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Graph states play an important role in quantum information theory through their connection to measurement-
based computing and error correction. Prior work revealed elegant connections between the graph structure of
these states and their multipartite entanglement. We continue this line of investigation by identifying additional
entanglement properties for certain types of graph states. From the perspective of tensor theory, we tighten
both upper and lower bounds on the tensor rank of odd ring states (|R2n+1〉) to read 2n + 1 � rank(|R2n+1〉) �
3 × 2n−1. Next we show that several multipartite extensions of bipartite entanglement measures are dichotomous
for graph states based on the connectivity of the corresponding graph. Finally, we give a simple graph rule for
computing the n-tangle τn.
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I. INTRODUCTION

Entanglement is one of the defining properties of quantum
systems [1] and has been recognized as a fundamental re-
source for quantum information processing [2,3]. A pure state
is considered to be entangled if it cannot be written in the form
|ψ〉 =⊗n

i=1 |ψ (i)〉. Similarly, a mixed state is entangled if it
cannot be written as ρ =∑k pk

⊗n
i=1 ρ

(i)
k .

Quantifying the amount of entanglement in a quantum
state is not always straightforward. For pure bipartite sys-
tems, the Schmidt decomposition and resulting spectra fully
characterize the entanglement properties and transformations
under local operations and classical communication (LOCC)
[2,4,5]. The Schmidt decomposition of a pure state takes the
form |ψ〉 =∑i

√
μi|ui〉|vi〉, where μ = {μi} are the Schmidt

coefficients and {|ui〉} and {|vi〉} are sets of orthogonal states.
Further, a variety of entanglement measures are known, i.e.,
functionals E (ρ) that are nonincreasing (on average) under
LOCC and E (ρ) = 0 if ρ is a separable state [6]. Examples
include the entanglement of formation [7], distillable entan-
glement [8], negativity [9,10], geometric measure [11], and
concurrence [12,13]. However, the picture grows significantly
more complicated when considering multipartite entangle-
ment, as we discuss below.

In this work we consider the amount and form of multi-
partite entanglement that arises in a class of quantum states
known as graph states. These are of particular interest due to
their applications in measurement-based quantum computing
[14,15], error correction codes [16], secret sharing [17], and
stabilizer computation simulation [18]. Further, by studying
the entanglement properties of graph states, we actually quan-
tify the entanglement of the larger set of stabilizer states. This
follows from the fact that every stabilizer state is equivalent
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under local unitaries to at least one graph state [19,20]. As
entanglement measures are invariant under local unitaries, one
need only consider graph states to analyze all stabilizer states.

In this work we focus on the tensor rank and the GME
concurrence, negativity, and geometric measures of entan-
glement. Our main contributions to the study of graph
states are twofold. First, we consider ring states of 2n + 1
qubits and sharpen the bound on tensor rank from 2n �
rank(|R2n+1〉) � 2n+1 to 2n + 1 � rank(|R2n+1〉) � 3 × 2n−1.
This demonstrates that existing upper and lower bounds on
tensor rank based on bipartitions of the associated graphs
[21] are not tight for all stabilizer states. While this may
seem like incremental progress, we stress that computing the
tensor rank is a very challenging problem, and any progress in
this direction is noteworthy. Indeed, the analysis we employ
goes beyond the bipartite bounding techniques of previous
approaches. This work thus contributes to the steadily grow-
ing research on the tensor rank of multipartite entangled states
[22–30]. Operationally, the improved bounds better character-
ize the amount of entanglement needed to generate ring states
using LOCC. Second, we study the GME concurrence, nega-
tivity, and geometric measure for general graph states. These
are shown to be sharply dichotomous and take on constant
value for all connected graphs. Thus, our results can be taken
to show that considering bipartite cuts fails to capture the mul-
tipartite entanglement of stabilizer states. Before presenting
our results, we briefly review the main concepts considered in
this paper.

A. Schmidt measure and tensor decomposition

Any n-party pure state |ψ〉 ∈ H(1) ⊗ · · · ⊗ H(n) can be rep-
resented as

|ψ〉 =
R∑

i=1

μi

∣∣ψ (1)
i

〉⊗ · · · ⊗ ∣∣ψ (n)
i

〉
, (1)
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where each |ψ ( j)
i 〉 ∈ H( j). When |ψ〉 is viewed as an n-

dimensional tensor, Eq. (1) is also known as a canonical
polyadic (CP) tensor decomposition [31,32]. The CP rank
r = rank(|ψ〉) of a tensor is defined as the smallest R such
that (1) can be satisfied. The CP rank is also known as the
tensor rank or Schmidt measure, and we will use these terms
interchangeably throughout this paper. In general, finding the
CP rank of a tensor is NP-hard [33].

Tensor rank plays an important role in algebraic complex-
ity theory, namely, the number of nonscalar multiplications
performed by a multilinear program can be recast as the rank
of a certain tensor, a famous case being matrix multiplication
[34]. Explicitly, the asymptotic coefficient for matrix multipli-
cation, i.e., the smallest τ such that matrix multiplication can
be performed in time O(nτ ), is equal to the tightest bound on
rank for a family of tensors.

Unlike the matrix case, the best rank-R approximation
of a tensor may not exist. There exist tensors that can be
approximated arbitrarily well by rank-R tensors where R <

rank(|ψ〉). In this case, border rank [35,36] is defined as
the minimum number of rank-1 tensors that are sufficient to
approximate the given tensor with arbitrarily small error.

The tensor rank is a bona fide entanglement measure [22]
that is particularly useful for studying transformations un-
der stochastic local operations and classical communication

(SLOCC). These are transformations such that |ψ〉 SLOCC−−−−→ |φ〉
with some nonzero probability (and is thus a generalization of

LOCC). It is known that if |ψ〉 SLOCC−−−−→ |φ〉, then rank|ψ〉 �
rank|φ〉 [23]. If two states are equivalent under SLOCC, i.e.,

|ψ〉 SLOCC−−−−→ |φ〉 and |φ〉 SLOCC−−−−→ |ψ〉, then there exist invertible
linear operators {Ai}n

i=1 such that

|ψ〉 = A1 ⊗ A2 ⊗ · · · ⊗ An|φ〉, (2)

implying that rank(|ψ〉) = rank(|φ〉). Finally, we note that the
tensor rank relates to entanglement cost. In particular, a gen-
eralized d-dimensional Greenberger-Horne-Zeilinger (GHZ)
state (or any equivalent state) can be converted to an arbitrary
state |ψ〉 via SLOCC if and only if d � rank(|ψ〉) [24]. This
provides an operational meaning to the tensor rank in terms
of the entanglement resources needed to build |ψ〉 using GHZ
states in the distributed setting.

B. Measures of genuine multipartite entanglement

An n-partite pure state |ψ〉 is said to have genuine multi-
partite entanglement (GME) if it is not a product state under
any bipartition A|Ā [37,38], i.e., |ψ〉 �= |α〉 ⊗ |β〉, where |α〉
is held by parties in A and |β〉 is held by parties Ā. States for
which |ψ〉 = |α〉 ⊗ |β〉 are called biseparable, and in general
it may be desirable for a multipartite entanglement measure
to capture how close a state is to being biseparable. Ac-
cordingly, one can define measures via minimization over all
possible bipartitions. More specifically, given some bipartite
entanglement measure E (|φ〉), |φ〉 ∈ HA ⊗ HB, we take the
multipartite extension to be minA EA(|ψ〉), where EA is the
measure E evaluated according to partition A|Ā. Note that
E (|ψ〉) = 0 if |ψ〉 is biseparable according to some partition.
Thus, this multipartite extension is faithful with respect to
GME. In this work we consider, beyond tensor rank, GME

concurrence [39]

CGME(ρ) = min
A

√
2
[
1 − Tr

(
ρ2

A

)]
, (3)

GME negativity [9]

NGME(ρ) = min
A

1
2 (‖ρTA‖1 − 1), (4)

and the GME geometric measure [38]

GGME(ρ) = min
A

(
1 − max

i
μi
)
, (5)

where ‖ · ‖1 denotes the Schatten 1-norm, ρTA = IĀ ⊗ TA(ρ)
is the partial transpose, and μi are the Schmidt coefficients
from the Schmidt decomposition according to partition A|Ā.
The geometric measure for bipartite systems takes this form,
but this is different than the general definition [11].

Finally, we also evaluate the n-tangle τn [40,41] on graph
states. For pure states of even numbers of qubits, this is de-
fined as

τn(|ψ〉) = |〈ψ |ψ̃〉|2, (6)

where |ψ̃〉 = σ⊗n
y |ψ∗〉 and |ψ∗〉 indicates the complex con-

jugate. The n-tangle is the square of a quadratic SLOCC
invariant and can thus be used to distinguish between types
of multipartite entangled states [42].

C. Graph states

A graph state corresponds to some graph G = (V, E ),
where V is the vertex set and E is the edge set with
corresponding adjacency matrix 	 [14,43]. There are two
equivalent ways to think of graph states. The first is opera-
tional in the sense that it provides a formula for preparing the
state given a graph

|G〉 =
∏

(a,b)∈E

U (a,b)|+〉⊗|V |, (7)

where

U (a,b) = |0〉〈0|(a) ⊗ I(b) + |1〉〈1|(a) ⊗ σ (b)
z (8)

is a controlled-Z operation on qubits a and b and

|+〉 = 1√
2

(|0〉 + |1〉), |−〉 = 1√
2

(|0〉 − |1〉)

form the Hadamard basis. To prepare the graph state corre-
sponding to a graph G, simply initialize |V | qubits in the state
|+〉⊗|V | and, for each edge, apply a controlled-Z operation
between the corresponding qubits.

Graph states can be equivalently thought of as stabi-
lizer states [21]. Here the stabilizers are Sa = σ (a)

x

∏
b∈Na

σ (b)
z ,

where Na is the neighborhood of vertex a. As there are |V |
qubits and stabilizers, |G〉 is the unique state stabilized by
all Sa.

Also note that a basis for H =⊗n
i=1 H

(i)
2 can be con-

structed given a graph G [15]. Let s ∈ Zn
2 be a bit string of

length n. Then define the state

|Gs〉 = σ s
z |G〉 =

∏
(a,b)∈E

U (a,b)
n⊗

i=1

(σ (i)
z )si |+〉(i). (9)
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Local

Complementation

FIG. 1. Example of local complementation. Here the rule is ap-
plied to the red vertex, adding or removing the edge connecting the
two other vertices.

It is clear that there are 2n such orthogonal states and thus
they form a basis. Further, one can think of s as flipping the
eigenvalues of stabilizers Sa from +1 to −1. Going forward,
we will refer to this basis as graph basis states. We will later
use a result from [21] that the partial trace of a graph state can
be expressed in the graph basis

TrA(|G〉〈G|) = 1

2|A|
∑

z∈Z|A|
2

U (z)|G − A〉〈G − A|U (z)†, (10)

where z sums over all binary strings of length |A|, U (z) =∏
a∈A(

∏
b∈Na

σ (b)
z )za , and |G − A〉 denotes the state corre-

sponding to deleting all vertices in A from G. Further analysis
of this state leads to the useful structural fact.

Lemma 1 (from [21]). The states U (z)|G − A〉 satisfy the
orthogonality condition

〈G − A|U †(z′)U (z)|G − A〉 =
{

0 if z − z′ ∈ ker(	AĀ)

1 if z − z′ �∈ ker(	AĀ),
(11)

where 	AĀ is the submatrix of 	G restricted to edges from
A to Ā. Hence, ρ (Ā) = TrA|G〉〈G| is maximally mixed over a
subspace of dimension 2d , where d = rank(	AĀ).

D. Existing tensor rank bounds for graph states

Here we briefly review existing results on the graph-state
CP rank. From [21] we have that

rank(|ψ〉) � 2(rank	AĀ )/2, (12)

where 	AĀ is the subset of the adjacency matrix restricted to
edges from Ā to A. This bound essentially comes from taking
a bipartite cut of the state. The authors also give a general case
upper bound

rank(|ψ〉) � 2τ (G), (13)

where τ (G) is the size of the smallest vertex cover of G.
While these bounds may not be tight, it is often possible

to use complementation rules to find locally equivalent graphs
for which these bounds improve. It is known that the full orbit
of any graph state under local Clifford operations can be found
via local complementations [19,21], that is, for some vertex
a ∈ V , complement the subgraph given by the neighborhood
Na (Fig. 1). These rules have been used to classify all graph
states of up to eight qubits [21,44,45]. Further, classes of two-
colorable graphs corresponding to states of maximal Schmidt

FIG. 2. Line and ring graphs. The left graph is a line (one-
dimensional cluster state) on seven qubits, which we denote by |L7〉.
The right graph is an odd ring on five qubits, which we denote by
|R5〉.

measure are known [46]. However, odd rings, corresponding
to non-two-colorable graphs, lead to loose bounds.

We will often concern ourselves with two forms of graphs:
lines (also known as one-dimensional cluster states) and rings
(Fig. 2), which we denote by |Ln〉 and |Rn〉, where n is the
number of qubits. Explicitly,

|Ln〉 =
(

n−1∏
i=1

U (i,i+1)

)
|+〉(1,...,n), (14)

|Rn〉 = U (1,n)|Ln〉. (15)

An explicit construction of a minimal CP decomposition
for line states is given in the Appendix.

Lemma 2. We have

rank(|Ln〉) = 2�n/2. (16)

Proof. This readily follows from the mentioned graph-
theoretic tools. See [21] for details. �

For any even ring |R2n〉, it is known that the lower bound
equals the upper bound, and thus the CP rank is 2n [21]. For
any odd ring |R2n+1〉, it is known that 2n � rank(|R2n+1〉) �
2n+1, coming from the rank of the adjacency matrix and
minimal vertex cover. Any tightening of these bounds will
therefore require a new type of analysis not based on the latter
graph-theoretic concepts.

II. TENSOR RANK OF RING STATES

In this paper we improve the odd ring CP rank bounds as
stated in the following theorem.

Theorem 1. The CP rank of the graph state corresponding
to any odd ring |R2n+1〉 is bounded by

2n + 1 � rank(|R2n+1〉) � 3 × 2n−1. (17)

We will break the proof into two propositions correspond-
ing to the upper and lower bounds.

A. Upper bound analysis

In this section we provide a CP rank upper bound of
3 × 2n−1 for odd ring graph states |R2n+1〉. To elucidate our
argument, an explicit construction for |R7〉 is given in the
Appendix.

Throughout the proof, we let

P0 = |0〉〈0|, P1 = |1〉〈1|
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and let U (a,b) denote a controlled-Z operation on qubits a and
b. We have

U (a,b) = P(a)
0 ⊗ I (b) + P(a)

1 ⊗ σ (b)
z

= I (a) ⊗ σ (b)
z + 2P(a)

0 ⊗ P(b)
1 . (18)

Below we show the main statement.
Proposition 1 (CP rank upper bound for odd ring graph

states). The CP rank of any odd ring state |R2n+1〉 is upper
bounded by

rank(|R2n+1〉) � 3 × 2n−1. (19)

Proof. For the case with n = 1, we can easily verify that

|R3〉 = |+ + −〉 + 1√
2
|001〉 − 1√

2
|110〉,

thus satisfying the upper bound. Below we show the cases
with n � 2.

Based on (18) and the fact that

|R2n+1〉 = U (1,2n+1)|L2n+1〉,
we have

|R2n+1〉 = U (1,2n+1)|L2n+1〉
= I (1) ⊗ σ (2n+1)

z |L2n+1〉 + 2P(1)
0 ⊗ P(2n+1)

1 |L2n+1〉.
The CP rank of the term I (1) ⊗ σ (2n+1)

z |L2n+1〉 is 2n since the
CP rank of |L2n+1〉 is 2n. Define the (unnormalized) state

|φ2n+1〉 = P(1)
0 |L2n+1〉. (20)

Based on Lemmas 3 and 4 below, the CP rank of the term
P(2n+1)

1 |φ2n+1〉 for all integers n � 2 is upper bounded by 2n−1,
thus proving the statement. �

Below we present Lemmas 3 and 4, which upper bound
the CP rank of P(2n+1)

0 |φ2n+1〉 and P(2n+1)
1 |φ2n+1〉 for all in-

tegers n � 2. In our analysis below, we define a generalized
controlled gate

CZZ (i, j,k) := U (i, j)U (i,k)

= P(i)
0 ⊗ I ( j) ⊗ I (k) + P(i)

1 ⊗ σ ( j)
z ⊗ σ (k)

z ,

whose CP rank is also 2. The line state |L2n+1〉 can be ex-
pressed as

|L2n+1〉 =
n∏

i=1

U (2i,2i−1)U (2i,2i+1)|+〉(1,...,2n+1)

=
n∏

i=1

CZZ (2i,2i−1,2i+1)|+〉(1,...,2n+1). (21)

Lemma 3. When n = 2, the ranks of both P(2n+1)
0 |φ2n+1〉

and P(2n+1)
1 |φ2n+1〉 with |φ2n+1〉 defined in (20) are bounded

by 2.
Proof. For n = 2,

|L2n+1〉 = |L5〉
= CZZ (4,3,5)CZZ (2,1,3)|+〉⊗5

= (I ⊗ P0 ⊗ I ⊗ P0 ⊗ I

+ I ⊗ P0 ⊗ σz ⊗ P1 ⊗ σz )|+〉⊗5

+ (σz ⊗ P1 ⊗ σz ⊗ P0 ⊗ I

+ σz ⊗ P1 ⊗ I ⊗ P1 ⊗ σz )|+〉⊗5

= 1
2 |+0 + 0+〉 + 1

2 |+0 − 1−〉 + 1
2 |−1 − 0+〉

+ 1
2 |−1 + 1−〉,

and thus we have

|φ5〉 = P(1)
0 |L5〉

= 1

2
√

2
|0〉(|0 + 0+〉 + |0 − 1−〉 + |1 − 0+〉

+ |1 + 1−〉)

= 1

4
|0〉(|0 + 0〉 + |0 − 1〉 + |1 − 0〉 + |1 + 1〉)|0〉︸ ︷︷ ︸

P(5)
0 |φ5〉

+ 1

4
|0〉(|0 + 0〉 − |0 − 1〉 + |1 − 0〉 − |1 + 1〉)|1〉︸ ︷︷ ︸

P(5)
1 |φ5〉

.

The above expressions for P(5)
0 |φ5〉 and P(5)

1 |φ5〉 can be rewrit-
ten as

P(5)
0 |φ5〉 = 1

2
√

2
|0〉(|+0+〉 + |−1−〉)|0〉,

P(5)
1 |φ5〉 = 1

2
√

2
|0〉(|+0−〉 + |−1+〉)|1〉,

and thus the CP ranks are bounded by 2. �
Lemma 4. When n � 2, the CP ranks of both

P(2n+1)
0 |φ2n+1〉 and P(2n+1)

1 |φ2n+1〉 are bounded by 2n−1.
Proof. We argue by induction on n. Assume that the

ranks of both P(2n+1)
0 |φ2n+1〉 and P(2n+1)

1 |φ2n+1〉 are bounded
by 2n−1. We will show that the CP ranks of both vectors
P(2n+3)

0 |φ2n+3〉 and P(2n+3)
1 |φ2n+3〉 are bounded by 2n.

The |φ2n+3〉 can be rewritten as follows:

|φ2n+3〉 = P(1)
0 |L2n+3〉

= P(1)
0 CZZ (2n+2,2n+1,2n+3)|L2n+1〉|++〉

= CZZ (2n+2,2n+1,2n+3)P(1)
0 |L2n+1〉|++〉

= CZZ (2n+2,2n+1,2n+3)P(2n+1)
0 |φ2n+1〉 ⊗ |++〉

+ CZZ (2n+2,2n+1,2n+3)P(2n+1)
1 |φ2n+1〉 ⊗ |++〉

= 1√
2

P(2n+1)
0 |φ2n+1〉 ⊗ (|0+〉 + |1−〉)

+ 1√
2

P(2n+1)
1 |φ2n+1〉 ⊗ (|0+〉 − |1−〉). (22)

Note that the third equality comes from the commutativity of
CZZ (2n+2,2n+1,2n+3) and P(1)

0 . Based on the identity

|0+〉 + |1−〉 = |+0〉 + |−1〉,
|0+〉 − |1−〉 = |+1〉 + |−0〉,
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Eq. (22) can be rewritten as

|φ2n+3〉 = 1√
2

P(2n+1)
0 φ2n+1 ⊗ (|+0〉 + |−1〉)

+ 1√
2

P(2n+1)
1 |φ2n+1〉 ⊗ (|+1〉 + |−0〉)

= 1√
2

(
P(2n+1)

0 |φ2n+1〉 ⊗ |+〉 + P(2n+1)
1 |φ2n+1〉 ⊗ |−〉)|0〉︸ ︷︷ ︸

P(2n+3)
0 |φ2n+3〉

+ 1√
2

(
P(2n+1)

0 |φ2n+1〉 ⊗ |−〉 + P(2n+1)
1 |φ2n+1〉 ⊗ |+〉)|1〉︸ ︷︷ ︸

P(2n+3)
1 |φ2n+3〉

.

It can be easily seen that the CP ranks of both tensors P(2n+3)
0 |φ2n+3〉 and P(2n+3)

1 |φ2n+3〉 are bounded by 2n. Since the rank upper
bound for the base case (n = 2) has been shown in Lemma 3, the lemma is proved. �

B. Lower bound analysis

We now turn to the lower bound and begin by giving an
outline of the proof. The following lemma holds in general
for CP decompositions.

Lemma 5. Suppose that

|ψ〉 =
R∑

i=1

μi|ψi〉(1) ⊗ · · · ⊗ |ψi〉(n) (23)

is a CP decomposition of |ψ〉. For any subset of parties Ā,
the span of {⊗c∈Ā |ψi〉(c)}R

i=1 contains the support of ρ (Ā) =
TrA|ψ〉〈ψ |. Moreover, if ρ (Ā) has matrix rank R, then con-
versely the states {⊗c∈Ā |ψi〉(c)}R

i=1 must belong to the support
of ρ (Ā).

Proof. Given Eq. (23), the reduced density matrix of |ψ〉
on Ā is

ρ (Ā) =
R∑

i=1

R∑
j=1

μiμ j

∏
k∈A

〈
ψ

(k)
i

∣∣ψ (k)
j

〉
︸ ︷︷ ︸

Mi j

∏
c∈Ā

∣∣ψ (c)
i

〉〈
ψ

(c)
j

∣∣.

Hence, ρ (Ā) = UMU T , where

U = [⊗c∈Ā

∣∣ψ (c)
1

〉 · · · ⊗
c∈Ā

∣∣ψ (c)
R

〉]
.

Consequently, the support (column span) of this reduced den-
sity matrix is contained in span({⊗c∈Ā |ψ (c)

i 〉}R
i=1). Further, if

rank(ρ (Ā) ) = R, the rank of M is also R, and the column span
of ρ (Ā) is the same as that of U . �

Armed with this lemma, the proof goes through the follow-
ing steps.

(i) Select a subset of qubits A such that ρ (Ā) has rank 2n.
(ii) Determine all of the product states in the support of

ρ (Ā).
(iii) Show that any CP decomposition of |R2n+1〉 into these

product states requires more than 2n terms.
Via the prior lemma, this then implies that |R2n+1〉 must

have CP rank strictly greater than 2n.

1. Rank 2n reduced density matrix

Recall that for any graph G and subset of vertices A ⊂ V ,
the graph state |G〉 can be expressed via Eq. (10) as

|G〉 = 1√
2|A|

∑
z∈Z|A|

2

(−1)|z||z〉(A)U (z)|G − A〉(Ā), (24)

where z sums over all binary strings of length |A| and
U (z) =∏a∈A(

∏
b∈Na

σ (b)
z )za . Consider splitting the ring into

n even and n + 1 odd vertices, defining A = {2, 4, . . . , 2n}
and Ā = {1, 3, . . . , 2n + 1}. For such partitions we write z as
z = (z2, z4, . . . , z2n). Now the density matrix of Ā in |R2n+1〉
is, using Eq. (24),

ρ (Ā) = 1

2n

∑
z∈Zn

2

U (z)|R2n+1 − A〉〈R2n+1 − A|U (z)†,

since for each a ∈ A, Na ⊆ Ā. The above density matrix de-
composition is an eigendecomposition as a consequence of
the lemma below.

Regarding notation going forward, for convenience we will
write the pure states on the reduced system as |φ〉|ϕ〉, where
the first factor is on parties 1 and 2n + 1 and the second is on
parties {3, 5, . . . , 2n − 1}. Qubit labels will be used when we
wish to refer to other factorizations.

Lemma 6. The states

|ez〉 := U (z)|R2n+1 − A〉 ∀ z ∈ Zn
2

are orthonormal and thus eigenvectors of ρ (Ā), which is con-
sequently of rank 2n.

Proof. After removing vertices in A, the graph is composed
of a two-qubit line state and product states

|R2n+1 − A〉 = |L2〉|+〉⊗n−2,

where |L2〉 = 1√
2
(|0+〉 + |1−〉). From the definition of U (z),

for any (z2, z4, . . . , z2n) ∈ Zn
2 we can then write

|ez〉 = (σ z2
z ⊗ σ z2n

z |L2〉
)⊗ |ϕz〉,

where

|ϕz〉 =
⊗

k=2,4,...,2(n−1)

σ zk⊕zk+2
z |+〉. (25)
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FIG. 3. Lower bounding the rank of |R2n+1〉 for n = 3. For the
seven-qubit ring state, we trace out the subset of qubits A = {2, 4, 6},
depicted as the red nodes in the ring. This set is judiciously chosen
such that after tracing out qubits belonging to A, the remaining qubits
Ā = {1, 3, 5, 7} (shown in blue) consists of just one entangled pair
(1,7) and the rest are completely uncoupled. This relatively simple
structure allows us to characterize all the product states in the support
of ρ (Ā) (Lemma 7). Using this characterization, the desired lower
bound on the tensor rank is proven (Theorem 2).

We first show that the product states |ϕz〉 and |ϕ′
z〉 are orthogo-

nal except when z′ = z or z′ = z̄, where z̄ denotes the bitwise
conjugate of z. Observe that

〈ϕz|ϕz′ 〉 =
∏

k=2,4,...,2(n−1)

〈+|σ zk⊕zk+2⊕z′
k⊕z′

k+2
z |+〉;

hence 〈ϕz|ϕz′ 〉 = 0, unless zk ⊕ z′
k = zk+2 ⊕ z′

k+2 for all k =
2, 4, . . . , 2(n − 1). If each zk ⊕ z′

k = 0, then z′ = z; otherwise
each zk ⊕ z′

k = 1, so z′ = z̄. Hence, we have established

〈ϕz|ϕz′ 〉 =
{

0 if z′ �= z̄
1 if z′ = z̄ or z′ = z. (26)

We now complete the proof of the lemma by showing that if
z′ = z̄, the state of the first and (2n + 1)th qubits (in the line
state) are orthogonal:

〈L2|σ z2⊕z̄2
z ⊗ σ z2n⊕z̄2n

z |L2〉
= 1

2 (〈0+| + 〈1−|)(σz ⊗ σz )(|0+〉 + |1−〉)

= 1
2 (〈0+| + 〈1−|)(|0−〉 − |1+〉) = 0. (27)

�

2. Product states in the support of ρĀ

As the following lemma shows, there are a finite number
of product states in the support of ρ (Ā) (see also Fig. 3).

Lemma 7. Let Sn
0,0 ⊂ Zn

2 be the collection of sequences
z = (z2, z4, . . . , z2n) with z2 = 0 and z2n = 0, and let Sn

0,1 be
the collection of sequences z = (z2, z4, . . . , z2n) with z2 = 0
and z2n = 1. Then the support of ρ (Ā) contains only 2n product
states given by

1√
2

(eiπ/4|ez〉 + e−iπ/4|ez̄〉) = |+̃+̃〉|ϕz〉,

1√
2

(e−iπ/4|ez〉 + eiπ/4|ez̄〉) = |−̃−̃〉|ϕz〉

for all z ∈ S0,0 and

1√
2

(eiπ/4|ez〉 + e−iπ/4|ez̄〉) = |+̃−̃〉|ϕz〉,

1√
2

(e−iπ/4|ez〉 + eiπ/4|ez̄〉) = |−̃+̃〉|ϕz〉 (28)

for all z ∈ Sn
0,1, where |±̃〉 = 1√

2
(|0〉 ± i|1〉).

Proof. By Lemma 6, the support of ρ (Ā) is spanned by
the orthonormal states |ez〉. Then, since |ϕz〉 = |ϕz̄〉, we can
organize the 2n eigenstates |ez〉 into four sets as follows:{

1√
2

(|0+〉 + |1−〉)|ϕz〉 | z ∈ Sn
0,0

}
for z2 = 0, z2n = 0,{

1√
2

(|0−〉 − |1+〉)|ϕz〉 | z ∈ Sn
0,0

}
for z2 = 1, z2n = 1,{

1√
2

(|0−〉 + |1+〉)|ϕz〉 | z ∈ Sn
0,1

}
for z2 = 0, z2n = 1,{

1√
2

(|0+〉 − |1−〉)|ϕz〉 | z ∈ Sn
0,1

}
for z2 = 1, z2n = 0.

(29)

We wish to find product states that span all of these states. The
crucial observation is that the states in the first two sets can be
written using only two product states for qubits 1 and 2n + 1
and similarly for the states in the last two sets:

1√
2

(|0+〉 + |1−〉) = 1√
2

(e−iπ/4|+̃+̃〉 + eiπ/4|−̃−̃〉),

1√
2

(|0−〉 − |1+〉) = 1√
2

(eiπ/4|+̃+̃〉 + e−iπ/4|−̃−̃〉),

1√
2

(|0−〉 + |1+〉) = 1√
2

(e−iπ/4|+̃−̃〉 + eiπ/4|−̃+̃〉),

1√
2

(|0−〉 − |1+〉) = 1√
2

(eiπ/4|+̃−̃〉 + e−iπ/4|−̃+̃〉). (30)

Thus it suffices to consider z ∈ Sn
0,0 and z ∈ Sn

0,1. Explicitly,

we conclude that the support of ρĀ is spanned by 2n orthogo-
nal product states{|+̃+̃〉|ϕz〉, |−̃−̃〉|ϕz〉 | z ∈ Sn

0,0

}
∪{|+̃−̃〉|ϕz〉, |−̃+̃〉|ϕz〉 | z ∈ Sn

0,1

}
. (31)

We next show that these are the only product states in the
support of ρ (Ā).

Suppose that |�〉 is a product state in the support of ρ (Ā).
Then we can find coefficients such that

|�〉 =
n∑

z∈S0,0

(az|+̃+̃〉|ϕz〉 + bz|−̃−̃〉|ϕz〉)

+
n∑

z∈S0,1

(cz|+̃−̃〉|ϕz〉 + dz|−̃+̃〉|ϕz〉)

= |+̃+̃〉|α〉 + |−̃−̃〉|β〉 + |+̃−̃〉|γ 〉 + |−̃+̃〉|δ〉, (32)

where |α〉 =∑z∈Sn
0,0

az|ϕz〉, |β〉 =∑z∈Sn
0,0

bz|ϕz〉, |γ 〉 =∑
z∈Sn

0,1
cz|ϕz〉, and |δ〉 =∑z∈Sn

0,1
dz|ϕz〉. Here, in an abuse of
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notation, {|α〉, |β〉, |γ 〉, |δ〉} may not be properly normalized
unit vectors. By Eq. (26), the states {|α〉, |β〉} are orthogonal
to the states {|γ 〉, |δ〉}.

Suppose first that both |α〉 and |β〉 are nonzero. Then we
can find a vector |v〉 in the linear span of {|α〉, |β〉} that has
nonzero overlap with both |α〉 and |β〉. Partially contracting
both sides of Eq. (32) by |v〉 yields

(id ⊗ 〈v|)|�〉 = x|+̃+̃〉 + y|−̃−̃〉,
with x, y �= 0. However, since |�〉 is a product state, it remains
a product state under partial contraction and so the right-hand
side must be a product state. However, the only product states
contained in the linear span of |+̃+̃〉 and |−̃−̃〉 are these states
themselves. We thus have a contradiction and so it is not pos-
sible for both |α〉 and |β〉 to be nonzero. A similar argument
shows that both |γ 〉 and |δ〉 cannot be nonzero. Hence, there
are only four possible forms of |�〉, each pairing an element
in {|α〉, |β〉} with an element in {|γ 〉, |δ〉}. For example, we
have could have

|�〉 = |+̃+̃〉|α〉 + |+̃−̃〉|δ〉 = |+̃〉(|+̃〉|α〉 + |−̃〉|δ〉),

which is not a product state unless either |α〉 or |δ〉 is zero,
since 〈α|δ〉 = 0. A similar argument applies for the other
three possible forms of |�〉. Therefore, any product state
in |�〉 must have the form |+̃+̃〉|α〉, |−̃−̃〉|β〉, |+̃−̃〉|γ 〉, or
|−̃−̃〉|δ〉, where |α〉 and |β〉 are product states in the span of
{|ϕz〉 | z ∈ Sn

0,0} and |γ 〉 and |δ〉 are product states in the span
of {|ϕz〉 | z ∈ Sn

0,1}.
Then it finally remains to be shown that the only prod-

uct states in the span of {|ϕz〉 | z ∈ Sn
0,0} are the states |ϕz〉

themselves; likewise, the only product states in the span of
{|ϕz〉 | z ∈ Sn

0,1} are the states |ϕz〉 themselves.
Suppose that |α〉 =∑z∈Sn

0,0
az|ϕz〉 and |γ 〉 =∑

z∈Sn
0,1

az|ϕz〉 are product states. If n = 2, then there is
only a single party in |ϕz〉. If n = 3, then there are two terms

|α〉 = a0|++〉 + a1|−−〉
and

|γ 〉 = c0|+−〉 + c1|−+〉,
which require that either a0 = 0 or a1 = 0 and either c0 = 0
or c1 = 0 in order for |α〉 and |γ 〉 to be product states. We
now prove the claim for arbitrary n via induction, for which
we have just shown the base case. Assume that the only
product states in the span of {|ϕz | z ∈ Sn

0,0〉} and in the span
on {|ϕz | z ∈ Sn

0,1〉} are the states themselves. Now consider
some |α〉 =∑z∈Sn+1

0,0
az|ϕz〉. Performing a partial contraction

with 〈+| on the last party yields

(I ⊗ 〈+|(2n−1))|α〉 =
∑

z′∈Sn
0,0

az′ |ϕz′ 〉. (33)

By the inductive assumption, the only way this can be a
product state is if at most one az′ is nonzero. Similarly,

(I ⊗ 〈−|(2n−1))|α〉 =
∑

z′∈Sn
0,1

az′ |ϕz′ 〉, (34)

implying that at most one term in this summation is nonzero
as well. We could have thus that

|α〉 = az1 |ϕz′
1
〉|+〉 + az2 |ϕz′

2
〉|−〉, (35)

where z′
1 ∈ Sn

0,0 and z′
1 ∈ Sn

0,1. However, as we have previously
argued, by Eq. (26) we must have that 〈ϕz′

1
|ϕz′

2
〉 = 0. We

are left with |α〉 = |ϕz〉 for some z ∈ Sn+1
0,0 . A similar line of

reasoning yields the analogous result for |γ 〉. This concludes
the proof. �

At this point we have identified a subsystem of rank 2n and
characterized all product states in its support. Using Lemma 5,
we can piece the parts together to obtain the following lower
bound.

Theorem 2. We have rank(|R2n+1〉) > 2n.
Proof. Lemma 5 constructs a reduced density matrix from

|R2n+1〉 of rank 2n, hence rank(|R2n+1〉) � 2n. Now suppose
for the sake of contradiction that rank(|R2n+1〉) = 2n. Since
ρ (Ā) has matrix rank 2n for the subset A = {2, 4, . . . , 2n},
Lemma 5 says that any CP decomposition of |R2n+1〉 of
minimal length must contain product states {⊗c∈Ā |ψi〉(c)}R

i=1

belonging to the support of ρ (Ā). However, Lemma 7 then
implies that these product states must be the ones given in
(28), that is, we must be able to write

|R2n+1〉 =
∑

z∈S0,0

|Az〉(2,4,...,2n)|+̃+̃〉(1,2n+1)|ϕz〉(3,5,...,2n−1)

+
∑

z∈S0,0

|Bz〉(2,4,...,2n)|−̃−̃〉(1,2n+1)|ϕz〉(3,5,...,2n−1)

+
∑

z∈S0,1

|Cz〉(2,4,...,2n)|+̃−̃〉(1,2n+1)|ϕz〉(3,5,...,2n−1)

+
∑

z∈S0,1

|Dz〉(2,4,...,2n)|−̃+̃〉(1,2n+1)|ϕz〉(3,5,...,2n−1),

(36)

with |Az〉, |Bz〉, |Cz〉, and |Dz〉 all being product states. We drop
the qubit labels below for readability.

At the same time, from Lemma 6 and Eq. (24) we can
express the ring state as

|R2n+1〉 = 1√
2n

∑
z∈Zn

2

|ẑ〉(A)|ez〉(Ā), (37)

where |ẑ〉(A) := (−1)|z||z〉(A). By inverting the equalities in
Eq. (28), this can be written as

|R2n+1〉 = 1√
2n

∑
z∈S0,0

e−iπ/4|ẑ〉 + eiπ/4|ˆ̄z〉√
2

|+̃+̃〉|ϕz〉

+ 1√
2n

∑
z∈S0,0

eiπ/4|ẑ〉 + e−iπ/4|ˆ̄z〉√
2

|−̃−̃〉|ϕz〉

+ 1√
2n

∑
z∈S0,1

e−iπ/4|ẑ〉 + eiπ/4|ˆ̄z〉√
2

|+̃−̃〉|ϕz〉

+ 1√
2n

∑
z∈S0,1

eiπ/4|ẑ〉 + e−iπ/4|ˆ̄z〉√
2

|−̃+̃〉|ϕz〉.
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Comparing this with Eq. (36) shows that |Az〉 = 1√
2n+1

(e−iπ/4|ẑ〉 + eiπ/4|ˆ̄z〉), |Bz〉 = 1√
2n+1

(eiπ/4|ẑ〉 + e−iπ/4|ˆ̄z〉), etc.,
which is a contradiction because these are not product states
(which can be seen by noting that these are equivalent to GHZ
states under local unitary operations). �

III. ENTANGLEMENT MEASURES ON GENERAL
GRAPH STATES

A. Extensions of bipartite measures

Here we evaluate the multipartite extensions of bipartite
measures previously discussed. Recall that the multipartite
extension of some bipartite entanglement measure E is de-
fined as minA EA(|ψ〉), where EA is the measure E evaluated
according to partition A|Ā. Surprisingly for graph states, the
multipartite extensions of many standard bipartite entangle-
ment measures are dichotomous: one of two values based on
if the graph is connected. The GME concurrence, negativ-
ity, and geometric measure have been previously calculated
for connected graphs [47]. Since these results were derived
independently of this work, we provide in the Appendix a
self-contained and direct calculation of the following.

Theorem 3. We have

CGME(|G〉) =
{

0 if G is a disconnected graph

1 otherwise,
(38)

NGME(|G〉) =
{

0 if G is a disconnected graph
1
2 otherwise,

(39)

GGME(|G〉) =
{

0 if G is a disconnected graph
1
2 otherwise.

(40)

B. Graph state N-tangle

We present the following dichotomous result for τn(|G〉).
Theorem 4. For any graph state |G〉 on an even number of

qubits,

τn(|G〉) =
{

1 for all v ∈ V, δ(v) = 1 (mod2)

0 otherwise,
(41)

where δ(v) denotes the degree of vertex v, i.e., the number of
edges incident on vertex v.

Proof. As the components of the state vector |G〉 are all
real, τn(|G〉) = |〈G|σ⊗n

y |G〉|2. We employ the following σx rule
[48]:

σ (a)
x |G〉 =

∏
b∈Na

σ (b)
z |G〉. (42)

Thus, applying σ (a)
x maps the state to another graph basis state

based on the graph’s edges. Of course, σy = −iσzσx. Note that
additional global phases may be picked up in the application
of the σx rule based on the graph basis state. However, global
phases do not factor into the calculation of τn and are dropped
below. Thus,

σ⊗n
y |G〉 ∼

∏
a∈V

σ (a)
z

∏
b∈Na

σ (b)
z |G〉. (43)

If there is a vertex v of even degree, then σ (v)
z appears in an

even number of the second products above in addition to once

FIG. 4. GHZ state graph. For any system size, the GHZ state
is local Clifford equivalent to a star graph state. Through the local
complementation rule, this is also local Clifford equivalent to the
fully connected graph. Note that all vertices have odd degree and
thus τn = 1 as we expect.

in the first product. Thus, |G〉 is mapped to a different graph
basis state and |〈G|σ⊗n

y |G〉| = 0.
If all vertices have odd degree, then an even number of

σz operations are applied to each party and the state is an
eigenvector of σ⊗n

y . Thus, |〈G|σ⊗n
y |G〉| = 1. �

We illustrate this by recovering the fact that τn(|GHZ〉) = 1
for even n. The GHZ state is local Clifford equivalent to a star
graph (Fig. 4). The central vertex has degree n − 1, while the
others all have degree 1. Thus, τn(|GHZ〉) = 1 if and only if n
is even, as expected.

Remark 1. There are 2(n−1
2 ) graphs on n (where n is even)

vertices such that τn(|G〉) = 1. There are none for odd n.
Proof. By the handshake lemma, the number of vertices of

odd degree must be even. For n odd this proves the claim.
We claim that, for even n, given any graph on n − 1 ver-

tices, we can construct a graph on n of all odd degree. As
n − 1 is odd, there must be an odd number of vertices of even
degree. Simply connect the new nth vertex to these originally
even degree vertices. As the original graph can be recovered
by removing the nth vertex, this is a bijection between graphs
of n − 1 vertices and all odd graphs on n. This is illustrated
in Fig. 5 The claim follows from the number of undirected
graphs on n − 1 labeled vertices. �

This result readily extends to all stabilizer states. Recall
that the weight w(P) of a Pauli string is given by the num-
ber of nonidentity terms. For example, w(X ⊗ I) = 1. The
following remark extends the prior theorem to all stabilizer
states.

FIG. 5. Forming a graph of entirely odd degree. Starting with a
graph on an odd number of vertices, we can always convert it to a
new graph on one more vertex such that all vertices have odd degree.
To do so, add a new vertex (red) and connect it to all vertices of even
degree.
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Remark 2. The n-tangle τn of any stabilizer state is 1 if
each stabilizer is of even weight. Otherwise, τn = 0.

Proof. Since the stabilizers of a graph state are of the form
σ (a)

x

∏
b∈Na

σ (b)
z for all vertices a, this clearly holds for graph

states. A quick proof can then be obtained by recalling that
any stabilizer state can be transformed into a graph state via
local unitary operations [19]. Local unitary operations leave τn

invariant and also do not change the weight of the stabilizers
(since if ±P stabilizes |ψ〉 then ±UPU † stabilizes U |ψ〉).

We give a more constructive proof in the Appendix which
does not rely upon the fact that all stabilizer states are equiva-
lent to graph states under local unitaries. �

It is worth noting that this property can be verified by
checking a set of generators. Let S be a stabilizer group and
{gi}k

i=1 a generating set. Assume that each gi has even weight.
The following lemma shows that any product of operators in
the set {gi}k

i=1 is of even weight. Thus, every stabilizer in S is
of even weight and it suffices to check the weight of a gener-
ating set. Since any stabilizer group has minimal generating
sets of size n, τn can be efficiently computed starting with
generators.

Lemma 8. Let P and T be two commuting Pauli strings,
each of even weight. Then the weight of PT is even as well.

Proof. We refer to each i ∈ [n] as a site. A Pauli string
assigns an operator in the set {I, σx, σy, σz} to each site, which
we denote by P(i) and T (i), respectively. The weight of PT is
the number of sites where P(i) �= T (i). We can expand this as

w(PT ) = w(P) + w(T ) − |{i ∈ [n] |{P(i), T (i)} = 0}|
− 2|{i ∈ [n] | P(i) = T (i)}|. (44)

More specifically, the weight of PT is that of P and T minus
the number of anticommuting sites and minus two times the
number of matching sites. Since P and T commute, there are
an even number of anticommuting sites. Thus, w(PT ) must
be even. �

IV. CONCLUSION

In this work we tightened the bounds on CP rank of odd
rings to 2n + 1 � rank(|R2n+1〉) � 3 × 2n−1. This indicates

that odd rings are, according to the Schmidt measure, more
entangled than a line in the same number of qubits. Further,
odd rings are thus not of particularly high rank. For 2n + 1
qubits, the maximum CP rank is known to be on the order of
22n−1 [49]. Based on numerical CP decomposition, we suspect
rank(|R2n+1〉) = 3 × 2n, but the question remains open.

Beyond CP rank, we considered several multipartite entan-
glement measures on graph states based on bipartite measures.
Surprisingly, these prove dichotomous: either 0 if the graph is
disconnected or a fixed value irrespective of graph structure
beyond connectivity.
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APPENDIX

1. Minimal decomposition of line states

We find it informative to give a recursive minimal CP
decomposition for line states |Ln〉. Note that this can be used
to construct the 3 × 2n term CP decomposition for |R2n+1〉.

Remark 3. A minimal decomposition for any |Ln〉 can be
found via a simple recursive method. Define the following two
qubit states:

|a〉 = |0+〉, |b〉 = |1−〉, |c〉 = |0−〉, |d〉 = |1+〉.
(A1)

Any line state can be written as some sum over tensor products
of these states, i.e., |Ln〉 = 1

2�n/2
∑

|ψ〉∈Ln
|ψ〉, where all terms

|ψ〉 are some string such as |aaa . . . a〉, |acb . . . d〉, etc. By Ln

we denote the set of such strings in the decomposition of an
n-qubit line state. In particular, the line state on 2n qubits takes
the form

|L2n〉 = 1

2n/2

⎛
⎜⎜⎝(|a〉 + |b〉)

∑
|ψ〉∈L2(n−1)
|ψ〉1=|0〉

|ψ〉 + (|c〉 + |d〉)
∑

|φ〉∈L2(n−1)
|φ〉1=|1〉

|φ〉

⎞
⎟⎟⎠. (A2)

Here by |ψ〉1 = |0〉 we mean that the first party in |ψ〉 is in
state |0〉. The line state on 2n + 1 qubits takes the form

|L2n+1〉 = |+〉P(1)
0 |L2n〉 + |−〉P(1)

1 |L2n〉. (A3)

The base case is |L2〉 = 1√
2
(|a〉 + |b〉).

Proof. We can write a line state as

|Ln〉 = 1

2�n/2
∑
x∈Fn

2

c(x)|x〉, c(x) =
n−2∏
i=0

(−1)xixi+1 . (A4)

This follows from the action of U (i,i+1). Thus, we are look-
ing to find a decomposition that contains all binary strings
with equal weight, but with signs based off of the number of
consecutive ones. It is clear that |a〉 and |b〉 satisfy these re-
quirements. From inspection it is clear that |c〉 and |d〉 satisfy
this property when following a party in the state |1〉. Further,
|a〉/|b〉 combined and |c〉/|d〉 combined generate every binary
string when expanded in the computational basis. When n is
even, we simply append new characters such that the sign
properties are maintained. When n is odd we do the same but

032409-9



SCHATZKI, MA, SOLOMONIK, AND CHITAMBAR PHYSICAL REVIEW A 110, 032409 (2024)

with an addition of |±〉 chosen such that the sign property is
maintained.

The recursive structure above doubles the number of terms
in the decomposition between |L2n〉 (|L2n+1〉) and |L2(n+1)〉
(|L2(n+1)+1〉). As the base case is rank 2, these are rank 2�n/2
decompositions, which is optimal. �

2. Upper bound for the seven-qubit ring

Here we explicitly construct the rank 3 × 22 = 12 decom-
position for |R7〉. From Remark 3 the seven-qubit line state
can be written as

|L7〉 = 1

2
√

2
|+〉(|aaa〉 + |acb〉 + |cba〉 + |cdb〉)

+ 1

2
√

2
|−〉(|baa〉 + |bcb〉 + |dba〉 + |ddb〉), (A5)

P(1)
0 P(7)

1 |L7〉 = 1

4
√

2
|0〉(|aa0〉 − |ac1〉 + |cb0〉 − |cd1〉

+ |ba0〉 − |bc1〉 + |db0〉 − |dd1〉)|1〉. (A6)

Following the proof in the main text, we can find the desired
decomposition from that of |R5〉, |a(4)〉 = 1

2
√

2
|0〉(|+0+〉 +

|−1−〉) and |b(4)〉 = 1
2
√

2
|0〉(|+0−〉 + |−1+〉),

P(7)
1 |φ(7)〉 = 1√

2
(|a(4)〉|0−〉 + |b(4)〉|1+〉)|1〉

= 1

4
|0〉[(|+0+〉 + |−1−〉)|0−〉

+ (|+0−〉 + |−1+〉)|1+〉]|1〉. (A7)

It can be verified that these are the same states via ex-
panding into the computational basis. As |R7〉 = U (1,7)|L7〉 =
(σ (2n+1)

z + 2P(1)
0 ⊗ P(7)

1 )|L7〉, we can thus write |R7〉 in the
12-term decomposition

|R7〉 = 1

2
√

2
|+〉(|0 + 0 + 0+〉 + |0 + 0 − 1−〉

+ |0 − 1 − 0+〉 + |0 − 1 + 1−〉)

+ 1

2
√

2
|−〉(|1 − 0 + 0+〉

+ |1 − 0 − 1−〉 + |1 + 1 − 0+〉 + |1 + 1 + 1−〉)

+ 1

2
|0〉[(|+0+〉 + |−1−〉)|0−〉

+ (|+0−〉 + |−1+〉)|1+〉]|1〉. (A8)

3. Calculation of GME entanglement for graph states

To show Theorem 3, we first observe the following.
Corollary 1. The reduced density matrix for any individual

qubit party i corresponding to vertex v is

ρi =
{

1
2I, δ(v) > 0

|+〉〈+|, δ(v) = 0,
(A9)

where δ(v) is the degree of vertex v.
Proof. This follows readily from Lemma 1. If v is not an

isolated vertex, there is at least one nonzero value in 	AĀ,

where A = {v}, and thus rank(	AĀ) = 1. If v is an isolated
vertex, then rank(	AĀ) = 0. �

With this corollary and Lemma 1, we now show that the
measures previously introduced are either 0 or a fixed constant
based on if the graph is connected.

Theorem 5. We have

CGME(|G〉) =
{

0 if G is a disconnected graph

1 otherwise.
(A10)

Proof. From Lemma 1 we know that any reduced density
matrix is maximally mixed on a certain subspace of dimen-
sion 2d = 2rank(	AĀ ). By finding maxA Tr(ρ2

A) we minimize
GME concurrence. The purity of a k-dimensional maximally
mixed state is 1

k . If there is a disconnected component A,
rank(	AĀ) = 0 and CGME(|G〉) = 0. Otherwise, the maximal
purity is 1

2 , which is achieved by considering any single ver-
tex. Thus, CGME(|G〉) = 1. �

Theorem 6. We have

NGME(|G〉) =
{

0 if G is a disconnected graph
1
2 otherwise.

(A11)

Proof. Before continuing, we note that negativity can be
equivalently written as a summation of the absolute value of
the negative eigenvalues of the partial transpose

N (ρAB) = 1
2 (‖ρTA‖1 − 1) =

∑
λ<0

|λ|, (A12)

where λ are the eigenvalues of ρTA . Next we use
Lemma 1 to write |G〉 in a Schmidt decomposition |G〉 =
2−d/2∑2d

i=1 |ui〉|vi〉, where d = rank(	A:Ā). Thus, the partial
transpose with respect to Ā is

I ⊗ T (|G〉〈G|) = 2−d
2d∑

i, j=1

|ui〉〈u j | ⊗ |v j〉〈vi|. (A13)

This has a negative eigenvalue −2−d with multiplicity
(2d

2

)
,

corresponding to eigenvectors 1√
2
(|ui〉|v j〉 − |u j〉|vi〉). Thus,

the negativity according to partition A|Ā is

N (ρAĀ) =
(

2d

2

)
2−d = 1

2
(2d − 1). (A14)

Clearly this is increasing with d . Thus, the GME negativity
will be minimized by a partition with the smallest rank(	AĀ).
If G is disconnected, there exists a partition A such that
rank(	AĀ) = 0. Otherwise, d = 1 for any partition into a sin-
gle vertex, for which N (ρAĀ) = 1

2 . �
Theorem 7. We have

GGME(|G〉) =
{

0 if G is a disconnected graph
1
2 otherwise.

(A15)

Proof. If G is disconnected there is a partition with
Schmidt coefficient 1 (Corollary 1). Otherwise, the largest
Schmidt coefficient possible is always 1

2 via Lemma 1. �

4. Alternative proof of Remark 2

In this section we give a more explicit proof for Remark
2 on τn evaluated on stabilizer states. We restate the remark

032409-10



TENSOR RANK AND OTHER MULTIPARTITE … PHYSICAL REVIEW A 110, 032409 (2024)

here: The n-tangle τn of any stabilizer state is 1 if each stabi-
lizer is of even weight. Otherwise, τn = 0.

Proof. Since τn(|ψ〉) = |〈ψ |ψ̃〉|2, we proceed by finding
|s̃〉〈s̃| = σ⊗n

y |s∗〉〈s∗|σ⊗n
y for a stabilizer state |s〉. Any stabi-

lizer state can be written in the form

|s〉〈s| = 1

2n

∑
P∈S

aPP, (A16)

where S is the stabilizer subgroup, P is a Pauli string, and
aP ∈ {±1}. Let wy(P) denote the number of σy terms in P.
For example, wy(σy ⊗ σx ⊗ σy) = 2. Then

|s∗〉〈s∗| = 1

2n

∑
P∈S

aP(−1)wy (P)P, (A17)

since complex conjugation leaves σz and σx unchanged. Next
we consider conjugation by σ⊗n

y :

σ⊗n
y |s∗〉〈s∗|σ⊗n

y = 1

2n

∑
P∈S

aP(−1)wy (P)σ⊗n
y Pσ⊗n

y . (A18)

Since the Pauli strings either commute or anticommute,
σ⊗n

y Pσ⊗n
y is equal to P or −P. In particular, σ⊗n

y Pσ⊗n
y =

(−1)wz (P)+wx (P)P, where wz(P) and wx(P) are the numbers of
σz and σx terms, respectively. In total, we have that

σ⊗n
y |s∗〉〈s∗|σ⊗n

y = 1

2n

∑
P∈S

aP(−1)w(P)P, (A19)

where w(P) is the weight of P. If aP(−1)w(P) �= aP for any
P ∈ S, then |s̃〉 must be orthogonal to |s〉 (since it then neces-
sarily belongs to a different eigenspace of a stabilizer). This
proves the claim. �
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