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The geometric quantum discord of a two-qudit state has been studied in many papers; however, its exact
analytical value in the explicit form is known only for a general two-qubit state, a general qubit-qudit state,
and some special families of two-qudit states. Based on the general Bloch vectors formalism [E. R. Loubenets
et al., J. Phys. A: Math. Theor. 54, 195301 (2021)], we find the explicit exact analytical value of the geometric
quantum discord for an arbitrary two-qudit state of any dimension via the parameters of its correlation matrix
and the Bloch vectors of its reduced states. This general analytical result includes all the known exact results
on the geometric quantum discord only as particular cases and proves rigorously that the lower bound on the
geometric discord presented in [S. Rana et al., Phys. Rev. A 85, 024102 (2012)] constitutes its exact value for
each two-qudit state. Moreover, our general result allows us to find for an arbitrary two-qudit state, pure or mixed,
the upper and lower bounds on its geometric quantum discord, expressed via the Hilbert space characteristics of
this state.
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I. INTRODUCTION

As shown by Bell theoretically [1] and later experimen-
tally by Aspect et al. [2], the probabilistic description of a
quantum correlation scenario does not, in general, agree with
the classical probability model. Nonclassicality of quantum
correlations is one of the main resources for many quantum in-
formation processing tasks. Among these quantum resources,
Bell nonlocality and entanglement are the most studied; see
[3–6] and references therein for the quantitative and qualita-
tive relations between them.

Nevertheless, there are quantum states that exhibit nonclas-
sical correlations even without entanglement and this led to
the notion of the quantum discord [7], which is conceptually
rich; however, it is very hard to calculate it even for a two-
qubit state [8].

Due to the complexity [9] of computation of the quan-
tum discord, there were also introduced related concepts, like
the measurement-induced nonlocality [10] and the geometric
quantum discord [11].

The geometric quantum discord is a geometric measure of
quantum correlations of a bipartite quantum state, which is
defined via the distance from this state to the set � of all
states with the vanishing quantum discord [11]. In the present
article, the geometric quantum discord Dg(ρ) of a two-qubit
state ρ on Hd1 ⊗ Hd2 is defined via the Hilbert-Schmidt norm
between states:

Dg(ρ) := min
χ∈�

||ρ − χ ||22. (1)

In other definitions [12–14] of the geometric quantum discord,
different than in (1) distances are used.

Though the optimization problem for the computation
of the geometric quantum discord of a bipartite state is

*Contact author: elena.loubenets@hse.ru

much simpler than that for the quantum discord, its exact
value has been explicitly computed only in some particular
cases—namely, for a general two-qubit state [11], a general
qubit-qudit state [15], a general pure two-qudit state [16], and
some special families of mixed two-qudit states [15,17].

However, to our knowledge, for a general two-qudit state
of an arbitrary dimension, the explicit exact analytical value
of the geometric quantum discord has not been reported in the
literature—only its lower bounds [15,17–20].

Geometric quantum discord is a useful concept with ap-
plications to quantum state discrimination [21], decoherence
[22–25], quantum phase estimation, quantum teleportation,
and remote state preparation protocols; see [26] and refer-
ences therein. For certain states and certain quantum channels,
geometric quantum discord has been shown [27–29] to be
more resilient than entanglement in dissipative environments,
making it a more robust measure for quantifying quantum
correlations in decoherence scenarios. Recent studies suggest
that geometric quantum discord is also a valuable quantifica-
tion of quantum correlations in high-energy physics [30] and
quantum gravity [31,32] contexts.

In the present paper, for an arbitrary two-qudit state ρ on
Hd1 ⊗ Hd2 , pure or mixed, we find in the explicit form the ex-
act analytical value of its geometric quantum discord (1). This
rigorously proved general result indicates that the lower bound
on the geometric quantum discord found in [15] constitutes
its exact value for each two-qudit state and includes only as
particular cases the exact results for (i) general two-qubit [11]
and qubit-qudit states [15], (ii) an arbitrary pure two-qudit
state [16], and (iii) some special families of two-qudit states
[15,17]. It also allows us to find the general upper bounds on
the geometric quantum discord of an arbitrary two-qudit state
in terms of its Hilbert space characteristics.

The paper is organized as follows. In Sec. II, we introduce
the main issues of the general Bloch vectors formalism [33]
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for a finite-dimensional quantum system on which we build
up the calculations in this paper. In Sec. III, we find in the
explicit analytical form the exact value of the geometric quan-
tum discord for an arbitrary two-qudit state. In Sec. IV, this
result allows us to find general upper and lower bounds on the
geometric quantum discord in a general two-qudit case. In
Sec. V, we discuss the main results of this paper and their im-
portance for the practical tasks involving two-qudit quantum
systems.

II. PRELIMINARIES: GENERAL BLOCH
VECTORS FORMALISM

In this section, we briefly recall the main issues of the
general Bloch vectors mathematical formalism developed in
[33] for the description of properties and behavior of a finite-
dimensional quantum system.

Consider the vector space Ld of all linear operators X
on a complex Hilbert space Hd of a finite dimension d � 2.

Equipped with the scalar product 〈Xi, Xj〉Ld := tr[X †
i Xj], Ld

is a Hilbert space of the dimension d2, referred to as Hilbert-
Schmidt. Denote by

Bϒd := {
Id , ϒ

( j)
d ∈ Ld , j = 1, . . . , (d2 − 1)

}
,

ϒ
( j)
d = (

ϒ
( j)
d

)† �= 0,

tr
[
ϒ

( j)
d

] = 0, tr
[
ϒ

( j)
d ϒ

(m)
d

] = 2δ jm (2)

an operator basis in Ld consisting of the identity operator
Id on Hd and a tuple ϒd := (ϒ (1)

d , . . . , ϒ
(d2−1)
d ) of traceless

Hermitian operators mutually orthogonal in Ld . For d � 3,

some properties of a particular basis of this type, resulting in
the generalized Gell-Mann representation, were considered in
[34–42].

For an arbitrary qudit state ρ, the decomposition via a basis
(2) constitutes the generalized Bloch representation [33]

ρd = Id

d
+
√

d − 1

2d
(rϒd · ϒd ), (3)

rϒd · ϒd :=
d2−1∑
j=1

r ( j)
ϒd

ϒ
( j)
d , (4)

rϒd =
√

d

2(d − 1)
tr[ρdϒd ] ∈ Rd2−1, (5)

where rϒd ∈ Rd2−1 is referred to as the Bloch vector of a qudit
state ρd . For a state ρd , the norm of its Bloch vector satisfies
the relations

‖rϒd ‖2
Rd2−1 = d

d − 1

(
tr
[
ρ2

d

]− 1

d

)
� 1 (6)

and is independent of the choice of a tuple ϒd in an operator
basis (2). For the maximally mixed state, the Bloch vector is
equal to zero.

If a state ρd is pure, then the norm of its Bloch vector rϒd

is equal to ‖rϒd ‖Rd2−1 = 1. However, in contrast to a qubit
case, for an arbitrary d > 2, not any unit vector r ∈ Rd2−1

corresponds via representation

τd = Id

d
+
√

d − 1

2d
(r · ϒd ) (7)

to a pure state.

Namely, by Proposition 7 and Theorem 2 in [33] a Hermi-
tian operator (7) with the unit trace constitutes a pure state if
and only if

‖r‖2
Rd2−1 = 1, ‖(r · ϒd )(−)‖0 =

√
2

d (d − 1)
, (8)

where notation ‖ · ‖0 means the operator norm of a linear
operator on Hd and notation X (−) means the nonnegative
operator in the unique decomposition of a self-adjoint oper-
ator X via X = X (+) − X (−), where X (±) � 0, X (+)X (−) =
X (−)X (+) = 0.

For d = 2 and ϒ2 = σ = (σ1, σ2, σ3), where σ is the qubit
spin operator on C2, the first of the relations in (8) implies the
second one.

From (3) and (6) it follows that, for a state ρd , the values of
the norms ‖rϒd ‖Rd2−1 and ‖(rϒd · ϒd )(−)‖0 do not depend on a
choice of a tuple ϒd in decomposition (3).

Note that, by Lemma 1 in [42], the bounds√
2

d
� ‖r · ϒd‖0

‖r‖Rd2−1

�
√

2(d − 1)

d
(9)

hold for any vector r ∈ Rd2−1 and any tuple ϒd .
By Eq. (70) in [33], for any two qudit states ρd , ρ ′

d , the
scalar product of their Bloch vectors satisfies the relation

rϒd · r′
ϒd

� − 1

d − 1
, (10)

where equality holds iff tr[ρdρ
′
d ] = 0.

In view of Theorem 2 in [33], relation (10), and iden-
tity

∑
k |k〉〈k| = Id , valid for any orthonormal basis {|k〉 ∈

Hd , k = 1, . . . , d}, we have the following statement needed
for our proof of Theorem 1 in Sec. III.

Proposition 1. Representation (7) establishes the one-
to-one correspondence between orthonormal bases {|k〉 ∈
Hd , k = 1, . . . , d} in Hd and sets

�ϒd = {
yk ∈ Rd2−1, k = 1, . . . , d

}
(11)

of vectors yk in Rd2−1, satisfying the relations
d∑

k=1

yk = 0, ‖yk‖Rd2−1 = 1, yk1 · yk2 = − 1

d − 1
, (12)

∀k1 �= k2,

‖(yk · ϒd )(−)‖0 =
√

2

d (d − 1)
, ∀k = 1, . . . , d. (13)

For a two-qudit state ρd1×d2 on Hd1 ⊗ Hd2 , d1, d2 � 2, the
representation

ρd1×d2 = Id1 ⊗ Id2

d1d2
+
√

d1 − 1

2d1
(r1 · ϒd1 ) ⊗ Id2

d2

+
√

d2 − 1

2d2

Id1

d1
⊗ (

r2 · ϒd2

)
+ 1

4

∑
i, j

T (i j)
ρd1×d2

(
ϒ

(i)
d1

⊗ϒ
( j)
d2

)
(14)
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is referred [33] to as the generalized Pauli representation and
constitutes decomposition (3) via the operator basis of type
(2) with the elements having the tensor product form

Id1 ⊗ Id2 , ϒ
(i)
d1

⊗ Id2√
d2

,
Id1√
d1

⊗ ϒ
( j)
d2

, ϒ
(i)
d1

⊗ ϒ
( j)
d2

,

i = 1, . . . ,
(
d2

1 − 1
)
, j = 1, . . . ,

(
d2

2 − 1
)
,

ϒ
(m)
dn

= (
ϒ

(m)
dn

)† �= 0, tr
[
ϒ

(m)
dn

] = 0,

tr
[
ϒ

(m1 )
dn

ϒ
(m2 )
dn

] = 2δm1m2 , n = 1, 2. (15)

In representation (14),

r1 =
√

d1

2(d1 − 1)
tr
[
ρd1×d2

(
ϒd1 ⊗ Id2

)] ∈ Rd2
1 −1, (16)

r2 =
√

d2

2(d2 − 1)
tr
[
ρd1×d2

(
Id1 ⊗ ϒd2

)] ∈ Rd2
2 −1,

‖r1‖Rd2
1 −1 � 1, ‖r2‖Rd2

2 −1 � 1, (17)

are the Bloch vectors of states ρ1 = trH2 [ρd1×d2 ] and ρ2 =
trH1 [ρd1×d2 ] on Hd1 and Hd2 , respectively, reduced from a
two-qudit state ρd1×d2 and satisfying the relation

tr
[
ρ2

j

] = 1

d j
+ d j − 1

d j
||r j ||2

R
d2

j −1 , j = 1, 2, (18)

while

T (i j)
ρd1×d2

:= tr
[
ρd1×d2

(
ϒ

(i)
d1

⊗ ϒ
( j)
d2

)]
, (19)

i = 1, . . . , d2
1 − 1, j = 1, . . . , d2

2 − 1,

are the elements of the real-valued matrix Tρd1×d2
referred to as

the correlation matrix of a two-qudit state ρd1×d2 .
In case of a pure two-qudit state ρd1×d2 , d1, d2 � 2, by the

Schmidt theorem tr[ρ2
1 ] = tr[ρ2

2 ] and, in view of relation (18),
this implies

1

d1
+ d1 − 1

d1
‖r1‖2

Rd2
1 −1 = 1

d2
+ d2 − 1

d2
‖r2‖2

Rd2
2 −1 . (20)

From the generalized Pauli representation (14) it also follows
that

tr
[
ρ2

d1×d2

] = 1

d1d2
+ d1 − 1

d1d2
‖r1‖2

Rd2
1 −1

+ d2 − 1

d1d2
‖r2‖2

Rd2
2 −1 + 1

4

∑
i, j

(
T (i j)

ρd1×d2

)2
, (21)

so that expression (21) and relation tr[ρ2
d1×d2

] � 1 imply

d1 − 1

d1d2
‖r1‖2

Rd2
1 −1 + d2 − 1

d1d2
‖r2‖2

Rd2
2 −1

+ 1

4

∑
i, j

(
T (i j)

ρd1×d2

)2
� d1d2 − 1

d1d2
, (22)

where equality holds iff a state ρd1×d2 is pure.
Since in equality (21) the values of trace tr[ρ2

d1×d2
] and the

Bloch vectors’ norms ‖r1‖2

Rd2
1 −1

and ‖r2‖2

Rd2
2 −1

do not depend

on a choice of tuples ϒd1 , ϒd2 in decomposition (14), the same
is true for the sum

∑
i, j (T

(i j)
ρd1×d2

)2 = tr[T †
ρd1×d2

Tρd1×d2
], which

constitutes the trace of the positive operator T †
ρd1×d2

Tρd1×d2

on Rd2
2 −1.

If d1 = d2 =: d, then, for every two-qudit state ρd×d on
Hd ⊗ Hd , d � 2,

‖r1‖2
Rd2−1 + ‖r2‖2

Rd2−1 + d2

4(d − 1)
tr[T †

ρd×d
Tρd×d ] � d + 1,

(23)

and the bound (48) in [42] and the above upper bound in (9)
imply

‖Tρd×d n‖2
Rd2−1 �

√
2

d

√
2(d − 1)

d
‖Tρd×d n‖Rd2−1

⇒ ‖Tρd×d n‖Rd2−1 � 2

√
d − 1

d
, (24)

for all n ∈ Rd2−1, ‖n‖ � 1√
d−1

. This implies that, for every
two-qudit state and any tuples ϒd1 , ϒd2 , the spectral (operator)
norm ‖T ‖0 of the correlation matrix T is upper bounded by

‖Tρd×d ‖0 := sup
‖n‖=1

‖Tρd×d n‖Rd2−1

= √
d − 1 sup

‖n‖=1

∥∥∥∥Tρd×d

(
n√

d − 1

)∥∥∥∥
Rd2−1

� 2(d − 1)

d
. (25)

Recall that ‖Tρd×d ‖2
0 is the maximal eigenvalue of the positive

self-adjoint operator T †
ρd×d

Tρd×d .

Furthermore, for every separable two-qudit state

ρ
(sep)
d×d =

∑
k

βkρ
(k)
1 ⊗ ρ

(k)
2 , βk >0,

∑
k

βk=1, (26)

on Hd ⊗ Hd , d � 2, the correlation matrix T
ρ

(sep)
d×d

and the
Bloch vectors (16), (17) have the form

T
ρ

(sep)
d×d

= 2(d − 1)

d

∑
k

βk

∣∣r (k)
1

〉〈
r (k)

2

∣∣,
r1 =

∑
k

βkr (k)
1 , r2 =

∑
k

βkr (k)
2 , (27)

where r (k)
j are the Bloch vectors of states ρ

(k)
j , j = 1, 2, given

by (5), and the operator norm of the correlation matrix is upper
bounded by∥∥T

ρ
(sep)
d×d

∥∥
0 � 2(d − 1)

d

∑
k

βk

∥∥∣∣r (k)
1

〉〈
r (k)

2

∣∣∥∥
0

= 2(d − 1)

d

∑
k

βk

∥∥r (k)
1

∥∥
Rd2−1

∥∥r (k)
2

∥∥
Rd2−1

� 2(d − 1)

d
. (28)

The concurrence C|ψ〉〈ψ | of a pure two-qudit state ρd1×d2 =
|ψ〉〈ψ | on Hd1 ⊗ Hd2 , d1, d2 � 2, is defined by the relation

C|ψ〉〈ψ | =
√

2
(
1 − tr

[
ρ2

j

])
(29)
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and, in view of Eqs. (18) and (20), takes the form

C|ψ〉〈ψ | =
√

2
di − 1

d j

(
1 − ‖r j‖2

R
d2

j −1

)
, j = 1, 2. (30)

If we introduce the concurrence C̃|ψ〉〈ψ | normalized to unity in
the case of a maximally entangled quantum state, as it is done
in [33], then

C|ψ〉〈ψ | =
√

2
dk − 1

dk
C̃|ψ〉〈ψ |, dk = min{d1, d2}, (31)

and

C̃|ψ〉〈ψ | =
√

1 − ‖rk‖2

Rd2
k −1

. (32)

In a two-qubit case, C̃|ψ〉〈ψ | = C|ψ〉〈ψ |.
For a general state ρd1×d2 , pure or mixed, concurrence Cρ

is defined via the relation

Cρd1×d2
= inf

{αi,ψi}

∑
αiC|ψi〉〈ψi|, (33)

where ρd1×d2 = ∑
i αi|ψi〉〈ψi|,

∑
i αi = 1 , αi > 0 is a possi-

ble convex decomposition of the state ρd1×d2 via pure states;
see [5,43] and references therein.

III. GEOMETRIC QUANTUM DISCORD

A general quantum-classical1. state on Hd1 ⊗ Hd2 has the
form

χd1×d2 =
d2∑

k=1

αkσk ⊗ |k〉〈k|, αk � 0,
∑

k

αk = 1,

|k〉 ∈ Hd2 , k = 1, . . . , d2,
〈
k j1

∣∣k j2

〉 = δ j1 j2 ,

d2∑
k=1

|k〉〈k| = Id2 . (34)

For short, we further omit the below indices at states indi-
cating its dimensions at two sites.

In order to find the geometric quantum discord Dg(ρ) :=
minχ tr[(ρ − χ )2] of a state ρ, let us consider the decom-
position of the difference between states ρ and χ via their
generalized Pauli representations (14). We have

1In this paper, we refer to the right geometric discord instead of the
left discord as in [11]

ρ − χ =
√

d1 − 1

2d1

⎡⎣⎛⎝r1 −
d2∑

k=1

αkxk

⎞⎠ · ϒd1

⎤⎦⊗ Id2

d2
+
√

d2 − 1

2d2

Id1

d1
⊗
⎡⎣⎛⎝r2 −

d2∑
k=1

αkyk

⎞⎠ · ϒd2

⎤⎦

+ 1

4

∑
i=1,...,d1,
j=1,...,d2

⎛⎝T (i j)
ρ − 2

√
(d1 − 1)(d2 − 1)

d1d2

d2∑
k=1

αkx(i)
k y( j)

k

⎞⎠ϒ
(i)
d1

⊗ ϒ
( j)
d2

, (35)

where the Bloch vectors r1 ∈ Rd2
1 −1, r2 ∈ Rd2

2 −1 and T (i j)
ρ are

defined in (16), (17), and (19), respectively, and have norms
‖r1‖Rd2

1 −1 � 1, ‖r2‖Rd2
2 −1 � 1, whereas for k = 1, . . . , d2,

xk =
√

d1

2(d1 − 1)
tr
[
σkϒd1

] ∈ Rd2
1 −1, ‖xk‖Rd2

1 −1 � 1,

yk =
√

d2

2(d2 − 1)
〈k|ϒd2 |k〉 ∈ Rd2

2 −1, ‖yk‖Rd2
2 −1 = 1 (36)

are, respectively, the Bloch vectors of states σk on Hd1 and
mutually orthogonal pure states |k〉〈k|, ∑d2

k=1 |k〉〈k| = Id2 ,

on Hd2 .

By Proposition 1, representation (7) establishes the one-to-
one correspondence between orthonormal bases in Hd2 and
sets �ϒd2

= {yk ∈ Rd2
2 −1, k = 1, . . . , d2} of vectors in Rd2

2 −1,
satisfying the relations

d2∑
k=1

yk = 0, ‖yk‖ Rd2
2 −1 = 1, yk1 · yk2 = − 1

d2 − 1
, (37)

∀k1 �= k2,∥∥(yk · ϒd2

)(−)∥∥
0 =

√
2

d2(d2 − 1)
, ∀k = 1, . . . , d2. (38)

Equation (35) implies

tr[(ρ − χ )2] = d1 − 1

d1d2

∥∥∥∥∥∥r1 −
d2∑

k=1

αkxk

∥∥∥∥∥∥
2

Rd2
1 −1

+ d2 − 1

d1d2

∥∥∥∥∥∥r2 −
d2∑

k=1

αkyk

∥∥∥∥∥∥
2

Rd2
2 −1

+ 1

4

∑
i, j

⎛⎝T (i j)
ρ − 2

√
(d1 − 1)(d2 − 1)

d1d2

d2∑
k=1

αkx(i)
k y( j)

k

⎞⎠2

(39)
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and, under conditions (37), relation (39) reduces to

tr[(ρ − χ )2] = d2 − 1

d1d2
‖r2‖2

Rd2−1 + 1

4
tr[T †

ρ Tρ] + d1 − 1

d1

d2∑
k=1

∥∥∥∥∥∥αkxk − r1

d2
− 1

2

√
d1(d2 − 1)

d2(d1 − 1)
Tρyk

∥∥∥∥∥∥
2

Rd2
1 −1

+ 1

d1

d2∑
k=1

[
αk − 1

d2
− d2 − 1

d2
(r2 · yk )

]2

− (d2 − 1)2

d2
2 d1

d2∑
k=1

(r2 · yk )2 − d2 − 1

4d2

d2∑
k=1

‖Tρyk‖2

Rd2
1 −1 . (40)

From relation (40) it follows that, for a fixed set {yk}, the
minimum of tr[(ρ − χ )2] over xk and αk is attained at

αkxk = r1

d2
− 1

2

√
d1(d2 − 1)

d2(d1 − 1)
Tρyk,

αk = 1

d2
+ d2 − 1

d2
(r2 · yk ) ⇒

d2∑
k=1

αk = 1, (41)

such that ∥∥∥∥∥∥ r1

d2
− 1

2

√
d1(d2 − 1)

d2(d1 − 1)
Tρyk

∥∥∥∥∥∥
Rd2

1 −1

� 1. (42)

Taking this into account in relation (40), we come to the
following statement.

Proposition 2. For every two-qudit state ρ on Hd1 ⊗ Hd2 ,
the geometric quantum discord Dg(ρ) = minχ tr[(ρ − χ )2] is
given by

Dg(ρ) = d2 − 1

d1d2
‖r2‖2

Rd2
2 −1 + 1

4
tr[T †

ρ Tρ]

− max
�ϒd2

tr

[(
d2 − 1

d1d2
|r2〉〈r2| + 1

4
T †

ρ Tρ

)
��ϒd2

]
,

(43)

where (i) Tρ is the correlation matrix (19) of a state ρ and r2

is the Bloch vector (17) of the reduced state ρ2 = trH1 [ρ] on
Hd2 within decomposition (14) specified with arbitrary tuples
ϒd1 and ϒd2 and (ii) the positive Hermitian operator ��ϒd2

on

Rd2
2 −1 is defined by the relation

��ϒd2
:= d2 − 1

d2

d2∑
k=1

|yk〉〈yk|, (44)

where

�ϒd2
= {

yk ∈ Rd2
2 −1, k = 1, . . . , d2

} ⊂ Rd2
2 −1 (45)

is a set of linear dependent vectors in Rd2
2 −1, satisfying re-

lations (37) and (38). In (43), notations |r2〉 and 〈r2| mean
the column vector and the line vector, corresponding to tuple

r2 = (r (1)
2 , . . . , r

(d2
2 −1)

2 ) ∈ Rd2
2 −1.

The following statement is proved in the Appendix.
Lemma 1. For any tuple ϒd2 , a positive operator (44) on

Rd2
2 −1 is an orthogonal projection of rank (d2 − 1).
Taking into account Proposition 2 and Lemma 1, we pro-

ceed to introduce for a two-qudit state ρ, pure or mixed and
of any dimension, the explicit exact analytical value of its

geometric quantum discord Dg(ρ) in terms of characteristics
of this state within the generalized Pauli representation (14).

Theorem 1. For an arbitrary two-qudit state ρ on Hd1 ⊗
Hd2 , d1, d2 � 2, the geometric quantum discord is equal to

Dg(ρ) = d2 − 1

d1d2
‖r2‖2

Rd2
2 −1 + 1

4
tr[T †

ρ Tρ] −
d2−1∑
n=1

ηn =
d2

2 −1∑
n=d2

ηn,

(46)

where η1 � η2 � · · · � ηd2
2 −1 � 0 are the eigenvalues of the

positive Hermitian operator

G(ρ) = d2 − 1

d1d2
|r2〉〈r2| + 1

4
T †

ρ Tρ (47)

on Rd2
2 −1 listed in decreasing order with the corresponding

algebraic multiplicities. The eigenvalues of the positive oper-
ator G(ρ) and the values of the norm ‖r2‖2

Rd2
2 −1

and the trace

tr[T †
ρ Tρ] are independent on a choice of tuples ϒd1 and ϒd2

within representation (14).
Proof. Let the Bloch vector r2 ∈ Rd2

2 −1 and the correlation
matrix Tρ in (43) be defined within decomposition (14) for
some arbitrary tuples ϒd1 and ϒd2 . As indicated in Sec. II, the
values of the norm ‖r2‖2

Rd2
2 −1

� 1 and the trace tr[T †
ρ Tρ] do not

depend on a choice of tuples ϒd1 and ϒd2 and are determined
only by a state ρ . By Lemma 1 every positive operator ��ϒd2

,
given by (44), is an orthogonal projection of rank (d2 − 1),
so that it has eigenvalue 1 of multiplicity (d2 − 1) and the
eigenvalue 0 with multiplicity d2(d2 − 1). This and the von
Neumann inequality [44] tr[AB] �∑

aibi, which is valid for
any two positive operators A and B, with eigenvalues ai � 0
and bi � 0, listed in decreasing order, imply that, for each
��ϒd2

, the trace tr[G(ρ)��ϒd2
], standing under the maximum

in (43), is upper bounded by

tr
[
G(ρ)��ϒd2

]
�

d2−1∑
k=1

ηk. (48)

Therefore, in order to prove the exact analytical expression
(46), we have to present some projection �′

�ϒd2

on which the

upper bound (48) is attained.
Let us introduce projections ��ϒ̃d2

= d2−1
d2

∑d2
k=1 |yk〉〈yk|,

which are defined via vectors yk ∈ �ϒ̃d2
satisfying relations

(37) and the condition (38), specified for some tuple ϒ̃d2 �=
ϒd2 , which we choose below. Let

ϒ̃
( j)
d2

= v j · ϒd2 , j = 1, . . . ,
(
d2

2 − 1
)
, (49)
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be the decomposition of traceless Hermitian operators ϒ̃
( j)
d2

—

elements of a tuple ϒ̃d2 —in the basis (2) specified with tuple
ϒd2 . The set of vectors {v j ∈ Rd2

2 −1, j = 1, . . . , (d2
2 − 1)}

constitutes an orthonormal basis; see Eq. 18 in [33].
For a given projection

�̃�̃ϒ̃d2

= d2 − 1

d2

d2∑
k=1

|̃yk〉〈̃yk|, k = 1, . . . , d2, (50)

denote by g̃m, m = 1, . . . , d2
2 − 1, its mutually orthogonal

eigenvectors, where the first (d2 − 1) eigenvectors correspond
to eigenvalue 1 and others to the eigenvalue 0. By the spectral
theorem, we have

G(ρ) =
d2

2 −1∑
n=1

ηn|en〉〈en|, �̃�̃ϒ̃d2

=
d2−1∑
m=1

|̃gm〉〈̃gm|. (51)

To projection (50) define via the unitary operator U =∑
n |en〉〈̃gn| the projection

U�̃�̃ϒ̃d2

U† = d2 − 1

d2

d2∑
k=1

|y′
k〉〈y′

k| =
d2−1∑
n=1

|en〉〈en|, (52)

where vectors y′
k = Uỹk ∈ Rd2

2 −1 satisfy relations (37) and
also relation (38)√

2

d2(d2 − 1)
= ∥∥(̃yk · ϒ̃d2

)(−)∥∥
0 = ∥∥(y′

k · ϒ̃ ′
d2

)(−)∥∥
0, (53)

but with respect to tuple ϒ̃ ′
d2

with elements

(
ϒ̃ ′

d2

)(m) =
∑

l

U†
lmϒ̃

(l )
d2

. (54)

Substituting (49) into (54), we derive

(
ϒ̃ ′

d2

)(m) =
∑

j

(∑
l

U†
lmv( j)

l

)
ϒ

( j)
d2

. (55)

Choosing in (49) the orthonormal basis {vl ∈ Rd2
2 −1, l =

1, . . . , (d2
2 − 1)} with components v( j)

l = U jl , we have∑
l

U†
lmv( j)

l =
∑

l

U jlU
†
lm = δ jm ⇒ ϒ̃ ′

d2
= ϒd2 . (56)

Therefore, under the above unitary transform of projection
(50) and the specific choice via (49) of a tuple ϒ̃d2 in (50),
we come to the projection

U �̃�ϒ̃d2
U† = d2 − 1

d2

d2∑
k=1

|yk〉〈yk| = �′
�ϒd2

, (57)

which is included into the set of projections over which the
maximum in (43) is considered. Taking into account that, by

relation (52), �′
�ϒd2

= ∑d2−1
n=1 |en〉〈en| we have2

tr
[
G(ρ)�′

�ϒd2

] = tr

⎡⎣d2
2 −1∑
n=1

ηn|en〉〈en|
d2−1∑
m=1

|em〉〈em|
⎤⎦

=
d2−1∑
n=1

ηn. (58)

Equations (48) and (58) prove the statement. �
The general exact result (46) proved by Theorem 1 indi-

cates that the lower bound on the geometric quantum discord
presented in [15] is attained on every two-qudit state. More-
over, this exact result on the geometric quantum discord
includes only as particular cases all the exact expressions
known [11,15] for some particular mixed states.

We note that, in contrast to the derivation of the lower
bound in [15] via the Pauli decomposition with the general-
ized Gell-Mann operators, our derivation of the exact value
(46) is based on the Pauli decomposition with respect to
any operator basis of the form (15). Also, the normalization
coefficients in (46) are different from those in [15] and satisfy
the general relations derived in [33] and presented briefly in
Sec. II.

The following statement shows that, in the case of a pure
two-qudit state, the exact general result (46) in Theorem 1
includes as a particular case the expression [16] for the ge-
ometric quantum discord of a pure two-qudit state, which was
derived in [16] directly from the definition (1).

Corollary 1. For every pure two-qudit state ρψ = |ψ〉〈ψ |
on Hd ⊗ Hd , d � 2, the geometric quantum discord is
given by

Dg(ρψ ) = 1
2 C2

ρψ
� 2N 2

ρψ
, (59)

where the equality in the right-hand side holds for a pure
two-qubit state. Here, Cρψ

is the concurrence (29) of a pure
two-qudit state ρψ and Nρψ

is its negativity.3 For a maximally
entangled pure two-qudit state ρψmax ,

Dg
(
ρψmax

) = d − 1

d
. (60)

Proof. Consider first the geometric quantum discord for a
pure two-qubit state. As it is found in Theorem 2 of [6], for a
pure two-qubit state, the eigenvalues of the positive operator
T †

ρψ
Tρψ

are equal to 1, C2
ρψ

, C2
ρψ

and if ‖r2‖2
R3 = 1 − C2

ρψ
�= 0

(that is, a pure state |ψ〉 is not maximally entangled), then
the Bloch vector r2 ∈ R3 constitutes [6] the eigenvector of
matrix T †

ρψ
Tρψ

. Therefore, if a pure two-qubit state |ψ〉 is not
maximally entangled, then, in view of the spectral theorem,

2For our further consideration in Sec. IV, based on the proof of
Theorem 1, we also formulate in Proposition 4 of the Appendix the
general statement on max�y tr[A��y ] for any positive Hermitian

operator A on Rd2−1.
3For a pure two-qudit state, the negativity takes the form∑

1�k<m�d
√

μkμm; see, for example, Sec. 4 of [45].
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the positive operator G(ρψ ) in (47) takes the form

G(ρψ ) = 1

4
|r2〉〈r2| + 1

4

|r2〉〈r2|
‖r2‖2

R3

+ 1

4
C2

ρψ
(|v1〉〈v1| + |v2〉〈v2|)

= 1

4

(‖r2‖2
R3+1

) |r2〉〈r2|
‖r2‖2

R3

+1

4
C2

ρψ
(|v1〉〈v1|+|v2〉〈v2|),

(61)

where |v1〉, |v2〉 are two mutually orthogonal eigenvectors of
T †

ρψ
Tρψ

corresponding to the eigenvalue C2
ρψ

with multiplicity
2. Representation (61) implies that the eigenvalues of G(ρψ )
are equal to

η1 = 1 + ‖r2‖2
R3

4
, η2,3 =

C2
ρψ

4
. (62)

For a maximally entangled two-qubit state |ψmax〉, the
Bloch vector r2 = 0, T †

ρψmax
Tρψ max = IR3 , and G(ρψmax ) =

1
4IR3 . Thus, for any pure two-qubit state |ψ〉, by (46) we have

Dg(ρψ ) =
3∑

n=2

ηn = 1

2
C2

ρψ
. (63)

The value of the geometric quantum discord of a two-qubit
state via its negativity Nρψ

follows from (63) and relation
Cρψ

= 2Nρψ
valid for every pure two-qubit state.

Let d > 2. Recall that, for any pure two-qudit state |ψ〉〈ψ |
on Hd ⊗ Hd , the nonzero eigenvalues 0 < μk (ψ ) � 1 of its
reduced states coincide and have the same multiplicity and
vector |ψ〉 ∈ Hd ⊗ Hd admits the Schmidt decomposition

|ψ〉 =
∑

1� n �r(ψ )
Sch

√
μn(ψ )

∣∣e(1)
n

〉⊗ ∣∣e(2)
n

〉
,

∑
1�n�r(ψ )

Sch

μn(ψ )=1,

(64)

where μ1 � μ2 � · · · � μr(ψ )
Sch

> 0 are nonzero eigenvalues of
the reduced states of ρψ , listed in the decreasing order and
according to their multiplicity, and {|e( j)

k 〉 ∈ H}, j = 1, 2, are
sets of the corresponding mutually orthogonal unit eigen-
vectors of the reduced states. Parameters

√
μn(ψ ) and 1 �

r (ψ )
Sch � d are called the Schmidt coefficients and the Schmidt

rank of |ψ〉, respectively. For simplicity of further calcula-
tions, we present the decomposition (65) in the form

|ψ〉 =
∑

1� n �d

√
μn(ψ )

∣∣e(1)
n

〉⊗ ∣∣e(2)
n

〉
(65)

by adding into the sum the zero eigenvalues μn of the reduced
states if n > r (ψ )

Sch .
As it is underlined in Theorem 1, the eigenvalues ηn of

the positive operator G(ρ), given by (47), are independent
on a choice of tuples ϒd1 and ϒd2 in representation (14).
Therefore, in the case of a pure two-qudit state ρψ , for finding

in expression (46) the sum
∑d2

2 −1
n=d2

ηn of the eigenvalues of
G(ρψ ), we take on each of the Hilbert spaces in Hd ⊗ Hd

the tuple ϒd of operators, which are similar by their structure
to the generalized Gell-Mann operators presented by relations
(4)–(6) in [42] but expressed not via the elements of the
standard basis in Cd but via the elements of the corresponding
orthonormal basis {|e( j)

k 〉 ∈ Hd}, j = 1, 2, in (65).

Under this choice, by relations (16), (17), (19), and (65)
we find (quite similarly as it is done in Sec. 4 of [42]) that the
matrix representation of the operator G(ρψ ) is block-diagonal
with the eigenvalues ηn for n � d equal to μkμm, 1 � k <

m � d , each with multiplicity 2. Therefore, in (46)

d2
2 −1∑

n=d2

ηn = 2
∑

1�k<m�d

μkμm. (66)

This and the relation

C2
ρψ

= 2
(
1 − tr

[
ρ2

j

]) = 4
∑

1�k<m�d

μkμm, (67)

following from (29) and (65), prove the equality in (59).
The upper bound in (59) follows4 from the relation C2

ρψ
�

4(
∑

1�k<m�d
√

μkμm)2 = 4N 2
ρψ

, valid for any two-qudit
state.

For a maximally entangled pure two-qudit state ρψmax , the
concurrence is equal to 2(d−1)

d and by (59) this implies (60).
The latter relation follows also directly from (46), since, for
a maximally entangled two-qudit state ρψmax , the Bloch vector
r2 = 0, and the correlation matrix is diagonal [42] with all its
singular values equal to 2

d . Therefore,

G(ρψmax ) = 1

4
T †

ρψmax
Tρψmax

, ηn = 1

d2
, (68)

and, in view of (46), this implies

Dg(ρψmax ) =
d2−1∑
n=d

ηn = d (d − 1)

d2
= d − 1

d
, (69)

i.e., expression (60). �

IV. UPPER AND LOWER BOUNDS

In this section, based on the result of Theorem 1, we intro-
duce the general upper and lower bounds valid for an arbitrary
two-qudit state and also specify the upper bound in the case
of a separable two-qudit state.

Theorem 2. For an arbitrary two-qudit state ρ, pure or
mixed, on Hd1 ⊗ Hd2 , d1, d2 � 2, its geometric quantum dis-
cord admits the following upper bounds:

Dg(ρ) � d2 − 1

d2

[
1 − ‖r2‖2

d2 + 1

]
(70)

� d2 − 1

d2
, (71)

where the upper bound (71) constitutes the geomet-
ric discord of the maximally entangled two-qudit state
if min{d1, d2} = d2.

Proof. Taking into account that

tr[G(ρ)] =
d2

2 −1∑
n=1

ηn = d2 − 1

d2d1
‖r2‖2

Rd2
2 −1 + 1

4
tr[T †

ρ Tρ] (72)

4For the expression of the negativity of a pure state via its Schmidt
coefficients, see footnote 3.
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and relation (22), we have

d2
2 −1∑
n=1

ηn � d1d2 − 1

d1d2
− d1 − 1

d1d2
‖r1‖2

Rd2
1 −1 . (73)

We further note that since
∑d2

2 −1
n=1 ηn = ∑d2−1

n=1 ηn+
∑d2

2 −1
n=d2

ηn

and
∑d2

2 −1
n=d2

ηn � d2
∑d2−1

n=1 ηn, relation (73) implies

d2
2 −1∑

n=d2

ηn � 1

d2 + 1

{
d1d2 − 1

d1
− d1 − 1

d1
‖r1‖2

Rd2
1 −1

}

= d1d2 − 1

d1(d2 + 1)
− 1

d2 + 1
· d1 − 1

d1
‖r1‖2. (74)

By using in (74) equality (20), we derive

d2
2 −1∑

n=d2

ηn � d1d2 − 1

d1(d2 + 1)
− 1

d2 + 1

(
1

d2
− 1

d1
+ d2 − 1

d2
‖r2‖2

)

= d2 − 1

d2

[
1 − ‖r2‖2

d2 + 1

]
. (75)

The latter also implies the upper bound (71) and proves the
statement. �

Furthermore, based on the exact relation (46) we find the
following general upper and lower bounds on the geometric
quantum discord of a two-qudit state.

Theorem 3. For a two-qudit state ρ on Hd1 ⊗ Hd2 ,

d1, d2 � 2, the geometric quantum discord admits the follow-
ing bounds:

1

4
tr[T †

ρ Tρ] − 1

4

d2−1∑
n=1

λn � Dg(ρ)

� min

{
1

4
tr[T †

ρ Tρ];
1

4
tr[T †

ρ Tρ]

+ d2 − 1

d2d1
‖r2‖2

Rd2
2 −1 − 1

4

d2−1∑
n=1

λn

⎫⎬⎭,

(76)

where λ1 � λ2 � · · · λd2−1 � 0 are eigenvalues of the posi-
tive Hermitian operator T †

ρ Tρ on Rd2
2 −1.

Proof. For the evaluation of the last term in (43), we note
that maxx{ f1(x) + f2(x)} � maxx f1(x) + maxx f2(x) and, if
f j (x) � 0, j = 1, 2, then maxx{ f1(x) + f2(x)} � maxx f j (x),
j = 1, 2. These relations and Propositions 2 and 4 imply

max
�ϒd2

tr

[(
d2 − 1

d1d2
|r2〉〈r2| + 1

4
T †

ρ Tρ

)
��ϒd2

]

� max
�ϒd2

tr

[
d2 − 1

d1d2
|r2〉〈r2|��ϒd2

]
+ max

�ϒd2

tr

[
1

4
T †

ρ Tρ��ϒd2

]

= d2 − 1

d1d2
‖r2‖2

Rd2
2 −1 + 1

4

d2−1∑
n=1

λn, (77)

as well as

max
�ϒd2

tr

[(
d2 − 1

d1d2
|r2〉〈r2| + 1

4
T †

ρ Tρ

)
��ϒd2

]

� max
�ϒd2

tr

[(
d2 − 1

d1d2
|r2〉〈r2|

)
��ϒd2

]
= d2 − 1

d1d2
‖r2‖2

Rd2
2 −1

(78)

and

max
�ϒd2

tr

[(
d2 − 1

d1d2
|r2〉〈r2| + 1

4
T †

ρ Tρ

)
��ϒd2

]

� max
�ϒd2

tr

[
1

4
T †

ρ Tρ��ϒd2

]
= 1

4

d2−1∑
n=1

λn. (79)

Relations (77), (78), and (79) prove the statement. �
From relation (22) and the upper bound in (76) it follows

that, for a two qudit state ρ on Hd1 ⊗ Hd2 , d1, d2 � 2,

Dg(ρ) � min{J1, J2}, (80)

where

J1 = d1d2 − 1

d2d1
− d1 − 1

d2d1
‖r1‖2

Rd2
1 −1 − d2 − 1

d2d1
‖r2‖2

Rd2
2 −1 (81)

and

J2 = d1d2 − 1

d2d1
− d1 − 1

d2d1
‖r1‖2

Rd2
1 −1 − 1

4

d2−1∑
n=1

λn. (82)

Theupper bounds (70) and (71) in Theorem 2 and the upper
bounds (76) and (80)–(82) considerably improve the upper
bound in Proposition 3.1 of [19] having in our notations the
form d1d2−1

d2d1
.

Consider also the upper bound on the geometric quantum
discord in a general separable case.

Proposition 3. For every separable two-qudit state

ρsep =
∑

k

βkρ
(k)
1 ⊗ ρ

(k)
2 , βk �0,

∑
k

βk = 1, (83)

on Hd ⊗ Hd , d � 2,

Dg(ρsep) �
(

d − 1

d

)2

. (84)

Proof. In view of expression (27) for the correlation matrix
Tρsep of separable state ρsep, we have in case d1 = d2

1

4
tr[T †

ρsep
Tρsep ] =

(
d − 1

d

)2 ∑
k,k1

βkβk1

(
r (k)

1 · r (k1 )
1

)(
r (k)

2 · r (k1 )
2

)
�
(

d − 1

d

)2

, (85)

where r (k)
j are the Bloch vectors of states ρ

(k)
j , j = 1, 2, given

by (5) with norms ||r (k)
1 ||, ||r (k)

2 || � 1. �
From the upper bound (84) it follows that, for any sepa-

rable two-qubit state, the geometric quantum discord cannot
exceed 1/4.
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If a separable state is pure, then ||r1|| = ||r2|| = 1 and by
(27) the positive Hermitian operator (47) takes the form

G
(
ρ (pure)

sep

) = d − 1

d2
|r2〉〈r2| +

(
d − 1

d

)2

‖r1‖2|r2〉〈r2|

=
[

d − 1

d2
+
(

d − 1

d

)2
]

|r2〉〈r2| = d − 1

d
|r2〉〈r2|

(86)

and has only one nonzero eigenvalue

η1 = d − 1

d
= tr

[
G
(
ρ (pure)

sep

)]
(87)

with multiplicity one. Therefore, for a pure separable state, re-
lation (46) gives Dg(ρ (pure)

sep ) = 0—as it should be since a pure
separable state is quantum classical. This is also consistent
with (59) since for a pure separable state the concurrence is
equal to zero.

V. CONCLUSION

In the present article, for an arbitrary two-qudit state with
any dimensions at two sites, we find (Theorem 1) in the ex-
plicit analytical form the exact value of its geometric quantum
discord. This rigorously proved general result indicates that
the lower bound on the geometric quantum discord found in
[15] constitutes its exact value for each two-qudit state and
includes only as particular cases the exact results for a general
two-qubit state [11], a general qubit-qudit state [15], and some
special families of two-qudit states [15,17].

Based on this general result (46) of Theorem 1, we (a)
show (Corollary 1) that, for every pure two-qudit state, the
exact value of the geometric quantum discord is equal to one-
half of its squared concurrence, (b) find (Theorem 2) general
upper bounds (70) and (71) on the geometric quantum discord
of an arbitrary two-qudit quantum state of any dimensions
which are consistent with the exact value in Corollary 1 for
the geometric quantum discord of a maximally entangled
pure two-qudit state, (c) derive (Theorem 3) for an arbitrary
two-qudit state the general upper and lower bounds on the
geometric quantum discord expressed via the eigenvalues of
its correlation matrix (these upper bounds are tighter than the
ones in [19]), and (d) specify (Proposition 3) the upper bound
on the geometric quantum discord of an arbitrary separable
two-qudit state of any dimension.

The general results derived in the present article consid-
erably extend the range of known results on properties of
the geometric quantum discord of a two-qudit state, pure or
mixed, of an arbitrary dimension.

As shown in [46,47], there exist bipartite quantum states
which, under evolution via some quantum channels, exhibit a
particular type of decoherence with the following dynamics
of correlations: until some critical value of time only classical
correlations are being destroyed while a decrease of quantum
correlations starts only after this critical time and this decrease
is quantified via the quantum discord. This phenomenon, re-
ferred to as the sudden transition of quantum correlations,
occurs even in situations where entanglement is monotoni-
cally decreasing since the initial time.

Even if under decoherence scenarios the geometric quan-
tum discord could be more fragile than the quantum discord,
as it is exemplified for diverse channels in [48], this mea-
sure of quantum correlations is a useful concept to analyze
quantum correlations dynamics and by using this measure
phenomena like the sudden transition have been observed for
some three- and six-qubit GHZ states [48]. Similar studies for
other N-qubit states were explored recently in [24] and also
in [23].

The latter investigations [23,24,48] indicate that our ex-
plicit exact analytical expression (46) for the geometric
quantum discord could be a fundamental tool to study under
diverse decoherence the time evolution of quantum correla-
tions in a general two-qudit system, where, to our knowledge,
this measure has not been explored. A possible other ap-
plication of the geometric quantum discord is to quantify
usefulness of a given state for teleportation tasks as long as
it interacts with the environment [49].

We also expect that our results will be of relevance in the
growing field of relativistic quantum information. We can see
the first steps on this direction by recent applications [31,32]
of geometric quantum discord for quantifying quantum corre-
lations in quantum gravity contexts.

With these investigations [23,24,48,49] in mind, we believe
that our results on the geometric quantum discord for an arbi-
trary two-qudit state are important not only from the general
theoretical point of view but also for the use of this measure
of quantum correlations in many practical tasks involving
two-qudit systems.
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APPENDIX

The proof of Lemma 1. In view of relations (37), we have

�2
�ϒd

=
(

d − 1

d

)2 ∑
k,l∈{1,...,d}

|yk〉〈yk|yl〉〈yl |

=
(

d−1

d

)2 ∑
k=1,...,d

|yk〉〈yk|−d − 1

d2

∑
k �=l∈{1,...,d}

|yk〉〈yl |

=
(

d − 1

d

)2 ∑
k=1,...,d

|yk〉〈yk|

− d − 1

d2

∑
k,l∈{1,...,d}

|yk〉〈yl | + d − 1

d2

∑
k=1,...,d

|yk〉〈yk|

= d − 1

d

∑
k=1,...,d

|yk〉〈yk| = ��ϒd
. (A1)

Since

tr
[
��ϒd

] = d − 1, (A2)

the rank of every projection ��ϒd
is equal to (d − 1).
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Note that an orthogonal projection ��ϒd
has eigenvalue

1 of multiplicity (d − 1) and eigenvalue 0 of multiplicity
d (d − 1). Relations (A1) and (A2) prove Lemma 1. �

The proof of Theorem 1 implies the following gen-
eral statement, which we use for finding the bounds in
Theorem 3.

Proposition 4. For an arbitrary positive Hermitian operator
A on Rd2−1 and the orthogonal projections

��y = d − 1

d

d∑
k=1

|yk〉〈yk|, (A3)

on Rd2−1 of rank d − 1, which are specified in Lemma 1, the
maximum

max
�y

tr[A��y ] = ζ1 + · · · + ζd−1, (A4)

where ζ1 � ζ2 � · · · � ζd2−1 � 0 are the eigenvalues of A
listed in decreasing order with the corresponding algebraic
multiplicities.
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