebit-distribution capacity
[26]. A feature of model I is that the encoding preserves
identity E (1⊗k ) = 1⊗n. This can be realized by a mixture of
encoding isometry but with a random ancillary state, namely,
traU (ω⊗(n−k) ⊗ 1⊗k ) with (n − k) pair of ebits, half of which
are acted upon by U while the other half are traced out. As
has been shown [26], this leads to a single-letter capacity for
model I. Below we present the proofs of the two quantum
capacities following a unified method. We will follow Ref. [7]
and Theorem 2 below is Theorem 8.55 in it.

Theorem 1 (Quantum capacity theorem: Model I [26]).
The quantum capacity of a channel � defined in model I is
QI(�) = I (�).

Theorem 2 (Quantum capacity theorem: Model III [7]).
The quantum capacity of a channel � defined in model III is
QIII(�) = limn→∞ Ic (�⊗n )

n .
Proof. Theorem 8.53 in Ref. [7] proves I (�) � QI(�),

and together with Theorem 8.54 in Ref. [7] gives Ic(�⊗n) �
nQ(�). To prove Ic(�⊗n) � nQIII(�), Theorem 8.55 in
Ref. [7] refers to the entanglement generation scheme,
namely, for any rate α � QIII(�), there exists a state |u〉 ∈
X⊗n ⊗ Z⊗k and a decoding channel D ∈ C(Y⊗n,Z⊗k ) such

that

F (ω⊗k, (D�⊗n ⊗ 1⊗k )(|u〉)) � 1 − ε. (14)

Then the result follows from

H (D�⊗n ⊗ 1⊗k (|u〉)) � 2δm + 1 (15)

and

H (D�⊗n(ρ)) � m − δm − 1, (16)

and the data-processing inequality [4], for ρ as the reduced
state of |u〉 on X⊗n. To prove I (�) � QI(�), it specifies to
ebit distribution with |u〉 replaced by ω⊗k and encoding with
E (1⊗k ) = 1⊗n. The above two inequalities become

H (D�⊗n ⊗ 1⊗k (ω⊗k )) � 2δm + 1 (17)

and

H (D�⊗n(π⊗k )) � m − δm − 1, (18)

which implies I (�) � QI(�). �
By comparing the above two theorems, we see in model

III it allows more general |u〉 and its reduced state ρ, instead
of copies of ebit ω and the completely mixed state π . This
reflects the difference between ebit distribution and entangle-
ment generation. For the former, only products of ebits are
allowed, corresponding to local coding schemes, while for the
latter the state |u〉 can be multipartite entangled, correspond-
ing to general nonlocal coding schemes.

Also, the preservation of identity is important for the proof
of model-I capacity, which was implicitly used [26] but not
emphasized. This relies on random encoding, which is not
isometric but isometric encoding will suffice [35]. If a mix-
ture of isometric encodings guarantees a high entanglement
fidelity FE , then each of the isometric encodings also works.
This also applies to model III, but for models II and IV
below, the encoding is not isometric if ignoring the noiseless
entanglement assistance.
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B. Models II and IV

Models II and IV are EA. In model II, due to the logical
locality, only bipartite entanglement is allowed and the perfect
resource is ebit. For model IV, any preshared entangled state is
allowed. Note that in model II, the shared ebits are within each
player, Alice or Bob. These preshared states can be understood
as being generated by a preround of coding on it, and then we
do not need to consider noises on it anymore. For notation,
model II was simply denoted as EA in our previous paper [26].
A simple but important fact to verify is that this can be used
to generate remote ebits between the two players by quantum
teleportation. Also, remote ebits can be used to generate ebits
at Alice’s or Bob’s side. Therefore, the logical semilocality is
equivalent to spatial semilocality.

In the EA settings, an important phenomenon is that the
quantum capacity is half of its classical capacity of a chan-
nel based on quantum teleportation and dense coding [7]. A
technical part is the usage of EA Holevo quantity χEA for the
standard EA setting [3], which is restricted to an orthogonal
case, denoted EAO, due to the usage of ebit assistance [26].
The classical capacities are first expressed as Holevo quanti-
ties,

CIV(�) = lim
n→∞

χEA(�⊗n)

n
,

and CII(�) = χEAO(�), and then related to coherent informa-
tion. For simplicity, we recall the two theorems below and
reproduce a unified proof. Theorem 4 below is Theorem 8.41
in Ref. [7].

Theorem 3 (Quantum capacity theorem: Model II [26]).
The quantum capacity of a channel � defined in model II is
QII(�) = ( log2 d + I (�))/2.

Theorem 4 (Quantum capacity theorem: Model IV [5]).
The quantum capacity of a channel � defined in model IV is
QIV(�) = J (�)/2.

Proof. In Lemma 8.39 of Ref. [7], it proves that

χEA(�) � H (πd ) + Ic(πd ,�) (19)

for πd = �/d and d = tr(�), and � is a projector. The proof
actually proves the stronger result

χEAO(�) � H (πd ) + Ic(πd ,�), (20)

as it uses a completely uniform ensemble of Bell states, η∗,
which is an EAO ensemble. Applying Lemma 8.36 in Ref. [7]
leads to CII(�) � log2 d + I (�) and CIV(�) � J (�).

Lemma 8.40 [7] applied to EA ensemble η gives

χ (� ⊗ 1(η)) � H (σ ) + Ic(σ,�). (21)

It also applies to any EAO ensemble ηEAO which becomes

χORT(� ⊗ 1(ηEAO)) � log2 d + I (�). (22)

This leads to CII(�) � log2 d + I (�) and CIV(�) � J (�).
This completes the proof. �

Therefore, we established the quantum capacities for the
four models above, with only the standard model III having
a nonadditive measure of capacity. Due to the additivity of
capacities for models I, II, and IV, the converse quantum Shan-
non theorem in these models are easy to prove by following
well-established methods [15,36–38]. The capacity in each of

the three models also serves as the strong converse capacity,
meaning that once a rate is larger than a capacity, the coding
error would converge exponentially fast to 1 in the asymptotic
limit for all possible codings.

Our framework also applies to classical capacities and
private capacities [8]. Here we will not reproduce the details
[26]. The channel capacities studied in this paper are sum-
marized in Table I. The quantity χ is the Holevo quantity
[3] and χORT here is the Holevo quantity when the classical-
to-quantum encoding is restricted to being isometric [26].
The private capacities are equal to the quantum ones for the
entanglement-assisted cases, and otherwise they are from the
Holevo quantity of a channel minus its complementary chan-
nel, hence the notation � in the table.

V. QRT OF CODING

We now use QRT to characterize the coding models. As
codings are superchannels, the QRT of codings is a QRT
of superchannels. Due to the channel-state duality [28], it is
not hard to formulate it by referring to QRTs of other kinds,
especially the QRT of channels [16]. Here, the set of objects
we consider are superchannels that are used for codings.

To define a family, we need to make sure the goal of each
model is the same. For coding, the goal is indeed the same,
which is to convert a channel into the perfect identity channel
with high accuracy. The universal resources are the codings
that achieve the capacity of a channel.

Definition 5 (QRT of codings). A QRT of codings
(F ,O,R,U ) for a channel � is defined by a proper set
of free superchannels F used in a coding model, which are
transmissionally local and can only preserve or increase its
bare error, a free set O : F → F , and the resource R is
formed by all allowed superchannels that can decrease the
bare error. The universal set U ⊂ R contains the codings that
achieve the capacity of a channel � in a coding model.

Furthermore, a hierarchy can be defined based on a subset
structure of free sets. We say such coding models belong
to a coding family. Model I has the largest F while mode
IV has the smallest, but model I has the least powerful U
while model IV has the most powerful U . To prepare for the
theorem below, we clarify a few points. All one-way classical
communication from Alice to Bob is free in all the models.
For model II, we say an operation is semilocal when a local
operation can be assisted by bipartite entanglement. For model
III, the back classical communication from Bob to Alice is
not allowed, however, since it will change its capacity [13].
Although model III is logically nonlocal but spatially local,
it is not comparable with model II, and this leads to two
subhierarchies.

Theorem 5 (Hierarchy of coding models). Models I, III,
and IV form a hierarchy and models I, II, and IV also form
a hierarchy in the coding family.

Proof. We prove the theorem by the explicit construction
of QRT for each coding model. Relative to a logical locality
and the transmission locality, model I is defined by the free
set FI which can only preserve or increase the bare error. For
instance, all one-side processing at Alice’s or Bob’s side is
free. The set FII ⊂ FI is logically biseparable or semilocal,
which preserves or increases the bare error. This selects some
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ebit-assisted semilocal codings as resources. The set FIII ⊂ FI

is transmissionally local but without back classical commu-
nication, and logically being l local for l ∈ o(n) as a small
value compared with n. Finally, FIV ⊂ FII,FIII only allows
transmissionally local and logically product operations. It is
also clear there is no set relation between FII and FIII.

Meanwhile, RI ⊂ RII ⊂ RIV and RI ⊂ RIII ⊂ RIV. The
subset structures can be shown case by case. For instance,
while Ŝ ∈ R1 are the case of QI(�) � 0, the case of QI(�) =
0 leads to the existence of multipartite entangled codings
Ŝ ∈ R3 ∩ F1 or ebit-assisted codings Ŝ ∈ R2 ∩ F1. Similar
arguments also apply to other cases.

To verify the universal resource conversion (7), it is enough
to observe that a coding that works at a higher level also works
at a lower level and can be reduced to one that works at a lower
level. For instance, by ignoring the assisted entangled state |η〉
in model IV, it reduces to model III. On the contrary, |η〉 can
be prepared in model III and further used as the assistance in
model IV. �

A. Applications

The benefit of using QRT is to understand these models
systematically, with the capacities as the measure of universal
coding resources. It also highlights the role of local compu-
tational ability, and the trade-off between local computation
and codings. The local computation belongs to their free sets.
These models can be chosen for different practical situations.
Suppose a communication task is to send a large amount of
data, namely, highly entangled states, over a noisy channel.
Below we analyze different strategies in these models.

(1) For model I, Alice and Bob have the largest pre-
/postcomputational ability. Alice can represent the data |ψ〉
as a quantum circuit, U , with

|ψ〉 = U |ψ1, ψ2, . . . , ψk〉. (23)

Alice can use a classical channel to send the classical repre-
sentation of the circuit, [U ], namely, the type and location of
each elementary gate in it, and then only send unentangled
qubits over the quantum channel to Bob. Bob has to perform
U according to [U ] to obtain |ψ〉. Note U might be of high
depths.

This scheme can be applied in many settings. For instance,
for channels that are only slightly noisy so no powerful en-
coding is needed, or in blind quantum computation [39] when
Alice wants to hide the input data from Bob but not the
algorithm itself, or in teleportation-based models such as the
cluster-state model [40] and quantum von Neumann architec-
ture [41] wherein a computation is simulated by a sequence of
gate teleportation on initially unentangled states.

(2) If the channel is quite noisy, one can move on to model
II, which always has a nonnegative quantum capacity. The
ebits play essential roles here. We find, interestingly, Alice can
represent the data |ψ〉 as a matrix-product state (MPS) [42]

|ψ〉 =
∑

i1,...,iN

tr(BAiN · · · Ai1 )|i1 . . . iN 〉, (24)

with local tensors Ain (and a boundary operator B), and then
send its circuit representation [Ain ] to Bob, who can then
use them and also ebits as resources to obtain |ψ〉 by only

TABLE II. A table of the code types induced by the four coding
models classified in this paper and some stabilizer code examples in
literature. Here the depth refers to the depth of the encoding circuit
for a code. Note more refined classification is possible by considering
more features of codes.

Model I Model II Model III Model IV

Type small block convolutional large block convolutional
Depth small small large large
Examples [47–49] [50–54] [55–58] [59–61]

applying constant-depth local operations. As is well-known,
MPSs are proper forms to characterize entanglement and play
essential roles in many-body physics to describe topological
order [43]. Here a MPS can be shared remotely by a few
parties, and may have applications in distributed computing
[44].

(3) Models III and IV are well known. From our perspec-
tive, model III allows any nonlocal encodings and any pre
and post l-local operations on the state |ψ〉. This can indeed
describe some nontrivial operations on codes, such as code
switching [18,45], which is an important scheme to realize
universal set of logical gates. For model IV, Alice would send
|ψ〉 as a whole to Bob, so the only required ability for Bob is
to store and manipulate each qubit.

If for a channel I (�) � 0, then all the models would work,
with higher-level models achieving larger capacities. When
I (�) � 0, one has to move on, e.g., with remote ebits that
may be generated by model I for another channel 
 with
I (
) � 0, or choose other models. Also note that the models I
and II are not the one-shot versions, since the one-shot setting
only allows separable codings, while I and II allow entangling
isometry as codings.

B. Classification of codes

Our classification theory is not only useful for choosing
a proper coding model, in practice, but also for the usage of
error-correction codes. In the setting of noncooperative com-
munication [46], the classification and recognition of codes
are important. When Alice and Bob do not mutually agree
upon the code being used, Bob has to recognize the type of
code to choose a proper decoding algorithm, which should be
adapted to the right type of code.

We know from the classical coding theory [1] that a code is,
in general, block or convoluntional. The latter is characterized
by a temporal order of data and memory between the encoding
of blocks of data, while for block codes, each block of data
encodes and decodes separately. For quantum codes, it turns
out the memory effect can be simulated by ebits via telepor-
tation, inducing a temporal order of data blocks. It is then
easy to see convolutional codes can be described by model
II (using teleportation module among the encoding parts) and
also model IV (when many of its large blocks are available).
But note the EA settings do not have to be convolutional,
say, when only one block with EA is used for coding. The
difference between models II and IV, and also models I and
III, is a block being small or large. This can be characterized
by the depth of the encoding circuit for a code; see Table II.
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A large depth of the encoding circuit with local gates
can lead to large values of entanglement increasing with the
system size n, while a small or constant depth circuit cannot
do so. There are many ways to characterize entanglement
[17,42,43]—one powerful approach is to express states as
MPSs (24), and the bipartite entanglement entropy SE in a
state satisfies

SE ∝ log2 χ (25)

for χ as the bond dimension of the entanglement space, which
is used to carry the logical information.

Small block codes and convolutional codes will have small
values of entanglement entropy SE . Examples of small block
codes are those with small k and small encoding circuit
depths, including some well-known small-size codes [47,48]
and symmetry-protected codes [49], and also some convolu-
tional codes [50–53] and quantum Turbo codes, as interleaved
convoluntional codes [54].

Meanwhile, large codes are those with a large value of
k, and most likely also the rate r = k/n. Notable examples
are some high-rate LDPC codes [56], Polar codes [57], the
MERA codes [58], etc. Some of them are entanglement-
assisted [59,60] and hence can be expanded to convolutional
ones when many blocks are used.

We can also consider the reverse problem: Given a code
that is promised to be one of the types we know, how to
determine its type? Such a quantum code recognition task is
an example of quantum hypothesis testing [7], but here the
goal is to test its type not its formula. In general, the quantum
machine learning algorithm [62] can be employed to serve as
a classifier, which, however, is resource intensive. This task
is also hard for the classical case; see Ref. [63] for a latest
study. Different from the classical case, a quantum test is a
measurement that will consume many samples of the state
|ψ〉. Here we lay out an entanglement-based scheme but more
advanced method is necessary.

There are ways to measure SE in experiments [64,65]. Once
the whole state |ψ〉 is obtained by Bob sent from Alice, Bob
can do a few binary tests. First, it is easy to see if it is EA
or not since the EA side channel is noise-free and has to be
established beforehand. Then the value of SE can tell small
codes from large ones. Due to the state form (23) for block
codes, it is with high probability that far-apart sites have no
entanglement, but not the case for convolutional codes. We
can use the Bell test [66] to distinguish them, but it is not easy
to distinguish convolutional from Turbo codes, and LDPC
from Polar codes by entanglement entropy. Therefore, more
quantities are needed, which could be other entanglement
measures or machine-learned features that deserve further
study.

VI. NUMERICAL SIMULATION

To further understand quantum capacities and the non-
additivity, here we numerically explore the gaps among the
quantum capacities for the case of qubit channels. A general
qubit channel contains 12 parameters. This can be seen in the

FIG. 4. The quantum capacity gaps for qubit channels of rank
two (red), rank three (blue), and rank four (green). Each panel is for
a capacity or capacity gap. The horizontal axes are all |t |, which is
the size of the shift vector in the affine representation of a channel.

so-called affine representation T of the form

T =
(

1 0
�t T

)
, (26)

which is a 4 × 4 real matrix. The vector �t is the shift of
the center of the Bloch ball, and the matrix T enables the
distortion of the ball. To represent a channel succinctly, we
use |t | and the Frobenius norm ‖T ‖F to represent a channel.
A larger |t | means larger nonunitality while a smaller ‖T ‖F

means larger distortion of the ball. In our simulations, we do
not observe a clear dependence on ‖T ‖F , so we focus on the
behaviors of capacities as functions of |t |. In our algorithm,
given a random qubit channel � [67], we use an optimization
algorithm from MATLAB to compute the capacity quantities.
The rank of � is an input parameter, and for each rank we
randomly sample hundreds of qubit channels.

A. Model I

From the general relation between Holevo quantity and
coherent information, it is easy to see that

QI(�) � CI(�) � Ic(�). (27)

This means the one-shot quantity QV(�) := Ic(�) =
maxσ Ic(σ,�) serves as a good upper bound in model I,
however, it does not serve as a quantum capacity in general.

It is shown that QV(�) is almost surely positive if r(�) �
d; otherwise, it is almost surely zero [68]. Here we numer-
ically confirmed this for qubit channels in Fig. 4. Note we
use subscript numbers to simplify the capacity quantities. For
qubit rank-two channels, we find QV(�) are not only positive
but also there is a clear dependence on |t |. There appears
to be a transition region at about |t | ∼ 0.5, beyond which
QV(�) are mostly zero, QI(�) are mostly negative, and the
upper envelope is almost linear with |t |. For rank-three and
rank-four channels, we see that QI(�) are mostly negative
while QV(�) are mostly zero. When QV(�) = 0, the optimal
input state is pure. The gap �Q15 = QV − QI, and similarly
for �Q25 = QII − QV, shows a clear transition region for the
rank-two case.
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FIG. 5. The quantum capacity gaps for qubit channels of rank
three (blue) and rank four (green). Each panel is for a capacity gap.
The |t | is the size of the shift vector in the affine representation of a
channel.

B. Model II vs model IV

In model IV, achieving QIV(�) is to achieve the regularized
EA Holevo capacity, which shall require a highly entangled
state |η〉 as a resource which is not a product of ebits. The gap

�Q24(�) = QIV(�) − QII(�) (28)

is a measure of the nonlocal assistance effect of an optimal
resource state |η〉. The QIV is upper bounded by (log2 d +
QV)/2, so �Q24 � �Q15/2. We can see from the result in
Fig. 4 that the gap �Q24(�) is quite small (in the order 10−3)
and is more apparent for larger shift |t | for rank-two channels.
For higher-rank cases, the gap becomes larger and there is no
obvious dependence on |t |. Based on primary simulation tests
not reported here, we expect this gap will get more apparent
for higher dimensional channels.

C. Model III

The quantum capacity QIII(�) cannot be explicitly com-
puted, in general, but it can be upper bounded. A nice method
is to use the convex decomposition of channels [69]. For
the qubit case, it is well-known that a qubit channel can be
decomposed as the convex sum

� = p�g
1 + (1 − p)�g

2, (29)

for two so-called generalized extreme channels which are
channels with a rank up to two [67,70]. A qubit generalized
extreme channel is either degradable or antidegradable [71],
for which its quantum capacity is additive. Therefore, it has
been proposed to use the following as an upper bound of the
quantum capacity:

QIII(�) � inf
(
pQIII

(
�

g
1

) + (1 − p)QIII

(
�

g
2

))
. (30)

Any such decomposition would serve as a looser upper bound
for its capacity, and we denote such a value as QUB

III (�). Also,
there is a lower bound QIII(�) � QV(�), with equality holds
for degradable channels [72]. We also observe that QV(�) �
QII(�). This is explained by the behavior of QI: when it is
positive, QII � 1

2 while QV � 0, when it is negative, QII � 0
while QV = 0.

Here we plot the quantity �Q23 = QUB
III − QII and �Q34 =

QIV − QUB
III for random qubit channels of ranks three (blue) and

four (green) in Fig. 5. We see that both �Q23 and �Q34 can
be either positive or negative. There is no clear dependence on
the rank and |t | of a noise channel. Most of �Q34 is positive
while most of �Q23 is negative. A negative �Q34 means the
bound is not tight, while a negative �Q23 means QIII is even
smaller than QII for some channels. This indeed confirms that
model III does not perfectly lie in between models II and IV
for arbitrary channels.

VII. CONCLUSION

In this paper, we establish a quantum resource theory ap-
proach to describe a family of coding models that are of
importance to quantum communication and error correction.
By treating codings as superchannels, our approach is broad
to describe a few important quantum capacities and types of
codes, and may also be used to discover new ones.

Along that line, as we have mentioned, there are other
types of models or quantities, including back classical com-
munication [13], the simultaneous classical and quantum
communication [72], reverse coherent information [14], the
entanglement cost of channels [73], and the Rains informa-
tion [15]. Whether proper coding models relating to them
can be defined and put in the hierarchy of coding family
is unclear. It is also worth mentioning the codings with
infinite-dimensional systems [74,75], which require further
investigation to generalize our approach.
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