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A fault-tolerant error correction (FTEC) protocol with a high error suppression rate and low overhead is
very desirable for the near-term implementation of quantum computers. In this work, we develop a distance-
preserving flag FTEC protocol for the [[49, 1, 9]] concatenated Steane code, which requires only two ancilla
qubits per generator and can be implemented on a planar layout. We generalize the weight-parity error correction
(WPEC) technique from Tansuwannont and Leung [Phys. Rev. A 104, 042410 (2021)] and find a gate ordering
of flag circuits for the concatenated Steane code, which makes syndrome extraction with two ancilla qubits per
generator possible. The FTEC protocol is constructed using the optimization tools for flag FTEC developed
in Pato et al. [PRX Quantum 5, 020336 (2024)] and is simulated under the circuit-level noise model without
idling noise. Our simulations give a pseudothreshold of 1.64 × 10−3 for the [[49, 1, 9]] concatenated Steane
code, which is better than a pseudothreshold of 1.43 × 10−3 for the [[61, 1, 9]] 6.6.6 color code simulated
under the same settings. This is in contrast to the code capacity model where the [[61, 1, 9]] code performs
better.

DOI: 10.1103/PhysRevA.110.032411

I. INTRODUCTION

A quantum error-correcting code [1] protects quantum in-
formation from local noise by encoding logical operators into
nonlocal operators on a larger Hilbert space. In the case of
stabilizer codes [2], correcting errors is possible by measuring
and decoding the syndrome, which tells us the eigenvalues of
the stabilizer generators without destroying the encoded log-
ical information. The scheme offers protection of the logical
information at the cost of using multiple physical qubits per
logical qubit for encoding, and a single ancilla qubit per stabi-
lizer generator to extract each stabilizer generator’s syndrome
bit.

In a realistic setting where the gate, preparation, and
measurement operations are imperfect, a fault-tolerant error
correction (FTEC) protocol such as the ones proposed by
Shor [1], Steane [3], and Knill [4] is required to curb the
propagation of errors during the syndrome extraction in each
round of error correction. Turning a non-fault-tolerant proto-
col into a fault-tolerant one might increase the total number of
ancillary qubits [1,3–7], increase the depth of the syndrome
extraction circuit due to repeated syndrome measurements
[1], or decrease the effective distance (the minimum num-
ber of faults required to create a logical error) of the FTEC
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protocol [8–11]. It is of great interest to reduce all of these
types of overheads for various codes. Moreover, as near-term
quantum platforms are already capable of testing from dozens
up to hundreds of physical qubits [12–15], it is valuable to
explore low-overhead, distance-preserving protocols that are
optimized for smaller codes.

Code concatenation is a technique to construct families of
codes using multiple levels of encoding; logical qubits of a
higher-level code are encoded into logical qubits of a lower-
level code. The earliest threshold theorems for fault-tolerant
quantum computation [16–19] prove that as long as physical
errors are below the fault-tolerant accuracy threshold, the log-
ical error rate can be suppressed exponentially in the number
of concatenated layers. Two big challenges in concatenated
code families are decoding and complicated ancilla qubits.

Hard decoding is one option for decoding concatenated
codes, as presented by Aliferis, Gottesman, and Preskill [19].
Decoding and recovery are done layer by layer, making “hard
decisions” about possible errors at each level of concatena-
tion. Hard decoding can lead to a decrease in the effective
distance even under the code capacity noise model. In con-
trast, optimal decoding of concatenated codes under the code
capacity noise model was found by Poulin [20] using “soft de-
coding.” To our knowledge, Poulin’s soft decoder has not yet
been extended to circuit-level noise models on concatenated
codes.

At higher levels of concatenation, besides the data qubits,
the ancilla qubits are typically encoded in the code of the
level below. This increases the qubit overhead significantly.
In recent years, great progress has been made in creating
lightweight ancillary structures using flag qubits to measure
error syndromes and assist decoding [5–7,21–24].
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In this work, we explore the performance of the [[49, 1, 9]]
concatenated Steane code. We make use of the optimization
tools for small self-orthogonal Calberbank-Shor-Steane (CSS)
codes recently developed in [25], which provides a distance-
preserving, low-overhead syndrome extraction scheme with
only one syndrome ancilla qubit and one flag qubit per
stabilizer generator. Our contributions are as follows: (1)
We improve upon the state-of-the-art result of [26], which
proposed an FTEC protocol capable of correcting fault com-
binations from up to three faults using only two ancilla qubits.
With our careful controlled-NOT (CNOT) ordering, we achieve
a distance-preserving protocol that can correct up to four
faults. We also demonstrate a planar structure of the [[49, 1, 9]]
concatenated Steane code. (2) We compare the performance of
the [[49, 1, 9]] concatenated Steane code to the [[61, 1, 9]] 6.6.6
color code [27]. As reported by Sabo, Aloshius, and Brown
[28], the [[61, 1, 9]] 6.6.6 color code slightly outperforms the
[[49, 1, 9]] concatenated Steane code in exchange for a higher
qubit overhead under the code capacity error model. We re-
produce this result and establish that the lookup table-based
(LUT) decoder is equivalent to the trellis-based decoding [28].
Under circuit-level noise, we find that the [[49, 1, 9]] con-
catenated Steane code has a pseudothreshold of 1.64 × 10−3,
which, surprisingly, slightly outperforms the [[61, 1, 9]] 6.6.6
color code that has a pseudothreshold of 1.43 × 10−3. (3) We
show that while the [[49, 1, 9]] 4.8.8 color code has the same
number of qubits as the [[49, 1, 9]] concatenated Steane code,
the concatenated Steane code outperforms the 4.8.8 color code
when we look at the number of extra qubits required. This is
because it is not possible to construct a distance-preserving
FTEC with only a single flag qubit per generator for the 4.8.8
color codes, as shown in Appendix B. With a pseudothreshold
above 10−3, the 2D-embeddable, distance-preserving FTEC
protocol for the [[49, 1, 9]] concatenated Steane code thus pro-
vides an intriguing experimental target for near-term devices.

The paper is organized as follows: in Sec. II, we introduce
the planar structure of the [[49, 1, 9]] concatenated Steane code
in detail. The noise models and the definition of fault tolerance
are reviewed in Sec. III, followed by our CNOT ordering and
the decoders for the different noise models in Sec. IV. Nu-
merical results are explained in Sec. V, which we discuss in
Sec. VI and derive our conclusions in Sec. VII.

II. THE [[49, 1, 9]] CONCATENATED STEANE CODE

An [[n, k, d]] stabilizer code [2] is a code that uses n data
qubits to represent k logical qubits and has distance d . The
code can correct any error acting nontrivially on up to τ =
�(d − 1)/2� data qubits. A stabilizer code can be described
by its corresponding stabilizer group, an Abelian group that is
generated by r ≡ n − k commuting Pauli operators and does
not contain −I . The elements of the stabilizer group are called
stabilizers, and the codespace is defined by the simultaneous
+1 eigenspace of all stabilizers.

In this work, we focus on the [[49, 1, 9]] concatenated
Steane code [29], which is a Calderbank-Shor-Steane (CSS)
code [29,30], a stabilizer code for which the stabilizer genera-
tors can be chosen to be purely X or purely Z type. Before we
describe the [[49, 1, 9]] concatenated Steane code, let us first
consider the [[7, 1, 3]] Steane code. The code can be described

FIG. 1. (a) The [[7, 1, 3]] Steane code. (b) The [[49, 1, 9]] concate-
nated Steane code.

by the following stabilizer generators:

gx
1 : X I I X I X X, gz

1 : Z I I Z I Z Z,

gx
2 : I X I X X I X, gz

2 : I Z I Z Z I Z,

gx
3 : I I X I X X X, gz

3 : I I Z I Z Z Z.

(1)

Logical X and logical Z operators of the [[7, 1, 3]] code are
of the form X̃ = X ⊗7M and Z̃ = Z⊗7N , where M and N are
some stabilizers of the [[7, 1, 3]] code. One can verify that the
minimum weight of a logical operator is 3. The data qubits of
this code can be arranged on a plane as illustrated in Fig. 1(a).

The [[49, 1, 9]] concatenated Steane code can be obtained
by concatenating the [[7, 1, 3]] code with itself. The data
qubits of the [[49, 1, 9]] code can be divided into seven
blocks, in which each block has seven qubits that behave
like the [[7, 1, 3]] code. The [[49, 1, 9]] code can be de-
scribed by two types of stabilizer generators: the first-level
generators of the form gx

i ⊗ Ĩ⊗6, gz
i ⊗ Ĩ⊗6, Ĩ ⊗ gx

i ⊗ Ĩ⊗5, Ĩ ⊗
gz

i ⊗ Ĩ⊗5, . . . , Ĩ⊗6 ⊗ gx
i , Ĩ⊗6 ⊗ gz

i where Ĩ = I⊗7 (which are
the generators of the [[7, 1, 3]] code in each block), and the
second-level generators of the form

g̃x
1 : X̃ Ĩ Ĩ X̃ Ĩ X̃ X̃ , g̃z

1 : Z̃ Ĩ Ĩ Z̃ Ĩ Z̃ Z̃,

g̃x
2 : Ĩ X̃ Ĩ X̃ X̃ Ĩ X̃ , g̃z

2 : Ĩ Z̃ Ĩ Z̃ Z̃ Ĩ Z̃,

g̃x
3 : Ĩ Ĩ X̃ Ĩ X̃ X̃ X̃ , g̃z

3 : Ĩ Ĩ Z̃ Ĩ Z̃ Z̃ Z̃,

(2)

where X̃ and Z̃ are logical X and logical Z operators of the
[[7, 1, 3]] code. Note that the minimum weight of a second-
level generator is 12. Logical X and logical Z operators of the
[[49, 1, 9]] code are of the form X̄ = X ⊗49M and Z̄ = Z⊗49N ,
where M and N are some stabilizers of the [[49, 1, 9]] code.
Similar to the [[7, 1, 3]] code, it is possible to arrange the data
qubits of the [[49, 1, 9]] code on a plane as shown in Fig. 1(b).
Logical Hadamard (H), phase (S), and CNOT gates can be
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implemented for the [[49, 1, 9]] code by applying the corre-
sponding bitwise operation on all qubits in the code block or
on all pairs of qubits between two code blocks in the case
of CNOT gate, thus any Clifford operation can be performed
transversally.

III. NOISE MODELS AND FAULT-TOLERANT ERROR
CORRECTION DECODERS

For any stabilizer code, one can perform error correction
(EC) by first measuring the eigenvalues of the stabilizer gen-
erators. An r-bit string of the measurement results (where
bits 0 and 1 correspond to +1 and −1 eigenvectors of each
generator) is called an error syndrome. A mapping from a
sequence of syndromes to a recovery operator is called an
EC decoder. Since many possible combinations of faults can
give rise to the same sequence of syndromes, the EC decoder
succeeds if the actual data error due to faults and the recovery
operator are the same up to a multiplication of some stabilizer,
and the EC decoder fails if the actual data error due to faults
and the recovery operator is off by a multiplication of some
nontrivial logical operator.

In this work, we are interested in error correction in the
circuit-level noise model. Here we assume that single-qubit
and two-qubit gates can be faulty, where the gate faults are
modeled by a single-qubit Pauli error P ∈ {X,Y, Z} after
each single-qubit gate with error probability p/3 each, and a
two-qubit Pauli error P1 ⊗ P2 ∈ {I, X,Y, Z}⊗2 \ {I ⊗ I} after
each two-qubit gate with error probability p/15 each. We
also assume that a single-qubit preparation and a single-qubit
measurement can be faulty, where the faults are modeled by
a single-qubit bit-flip channel with error probability p after
each single-qubit preparation or before each single-qubit mea-
surement. This noise model reflects a platform in which the
strength of gate errors and qubit preparation and measurement
errors are relatively large compared to the strength of idling
qubit errors.

A naive way to measure the eigenvalue of a stabilizer
generator is to use a syndrome extraction circuit with a single,
so-called bare ancilla, as shown in Fig. 2(a). However, in the
circuit-level noise model, the number of faults that can be
corrected by an error correction protocol with this kind of
circuit might be less than the number of errors correctable
by the code. This is because a single gate fault may cause a
single-qubit error that can propagate throughout the protocol
and become an error on the multiple data qubits. Here we want
to ensure that the EC protocol is fault tolerant according to the
following definition from [31], which is extended from the
definition of FTEC from [19] (see also [25] for comparison
between definitions from [19] and [31]).

Definition 1. Fault-tolerant error correction [31].
Let t � �(d − 1)/2� where d is the distance of a stabilizer

code. An error correction protocol is t -fault tolerant if the
following two conditions are satisfied:

(1) For any input codeword with an error that can arise
from r faults before the protocol and corresponds to the trivial
cumulative flag vector, if s faults occur during the protocol
with r + s � t , ideally decoding the output state gives the
same codeword as ideally decoding the input state.

FIG. 2. (a) A syndrome extraction circuit with a bare ancilla for
measuring a stabilizer generator of the form ZZZZ . (b) A flag circuit
for measuring the same stabilizer generator.

(2) If s faults occur during the protocol with s � t , regard-
less of the number of faults that can cause the input error,
the output state differs from any valid codeword by an error
that can arise from s faults and corresponds to the trivial
cumulative flag vector.

In other words, whenever the total number of faults that
occurred in the EC protocol is no more than the number of
errors correctable by the underlying code, we want to ensure
that the EC protocol can correct the input errors as expected
and does not cause output errors which are not correctable by
the next EC cycle.

To handle the error propagation issue, this work utilizes
the flag FTEC scheme [5] in which a syndrome extraction
circuit uses another flag ancilla to catch any fault that can
lead to a high-weight error. An example of flag circuits is
displayed in Fig. 2(b). It is possible to construct a distance-
preserving flag FTEC scheme if, for a given set of syndrome
extraction circuits, the fault set Ft with t = τ = �(d − 1)/2�
is distinguishable; that is, any pair of fault combinations from
up to t faults lead to errors with the same syndrome and
flag information (the full syndrome) only when the errors are
equivalent up to a multiplication of some stabilizer, or equiva-
lently, none of the fault combinations from up to d − 1 faults
can lead to a nontrivial logical error on data qubits with trivial
flag information [31]. The fault-tolerant properties depend
heavily on the structure of the syndrome extraction circuits,
particularly the ordering of gates in the circuits. One goal of
this work is to find a good gate ordering for the [[49, 1, 9]]
concatenated Steane code, which gives a distinguishable fault
set. How good a gate ordering can be found will be explained
in Sec. IV.

Given a good gate ordering that satisfies the distinguisha-
bility condition, we can construct an FTEC decoder using the
ideas and techniques proposed in Ref. [25]. Here we consider
an FTEC decoder consisting of two parts: the space decoder,
which maps a reliable syndrome from a single time slice to a
recovery (Pauli) operator, and the time decoder, which finds
a reliable syndrome for the space decoder from a sequence
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of syndromes. The space decoder in this work is a lookup
table decoder, which is a mapping between the full syndrome
arising from each fault combination (from up to t = 4 faults)
and the corresponding n-qubit Pauli operator for recovery.
The lookup table from flag FTEC can be constructed from a
given set of flag circuits by propagating single faults to the
end of the circuit and generating all fault combinations of
them exhaustively [25]. A lookup table decoder is fast and
distance-preserving but requires a lot of memory to store the
entries. However, this is not an issue in our case since the
lookup table for the [[49, 1, 9]] code is manageable in size
(34 404 345 items with 0.46 GB memory used) and can be
constructed in our simulation.

When five or more faults occur, the measured full syn-
drome may not match the full syndrome of any of the fault
combinations in the lookup table. To find a recovery operator
in this case, we use the Meet-in-the-Middle (MIM) technique
[25] which performs a search at runtime during decoding,
starting from any full syndrome that is missing from the table.
Although the correction of five or more faults is not guaran-
teed, the MIM technique can significantly reduce the logical
error rate and lead to a higher pseudothreshold. In this work,
we use a lookup table decoder and MIM with search radius 3
as a space decoder for the [[49, 1, 9]] code in the circuit-level
noise model.

A syndrome obtained from a single round of full syndrome
measurements may or may not correspond to the actual error
on the data qubits, so repeated syndrome measurements are
required. In this work, we use the ZX separated time de-
coder [25], which we briefly summarize here. The ZX time
decoder is a two-tailed adaptive time decoder, an extension
of the adaptive strong decoder from [32] for flag FTEC. The
condition to stop repeated syndrome measurements for this
time decoder changes dynamically depending on the previous
measurement outcomes. In particular, this time decoder esti-
mates the number of occurred faults from the full syndrome
histories and deducts it from the targeted number of faults
(t). The repetition stops when there exists a syndrome that is
repeated more than the targeted number of faults. It has been
shown [32] that with the two-tailed adaptive time decoder, the
average number of syndrome measurement rounds for each
QEC cycle is no more than d . In addition, the ZX time decoder
leverages separated X and Z fault counting, in which Z-type
generator measurements are performed before X -type genera-
tor measurements, to further improve the pseudothreshold.

IV. FINDING THE GATE ORDERING FOR THE
CONCATENATED STEANE CODE

In this section, we first describe a good gate ordering for
the [[49, 1, 9]] concatenated Steane code, which gives a distin-
guishable fault set F4, then we explain how it can be found.
Since the [[49, 1, 9]] concatenated Steane code is a CSS code
in which X -type and Z-type generators can be chosen to be of
the same form, for simplicity, we will only describe syndrome
extraction circuits for measuring Z-type generators. In this
work, a first-level Z-type generator of weight 4 and a second-
level Z-type generator of weight 12 are measured using a flag
circuit similar to the one displayed in Fig. 3(a). The circuits
for measuring X -type generators are similar except that each

FIG. 3. (a) A flag circuit for measuring a Z-type stabilizer gen-
erator of weight w used in this work. A flag circuit for measuring an
X -type stabilizer generator of weight w can be obtained by replacing
each CNOT gate that connects the data qubit to the syndrome ancilla
with the gate in (b).

CNOT gate that couples the data qubit and the syndrome ancilla
is replaced by the gate in Fig. 3(b).

The ordering of CNOT gates in the flag circuits that give
a distinguishable fault set F4 are determined by the diagram
in Fig. 4 for the weight-12 operators. The ordering of the
weight-4 stabilizer generators does not affect the fault distin-
guishability. The explicit ordering for all stabilizer generators
used in this work is given in Table II in Appendix A, with the
qubit labeling given in Fig. 8.

1

1

1
12

12

12

FIG. 4. A CNOT ordering for the [[49, 1, 9]] code that ensures that
the fault set Ft is distinguishable. Here we display only the ordering
of the weight-12 stabilizer generators. The starting (1) and ending
(12) qubits for each generator are highlighted with the same color.
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FIG. 5. All possible X -type errors on the [[7, 1, 3]] Steane code with the syndrome �s = (100), where the order of the syndrome bits
corresponds to red (top), green (bottom-right), and blue (bottom-left) Z-type generators. Black and white vertices correspond to qubits with
and without errors, respectively. When evaluating the weight parities on the same side of the triangle, errors with the same logical class always
have the same weight parity.

Our development of flag circuits is inspired by the weight-
parity error correction (WPEC) technique and the flag circuits
proposed in [26] with an extension in [31]. The main differ-
ence is that the circuits in the original proposal only allow
a fault set F3 to be distinguishable, while our circuits allow
a fault set F4 to be distinguishable. In other words, when
applying to the [[49, 1, 9]] concatenated Steane code, a flag
FTEC protocol that uses the flag circuits from the previous
work can tolerate up to only three faults, while a protocol that
uses the circuits in this work can tolerate up to four faults.
The full details of our circuit development are described
below.

The key idea of WPEC is the following lemma:
Lemma 1. [31] Let C be an [[n, 1, d]] CSS code in which

n is odd and all stabilizer generators have even weight, and
let Sx,Sz be subgroups generated by X -type and Z-type gen-
erators of C, respectively. Also, let X ⊗n and Z⊗n be logical X
and logical Z operators. Suppose E1, E2 are Pauli errors of any
weights with the same syndrome.

(1) In case that E1, E2 are Z-type errors, E1E2 = M for
some M ∈ Sz if and only if E1, E2 have the same weight parity.

(2) In case that E1, E2 are X -type errors, E1E2 = M for
some M ∈ Sx if and only if E1, E2 have the same weight
parity.

That is, for errors with the same syndrome, we can deter-
mine the logical class of each error by its weight parity (in
this work, we let the logical class of each error be 0 if the error
has odd weight, and let the logical class be 1 otherwise). By
knowing the syndrome and the logical class of an unknown
data error, we know exactly what recovery operation should
be applied.

Consider error correction on the [[49, 1, 9]] concatenated
Steane code, in which each block of seven qubits behaves
like the [[7, 1, 3]] Steane code. If the weight parity and the
syndrome of an error in each block can be measured accu-
rately, then an error in each block can be corrected regardless
of the weight of the error. However, measuring the error
weight parities of all blocks is not straightforward. In [26], the
second-level generators of the [[49, 1, 9]] code are chosen to
be of the form X ⊗7 or Z⊗7 on four blocks (the weight of each
second-level generator is 28). The weight parities of errors
on all blocks are determined using the lookup table of the
first- and the second-level syndromes, and possible strings of
weight parities. With the flag circuits for first-level generators

and the nonflag circuits for second-level generators given in
[26], the fault set F3 is distinguishable.

Note that the weight parity of an X -type (or a Z-type) error
on each block of seven qubits is related to its commutation and
anticommutation relationship with the operator Z⊗7 (or X ⊗7)
on the same block. Also, Z⊗7 and X ⊗7 are not logical Z and
logical X operators of the minimum weight for the [[7, 1, 3]]
Steane code. These facts suggest an alternative way to deter-
mine a logical class of each error and lead to a generalization
of Lemma 1 as follows:

Lemma 2. Let C be an [[n, 1, d]] CSS code and let Sx,Sz

be subgroups generated by X -type and Z-type generators of
C, respectively. Also, let Lx be any logical X operator and Lz

be any logical Z operator. Suppose E1, E2 are Pauli errors of
any weights with the same syndrome.

(1) In case that E1, E2 are Z-type errors, E1E2 = M
for some M ∈ Sz if and only if [E1, Lx] = [E2, Lx] = 0 or
{E1, Lx} = {E2, Lx} = 0.

(2) In case that E1, E2 are X -type errors, E1E2 = M
for some M ∈ Sx if and only if [E1, Lz] = [E2, Lz] = 0 or
{E1, Lz} = {E2, Lz} = 0.

Proof. Here, we focus only on the first case where E1

and E2 are Z-type errors as the proof of the second case is
similar. Because E1 and E2 are Z-type errors with the same
syndrome, E1E2 is either a Z-type stabilizer or a logical Z op-
erator. Also, observe that [Lx, E1E2] = LxE1E2 − E1E2Lx =
[(−1)b1 − (−1)b2 ]E1LxE2 where bi = 0 if Ei and Lx com-
mute and bi = 1 if they anticommute. Similarly, we have
{Lx, E1E2} = LxE1E2 + E1E2Lx = [(−1)b1 + (−1)b2 ]E1LxE2.

(⇐) In case that [E1, Lx] = [E2, Lx] = 0 or {E1, Lx} =
{E2, Lx} = 0, we have [Lx, E1E2] = 0. Thus, E1E2 must be a
Z-type stabilizer in Sz.

(⇒) Since a pair of Pauli operators either commute
or anticommute, the negation of “[E1, Lx] = [E2, Lx] =
0 or {E1, Lx} = {E2, Lx} = 0” is “[E1, Lx] = {E2, Lx} =
0 or {E1, Lx} = [E2, Lx] = 0.” In either case, we have
{Lx, E1E2} = 0. Therefore, E1E2 must be a logical Z operator.
This completes the proof. �

Note that in contrast to Lemma 1, Lemma 2 does not
require n to be odd or all stabilizers to have even weight.

Consider possible X -type errors on the [[7, 1, 3]] Steane
code with the same syndrome �s = (100) depicted in Fig. 5 as
an example, where the order of the syndrome bits corresponds
to red (top), green (bottom-right), and blue (bottom-left) Z-
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1

12

2 1

2

12

(a) (b)

FIG. 6. A good CNOT ordering with effective distance 9 (a) and a bad CNOT ordering with effective distance 8 (b) for weight-12 generators
of the [[49, 1, 9]] concatenated Steane code. The ordering starts with qubit 1 and 2, ends with qubit 12. The only difference between the two
orderings is the swap of the first and second qubits.

type generators. Here we can see that two errors are logically
equivalent if and only if their weight parities evaluated on
the same side of the triangle are equal. This comes from the
fact that the Z-type operator of weight 3 on each side of the
triangle is a logical Z operator of the [[7, 1, 3]] Steane code.
That is, if we know exactly on which side of the triangle the
weight parity of the error is being measured, we can find the
logical class of the error accurately.

Lemma 2 and the example above suggest that we can
choose the second-level generators of the [[49, 1, 9]] concate-
nated Steane code to be operators of weight 12 (as described
in Section II) instead of weight 28 as in [26]. If only a single
fault occurs, a recovery operator for each block of seven qubits
can be found using the first-level syndrome from generators in
each block, together with the second-level syndrome, which
provides the logical class information (since we know exactly
which side of each triangle is being measured). Our goal
is to find a recovery operator when up to four faults occur.
Finding the logical class information for each block could be
more complicated when the number of faults increases since
each second-level syndrome bit provides the “sum” of the
logical classes from all blocks that the second-level generator
touches. One way to find the recovery operators is to iterate
through all possible fault combinations arising from up to
four faults and build a mapping between each full syndrome
and the corresponding logical classes from all blocks (similar
to the WPEC technique in [26]), where the possible values
depend on the CNOT ordering. Note that this is equivalent to
finding a CNOT ordering for flag circuits that give a distin-
guishable fault set, a problem in which the tools provided in
[25] can solve well if the code size is not too large.

To find such CNOT ordering, we use an idea similar to the
construction in [26]: the CNOT ordering for each circuit is
chosen in the way that possible errors arising from each single
fault are distributed to as many blocks as possible. This is to
avoid the case that many errors concentrate in a single block
but the flag bits are trivial as much as possible. Using the tools

provided in [25], we can verify that the ordering provided in
Table II gives a distinguishable fault set F4. The ordering for
any weight-12 generator is illustrated in Fig. 6(a). It should be
noted that our circuits for measuring second-level generators
are flag circuits, in contrast to the circuits in [26], which are
nonflag circuits.

We point out that choosing the gate ordering that distribute
errors alone cannot guarantee the distinguishability of F4. We
find that when using, for example, the ordering in Fig. 6(b)
for all weight-12 generators, F4 is not distinguishable; the bad
ordering differs from the good ordering only by a single swap
of the roles of two qubits. This swap results in the decrease of
the effective distance from 9 to 8, showcasing how sensitive
the protocol is to ordering.

V. NUMERICAL RESULTS

In our numerical simulations of the flag FTEC protocol on
the [[49, 1, 9]] concatenated Steane code, we collect data to
plot the logical error rate pL as a function of the physical error
rate p under the circuit-level noise model. The preparation of
the logical zero states on the data qubits at the beginning of
the protocol is assumed to be perfect. When applicable, gate
noise is implemented as single- and two-qubit depolarizing
instructions and preparation and measurement noises are im-
plemented as bit-flip noise on a single qubit after preparation
and before measurement operations. The simulator uses Pauli
frame propagation of noise terms through the Clifford-only
operations of the syndrome extraction circuits. In each round
of syndrome measurements, we use flag circuits with the gate
ordering described in Appendix A. After executing the neces-
sary number of noisy rounds determined by the time decoder,
the full syndrome obtained from the time decoder is passed
to the space decoder, which then gives us a recovery operator.
We then perform an ideal syndrome measurement, apply an
ideal recovery operator, and calculate the true eigenvalue of
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(a) (b)

FIG. 7. (a) The circuit level performance of the [[49, 1, 9]] concatenated Steane code and the [[61, 1, 9]] 6.6.6 color code. The two codes are
very close in performance; however, the pseudothreshold of the concatenated Steane code is roughly 14% higher than that of the 6.6.6 color
code. The pseudothreshold is against the p = 2p/3 line, denoted by the black dash-dot line on the graph. The dotted lines, which serve as a
guide to the eye, have the same slope as p5 and intersect at the pseudothresholds, showing that our protocol is distance-preserving. (b) Logical
vs physical error rates under code capacity error model for the [[49, 1, 9]] concatenated Steane code and the [[61, 1, 9]] 6.6.6 color code. The
pseudothreshold is against the p = 2p/3 line, denoted by the black dash-dot line on the graph. The dotted lines have the same slope as p5 and
intersect at the pseudothresholds, showing that both error-correcting codes have distance 9.

the logical Z observable on the output state. If the eigenvalue
of the logical Z observable is −1, we have a logical error.

For each physical error rate p, we collect up to 5 × 1010

sample points. We stop the collection early when the number
of logical errors reaches 1000. Error bars are reported as
shaded areas in our figures, and they should be interpreted
as the most likely area for the true value of the logical error
rate. The reported pL value is the sample mean. Using the
binomial likelihood function we can estimate the probability
that a given value pL is the correct probability of logical error
given the number of samples and number of logical errors.
The upper and lower bounds of the shaded area are defined as
pL values that are 103 times less likely than the sample mean,
the maximum likelihood estimator.

We generate the noisy circuit definitions in Python using
Cirq [33], sample the circuits using Stim [34], and decode
them with our C++ lookup table decoder [25]. Pseudothresh-
olds are calculated based on the intersection with the pL =
2p/3 line of the linearly interpolated sample mean. For pseu-
dothreshold errors, we calculate the intersections with the
pL = 2p/3 line of the upper and lower bounds and use the
one that is further from the pseudothreshold. We note that the
pL = 2p/3 line represents the infidelity of any single-qubit
pure state when it is sent through the depolarizing channel
in which each single-qubit Pauli error occurs with probability
p/3.

For comparison, we also perform numerical simulations of
the flag FTEC protocol on the [[61, 1, 9]] 6.6.6 color code of
distance 9. The 6.6.6 color code of distance d is an [[(3d2 +
1)/4, 1, d]] self-orthogonal CSS code, whose qubits can also
be laid out on a plane [27]. When performing flag FTEC using
flag circuits similar to the one in Fig. 3, it has been proved that
the code distance is preserved regardless of the gate ordering
being used [7,31]. The exact gate ordering for the [[61, 1, 9]]
code that we use is described in Table III in Appendix A. In
this work, we used the simulation data from [25] and collected

some more data points using the same simulator to reduce the
error bars.

The plots of pL versus p under the circuit-level noise model
for the [[49, 1, 9]] concatenate Steane code and the [[61, 1, 9]]
6.6.6 color code are shown in Fig. 7(a). Using the lookup table
decoder for flag FTEC, the MIM technique, the two-tailed
adaptive time decoder, and the ZX separated counting strategy
(as previously described in Section III), the [[49, 1, 9]] code
achieves a pseudothreshold of (1.64 ± 0.05) × 10−3, which
is slightly better than a pseudothreshold of (1.43 ± 0.07) ×
10−3 for the [[61, 1, 9]] code. The separation in logical error
rates between the two codes disappears when the physical
error rate is below p = 1.0 × 10−3.

While the difference is small, this result is surprising be-
cause in the code capacity error model reported in [28], the
ranking is the opposite, as the [[61, 1, 9]] code slightly outper-
forms the [[49, 1, 9]] code. In order to exclude the possibility
of the difference between our lookup table-based decoder and
the trellis decoder used in that work, we also simulate the
logical error rates for the two codes of interest under the
code capacity noise model (where the gate, preparation, and
measurement faults are absent). In this case, we use a lookup
table decoder for qubit errors only as a space decoder, and
time decoding is not necessary since the syndrome measure-
ments can be assumed to be perfect in this noise model. Our
results are reported in Fig. 7(b). While the pseudothresholds
of the two codes are in the same range, the separation in
logical error rates is clear when the physical error rate is
below p = 1.0 × 10−2. This confirms that the [[61, 1, 9]] code
outperforms the [[49, 1, 9]] code in the code capacity noise
model.

VI. DISCUSSION

It is natural to ask how the [[49, 1, 9]] concatenated Steane
code can beat the [[61, 1, 9]] 6.6.6 color code in the circuit-
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TABLE I. Number of fault locations under the circuit-level and code capacity error models for the [[49, 1, 9]] concatenated Steane code and
the [[61, 1, 9]] 6.6.6 color code. Data error refers to single-qubit depolarizing noise terms on each data qubit before a round of error correction.
Gate faults correspond to single-qubit and two-qubit depolarizing noise terms after single-qubit and two-qubit gates, respectively. Preparation
and measurement faults are bit-flip noise terms after ancilla reset and before ancilla measurement operations, both in the Z basis. The number
of locations for the circuit-level noise model is per round of error correction and per X or Z type of stabilizer measurement circuits, meaning
for a full syndrome measurement round, one needs to multiply the numbers by two.

Number of locations

Error model Code Data error Gate faults Preparation and measurement

Circuit level [[61, 1, 9]] 0 276 120
[[49, 1, 9]] 0 216 96

Code capacity [[61, 1, 9]] 61 0 0
[[49, 1, 9]] 49 0 0

level noise model. We conjecture that the number of locations
where faults can occur per round (noise instructions in Stim)
plays an important role in our settings. Table I displays the
number of possible locations for different codes and different
noise models.

Due to the logic of the adaptive syndrome measurement
techniques, when a fault occurs in a single round, it is very
likely that the syndrome of that round is different from the
syndrome of the previous round, causing the repeated syn-
drome measurements to continue. That is, more locations per
round likely lead to more rounds and also more total locations
in the whole protocol.

Note that the code distance is preserved in both codes and
both noise models, so all fault combinations with up to four
faults can be successfully corrected. Since the cases with five
faults are more likely to happen than the cases with six or
more faults, we conjecture that the logical error rate for each
code and each model is mainly determined by the proportion
of fault combinations with five faults that lead to decoding
failure. The proportion varies with the noise model, so the
ranking in the circuit-level noise model could be different
from the ranking in the code capacity noise model. The reason
that the [[61, 1, 9]] code performs worse in the circuit-level
noise model could be because its protocol has more total
locations on average compared to the [[49, 1, 9]] code in the
same noise model, which leads to more possible decoding
failure cases.

Another thing to point out is that the [[49, 1, 9]] concate-
nated Steane code has smaller average weight per stabilizer
generator compared to the [[61, 1, 9]] 6.6.6 color code; the
[[49, 1, 9]] code has six generators of weight 12 and 42 gener-
ators of weight 4, while the [[61, 1, 9]] code has 36 generators
of weight 6 and 24 generators of weight 4. This could be
another factor that makes the [[49, 1, 9]] code perform better
in the circuit-level noise model.

It should be noted that the 4.8.8 color code of distance 9
[27] is also a [[49, 1, 9]] self-orthogonal CSS code, so it is
natural to ask whether it performs better than the [[49, 1, 9]]
concatenated Steane code in the circuit-level noise model.
However, as shown in Appendix B, it is impossible to con-
struct a flag FTEC protocol with only a single-flag qubit per
generator that preserves the code distance for the 4.8.8 color
codes. Since more flags are required when decoding in the
circuit-level noise model, the 4.8.8 color code seems worse

than the concatenated Steane code in terms of qubit efficiency.
We still do not know whether the 4.8.8 color code could per-
form better than the concatenated Steane code. It is possible
that the 4.8.8 color code would perform worse since more
flag qubits involved would lead to more locations per round.
However, from our simulations it is clear that the situation is
subtle, and knowing the number of locations alone might not
be enough to predict the performance.

VII. CONCLUSION AND OUTLOOK

We found a distance-preserving, flag FTEC protocol with
only two ancilla qubits per generator for the [[49, 1, 9]]
concatenated Steane code. If we put physical connectivity
constraints aside, the concatenated Steane code outperforms
its topological siblings, the [[61, 1, 9]] 6.6.6 color code and the
[[49, 1, 9]] 4.8.8 color code, under circuit-level depolarizing
noise without idling noise. The 6.6.6 color code requires at
least 12 more data qubits than the concatenated Steane code
and still has lower performance near the pseudothreshold.
We also showed that the 4.8.8 code cannot have a distance-
preserving flag FTEC protocol with only a single flag qubit
per generator.

To our knowledge, no self-orthogonal CSS code of distance
9 with less than 49 data qubits has been found yet. Thus, we
believe that the level of error suppression that the [[49, 1, 9]]
concatenated Steane code can achieve might be a promising
target to demonstrate on an experimental platform where gate
errors dominate over idling noise and at least 51 qubits with
all-to-all qubit connectivity are available (assuming that fast
measurement and reset on ancilla qubits are possible). Early
fault tolerant demonstrations of Rydberg atom systems [15]
and trapped ion systems [14,35–38] promise to have the scale
as well as error characteristics to make them a promising
target for our scheme. We would like to emphasize that the
performances of the concatenated Steane code and the 6.6.6
color code are very close under the considered noise model.
This means that exposed to realistic noise, the ranking of the
two codes might change. This issue might be especially perti-
nent on a 2D array of neutral atoms, where the concatenated
Steane code might need more qubit movements than the 6.6.6
code. The more movements are expected due to the higher
connectivity of the weight-12 stabilizer generators, and these
moves might result in a significant increase in idling noise.
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FIG. 8. Qubit indices of the [[49, 1, 9]] concatenated Steane code
used in our numerical simulations. The CNOT orderings for the stabi-
lizer generators are based on these numbers.

Our protocol would need to be significantly modified to
work on platforms with high idling noise and constrained con-
nectivity, for example, superconducting qubit architectures.
We point out that the planar layout of the code allows for
embedding it in a 2D architecture. However, for the weight-12
stabilizer generators, the single-flag scheme imposes degree
13 connectivity on the ancilla qubits, which is much higher
than the currently available devices [12,13]. It is possible
to preserve planarity and low connectivity at the cost of an
increased number of ancilla qubits. Dominant idling noise
requires further optimizations to minimize the depth of our
circuit and, hence, to reduce the number of locations where
idling noise can occur. We leave this exploration to future
work.

Our methods handle the concatenated Steane code as a
regular color code, in the sense that we do not concatenate the
ancilla qubits and do not make explicit use of the concatenated
structure in our decoder, as opposed to what a level-by-level
hard decoder for a concatenated code in [19] would do. This
approach can be considered as an example of a circuit-level
soft decoder for a concatenated code. Poulin showed that in
the code capacity noise model, soft decoding using belief
propagation is efficient and optimal for concatenated codes
[20]. A further path of inquiry could be to find a circuit-level
soft decoder that has better scaling than our lookup table-
based method.

The role of CNOT ordering has proved to be critical for
preserving distance in the concatenated Steane code. CNOT

ordering might also have an impact on the success probabil-
ity of decoding fault combinations consisting of more than
�(d − 1)/2� faults for both the concatenated Steane code and
the 6.6.6 color code. It is unclear whether there exist CNOT

orderings that can close the gap between the two codes or

TABLE II. CNOT ordering for each generator of the [[49, 1, 9]]
concatenated Steane code.

Red Green Blue

[4,5,0,6] [2,3,4,6] [0,1,2,6]
[9,10,11,13] [11,12,7,13] [7,8,9,13]
[14,15,16,20] [18,19,14,20] [16,17,18,20]
[21,22,23,27] [23,24,25,27] [25,26,21,27]
[30,31,32,34] [28,29,30,34] [32,33,28,34]
[39,40,35,41] [35,36,37,41] [37,38,39,41]
[44,45,46,48] [46,47,42,48] [42,43,44,48]
[1,12,17,47,

2,7,18,42,

3,8,19,43]

[15,26,31,43,

16,21,32,44,

17,22,33,45]

[29,40,3,45,

30,35,4,46,

31,36,5,47]

even restore the ranking found under code capacity error
models. The exact conditions of gate orderings that can give
a distinguishable fault set is still an open question. Another
interesting research direction would be investigating whether
it is possible to generalize our techniques to a concatenated
Steane code with more levels of concatenation. It is also
intriguing to explore whether our techniques can be applied
in the recently discovered high-performance concatenated ar-
chitectures that concatenate different codes at different levels
[39,40]. If possible, the combined extraction of multiple levels
with only a few extra flag qubits could result in significant
qubit savings.

Our work highlights the fact that the code performance
ranking under the code capacity noise model does not pre-
dict performance ranking under the circuit-level noise model.
Under the code capacity noise model, the [[61, 1, 9]] 6.6.6
color code performs better than the [[49, 1, 9]] concatenated
Steane code, and the [[49, 1, 9]] 4.8.8 color code has an even
higher threshold than the [[61, 1, 9]] 6.6.6 color code [28]. In
circuit-level noise restricted to using a single flag qubit per

FIG. 9. Qubit indices of the [[61, 1, 9]] 6.6.6 color code used in
our numerical simulations. The CNOT orderings for the stabilizer
generators are based on these numbers.
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TABLE III. CNOT ordering for each generator of the [[61, 1, 9]]
6.6.6 color code.

Red Green Blue

[0,2,3,1] [1,6,5,3] [44,45,53,52]
[4,10,11,7] [9,18,17,13] [46,47,55,54]
[14,24,25,19] [23,36,35,29] [48,49,57,56]
[30,44,45,37] [43,60,59,51] [50,51,59,58]
[5,6,9,13,12,8] [7,8,12,16,15,11] [2,3,5,8,7,4]
[15,16,21,27,26,20] [19,20,26,32,31,25] [10,11,15,20,19,14]
[17,18,23,29,28,22] [21,22,28,34,33,27] [12,13,17,22,21,16]
[31,32,39,47,46,38] [37,38,46,54,53,45] [24,25,31,38,37,30]
[33,34,41,49,48,40] [39,40,48,56,55,47] [26,27,33,40,39,32]
[35,36,43,51,50,42] [41,42,50,58,57,49] [28,29,35,42,41,34]

generator, the concatenated Steane code comes out as the best
performer. While we conjecture that the role of CNOT ordering,
the number of fault locations, and the average weight per gen-
erator all play a role in creating these effects, more exploration
and data are needed for a concrete theory.

All source code to reproduce the data and the actual data in
this work are available to download [41].
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APPENDIX A: EXPLICIT CNOT ORDERINGS

For our numerical simulations, we used the indexing for the
qubits in the [[49, 1, 9]] concatenated Steane code as displayed
in Fig. 8. The orderings of the data CNOT operators for each
stabilizer generator are then defined in Table II using these
indices.

Similarly, we used the indexing for the qubits in the
[[61, 1, 9]] 6.6.6 color code as displayed in Fig. 9. The order-
ings of the data CNOT operators for each stabilizer generator
are then defined in Table III using these indices.

APPENDIX B: NO-GO THEOREM FOR
DISTANCE-PRESERVING FLAG FTEC WITH SINGLE

FLAG ANCILLA FOR THE 4.8.8 COLOR CODES

In this Appendix we prove that for any 4.8.8 color code of
distance d � 5, it is impossible to construct a flag FTEC pro-
tocol with a single flag ancilla that preserves the code distance.
The proof has two main steps: (1) We perform exhaustive
search on all possible CNOT orderings for the 4.8.8 color code
of distance 5, given that each syndrome extraction circuit

FIG. 10. Weight-5 logical operators of the 4.8.8 color code of distance 5 that overlap with exactly two supporting qubits of the weight-8
stabilizer generator. Only logical operators with distinct sets of overlapping qubits are displayed
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FIG. 11. Weight-5 logical operators of the 4.8.8 color code of distance 5 that overlap with exactly four supporting qubits of the weight-8
stabilizer generator. The logical operators in the upper row are equivalent to the logical operators in the lower row up to a multiplication of the
weight-8 stabilizer generator.

have only one flag ancilla (similar to the circuit in Fig. 3). In
this step, we show that for any possible single-flag syndrome
extraction circuit and any possible CNOT ordering, at least one
logical operator of weight 5 with trivial flag bits can arise from
four or fewer faults [42]. (2) We extend the result to the code
of distance d = 5 + 2i with i = 1, 2, 3, . . . by relating each
CNOT ordering for that code with a CNOT ordering for the code
of distance 5 of a similar form. In this step, we show that for
any possible ordering for the code of distance d = 5 + 2i, at
least one logical operator of weight 5 + 2i with trivial flag bits
can arise from 4 + 2i or fewer faults.

In Step 1 we start by observing that the 4.8.8 color code
of distance 5 has a single weight-8 stabilizer generator, and
all the other stabilizer generators have weight 4. For each
weight-4 generator, we choose its flag circuit to be the circuit
in Fig. 2(b), the best possible flag circuit for each weight-4
generator in which any single fault that can lead to a weight-2
data error always gives a nontrivial flag bit. Therefore, any
possible fault combination with trivial flag bits from each
weight-4 generator consists of at least two faults. Such a
fault combination give rise to a single- or two-qubit data
error (up to a multiplication of the same generator), thus the
CNOT ordering for any weight-4 generator cannot impact the
distinguishability of the fault set. That is, to search through all
possible orderings of data CNOTs, it is sufficient to consider
only 8! = 40320 CNOT orderings on the weight-8 generator.

We also consider all possible configurations of the two flag
CNOT gates for the circuit measuring the weight-8 generator.
Here we assign a pair (s, e) where s, e ∈ {0, 1, . . . , 8} to the
flag CNOTs, denoting two data CNOTs the two flag CNOTs
are to be inserted after (0 refers to the location before the
first data CNOT). For example, the configuration of the tradi-
tional flag circuit as in Fig. 3 corresponds to the pair (1,7).
We iterate through all pairs of flag CNOTs with s < e, from
(0, 1), (0, 2), . . . to (7,8).

Next, we generate two sets of possible logical operators of
weight 5, the W2L and the W4L sets, which contain logical
operators that overlap with the weight-8 generators on exactly
two and four qubits, respectively. More precisely, let Q be
the set of supporting qubits of the weight-8 generator. The
W2L set contains all logical operators L such that wt(L) = 5
and |supp(L) ∩ Q| = 2, and the W4L set that contains all
logical operators L such that wt(L) = 5 and |supp(L) ∩ Q| =
4. Logical operators in the W2L and the W4L sets are
shown in Figs. 10 and 11, respectively [for the W4L set, we

display only the logical operators in which supp(L) ∩ Q are
distinct].

For a given CNOT ordering of the weight-8 generator and a
flag CNOT pair, the effective distance decreases if there exists a
fault combination of four or fewer faults that results in one of
the logical operators in the W2L or the W4L set. There are two
cases that can cause the distance loss: (a) the case that a single,
unflagged fault on the weight-8 generator leads to a weight-
2 error whose support is the same as supp(L) ∩ Q of some
logical operator L in the W2L set. This weight-2 error and
three other faults from weight-4 generators can cause a logical
operator in the W2L set; (b) the case that two faults on the
weight-8 generator lead to an error of weight 3 (or 4) whose
support is a subset of supp(L) ∩ Q of some logical operator
L in the W4L set. This error of weight 3 (or 4) and two (or
one) other faults from weight-4 generators can cause a logical
operator in the W4L set. In any case, 4 or fewer faults can
cause a logical operator of weight 5.

We tested the full population of 8! = 40320 CNOT order-
ings for the weight-8 generator across all possible flag CNOT

pairs and found that the FTEC protocol loses distance for
all orderings. This proves that it is impossible to construct
distance-preserving flag FTEC with single flag ancilla for the
4.8.8 color code of distance 5.

In Step 2 we observe that any of the logical operators in the
W2L or the W4L set can be extended to a logical operator of
weight 5 + 2i on any 4.8.8 color code of distance 5 + 2i, i =
1, 2, 3, . . .. This is due to the fact that each logical operator

FIG. 12. A weight-5 logical error on the 4.8.8 color code of
distance 5 can be extended to a logical error of weight 5 + 2i on the
code of distance 5 + 2i by adding 2i errors on the qubits that connect
the old and the new bottom boundaries (depicted by horizontal lines).
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has support on at least one qubit on the bottom boundary (the
base of the triangle) of the code of distance 5. On the code of
distance 7, an error of the same form can be connected to the
red boundary by adding two data errors. We can repeat this
process i times for the code of distance 5 + 2i. See Fig. 12 for
an example.

Each CNOT ordering for the code of distance 5 + 2i has
its corresponding CNOT ordering on the code of distance 5.

Because for the code of distance 5, a logical operator in the
W2L or the W4L set with trivial flag bits can arise from four
or fewer faults for all CNOT orderings, we find that for the code
of distance 5 + 2i, a logical operator of weight 5 + 2i with
trivial flag bits can also arise from four or fewer faults plus 2i
data errors for all CNOT orderings. That is, distance-preserving
flag FTEC with single flag ancilla is impossible for any 4.8.8
color code of distance d � 5.
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