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Implementation of controlled-NOT quantum gate by nonlinear
coupled electro-nano-optomechanical oscillators
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A feasibility study is done for the possibility of a universal set of quantum gate implementation based on
phononic state via fourth-order Duffing nonlinearity in an optomechanical system. The optomechanical system
consists of N doubly clamped coupled nanobeam arrays driven by local static and radio frequency electrical
potentials, coupled to a single-mode high-finesse optical cavity. The results show that the ideal CNOT gate can be
implemented only under nonresonance dynamics when the dissipation processes are negligible.

DOI: 10.1103/PhysRevA.110.032412

I. INTRODUCTION

In the last few decades, the theory of quantum information
has led researchers to look for an answer to the question of
whether is it possible to gain benefits by storing, transmitting,
and processing encrypted information in systems with quan-
tum characteristics. Recently emergent quantum computers
are the answer to this question. The idea of quantum com-
puting was first proposed by Benioff [1] and Feynman [2].
The quantum computers have many advantages over classical
ones—for example, Deutsch and Joza [3] showed that the
duration of solving some problems is greatly reduced by quan-
tum computers, thanks to the quantum parallelism induced
by quantum superposition. High efficiency and large-capacity
quantum memories are another advantage of quantum com-
puting devices [4–6]. A suitable physical system for building
a quantum computer is required to satisfy five criteria known
as DiVincenzo’s criteria [6]: (1) it should have scalable and
well-defined qubits, (2) the qubits should be initializable, (3)
a universal set of quantum gates, acting on qubits, should be
realizable, (4) its dynamics should have a long coherence time
with respect to the gating time, and (5) there should exist some
mechanisms to perform quantum measurement and read the
results. A set of quantum gates is a universal set if any other
arbitrary gate can be realized by means of those gates. An
example of such a complete set of gates is the combination
of single-qubit gates and CNOT gates. For example, the set of
{CNOT, H, S, T } is a universal quantum gate set, where H ,
S, and T denote the Hadamard, phase, and the πup/8 gate,
respectively. Also, the set of {CNOT, Pauli’s gates, Identity(2 ×
2)} is another universal set of gates. The CNOT gate is one of
the most important two-qubit gates that can be used to access
other multiqubit gates. Therefore, implementation of this gate
is very important and has attracted a lot of attention. The
standard quantum CNOT gate is a two-qubit gate: the first gate
is the control gate and the the second is the target gate. This
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gate flips the value of the target gate if the control gate has
a specific value, namely, 1, i.e., UCNOT|x〉 ⊗ |y〉 = |x〉|x ⊕ y〉
with x, y ∈ {0, 1}. Additionally, implementation of the CNOT

gate is an essential task for realizing some important quantum
information protocols such as standard quantum teleporta-
tion, quantum dense coding, and Bell state measurement [7].
The CNOT gate can be implemented experimentally in vari-
ous physical systems such as superconducting qubits [8–13],
linear and nonlinear quantum optical systems [14–20], NMR
qubits [21–24], trapped ions [25–28], and so on.

Today, looking for progressive experimental techniques to
control interactions at the quantum level brings the optome-
chanical systems into the spotlight [29]. These systems play
an essential role in demonstrating fundamental quantum prop-
erties [30,31], ultrasensitive detection [32,33] and quantum
information processing [34,35]. Also, these systems could be
managed to satisfy DiVincenzo’s criteria, hence they are a
good candidate for implementing and realizing quantum gates
[36–38]. Quantum information processing in optomechanical
systems has many advantages. Beside their scalability in nano
structures, they can be used to increase the storage time of
quantum information and coherent transmission of quantum
information for long distances [39]. In this way, according
to new achievements in the construction of quantum comput-
ers in photonic and quantum optics systems, the CNOT gate
design in quantum optics systems, particularly in nanome-
chanical systems, is very important. There are two scenarios
for implementation of quantum gates: (1) probabilistic re-
alization with the aid of linear interaction [40–44] and (2)
deterministic realization by employing nonlinearity [45–49].
The quantum gate implementation is successful probabilisti-
cally, for the former case. In this paper, we follow the latter
case to implement quantum gates. The required nonlinear
interaction is provided in a nanoscale electro-opto-mechanical
system. Nonlinearity arises by introducing an array of dou-
bly clamped nanobeams, realized by carbon nanotubes to
the system. The arisen nonlinearity is in the fourth order
of position operator, called Duffing nonlinearity. Introduc-
ing such high-order nonlinearity provides the possibility of
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FIG. 1. Scheme of physical realization of the system.
(a) Nanorod array inside of a traditional single-mode optical
cavity. (b) Nanorod array in the vicinity of a microtoroid resonator.

building an on-demand CNOT gate. The structure of the Hamil-
tonian prevents us from implementing the CNOT gate directly
in the analytical method, but it is suitable for implementa-
tion of the ISWAP gate [50]. However, the CNOT gate can
be achieved through the sequence ei π

4 (U [−π
2 ]z ⊗ (U [π

2 ]x ·
U [π

2 ]z ))UISWAP(U [π
2 ]x ⊗ I )UISWAP(I ⊗ U [π

2 ]z ). Analytical cal-
culation is made by the effective Hamiltonian approach and
numerical solution is done by solving the governing master
equation. For both cases, the promising CNOT gate is realized
by employing the evolved state of the system, initially pre-
pared in a pure state. The performance of the constructed gate
is measured by the fidelity between the evolved state and the
state that is made from applying the ideal CNOT gate on the
prepared initial state.

The structure of this paper is as follows. The system under
consideration and its governing Hamiltonian are introduced
in Sec. II. In Sec. III, the dynamics of the system is examined
both analytically and numerically. Single-qubit gates are re-
alized in Sec. IV and the CNOT gate is constructed in Sec. V.
Finally, a conclusion summarizes the results.

II. THE SYSTEM

The system that we consider is a N doubly clamped coupled
nanobeam array affected by local static and radio frequency
electrical potentials, coupled to a single-mode high-finesse
optical cavity, demonstrated in Fig. 1(a). This system can be
realized also by a doubly clamped carbon nanobeam array
coupled to the evanescent field of a whispering gallery mode
in a high-quality-factor microtoroid resonator [51–53] [see
Fig. 1(b)]. The coupling between nanobeams can be realized
electrostatically or mechanically [54].

A. The doubly clamped nanobeam

Nano-optomechanical systems with mechanical nano-
oscillators are used as high-efficiency systems for the purpose
of building the nano-oscillators in the dimensions of tens of
nanometers to hundreds of nanometers with unique character-
istics. Besides, the oscillation frequency of nano-oscillators
varies from a few MHz to tens of GHz. They have an effective
mass of about femtograms (10−15 gr), a mechanical quality
factor of about tens of thousands, and a power dissipation of
several attowatts (10−17 W). Due to their small mass, these
oscillators are suitable candidates for studying the mechanical
motion of quantum systems. They are the basis of a variety of
precise measurements [55,56], Magnetic resonance imaging
(MRI), and an inseparable component of atomic and magnetic
force microscopy [33]. In addition, they are more sensitive

detectors than mechanical micro-oscillators. The mechanical
nano-oscillators often consist of a cantilever (a rod with only
one end tightly closed) or a bridge (a rod with both ends
tightly closed), made by lithography in submicron on single-
crystal materials such as silicon [57–59] or silicon carbon
[60,61]. One of the interesting properties of closed-ended
mechanical bridges is that they naturally have an intrinsic and
geometric nonlinearity in their elastic energy, which leads to
Duffing nonlinearity [62,63]. Here, we consider nanobeams
that are thin, which means their cross-section dimensions are
much smaller than their length, and their mass distribution
is homogeneous along the longitudinal axis. So, by using
thin-rod elasticity theory, the Hamiltonian of the fundamental
mode of each doubly clamped nanobeam has an intrinsic
Duffing nonlinearity and is given by [64]

H (0)
m, j = P2

j

2m∗ + 1

2
m∗ω2

m,0χ
2
j + β

4
χ4

j , (1)

with the momentum Pj , deflection χ j , effective mass m∗, and
resonance frequency ωm,0 of the fundamental mode of each
oscillator. Following the canonical quantization procedure,
the Hamiltonian of the jth doubly clamped nanobeam can be
expressed in terms of phonon creation b†

j and annihilation b j

operators as follows:

H (0)
m, j = h̄ωm,0b†

jb j + h̄
λ0

2
(b†

j + b j )
4
, (2)

where λ0 = β

2h̄χZPM
4, with the zero-point motion of amplitude

of the oscillator χZPM = √
h̄/2mωm,0, and β refers to the

intrinsic nonlinearity which depends on the dimensions and
characteristics of the beam material. As we describe in the fol-
lowing, the dynamic properties of the system are controlled by
using inhomogeneous electric fields applied by tip electrodes
placed on both sides and near the center of the nanobeams
(Fig. 1) [64]. In particular, inhomogeneous gradient static
electric fields reduce the frequency of oscillations and there-
fore increase the nonlinearity. The electrostatic energy per unit
length along the nanobeam deposed by tip electrodes at both
sides of the thin rod is given by

W (x, y) = −1

2
(α‖E2

‖ (x, y) + α⊥E2
⊥(x, y)), (3)

where E‖(E⊥) is the static electric field components parallel
(perpendicular) to the nanobeams and α‖(α⊥) is its respective
screened polarizability. Here, x, y are the coordinates along
the beam axis and the direction of its deflection, respectively.
The electrostatic energy density per unit length can be approx-
imated as follows:

Uel =
∫ l

0
W (x, y)dx

≈
∫ L

0

(
W + ∂W

∂y
|y=0y + 1

2

∂2W

∂y2
|y=0y2

)
dx, (4)

where L is the length of the nanobeam. By expanding the
transverse deflection y(x, t ), which satisfies boundary condi-
tions y(0, t ) = y(L, t ) = 0, in terms of the eigenmodes φn(x),
as y(x, t ) = ∑

n φn(x)χn(t ), and dropping the deflection inde-
pendent constant W (x, 0) that is unimportant in dynamics, the
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energy density per length can be written as [36]

Uel ≈
∑

n

Fnχn + 1

2

∑
lk

Wlkχlχk, (5)

with

Fn =
∫ l

0

∂W

∂y
|y=0φndx,

Wlk =
∫ l

0

∂2W

∂y2
|y=0φlφkdx. (6)

Focusing on the fundamental mode φ0, the electrostatic
energy expression simplifies to

Uel ≈ F0χ − 1
2 |W00|χ2, (7)

which means that the nanobeams behave as an inverted har-
monic oscillator of the form Uel ∝ −χ2 in the presence of
local electric static field. This term generates an extra force
that counteracts the intrinsic elastic force and hence reduces
the resonance frequency of nanobeams.Therefore, we have

tuned the mechanical Hamiltonian H (t )
m, j = P2

j

2m∗ + 1
2 m∗ω2χ2

j +
β

4 χ4
j with a reduced frequency as follows:

ω2
m = ω2

m,0

(
1 − |W00|

m∗ ω2
m,0

)
. (8)

The tuned mechanical Hamiltonian in terms of creation and
annihilation operators can be written as

H (t )
m, j = h̄ωmb†

jb j + h̄
λ

2
(b†

j + b j )
4
, (9)

where the strength of the nonlinear term is enhanced by factor
λ
λ0

= ω2
m,0

ω2
m

. As an example, for an electrical field of E|| ≈
1.2 × 107 V m−1 and E⊥ ≈ 1.778 × 106 V m−1, the increase
is by the factor λ

λ0
= 4 [65]. Considering time-dependent elec-

tric local fields applied by external rf field, in which case
it is more appropriate to write the static and time-dependent
contributions separately,

F0 = F s
0 + F0(t ),

W00 = W s
00 + W00(t ), (10)

where frequency shift of nanobeams is controlled by W s
00 and

F s
0 determines the position of equilibrium of the mechanical

oscillator. The time-dependent terms can be used to imple-
ment single-qubit gates. Finally, by adding the part that shows
the interaction between nanobeams [54], the Hamiltonian of
the jth doubly clamped coupled nanobeam in the presence of
the electric fields is

H (c)
m, j = Hm, j − G̃/2

N∑
j �=i

(b†
j + b j )(b

†
i + bi ), (11)

where G̃ is the coupling constant between nanobeams and

Hm, j = h̄ωm,0b†
jb j + h̄

λ0

2
(b†

j + b j )
4 + F0, jχ j + 1

2
W00, jχ

2
j .

(12)

B. The nano electro-opto-mechanical system

The optomechanical interaction of the setup is the coupling
of the N nanobeams to the single optical mode of the high-
finesse optical cavity. The Hamiltonian of this part with free
Hamiltonian of the photon is given by

H (0)
c = h̄ωca†a +

N∑
j=1

h̄g0a†a(b†
j + b j ), (13)

where a† and a are photon creation and annihilation operators,
and g0 = ωc

L χZPM is the vacuum optomechanical coupling rate
with the bare optical resonance frequency of the cavity ωc.
As we know, the rates at which the optical and mechani-
cal degrees of freedom decohere are critical parameters for
optomechanical systems, and the optomechanical coupling
strength must be greater than the decoherence rates of the
cavity to have a strong optomechanical interaction. The vac-
uum optomechanical coupling rate is usually much smaller
than the optical and mechanical decoherence rates, so a com-
mon approach for increasing the radiation pressure force and
therefore the optomechanical coupling rate is to coherently
drive the optical cavity by injecting a strong coherent field.
By adding the Hamiltonian of the driving field to Eq. (13) we
get

Hc = h̄ωca†a +
N∑

j=1

h̄g0a†a(b†
j + b j )

+ih̄EL(a†e−iωLt + aeiωLt ), (14)

where εL/2 = √
Pinκ/h̄ωL is the amplitude of the deriving

laser, ωL is the frequency of the driving laser, Pin is the input
power of the laser, and κ is the decay rate of the cavity
field. With the Hamiltonian of the doubly clamped coupled
nanobeams in the electric fields, the Hamiltonian of the entire
electro-nano-optomechanical setup is

H = h̄ωca†a +
N∑

j=1

h̄g0a†a(b†
j + b j )

+ih̄εL(a†e−iωLt + aeiωLt ) +
N∑

j=1

H (c)
m, j . (15)

This Hamiltonian in the rotating frame with the driving laser
frequency, transformed by U = e−iωLa†a t , can be written as
follows:

H̃ = U †HU − iU † ∂U

∂t
. (16)

So, we have

H̃ = −h̄�a†a +
N∑

j=1

h̄g0a†a(b†
j + b j )

+ih̄εL(a† + a) +
N∑

j=1

H (c)
m, j, (17)

where �=ωL − ωc is the detuning of the driving from the
optical resonance frequency. For the strong coherent driving
laser, the dynamics of the system can be well approximated by
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the linearization method. In this method the intracavity field is
divided into the steady value of amplitude α and the quantum
fluctuation around the mean value a,

a → α + a, (18)

with α = εL
2�+iκ . In this way, using the linearization method

for the Hamiltonian of the system, we have

H̃ = −h̄�a†a +
N∑

j=1

h̄g(|α| + Xc)Xj +
N∑

j=1

H (c)
m, j . (19)

Here, g = √
2|α|g0 is the enhanced optomechanical coupling

rate, Xc = α∗a+αa†

|α| is the photon quadrature, and Xj = χ j

χZPM
=

b+b†√
2

is the normalized deflection of the jth beam. In the pro-
cess of obtaining the above Hamiltonian, sentences that have
no effect on the dynamics of the system have been neglected
[29]. On the other hand, since the term h̄g|α|Xj is the deflec-
tion of the j th beam due to the radiation pressure, we always
choose F s

0, j = −h̄ g
χZPM

|α| so the beams remains undeflected at
its equilibrium position.

III. THE DYNAMICS OF THE SYSTEM

In the considered system both cavity field and oscillators
are damped at rates κ and γm, respectively. The Markovian
master equation describing the dynamics of the system is

ρ̇ = − i

h̄
[H̃ , ρ] + κ

2
(2aρa† − a†aρ − ρa†a)

+γm

2

∑
j

nth(2b†
jρb j − b jb

†
jρ − ρb jb

†
j )

+(nth + 1)(2b jρb†
j − b†

jb jρ − ρb†
jb j

), (20)

where nth is the average thermal phonon number at the en-
vironment temperature T . To evaluate the dynamics of the
system and implement the CNOT gate, we need to solve the
master equation. We will do this by two analytical and numer-
ical methods in the following, but at first we try to implement
single-qubit gates in the system, as described in the next
section.

IV. SINGLE-QUBIT GATES REALIZATION

Due to third criterion of DiVincenzo’s criteria, a universal
set of gates is required for quantum computation and informa-
tion processing. Such a universal set is comprised of arbitrary
single-qubit gates and the CNOT operation. In this part we
focus on implementing a universal set of single-qubit gates
such as the set of Pauli’s gates { σx, σy, σz and identity}.
The universality of this set is a result of its completeness.
Here, Pauli gates are constructed by applying time-dependent
force F0(t ) and gradient force W00(t ), on the nanobeams. F0(t )
and W00(t ) can be adjusted by the voltages applied to the tip
electrodes, mounted in vicinity of nanobeams (see Fig. 1). In
this way, we consider the time evolution operator related to
the two parts F0(t )χ j and 1

2W00(t )χ2
j of the Hamiltonian of

the jth doubly clamped coupled nanobeam in the presence of

the electric fields. The σx and σz operations can be realized as

U |F0(t ) = e− i
h̄

∫ t
0 F0(t ′ )dt ′χZPMX j . (21)

We express the mechanical observable in the energy
eigenbasis, {|n〉}:

Xj =
∑
nm

Xnm, j |n〉〈m|, (22)

and then by introducing �(t ) = − 1
h̄

∫ t
0 F0(t ′)dt ′χZPM, the

following expressions are obtained:

U |F0(t )|0〉 = e−i�(t )X10, j |1〉,
U |F0(t )|1〉 = e−i�(t )X10, j |0〉. (23)

It is clear that if e−i�(t )X10, j = 1 [i.e., �(t )X10, j = ±2nπ ],
then U |F0(t ) realizes the σx gate. Also, we can realize the
single-qubit gate σz by considering the time evolution operator
related to the nonlinear part 1

2W00(t )χ2
j . By considering the

operator χ2
j we get

χ2
j = χ2

ZPM

∑
nm

X 2
nm, j |n〉〈m|. (24)

By restricting ourselves in two-dimensional space by |0〉 and
|1〉 basis we have

χ2
j = χ2

ZPM

(
X 2

00, j |0〉〈0| + X 2
11, j |1〉〈1|). (25)

After some manipulation, we obtain

χ2
j = χ2

ZPM

(
X 2

00, j − X 2
11, j

2
|0〉〈0| − X 2

00, j − X 2
11, j

2
|1〉〈1|

)

+X 2
00, j + X 2

11, j

2
χ2

ZPM(|0〉〈0| + |1〉〈1|), (26)

in which |0〉〈0| + |1〉〈1| = I2 is the 2 × 2 identity operator.
Therefore,

χ2
j = χ2

ZPM

X 2
00, j − X 2

11, j

2
σz + X 2

00, j + X 2
11, j

2
χ2

ZPMI2. (27)

The last term is proportional to the identity operator and
has no effect in the dynamic of the system. So, the unitary
operator of this part of the Hamiltonian will correspond to the
σz rotation

U |W00(t ) = e− i
h̄

∫ t
0

1
2 W00(t ′ )dt ′χ2

ZPMX 2
j ≈ e− i

h̄ σzϕ, (28)

where ϕ = i
h̄

∫ t
0

1
2W00(t ′)dt ′χ2

ZPM
X 2

00, j−X 2
11, j

2 is the phase shift
between the two qubit states. Finally, we obtain σy = iσxσz.

V. REALIZATION OF THE CNOT GATE

The main question of this article is whether the above-
mentioned electro-optomechanical system is suitable for
implementing the CNOT gate. In this way, we need to know
the time evolution of the system by solving the master equa-
tion (20). In the following, we attempt to drive the exact
solution numerically. But, at first we derive the dynamics of
the system analytically under some special approximations.
It is noticeable that rf local pulses are not necessary for
the CNOT gate implementation, so we turn them off, i.e., we
set F0(t ) = 0, W 00(t ) = 0, and H0 = −h̄�a†a + ∑

j Hm, j in
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the following. The gate is applied on two selected phononic
qubits, called “gate qubits,” which are in resonance with the
optical cavity mode. The remaining nonresonant phononic
qubits are called “saved qubits” [66].

A. Analytical method

In this section, the dynamics of the system is analyzed in
the nonresonance dynamical regime, where the master equa-
tion [Eq. (20)] reduced to the Schrödinger equation described
by an effective Hamiltonian, Heff . In the eigenbasis of Hm, j we
have Hm, j = ∑

n En, j |n〉〈n|, Xj = ∑
nm Xnm, j |n〉〈m|, and the

transition energy h̄δnm = En, j − Em, j , where index j labels the
resonators (nanobeams) and indices n and m denote the inter-
nal resonator levels. In order to apply the CNOT gate between
gate qubits via an optical cavity mode, a laser, which is suf-
ficiently far detuned from any resonance, i.e., g � |� − δnm|,
is employed [66]. This condition ensures that the phononic
states of the system which is prepared in the subspace |0〉 j and
|1〉 j will remain in this subspace. The condition |ωG − ωS| �
gG, gS implies that the interaction between gate qubits and
saved qubits becomes negligible. Here, ωG and ωS are the
transition frequency between gate qubits and saved qubits,
respectively, and gG and gS are the their coupling rates. To
illustrate the gate operations, we use the interaction picture
with respect to H0. So, the Hamiltonian in this picture is

HI =
∑
n,m, j

h̄g√
2

(a ei�t + a†e−i�t )Xnm, je
iδnm, j t |n〉 j〈m|. (29)

Since the far off-resonant approximation ensures us the sys-
tem remains in the prepared initial state, we determine that the
system behaves like a close system. When g � |� − δnm|, it
is convenient to consider the interaction of the system in terms
of an effective Hamiltonian. Starting with the Schrodinger
equation in the interaction picture [67]

ih̄
∂

∂t
|ψ (t )〉 = HI (t )|ψ (t )〉, (30)

where

|ψ (t )〉 = |ψ (0)〉 + 1

ih̄

∫ t

0
dt ′HI (t ′)|ψ (t ′)〉, (31)

we have

ih̄
∂

∂t
|ψ (t )〉 = HI (t )|ψ (0)〉 + 1

ih̄

∫ t

0
HI (t )HI (t ′)|ψ (t ′)〉dt ′.

(32)

Because of the assumption of g � |� − δnm| that means the
interaction Hamiltonian is strongly detuned and so HI (t ) con-
sists of highly oscillated terms, the first term on the right-hand
side of Eq. (32) can be ignored. Also, by using the Markovian
approximation for the second term in Eq. (32) we get

ih̄
∂

∂t
|ψ (t )〉 ≈ 1

ih̄

[
HI (t )

∫ t

0
dt ′HI (t ′)

]
|ψ (t ′)〉. (33)

So, the effective Hamiltonian can be obtained from

Heff = 1

ih̄
HI (t )

∫ t

0
dt ′HI (t ′). (34)

For large detuning and ignoring the highly oscillated term,
the adiabatic photon elimination regime, and dropping the
constant of integration, Heff is ultimately expressed as

Heff =
∑
nmk

i

h̄g2
i Xnm,iXmk,i

2(� − δmk,i )
eiδnk,it |n〉i〈k|i

+
∑
nmlk
i �= j

[
h̄gig jXnm,iXlk, j

2(� − δlk, j )
ei(δnm,i+δlk, j )t

×|n〉i〈m|i|l〉 j〈k| j]. (35)

Separating the gate qubit and saved qubit terms in Heff under
rotating wave approximation leads to

Heff ≈ HG + HS, (36)

where

HG = h̄g2
G

�X 2
G

�2 − ω2
G

(|1〉1〈0|1|0〉2〈1|2 + H.c.)

+
∑

m
i=1,2

h̄g2
i

2

(
X 2

0m,i

� + δom,i
|0〉i〈0|i + X 2

1m,i

� + δ1m,i
|1〉i〈1|i

)
,

HS = h̄g2
S

�X 2
S

�2 − ω2
S

∑
i �= j>2

(|1〉i〈0|i|0〉 j〈1| j + H.c.)

+
∑

m
i>2

h̄g2
i

2

(
X 2

0m,i

� + δom,i
|0〉i〈0|i + X 2

1m,i

� + δ1m,i
|1〉i〈1|i

)
.

(37)

Here, gi = gG, Xi = XG, and δ10,i = −δ01,i = ωG for i = 1, 2;
also, gi = gS , Xi = XS , and δ10,i = −δ01,i = ωS for i > 2.

The CNOT gate can be performed on the gate qubit dur-
ing the time evolution operator governed by the effective
Hamiltonian HG,

UG(t ) = exp

[
−i

∫ t

0
HG(t ′)dt ′

]

=

⎛
⎜⎜⎝

1 0 0 0
0 cos[�G(t )] i sin[�G(t )] 0
0 i sin[�G(t )] cos[�G(t )] 0
0 0 0 1

⎞
⎟⎟⎠, (38)

where �G(t ) = �X 2
G

�2−ω2
G

∫ t
0 g2

G(t ′)dt ′. For the case where gG is

time independent, we have �G(t ) = �t with � = �X 2
Gg2

G

�2−ω2
G

. It is

clear that the ISWAP gate is obtained at the time t = π
2�

. For
practical values of the parameters such as gG/2π = 21.0 kHz,
ωG/2π = 36.6 MHz, and �/2π = 49.9 MHz, the value � =
30.0463 Hz is obtained [64–66]. In this way, the CNOT gate
(Ugate) can be implemented via UG(t ) through the following
sequence [50]:

Ugate(t ) = ei π
4

(
U

[
− π

2

]
z

⊗
(

U

[
π

2

]
x

· U

[
π

2

]
z

))

× UG(t )

(
U

[
π

2

]
x

⊗ I2

)
UG(t )

(
I2 ⊗ U

[
π

2

]
z

)
.

(39)
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Here, U [φ] j = exp[−iφσ j/2] for j ∈ {x, y, z} denotes the
single-qubit Pauli’s gate.

For the general initial state of the gate qubits
|ψin〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 with |a|2 + |b|2 +
|c|2 + |d|2 = 1, the evolution yields

|ψ (t )〉 = Ugate(t )|ψin〉

=
(

1

2
(a sin(�t ) + a + ib[sin(�t ) + cos(2�t )]

+(d − ic) cos(�t ) + ic sin(2�t ))|00〉
+1

2
((b + ia) sin(�t ) − ia − b cos(2�t )

− cos(�t )(2c sin(�t ) + c − id ))|01〉
+1

2
(−(a + ib) cos(�t ) + ib sin(2�t )

+(d − ic) sin(�t ) − ic cos(2�t ) + d )|10〉
+1

2
((b + ia) cos(�t ) + b sin(2�t )

+(c − id ) sin(�t ) − c cos(2�t ) + id )|11〉. (40)

Here, the first and second kets indicate the control and the tar-
get qubits, respectively. So, the gate fidelity can be calculated
as

FG(t ) = |〈ψCNOT|ψ (t )〉|2 = |〈ψin|UCNOTUgate(t )|ψin〉|2

= 1

4
||a|2 + |d|2 − iab∗ + idc∗ + ((d − ic)a∗

−(c − id )b∗ + (ia + b)c∗ − (a + ib)d∗) cos(�t )

−(|b|2 − iba∗ + c(c∗ + id∗)) cos(2�t )

+(|a|2 + |b|2 + |c|2 + |d|2
+i(ba∗ + ab∗ − dc∗ − cd∗)) sin(�t )

+(ica∗ − cb∗ + b(c∗ + id∗)) sin(2�t )|2. (41)

The gate fidelity equal to 1 is achieved at t = π
2�

independent
of the initial state, i.e., the perfect ideal CNOT gate can be
implemented. Furthermore, we have FG(t ) = 1

4 |1 + sin(�t )|2
for the initial states |00〉 and |10〉 and FG(t ) = 1

4 | cos(2�t ) −
sin(�t )|2 for the initial states |01〉 and |11〉, which all reach
their maximum value 1 at t = kπ

2�
for k ∈ Z .

In the following we parametrize two categories of the ini-
tial state on the Bloch sphere and calculate the average fidelity.

(1) For the entangled initial state in the general Schmidt
form, i.e., |ψin〉 = cos( θ

2 )|00〉 + eiϕ sin( θ
2 )|11〉 we have

FG(t ) = 1
4 |i cos(�t ) sin(β ) sin(θ ) + sin(�t ) + 1|2, (42)

which is 1 for t = π
2�

for all values of θ and ϕ. The average
fidelity of the gate can be expressed as

F̄ (t ) = 1

4π

∫ 2π

0

∫ π

0
FG(t ) sin θdθdϕ

= 1

12
[6 sin(�t ) − cos(2�t ) + 5]. (43)

It is obvious that F̄ (t = π
2�

) = 1, as expected.
(2) For general separable form |ψin〉 = [cos( θ1

2 )|0〉 +
eiϕ1 sin( θ1

2 )|1〉] ⊗ [cos( θ2
2 )|0〉 + eiϕ2 sin( θ2

2 )|1〉] the average

FIG. 2. The fidelity of the implemented CNOT gate at t = π

2�
.

(a)

(b)

FIG. 3. (a) The gate fidelity of the CNOT gate operation for differ-
ent phononic initial states, shown in the legend in the single-photon
regime. (b) The average fidelity between |1〉 ⊗ |00〉, |1〉 ⊗ |01〉, and
|1〉 ⊗ |11〉.
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FIG. 4. The gate fidelity of the CNOT gate operation for initial
states: (a) |ψ1〉, (b) |ψ2〉, (c) |ψ3〉, (d) |ψ4〉, discussed in the context.

fidelity is calculated as

F̄ (t ) = 1

16π2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

× FG(t ) sin θ1 sin θ2dθ2dϕ2dθ1dϕ1

= 1

36
[12 sin(�t ) − 4 sin(3�t ) − 7 cos(2�t )

+ cos(4�t ) + 12], (44)

with the value 1 at = π
2�

. Figure 2 shows the histogram of the
implemented CNOT gate at t = π

2�
. As it is clear, the fidelity

of the CNOT gate for each initial state |00〉, |01〉, |10〉, and |11〉
is 1. In the other word, the states |00〉, |01〉, |11〉, and |10〉 will
be achieved with fidelity 1 after applying the CNOT gate on the
initial states |00〉, |01〉, |10〉, and |11〉, respectively.

B. Numerical method

Surpassing the above-mentioned assumptions and consid-
ering the photon and phonon damping effects enhances the
complexity of the solution and prevents us from studying
the dynamics of the system analytically. Therefore, a nu-
merical solution will be helpful. In this way, we employ the
QUTIP library of PYTHON software. At the first situation we
consider the static electrical potentials are static [i.e., F s

0, j =
−h̄ g

χZPM
|α|, F0(t ) = 0, and W00(t ) = 0], so the Hamiltonian

Eq. (19) becomes

H̃ = −h̄�a†a +
2∑

j=1

h̄gGXcXj − h̄G̃X1X2

+
2∑

j=1

[
h̄ωGb†

jb j + h̄
λ

2
(b†

j + b j )
4

]
. (45)

Solving the master equation [Eq. 20] governed by this Hamil-
tonian in the two-qubit subspace of gate qubits spanned by
{|0〉 j, |1〉 j} j=1,2 yields the matrix density of the system, ρ(t ).
The performance of the system for implementing the CNOT

gate is evaluated by the average fidelity between ρ(t ) and

FIG. 5. The average fidelity for initial states, |ψ1〉, |ψ2〉, |ψ3〉, and
|ψ4〉.

UCNOT|ψin〉〈ψin|U †
CNOT, for initial state |ψin〉. It must be no-

ticed that for each gate qubit, the first ket is the control
qubit and the second one is the target qubit. The parame-
ters involved are chosen as εL = 9.34 × 105 Hz for a laser
drive of 5 W input power, gG/2π = 9 MHz, G̃/2π = 2 MHz,
ωG/2π = 28.6 MHz, �/2π = 28 MHz, λ/2π = 209 kHz,
κ/2π = 523 Hz, a mechanical Q factor near 5 × 106, and T =
3 mK [64–66]. The gate fidelity and the average of fidelity are
depicted in Fig. 3 when the cavity mode is prepared in the
single photonic state initially, and phononic initial states are
chosen as |00〉, |01〉, and |11〉. The results reveal that the gate
fidelity depends on the initial state and has the lowest value
when the initial phononic state is |10〉. However, the high
value (0.88 at 0.6, 4.84, and 6.04 µs) of the average fidelity
is achievable. In the following we examine the implemented
gate for different phononic states in single-photon regime:

(1) The gate fidelity for different initial states
prepared in superposition of the two gate qubits as

FIG. 6. The fidelity for initial states of superposition of three gate
qubits as |ϕ1〉, |ϕ2〉, |ϕ3〉, and |ϕ4〉.
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FIG. 7. The average fidelity for initial states, |ϕ1〉, |ϕ2〉, |ϕ3〉, and
|ϕ4〉.

FIG. 8. The gate fidelity for |φ〉 = 1√
2
(|00〉 + |01〉 + |10〉 +

|11〉) as the initial state.

FIG. 9. The average fidelity of the CNOT gate operation for initial
states (a) |�1〉, (b) |�2〉, (c) |�3〉, and (d) |�4〉.

FIG. 10. The average fidelity for the initial state |�〉 =
1√
2

sin θ/2(|00〉 + |01〉) + 1√
2
e−iϕ cos θ/2(|10〉 + |11〉).

|ψ1〉 = 1√
2

(|00〉 + |01〉), |ψ2〉 = 1√
2

(|00〉 + |10〉),

|ψ3〉 = 1√
2

(|01〉 + |11〉), and |ψ4〉 = 1√
2

(|10〉 + |11〉) is

shown in Fig. 4. This figure shows that the gate fidelity for
initial states |ψ1〉 and |ψ4〉 are better than |ψ2〉 and |ψ3〉. Also,
the gate fidelity for |ψ3〉 is greater than |ψ2〉. These happen
because at first the gate fidelities for |10〉 and |11〉 are less
than |00〉, |01〉 and the gate fidelity of |10〉 is the minimum of
them. Also, the two states |ψ1〉 and |ψ4〉 after the CNOT gate
are again the same as their initial states.

The average of the fidelity for these initial states is depicted
in Fig. 5. The maximum value of the average fidelity (0.75) is
obtained at times 1.2 and 6.04 µs.

(2) The fidelities for the initial states are the superposition
of three gate qubits as |ϕ1〉 = 1√

3
(|00〉 + |01〉 + |10〉), |ϕ2〉 =

1√
3
(|00〉 + |01〉 + |11〉), |ϕ3〉 = 1√

3
(|00〉 + |10〉 + |11〉), and

|ϕ4〉 = 1√
3
(|01〉 + |10〉 + |11〉). The results are illustrated in

Figs. 6 and 7. Figure 7 reports the average fidelity of the
aforementioned initial states. A maximum value of 0.81 is
achieved at 1.38 and 2.86 µs. In Fig. 6 because of the reasons
given for Fig. 4, the initial states |ϕ1〉 and |ϕ2〉 have less
fidelity than |ϕ3〉 and |ϕ4〉, and also the state |ϕ1〉 has less
fidelity than the state |ϕ2〉.

(3) For the superposition of four gate qubits as |φ〉 =
1√
2
(|00〉 + |01〉 + |10〉 + |11〉), the fidelity is depicted in

Fig. 8. The maximum value of this fidelity is 0.98 at 1.48,
2.86, and 9.56 µs.

(4) For general three gate qubits |�1〉 = sin θ/2|00〉 +
1√
2
e−iϕ cos θ/2(|01〉 + |10〉), |�2〉 = sin θ/2|00〉 +

1√
2
e−iϕ cos θ/2(|01〉 + |11〉), |�3〉 = sin θ/2|00〉 +

1√
(2)

e−iϕ cos θ/2(|10〉 + |11〉), |�4〉 = sin θ/2|01〉 +
1√
2
e−iϕ cos θ/2(|10〉 + |11〉), the average fidelity is depicted

in Fig. 9. In Fig. 9(a), the maximum average fidelity 0.75 is
obtained at 0.8, 3.68, 5.88, and 8.74 µs. Also, the maximum
average fidelity of 0.86 in Fig. 9(b) is at times 0.6, 2.2, and
8.9 µs. Finally, for Figs. 9(c) and 9(d), the maximum value
of average fidelities are 0.97 at the time 2.86 µs and 0.94 at
1.2, 1.38, and 2.86 µs, respectively. The difference between
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the plots in Fig. 9 is based on the reasons that are given for
Figs. 4 and 6. Actually, the difference between the plots is
from the difference between their initial states. On the other
hand, the fidelity of the CNOT gate depends on the initial state
that is used.

(5) The general superposition of four qubits as |�〉 =
1√
2

sin θ/2(|00〉 + |01〉) + 1√
2
e−iϕ cos θ/2(|10〉 + |11〉) gives

the average fidelity of the CNOT gate as is shown in Fig. 10.
For this initial state the average fidelity has a value of 0.95 for
1.38, 2.86, and 4.24 µs.

VI. CONCLUSION

In summary, the introduced electro-opto-mechanical sys-
tem constructed by N doubly clamped coupled nanobeam
arrays biased by local static and radio frequency electrical
potentials, embedded in a single-mode high-finesse optical
cavity, is a good candidate for implementation of the CNOT

gate on phononic qubits. The ideal CNOT gate can be im-
plemented in an approximately close system that undergoes
off-resonance dynamics. The fidelity of the implemented gate
reduces for a real open system.
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B. M. Jelenković, W. M. Itano, J. Britton, C. Langer, T.
Rosenband, and D. J. Wineland, Experimental demonstration
of a controlled-NOT wave-packet gate, Phys. Rev. Lett. 89,
267901 (2002).

032412-9

https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1038/35005001
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1038/nature05896
https://doi.org/10.1038/nature09418
https://doi.org/10.1103/PhysRevLett.127.130501
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/s41586-018-0470-y
https://doi.org/10.1103/PhysRevA.75.052303
https://doi.org/10.1073/pnas.1018839108
https://doi.org/10.1038/nature02054
https://doi.org/10.1007/s11128-004-9419-1
https://doi.org/10.1103/PhysRevResearch.3.043026
https://doi.org/10.1103/PhysRevLett.95.210506
https://doi.org/10.1126/sciadv.aar6327
https://doi.org/10.1103/PhysRevA.97.022311
https://doi.org/10.1088/1674-1056/27/2/020308
https://doi.org/10.1103/PhysRevA.95.052342
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevLett.89.267901


ALINAGHIPOUR AND MOHAMMADI PHYSICAL REVIEW A 110, 032412 (2024)

[27] T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried,
and D. J. Wineland, Multi-element logic gates for trapped-ion
qubits, Nature (London) 528, 380 (2015).

[28] T. Monz, K. Kim, A. S. Villar, P. Schindler, M. Chwalla, M.
Riebe, C. F. Roos, H. Häffner, W. Hänsel, and M. Hennrich, and
R. Blatt, Realization of universal ion-trap quantum computation
with decoherence-free qubits, Phys. Rev. Lett. 103, 200503
(2009).

[29] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[30] D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. v. d.
Brink, and D. Bouwmeester, Creating and verifying a quantum
superposition in a micro-optomechanical system, New J. Phys.
10, 095020 (2008).

[31] P. Meystre, A short walk through quantum optomechanics,
Ann. Phys. 525, 215 (2013).

[32] H. J. Mamin, and D. Rugar, Sub-attonewton force detec-
tion at millikelvin temperatures, Appl. Phys. Lett. 79, 3358
(2001).

[33] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Sin-
gle spin detection by magnetic resonance force microscopy,
Nature (London) 430, 329 (2004).

[34] K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett,
M. D. Lukin, P. Zoller, and P. Rabl, Optomechanical quantum
information processing with photons and phonons, Phys. Rev.
Lett. 109, 013603 (2012).

[35] L. Zhou, Y. Han, J. Jing, and W. Zhang, Entanglement of
nanomechanical oscillators and two-mode fields induced by
atomic coherence, Phys. Rev. A 83, 052117 (2011).

[36] N. Meher, A proposal for the implementation of quantum gates
in an optomechanical system via phonon blockade, J. Phys. B:
At. Mol. Opt. Phys. 52, 205502 (2019).

[37] W.-Z. Zhang, J. Cheng, and L. Zhou, Quantum control gate in
cavity optomechanical system, J. Phys. B: At. Mol. Opt. Phys.
48, 015502 (2015).

[38] M. Asjad, P. Tombesi, and D. Vitali, Quantum phase gate for op-
tical qubits with cavity quantum optomechanics, Opt. Express
23, 7786 (2015).

[39] M. Metcalfe, Applications of cavity optomechanics,
Appl. Phys. Rev. 1, 031105 (2014).

[40] M. S. R. Oliveira, H. M. Vasconcelos, and J. B. R. Silva, A
probabilistic CNOT gate for coherent state qubits, Phys. Lett. A
377, 2821 (2013).

[41] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Probabilis-
tic quantum logic operations using polarizing beam splitters,
Phys. Rev. A 64, 062311 (2001).

[42] A. Gueddana, A. Moez, and R. Chatta, Abstract probabilistic
CNOT gate model based on double encoding: study of the
errors and physical realizability, in Advances in Photonics of
Quantum Computing, Memory, and Communication VIII (SPIE,
Bellingham, 2015), pp. 81–88.

[43] N. Lütkenhaus, Probabilistic quantum computation and linear
optical realizations, Quantum Information: From Foundations
to Quantum Technology Applications (Wiley, New York, 2016),
pp. 437–447.

[44] Z. Yi-Zhuang, Y. Peng, and G. Guang-Can, Probabilistic im-
plementation of non-local CNOT operation and entanglement
purification, Chin. Phys. Lett. 21, 9 (2004).

[45] H.-F. Wang, J.-J. Wen, A.-D. Zhu, S. Zhang, and K.-H. Yeon,
Deterministic CNOT gate and entanglement swapping for

photonic qubits using a quantum-dot spin in a double-sided
optical microcavity, Phys. Lett. A 377, 2870 (2013).

[46] K. Nemoto and W. J. Munro, Nearly deterministic linear optical
controlled-NOT gate, Phys. Rev. Lett. 93, 250502 (2004).

[47] Z.-P. Yang, H.-Y. Ku, A. Baishya, Y.-R. Zhang, A. F. Kockum,
Y.-N. Chen, F.-L. Li, J.-S. Tsai, and F. Nori, Deterministic one-
way logic gates on a cloud quantum computer, Phys. Rev. A
105, 042610 (2022).

[48] L. Fan and C. Cao, Deterministic CNOT gate and complete
Bell-state analyzer on quantum-dot-confined electron spins
based on faithful quantum nondemolition parity detection,
J. Opt. Soc. Am. B 38, 1593 (2021).

[49] B.-C. Ren, H.-R. Wei, and F.-G. Deng, Deterministic pho-
tonic spatial-polarization hyper-controlled-not gate assisted by
a quantum dot inside a one-side optical microcavity, Laser Phys.
Lett. 10, 095202 (2013).

[50] N. Schuch and J. Siewert, Natural two-qubit gate for quantum
computation using the XY interaction, Phys. Rev. A 67, 032301
(2003).

[51] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak,
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M.
Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Quan-
tum ground state and single-phonon control of a mechanical
resonator, Nature (London) 464, 697 (2010).

[52] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K.
Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Sideband cooling of micromechanical motion to the
quantum ground state, Nature (London) 475, 359 (2011).

[53] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser
cooling of a nanomechanical oscillator into its quantum ground
state, Nature (London) 478, 89 (2011).

[54] S. Barzanjeh and D. Vitali, Phonon Josephson junction
with nanomechanical resonators, Phys. Rev. A 93, 033846
(2016).

[55] K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanome-
chanical mass sensor, Nat. Nanotechnol. 3, 533 (2008).

[56] A. N. Cleland, and M. L. Roukes, A nanometre-scale mechani-
cal electrometer, Nature (London) 392, 160 (1998).

[57] A. N. Cleland and M. L. Roukes, Fabrication of high frequency
nanometer scale mechanical resonators from bulk Si crystals,
Appl. Phys. Lett. 69, 2653 (1996).

[58] X. L. Feng, R. He, P. Yang, and M. L. Roukes, Very
high frequency silicon nanowire electromechanical resonators,
Nano Lett. 7, 1953 (2007).

[59] K. L. Ekinci, Y. T. Yang, X. M. H. Huang, and M. L. Roukes,
Balanced electronic detection of displacement in nanoelec-
tromechanical systems, Appl. Phys. Lett. 81, 2253 (2002).

[60] Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone,
M. L. Roukes, C. A. Zorman, and M. Mehregany, Monocrys-
talline silicon carbide nanoelectromechanical systems,
Appl. Phys. Lett. 78, 162 (2001).

[61] X. M. H. Huang, X. L. Feng, C. A. Zorman, M. Mehregany, and
M. L. Roukes, VHF, UHF and microwave frequency nanome-
chanical resonators, New J. Phys. 7, 247 (2005).

[62] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Elsevier
Butterworth-Heinemann, New York, 1986).

[63] S. M. Carr, W. E. Lawrence, and M. N. Wybourne, Accessibility
of quantum effects in mesomechanical systems, Phys. Rev. B
64, 220101(R) (2001).

032412-10

https://doi.org/10.1038/nature16186
https://doi.org/10.1103/PhysRevLett.103.200503
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1088/1367-2630/10/9/095020
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1063/1.1418256
https://doi.org/10.1038/nature02658
https://doi.org/10.1103/PhysRevLett.109.013603
https://doi.org/10.1103/PhysRevA.83.052117
https://doi.org/10.1088/1361-6455/ab3bfc
https://doi.org/10.1088/0953-4075/48/1/015502
https://doi.org/10.1364/OE.23.007786
https://doi.org/10.1063/1.4896029
https://doi.org/10.1016/j.physleta.2013.08.024
https://doi.org/10.1103/PhysRevA.64.062311
https://doi.org/10.1088/0256-307X/21/1/003
https://doi.org/10.1016/j.physleta.2013.09.005
https://doi.org/10.1103/PhysRevLett.93.250502
https://doi.org/10.1103/PhysRevA.105.042610
https://doi.org/10.1364/JOSAB.415321
https://doi.org/10.1088/1612-2011/10/9/095202
https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10461
https://doi.org/10.1103/PhysRevA.93.033846
https://doi.org/10.1038/nnano.2008.200
https://doi.org/10.1038/32373
https://doi.org/10.1063/1.117548
https://doi.org/10.1021/nl0706695
https://doi.org/10.1063/1.1507833
https://doi.org/10.1063/1.1338959
https://doi.org/10.1088/1367-2630/7/1/247
https://doi.org/10.1103/PhysRevB.64.220101


IMPLEMENTATION OF CONTROLLED-NOT … PHYSICAL REVIEW A 110, 032412 (2024)

[64] S. Rips, I. Wilson-Rae, and M. J. Hartmann, Nonlinear nanome-
chanical resonators for quantum optoelectromechanics, Phys.
Rev. A 89, 013854 (2014).

[65] S. Rips, M. Kiffner, I. Wilson-Rae, and M. J. Hartmann, Steady-
state negative Wigner functions of nonlinear nanomechanical
oscillators, New J. Phys. 14, 023042 (2012).

[66] S. Rips, and M. J. Hartmann, Quantum information process-
ing with nanomechanical qubits, Phys. Rev. Lett. 110, 120503
(2013).

[67] D. F. V. James, Quantum computation with hot and cold ions:
An assessment of proposed schemes, Fortschr. Phys. 48, 823
(2000).

032412-11

https://doi.org/10.1103/PhysRevA.89.013854
https://doi.org/10.1088/1367-2630/14/2/023042
https://doi.org/10.1103/PhysRevLett.110.120503
https://doi.org/10.1002/1521-3978(200009)48:9/11<823::AID-PROP823>3.0.CO;2-M

