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Estimating correlations and entanglement in the two-dimensional
Heisenberg model in the strong-rung-coupling limit
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We consider the isotropic Heisenberg model in a magnetic field in the strong-rung-coupling limit on a
two-dimensional (2D) rectangular zig-zag lattice of arbitrary size, and determine the one-dimensional (1D)
effective model representing the low-energy manifold of the 2D model up to second order in perturbation theory.
We consider a number of Hermitian operators defined on the Hilbert space of the 2D model, and systematically
work out their action on the low-energy manifold, which are operators on the Hilbert space of the 1D effective
model. For a class of operators among them, we demonstrate that the expectation values computed in the
low-energy manifold of the 2D model can be mimicked by the expectation values of the corresponding operators
in the 1D effective model even beyond the perturbation regime of the system parameters. We further argue that
quantitatively estimating partial trace-based measures of entanglement in the 2D model may be done in the same
fashion only in the perturbation regime. Our results and approach are expected to be useful in investigating
observables and entanglement in the 2D models with large system sizes due to the advantage of using the
effective 1D model with a smaller Hilbert space as a proxy.
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I. INTRODUCTION

The interface of quantum information theory [1] and low-
dimensional interacting quantum spin systems [2], with small
lattice dimension with each lattice site hosting a Hilbert space
of a few levels, has grown into a rich area of interdisciplinary
research [3–5] in the past two decades. On one hand, these
interacting quantum spin models have been identified as the
natural candidates for testing and implementing quantum in-
formation and computation protocols, such as quantum state
transfer [6], measurement-based quantum computation [7],
and topological quantum error corrections [8]. The motivation
behind these studies has its origin in the natural occurrence of
quantum states with rich quantum correlations belonging to
both entanglement-separability [9] and quantum information
theoretic paradigms [5], which, alongside being fundamen-
tally important, can be used as resource in several quantum
tasks [5,9]. On the other hand, these quantum correlations
have provided a refreshing perspective of characterizing quan-
tum many-body systems [3–5], along with the development
of tools and techniques like projected entangled pair states
[10] and multiscale entanglement renormalization ansatz [11].
Current experimental advances allowing implementation and
manipulation of these quantum spin models as well as quan-
tum protocols designed on these models using trapped ions
[12], superconducting qubits [13], nuclear magnetic reso-
nance [14], solid-state systems [15], and ultra-cold atoms [16]
have also provided a major boost to these studies.

Among a plethora of low-dimensional quantum spin mod-
els, two-dimensional (2D) lattice models have always been
specially challenging due to the faster growth of Hilbert space
dimension with increasing number of spins in the system,
compared to their one-dimensional (1D) counterparts. One

such model is the Heisenberg model [17] in a magnetic field
on a rectangular lattice of NL sites, having respectively N
and L lattice sites in the horizontal and vertical directions,
where each lattice site hosts a spin-1/2 particle. A number
of recent studies [18] have been carried out to understand
the entanglement properties of the model. Particular attention
has been drawn towards quasi-1D models [19] like quantum
spin ladders [20,21] with the number of lattice sites in the
horizontal direction being far greater than the same in the
vertical direction (N � L). As natural extensions of the 1D
models while going towards 2D, quantum spin ladders with
L = 2 have been investigated from the perspective of quantum
state transfer [22]. Moreover, entanglement [23] and fidelity
[23] have been investigated in these ladder models from the
perspective of characterization of phases. While most of these
studies have concentrated on models with spin-1/2 particles,
entanglement properties of quantum spin ladders with higher
spin quantum numbers [24] have also been explored.

In the limit where the coupling strength J⊥ along the ver-
tical sublattices, referred to as the rungs of the ladder, are
much larger compared to other spin-exchange interactions
present in the system, the rung behaves like a single degree of
freedom, and the model becomes effectively 1D. By further
tuning magnetic field strength, for low values of L (L = 2, 3),
Refs. [25–29] show that the isotropic Heisenberg quantum
spin-1/2 ladders map to an 1D XXZ model [30,31] up to the
first order in perturbation theory (see also [32]). This mapping
has been used to study quantum phase transitions in the case
of antiferromagentic spin-1/2 ladders with L = 2 [25–27,29]
and 3 [28,29], using magnetization properties [25,29], and en-
tanglement [27] of the mapped effective 1D XXZ model (see
also [33] for the mapping in the case of a mixed-spin variant of
quantum spin ladders with L = 2). While these case-by-case
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studies have focused on obtaining the phase information of the
isotropic Heisenberg Hamiltonian on the ladder-like lattices
with low values of L using local observables and entanglement
computed in the mapped 1D model, to the best of our knowl-
edge, the possibility of computing the correlation functions
and entanglement in the low-energy sector of the spin-1/2
Heisenberg model on the 2D lattice of arbitrary size using
the effective 1D model as a proxy inside as well as outside the
perturbation regime of the system-parameter space is yet to be
explored. With this motivation, in this paper, we specifically
focus on

(1) Determining the effective 1D model corresponding to
the isotropic Heisenberg Hamiltonian on a zig-zag square
lattice in the strong-rung-coupling limit for arbitrary size of
the 2D lattice and

(2) Investigating whether the 1D effective model faithfully
represent the spin correlation functions and entanglement
computed using the states from the low-energy manifold of
the 2D model even for parameter space points beyond the
perturbation regime of the space of the system parameters.

Towards the first question, we determine the 1D effective
model in a system size-independent fashion up to the first
and the second order in perturbation theory, thereby bringing
the specific models, studied so far in a case-by-case basis
[25–29], under the same umbrella. We analytically derive the
effective coupling constants of the 1D model as functions of
the coupling constants in the original model for arbitrary size
and for periodic boundary conditions on the 2D lattice in the
vertical directions. We quantitatively specify the space of the
system parameters, including the size L of a rung, in which
the perturbation theory is valid so that the results from the 1D
effective theory can be used. Using the energy gap, we also
analyze the phase diagram of the 2D model. Further, for a
number of operators defined on the Hilbert space of the 2D
model, we systematically work out the operators they map to
in the effective 1D model. Investigating the second question,
we study the applicability of the 1D effective model in deter-
mining the energy gap and expectation values of operators in
the 2D model irrespective of the chosen perturbation strength.
More specifically, we show that both the energy gap, and the
expectation values for a class of operators referred to as the
low-energy operators, which does not take one out of the low-
energy manifold (we define it precisely in Sec. III B), agree
even beyond the perturbation regime of the system parame-
ters. We further investigate such possibilities for entanglement
in the 2D model, and argue that to quantitatively as well as
qualitatively estimate entanglement in the low-lying states of
the 2D model, one needs to choose the system parameters
within the regime where perturbation theory is valid.

The rest of the paper is organized as follows. In Sec. II
we discuss the 2D Heisenberg model (Sec. II A), the idea
of the low-energy 1D effective Hamiltonian (Sec. II B), and
its derivation for arbitrary size of the 2D lattice using the
symmetry arguments and first- and second-order perturba-
tion theory, where each rung is mapped to an effective qubit
(Sec. II C). The phase information of the 2D isotropic Heisen-
berg model is explored using the 1D effective model in
Sec. II E. Section III deals with the performance of the 1D
effective theory in computing the energy gap, and expecta-
tion values of Hermitian operators defined on the 2D model

FIG. 1. (a) A 2D zig-zag lattice of six rungs and four legs holding
6 × 4 spin- 1

2 particles. The spin-exchange interaction strength along
the rungs and the legs are J⊥ and J||, respectively, while the spins
interact diagonally with the interaction strengths J1

d and J2
d along

the left and the right diagonals respectively. The periodic boundary
condition along the rungs, legs, and diagonals are represented by the
dashed links to the edge spins of the lattice. Each spin in the lattice is
subjected to a magnetic field of strength h in the z direction. (b) Using
degenerate perturbation theory in the low-energy subspace in the
strong-rung-coupling limit (J⊥ � J||, J1

d , J2
d ), for specific points in

the parameter space of J⊥ and h, the model can be mapped to a
effective 1D Hamiltonian [see Eq. (13)], where each lattice site hosts
a d-dimensional Hilbert space corresponding to each rung of the
system.

beyond the perturbation regime of the parameter space. It
also discusses the computation of entanglement using partial
trace-based approaches. Section IV contains the concluding
remarks and outlook.

II. LOW-ENERGY EFFECTIVE HAMILTONIAN

In this section we introduce the isotropic Heisenberg model
on the rectangular zig-zag lattice, and discuss mapping it to
an effective 1D lattice model in the low-energy subspace,
including the dependence of the validity of this mapping on
the space of the system parameters, and the implication in
extracting information about the phases of the 2D model.

A. Isotropic Heisenberg model on a 2D zig-zag lattice

Let us consider an N × L lattice with L (N ) lattice sites
along the vertical (horizontal) direction, each lattice site
hosting a spin- 1

2 particle [see Fig. 1(a)], such that a 2NL-
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dimensional Hilbert space H is associated to the system. We
call the vertical (horizontal) lines in the lattice the rungs (legs),
where N (L) represents the number of rungs (legs). While
N = L represents a zig-zag square lattice, N � L represents
a zig-zag ladder that is intermediate between the 1D and 2D
lattices, and is therefore called a quasi-1D lattice model [21].
Isotropic Heisenberg interactions [30,31] are present between
the spins along the legs, rungs, as well as the diagonals, and
an external magnetic field applies to all spins along the z
direction. The spin system is represented by the Hamiltonian
[21]

H/J⊥ = HR + HI , (1)

with

HR = 1

4

N∑
i=1

L∑
j=1

�σi, j .�σi, j+1 − h

2J⊥

N∑
i=1

L∑
j=1

σ z
i, j − NEg

(2)

and

HI = J||
4J⊥

N∑
i=1

L∑
j=1

�σi, j .�σi+1, j + J1
d

4J⊥

N∑
i=1

L∑
j=1

�σi, j+1.�σi+1, j

+ J2
d

4J⊥

N∑
i=1

L∑
j=1

�σi, j .�σi+1, j+1. (3)

Here J⊥ (J||) is the strength of the spin-exchange interactions
along the rungs (along the legs), J1

d and J2
d are the diagonal

interaction strengths, h is the strength of the magnetic field,
�σi, j ≡ {σ x

i, j, σ
y
i, j, σ

z
i, j} are the Pauli operators on the lattice site

denoted by the subscripts i, j, with i ( j) being the rung (leg)
index running from 1 to N (L), and Eg is a constant we will
choose in Sec. II B. We use the computational basis {|0〉, |1〉}
to write the Pauli matrices, where σ z|0〉 = |0〉, σ z|1〉 = −|1〉,
such that |0〉 ≡ |↑〉, and |1〉 ≡ |↓〉.

B. Effective Hamiltonian in low-energy subspace

We now discuss the construction of a low-energy effective
1D Hamiltonian (LEH) [32] corresponding to the spin models
described in Sec. II A. We start with the limit J|| = J1

d = J2
d =

0, where the model consists of N noninteracting rungs, each
of which corresponds to a 2L-dimensional Hilbert space. The
antiferromagnetic isotropic Heisenberg Hamiltonian of each
rung is given by

HRi = 1

4

L∑
j=1

�σi, j .�σi, j+1 − h

2J⊥

L∑
j=1

σ z
i, j − Eg, (4)

with HR =∑N
i=1 HRi . Let us assume that for a given value of

h, the spectrum of HRi is given by {E (i)
ki

, |ψ (i)
ki

〉}, where ki ∈
{0, 1, . . . , 2L − 1} ∀i ∈ {1, 2, . . . , N}, such that

HRi

∣∣ψ (i)
ki

〉 = E (i)
ki

∣∣ψ (i)
ki

〉
, (5)

with ki = 0 representing the ground state. A d-fold degener-
acy in the ground states can be imposed via tuning h to specific
values, which we denote by h′, where typically h′ ∼ J⊥ (see
the Appendix for details in the case of d = 2). At this point,
we choose Eg such that ground state energy of HR with h = h′

vanishes. For a fixed L, there may be multiple values of h′
resulting in different degeneracies d of the ground states. For
each h′, we relabel the states {|ψ (i)

ki
〉} such that

E (i)
ki

= 0 ∀ ki = 0, 1, 2, . . . , d − 1, (6)

E (i)
ki

> 0 ∀ ki = d, d + 2, . . . , 2L − 1, (7)

and denote the d-fold degenerate ground states by
{|ψ (i)

0 〉, . . . , |ψ (i)
d−1〉}. For each h′, the ground-state manifold

{|�l〉} of HR is dN -fold degenerate, constituting the ground
state subspace S ⊂ H of the system of N noninteracting
rungs, with |�l〉 having the form

|�l〉 =
N⊗

i=1

∣∣ψ (i)
ki

〉
. (8)

Here ki = 0, 1, . . . , d − 1, and l = 0, 1, 2, . . . , dN − 1 labels
the ground state manifold (note that l can be identified as the
decimal equivalent of the string k1k2k3 · · · kN in base d). We
will find it useful to split the Hilbert space into two subspaces,
one is the subspace spanned by |�l〉 (which we will term the
low-energy sector) and the other (which we will term the high-
energy sector) orthogonal to this space. We can also define a
projector onto the low-energy sector as

Pg =
∑

l

|�l〉〈�l |, (9)

and the projector on the high-energy sector is Pe ≡ I − Pg.
Let us now rewrite the system Hamiltonian H [Eq. (1)] as

1

J⊥
H = H0 + 1

J⊥
H ′, (10)

where

H0 = 1

4

N∑
i=1

L∑
j=1

�σi, j .�σi, j+1 − h′

2J⊥

N∑
i=1

L∑
j=1

σ z
i, j − NEg, (11)

which is HR at h = h′, and

H ′ = J||
4

N∑
i=1

L∑
j=1

�σi, j .�σi+1, j + J1
d

4

N∑
i=1

L∑
j=1

�σi, j+1.�σi+1, j

+J2
d

4

N∑
i=1

L∑
j=1

�σi, j .�σi+1, j+1 − �h

2

N∑
i=1

L∑
j=1

σ z
i, j, (12)

with �h = h − h′. Clearly, ground states of H0 have a dN -fold
degeneracy [see Eq. (8)], which is lifted by the perturbation
H ′. For �h, J||, J1,2

d � J⊥, this leads to an effective Hamilto-
nian operating in the low-energy subspace S , where energy
eigenvalues of the nth order (n = 1, 2, . . .) effective Hamil-
tonian in S provides the nth-order energy corrections to the
unperturbed states of low energy. In this paper, we focus only
on the first- (n = 1) and the second-order (n = 2) effective
Hamiltonians, which can be obtained as

H̃ (1) =
dN −1∑
l,l ′=0

〈�l |H ′|�l ′ 〉|�l〉〈�l ′ |, (13)

H̃ (2) =
dN −1∑
l,l ′=0

∑
m

1

Em
〈�l |H ′|ξm〉〈ξm|H ′|�l ′ 〉|�l〉〈�l ′ |, (14)
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where {|ξm〉} are states from the high-energy sector of H0 such
that H0|ξm〉 = Em|ξm〉, which are connected to {|�l〉} by H ′.
Note here that both the first- and the second-order effective
Hamiltonians [Eqs. (13) and (14)] are operators on the Hilbert
space of a system of one lattice dimension with N sites, where
each lattice site has d degrees of freedom.

C. Special cases: d = 2

In this paper we focus on a subset of cases with d = 2 by
choosing h′ appropriately (see the Appendix for details). The
effective degrees of freedom in this case is like a spin-1/2
system. The effective Hamiltonian will be built out of oper-
ators acting on this low-energy spin-1/2 degree of freedom.
Towards this, let us first define

τ x
i = ∣∣ψ (i)

0

〉〈
ψ

(i)
1

∣∣+ ∣∣ψ (i)
1

〉〈
ψ

(i)
0

∣∣, (15)

τ
y
i = −i

[∣∣ψ (i)
0

〉〈
ψ

(i)
1

∣∣− ∣∣ψ (i)
1

〉〈
ψ

(i)
0

∣∣], (16)

τ z
i = ∣∣ψ (i)

0

〉〈
ψ

(i)
0

∣∣− ∣∣ψ (i)
1

〉〈
ψ

(i)
1

∣∣ (17)

as the effective Pauli-x, y, and z operators on the rung sub-
space spanned by |ψ (i)

0,1〉. Next, we work out the symmetries
of the system which will constrain the structure of the effec-
tive Hamiltonians, and the detailed structure of the effective
Hamiltonians can be subsequently worked out. We denote the
doubly degenerate ground states of HRi at h = h′ by |ψ (i)

0 〉 and
|ψ (i)

1 〉. Since [Zi, HRi ] = 0, with Zi =∑L
j=1 σ z

i, j defined on the
rung i,

Zi

∣∣ψ (i)
k

〉 = mk

∣∣ψ (i)
k

〉
, (18)

k = 0, 1, where mk are the eigenvalues of Zi corresponding to
the eigenvectors |ψ (i)

k 〉. Note here that Zi is the generator of
the z rotation on the Hilbert space of the ith rung with

Jz
i = a + bZi, (19)

where a and b are real constants that can be chosen according
to convenience [see Eq. (18) for the definition of Zi]. If m0 �=
m1, we choose a = (m1 + m0)/(m1 − m0) and b = 2/(m0 −
m1) such that

Jz
i |ψ (i)

0 〉 = |ψ (i)
0 〉, Jz

i |ψ (i)
1 〉 = −|ψ (i)

1 〉. (20)

Therefore, the action of Jz
i on the rung subspace spanned by

|ψ (i)
0(1)〉 is similar to that of an effective Pauli-z operator (note

that the assumption m0 �= m1 is crucial for the Jz
i s to mimic

the action of Pauli-z operators), which is given in Eq. (17).
Further, consider the operator

Z =
N∑

i=1

Jz
i , (21)

where Z is a symmetry of the original system-Hamiltonian H ,

[Z, H0] = [Z, H ′] = 0, (22)

and Z and ηz =∑N
i=1 τ z

i are equivalent.
We now argue that the effective Hamiltonian preserves

the rotational symmetry in z direction to the second order in

perturbation theory in J−1
⊥ . More precisely, we write

H̃ =
2∑

n=0

J−n
⊥ H̃ (n) + · · · , (23)

and note that general formalism of perturbation theory
provides [32]

H̃ = PgH0Pg + 1

J⊥
PgH ′Pg

+ 1

J2
⊥

PgH ′PeH−1
0 PeH ′Pg + · · · . (24)

Since the only operators on the right-hand side are H ′ and Pg

[Eq. (9)], and since [H ′,Z] = 0 and [Pg,Z] = 0—the former
is simply the consequence of rotational symmetry of the 2D
system [Eq. (1)] and the latter can be seen directly from the
fact that |�l〉 is an eigenvector of the Hermitian operator Z—
it is straightforward to see that [H̃,Z] = 0, and consequently
[H̃ , ηz] = 0.

1. Effective Hamiltonian up to second order

Since the first-order effective Hamiltonian is guaranteed to
be at most nearest-neighbor in the effective spins, the most
general form of z-rotationally invariant H̃ [= J−1

⊥ H̃ (1); see
Eq. (23)] is a nearest-neighbor XXZ model [30] in a magnetic
field, given by

H̃ = J̃ (1)
xy

[
N∑

i=1

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1 + δ̃(1)τ z

i τ
z
i+1

)+ g̃(1)
N∑

i=1

τ z
i

]
,

(25)

with the dimensionless parameters J̃ (1)
xy , g̃(1), and δ̃(1) given by

(see Sec. 1 in the Appendix)

J̃ (1)
xy = 1

4J⊥

(
J|| − Jsum

d

)
,

g̃(1) = h̃(1)

J̃ (1)
xy

= 2

[
(L − 1)

(
J|| + Jsum

d

)− L�h

L
(
J|| − Jsum

d

)
]
,

δ̃(1) = J̃ (1)
zz

J̃ (1)
xy

= J|| + Jsum
d

L
(
J|| − Jsum

d

) , (26)

where J̃ (1)
xy �= 0 (i.e., J|| �= Jsum

d ), and we have defined Jsum
d =

J1
d + J2

d , assumed periodic boundary conditions (PBC) along
both rungs and legs, i.e., �σN+1, j ≡ �σ1, j and �σi,L+1 ≡ �σi,1, and
have considered L(> 2) to be even in order to ensure d = 2.
The periodic and open boundary conditions along the rung are
equivalent for L = 2, a case which we work out separately,
and get (see Sec. 1 in the Appendix)

J̃ (1)
xy = 1

8J⊥

(
2J|| − Jsum

d

)
,

g̃(1) = h̃(1)

J̃ (1)
xy

= 2J|| + Jsum
d − 4�h

2J|| − Jsum
d

,

δ̃(1) = J̃ (1)
zz

J̃ (1)
xy

= 2J|| + Jsum
d

2
(
2J|| − Jsum

d

) , (27)
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where J̃ (1)
xy �= 0 (i.e., 2J|| �= Jsum

d ). In this picture, we relabel

|ψ (i)
0,1〉 as

|0i〉 = ∣∣ψ (i)
0

〉
,
∣∣1i
〉 = ∣∣ψ (i)

1

〉
, (28)

where {|0i〉, |1i〉} form the τ z eigenbasis of the spin-1/2 par-
ticle at the ith site of the 1D lattice of size N , representing
an effective computational basis. Eigenstates of the 1D model
[given in (25)], |
̃l〉, can be written in terms of the {|0i〉, |1i〉}
basis of the effective spins in the system.

The second-order effective Hamiltonian H̃ = J−1
⊥ H̃ (1) +

J−2
⊥ H̃ (2) [see Eq. (23)] can be at most next-nearest-neighbor

in the effective spins. For even L (� 4), and PBC along both
rungs and legs, we derive the effective Hamiltonian, up to
the second order in perturbation theory, as (see Sec. 2 in the
Appendix for the derivation)

H̃ = J̃ (2)
xy

[
N∑

i=1

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1 + δ̃(2)τ z

i τ
z
i+1

)+ g̃(2)
N∑

i=1

τ z
i

+ γ̃ (2)
N∑

i=1

(
τ x

i−1τ
x
i+1 + τ

y
i−1τ

y
i+1

)(
Ii − τ z

i

)]
, (29)

where J̃ (2)
xy �= 0, and

J̃ (2)
xy = 1

4J⊥

(
J|| − Jsum

d

)
,

δ̃(2) = δ̃(1) + GJ⊥
J|| − Jsum

d

+ F

2

(
J|| − Jsum

d

J⊥

)
,

γ̃ (2) = F

4

(
J|| − Jsum

d

J⊥

)
,

g̃(2) = g̃(1) − 2GJ⊥
J|| − Jsum

d

− F

(
J|| − Jsum

d

J⊥

)
. (30)

To keep the main text uncluttered, details on the calculation
of the factors F and G and their explicit forms are given in
Sec. 2 in the Appendix. The case of L = 2, similar to the
first-order calculation, has to be worked out separately, and
we have included it in Sec. 2 in the Appendix. It is noteworthy
that for Jsum

d = 0 (which is possible, for example, in the case
of the absence of the diagonal interactions, i.e., J1

d = J2
d = 0),

Eqs. (29) and (30) also describe the L = 2 case.
We point out here that the exact forms of the effective

system parameters (J̃ (1)
xy , g̃(1), δ̃(1)) in the case of the first-

order effective theory, or (J̃ (2)
xy , g̃(2), δ̃(2), γ̃ (2)) in the case

of second-order effective theory as functions of the system
parameters J||/J⊥, J1,2

d /J⊥, and �h/J⊥ of the 2D Hamiltonian
depend on the forms of the doubly degenerate ground states
|ψ (i)

0,1〉, and subsequently on the specific point h = h′ where the
perturbation calculation is carried out. For example, an open
boundary condition (OBC) along the legs (�σN+1, j �≡ �σ1, j) in
the above calculation results in corrections in the effective
magnetic field strengths on the boundary sites 1 and N on
the effective 1D lattice, shown explicitly in the case of the
first-order effective Hamiltonian in Sec. 1 in the Appendix.
One can also consider OBC along the rungs (�σi,L+1 �≡ �σi,1),
for which determining the value of h′ and the forms of |ψ (i)

0,1〉
is difficult for arbitrary L. See Sec. 3 in the Appendix for the

FIG. 2. Variation of the energy gap �E (L) between the doubly
degenerate ground state and the excited state manifold of a rung
of L spins with J⊥ = 1, where L is large. The data fit the equa-
tion ln �E (L) = a ln L + b with the fitting constants are a = −2.172
and b = 2.901, where we have considered only even values of L in
the range 6 � L � 24. All quantities plotted are dimensionless.

corresponding details on the first-order effective Hamiltonian.
We would like to mention further that one can also extend the
study towards higher orders in perturbation theory, and the de-
tails of the 1D effective model would accordingly change with
an introduction of longer than next-to next-nearest-neighbor
interactions, and beyond three-site spin interactions. While
working out these details is possible (but somewhat tedious),
we refrain from going beyond the second order in perturbation
theory in this paper.

D. Validity of the perturbation theory

We now ask whether this treatment applies to a 2D Hamil-
tonian H with a fixed large value of J⊥ on a lattice with
arbitrary values of N and L. With increasing L, the energy gap
�E (L) between the doubly degenerate ground state manifold
and the excited state manifold decreases polynomially with
L as ∼L−2.172 for large L [see Fig. 2 for a typical variation
of �E (L) with L for J⊥ = 1]. Therefore, in order to apply
perturbation theory for the 2D model with different large
values of L and to ensure negligible contribution from the
terms of the Hamiltonian connecting the degenerate ground
state manifold with the excited state manifold, one needs to
be in the following regime of parameter space:

|J||/J⊥|, |�h/J⊥|, ∣∣J1,2
d /J⊥

∣∣� L−2.172. (31)

Unless otherwise stated, for all demonstrations in the rest of
the paper, we fix J⊥ = 1. Further, for a fixed value of L, we
assume antiferromagnetic interactions, and vary the values of
these interaction strengths within the range

0 � J||/J⊥, |�h/J⊥|, J1,2
d /J⊥ � �E (L)/10. (32)
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(a)

(b)

(c)

(d)

FIG. 3. Schematic representation of the subspaces denoted by
(a) J⊥ � J||, J1

d , J2
d , (b) J|| � J⊥, J1

d , J2
d , (c) J1

d � J⊥, J||, J2
d , and (d)

J2
d � J⊥, J||, J1

d in the space of the parameters J⊥, J||, J1
d , and J2

d .
The thick lines in the lattices represent the strong couplings. While
this paper deals with only the subspace (a), the 1D effective model
in each of these subspaces can be worked out following the same
methodology discussed in Sec. II.

Also, we consider the interaction strengths to be outside the
perturbation region if

�E (L)/10 < J||/J⊥, |�h/J⊥|, J1,2
d /J⊥ � �E (L)/2. (33)

We would like to reemphasize here that while our results for
1D effective Hamiltonian in perturbation theory is valid for all
L; see, for instance, the L dependence of effective couplings
in Eq. (A14), the regime of validity of perturbation theory in
the space of couplings (J⊥, J||, J1,2

d , h) gets squeezed at large
L as per Eq. (32). Note further that the formalism discussed
through Sec. II can be applied to the strong leg, left-diagonal,
and right-diagonal limits also. This provides a large subspace
in the parameter space of the coupling constants of the 2D
model where the 1D effective theory works. See Fig. 3 for an
illustration.

E. Phase diagrams

We now discuss the phase diagram of the 2D model, probed
via the first- and second-order effective Hamiltonians given
respectively in Eqs. (25) and (29).

1. Phase diagram up to the first order

We now focus on the first-order effective Hamiltonian
[Eq. (25)] and note that the physics of the 1D model itself
remains invariant with a change in the value of J̃ (1)

xy . Fixing
J̃ (1)

xy = 1, and using g̃(1) and δ̃(1), the phase diagram corre-
sponding to H̃ [Eq. (25)] is given by Fig. 4(a). Solving for
J||/J⊥, Jsum

d /J⊥, and �h/J⊥ in terms of g̃(1), δ̃(1), and J̃ (1)
xy for

L > 2, one can write

J||
J⊥

= 2J̃ (1)
xy (Lδ̃(1) + 1),

Jsum
d

J⊥
= 2J̃ (1)

xy (Lδ̃(1) − 1),

�h

J⊥
= 2J̃ (1)

xy [2(L − 1)δ̃(1) − g̃(1)], (34)

FIG. 4. (a) Phase diagram of the first-order 1D effective model [Eq. (25)] with J̃xy = 1 and keeping L fixed at 2, on the plane of (δ̃(1), g̃(1) )
[31,34,35], where the antiferromagnetic (AFM), ferromagnetic (FM), and paramagnetic (PM) phases and the corresponding phase boundaries
are marked. For J1,2

d = 0, the phase diagram truncates to the line δ̃(1) = 1/2, and the quantum phase transition from the gapless PM phase to
the gapped FM phase takes place at the points (δ̃(1) = 1/2, g̃(1) = ±3), which we denote by A (for g̃(1) > 0) and B (for g̃(1) < 0). The variation
of �Ẽ10 is plotted as functions of J||/J⊥ and �h/J⊥ in (b) and (c) keeping J1,2

d = 0, where the �Ẽ10 is calculated using respectively (b) the
first-order and (c) the second-order effective 1D Hamiltonian, as given in Eqs. (25) and (29) respectively, on an effective 1D lattice of N = 20
spins. The white dashed lines on the (J||/J⊥,�h/J⊥) plane correspond to the points A and B, respectively, given by Eq. (36). All quantities
plotted are dimensionless.
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while for L = 2,

J||
J⊥

= 2J̃ (1)
xy (2δ̃(1) + 1),

Jsum
d

J⊥
= 4J̃ (1)

xy (2δ̃(1) − 1),

�h

J⊥
= 2J̃ (1)

xy [2δ̃(1) − g̃(1)]. (35)

Note that the appearance of J̃ (1)
xy as a multiplicative factor

in the above equations implies that the full phase diagram
depicted in Fig. 4(a) is accessible in the perturbative regime of
the 2D model H [Eq. (10)] by tuning J̃ (1)

xy , as long as J̃ (1)
xy �= 0,

and at least one of J1
d , J2

d �= 0. For J1,2
d = 0 (i.e., Jsum

d = 0),
the phase diagram truncates to the line δ̃(1) = 1/L on the
(δ̃(1), g̃(1) ) plane for all values of L. On this line, a quantum
phase transition from the gapless paramagnetic (PM) to the
gapped ferromagnetic (FM) phase takes place by tuning g̃(1)

at g̃(1) = ±2(L + 1)/L. Note that these quantum phase tran-
sition points (L−1,±2(L + 1)/L) corresponding to J1,2

d = 0
translates to the lines

�h

J⊥
= 2J||

J⊥
,

�h

J⊥
= −2J||

LJ⊥
, (36)

for all even values of L on the (J||/J⊥,�h/J⊥) plane in the
parameter space of the original model. In Fig. 4(b) we plot
the energy gap �Ẽ10 = Ẽ1 − Ẽ0 as a function of the system
parameters of the 2D model, viz. J||/J⊥ and �h/J⊥, in the
perturbation regime [Eq. (32)] for J1,2

d = 0 and L = 2, where
Ẽ0 and Ẽ1 are the ground and the first excited state energies
corresponding to the Hamiltonian H̃ [Eq. (25)]. The lines in
Eq. (36) are also presented for reference. Note that Fig. 4(b)
provides the phase diagram of the gapped and the gapless
phases of the 2D model with L = 2 and J1,2

d = 0. In a similar
fashion, the gapped and the gapless phases of the 2D model for
different values of L(> 2) can be mapped when the system pa-
rameters are kept within the perturbation regime. Also, using
a similar approach, one can investigate the phase diagram on
the (J||/J⊥,�h/J⊥) for different nonzero values of Jsum

d (or,
J1

d and J2
d ); see Sec. III.

Note that the maximum value of δ̃(1) occurs for the two-leg
ladder (L = 2) discussed above and in Fig. 4(b), while δ̃(1) →
0 in the large L limit. We point out here that in the large L
limit [but obeying Eq. (31)], the effective 1D model is an XX
model in a transverse magnetic field [36], represented by the
Hamiltonian

H̃ = J̃ (1)
xy

N∑
i=1

[(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ g̃(1)τ z
i

]
, (37)

which can be exactly solved via fermionization using the
Jordan-Wigner transformation, followed by a Fourier transfor-
mation. The phase diagram of this model has been extensively
explored, showing a second-order quantum phase transition at
g̃(1) = ±2 from the PM phase to the FM phase for J̃ (1)

xy = 1
[see δ̃(1) = 0 line in Fig. 4(a)].

2. Phase information from the second-order effective Hamiltonian

It is now logical to ask whether additional information can
be obtained about the phase diagram of the 2D model via
considering the perturbation theory up to the second order. In
order to explore this, we set J1,2

d = 0 (i.e., Jsum
d = 0), such that

Eqs. (29) and (30) exhaust all even values of L. One can also
keep J1,2

d �= 0, and treat the L = 2 case separately. However,
we choose J1,2

d = 0 in order to work with Eqs. (29) and to
avoid involving more effective Hamiltonian parameters [see
Eqs. (A12) and (A18) in the Appendix].

Note that γ̃ (2) is introduced solely due to the second-order
correction, and since γ̃ (2) > 0 for a nonzero value of J||, the
γ̃ (2) = 0 plane in the (g̃(2), δ̃(2), γ̃ (2) ) parameter space is never
accessible via the second-order effective Hamiltonian. Note
further that δ̃(2) and g̃(2) can be written as

δ̃(2) = δ̃(1) + F̃ ,

g̃(2) = g̃(1) + G̃, (38)

where we identify δ̃(1) and g̃(1) from the first-order calculation
with J1,2

d = 0, and

F̃ = 1

2

(
J||
J⊥

)
F +

(
J⊥
J||

)
G,

G̃ = −1

2

(
J||
J⊥

)
F − 2

(
J⊥
J||

)
G (39)

to be the contribution solely from the second-order calcula-
tion. For a fixed γ̃ (2) (i.e., for a fixed J||/J⊥), F̃ and G̃ depend
only on L, and within the range of parameters considered
in this paper [see Eqs. (32) and (33)], F̃ leads to a very
small perturbatively allowed window around δ̃(1). Therefore,
for a fixed value of L and J||, one expects the phases of the
system to be ploughed by g̃(2), and the phase diagram to be
similar to that corresponding to the δ̃(1) = L−1 line of Fig. 4.
For example, consider the case of L = 2 with fixing J⊥ = 1,
which we employ for demonstrating our inferences, such that
δ̃(1) = 1/2, and �E (L) = 1, with the considered range [0,0.1]
of the perturbation parameters, which yields 0 � F̃ � 0.075.
In support of these points, in Fig. 4(c), we plot �Ẽ10 computed
from the second-order H̃ [Eq. (29)] as functions of J||/J⊥ and
�h/J⊥, keeping J1,2

d = 0 and L = 2. The boundaries of the
gapped and the gapless phase obtained from this figure, along
with the values of �Ẽ10, are almost identical with the same
obtained from the first-order theory, as shown in Fig. 4(b),
thereby supporting our analysis. We point out here that one
can also perform the analysis with J1,2

d �= 0 and satisfying
Eq. (31), where similar arguments hold.

Similar to the first-order case, here also in the limit L →
∞, both F and G → 0, leading to δ̃(2) = 0, and g̃(2) ≈ 2[1 −
�h/J||], where the effective 1D Hamiltonian becomes

H̃ = J̃ (2)
xy

[ N∑
i=1

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ g̃(2)
N∑

i=1

τ z
i

+ γ̃ (2)
N∑

i=1

(
τ x

i−1τ
x
i+1 + τ

y
i−1τ

y
i+1

)(
Ii − τ z

i

)]
. (40)

Similar to H̃ in Eq. (37), the above 1D Hamiltonian can be
exactly solved using a Jordan-Wigner, and subsequently a
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Fourier, transformation, leading to a phase diagram involving
two spin liquid and an FM phase [37]. Since the value of

˜γ (2) is small for perturbation theory to be valid, we expect
the phase features to be remain same for the first- and the
second-order effective Hamiltonian around the line δ̃(2) = 0.

III. BEYOND THE PERTURBATION REGIME

In this section we investigate the performance of the 1D
effective theory in estimating properties of the 2D model even
beyond the perturbation regime, focusing primarily on the
energy gap, expectation values of Hermitian operators, and
entanglement [9]. Perturbation theory up to second order in
the parameter J−1

⊥ leads to the following structure for the
energy eigenvalues {El , l = 0, 1, . . . , 2NL − 1} and the corre-
sponding eigenstates {|
l〉} of the 2D model:

El = E (0)
l + J−1

⊥ E (1)
l + J−2

⊥ E (2)
l + O(J−3

⊥ ),

|
l〉 = ∣∣
(0)
l

〉+ J−1
⊥
∣∣
(1)

l

〉+ O(J−2
⊥ ), (41)

Diagonalization of the second-order H̃ given in Eq. (14) pro-
vides J−1

⊥ E (1)
l + J−2

⊥ E (2)
l (note that we have ensured E (0)

l =
0; see Secs. II A and II B) as the energy eigenvalues, and
|
(0)

l 〉 + J−1
⊥ |
(1)

l 〉 as energy eigenstates. It is worthwhile to
note that the energy eigenstates |
̃l〉 of the effective second-
order 1D model H̃ [Eq. (29)], given by H̃ |
̃l〉 = Ẽl |
̃l〉 with
Ẽl = J−1

⊥ E (1)
l + J−2

⊥ E (2)
l , can be written in terms of {|0〉, |1〉},

and provides |
(0)
l 〉 + J−1

⊥ |
(1)
l 〉, i.e., |
l〉 up to O(J−2

⊥ ) when
expanded using the definitions of |ψ0,1〉.

We are particularly interested in the ground states of both
models, which can, in principle, be degenerate depending on
the choice of the parameter values in the ranges considered in
Eqs. (32) and (33). We assume respectively M-, and M̃-fold
degenerate ground state manifolds {|
l〉, l = 0, . . . , M − 1}
and {|
̃l〉, l = 0, . . . , M̃ − 1} corresponding respectively to
the ground state energies E0 and Ẽ0 of the 2D model1 and
the second-order 1D effective model [Eq. (29)]. To avoid
subtleties such as the choice of the state among the degenerate
ground state manifold for computing the quantity of interest,
we consider the thermal ground states [38] as

ρ0 = M−1
M−1∑
l=0

|
l〉〈
l |, (42)

̃0 = M̃−1
M̃−1∑
l=1

|
̃l〉〈
̃l |, (43)

which are obtained by considering a thermal state at the zero
temperature limit. Converting ̃0 to a state 0 in the Hilbert
space of the 2D model using the definitions of |ψ0,1〉, we
compute the trace distance D between ρ0 and 0 as

D = 1
2 Tr
√

(ρ0 − 0)†(ρ0 − 0). (44)

1The values of M and M̃ depend on the choice of the system param-
eters J||/J⊥, J1,2

d /J⊥, and �h/J⊥. For all the points in the parameter
space (J||/J⊥,�h/J⊥) considered in Fig. 5 with J1,2

d = 0, we find
M = M̃.

FIG. 5. Variation of D as a function of J||/J⊥ and �h/J⊥ outside
the perturbation regime with J1,2

d = 0. A lattice of size 6 × 2 has been
used for computation. All quantities plotted are dimensionless.

The variation of D as a function of J||/J⊥ and �h/J⊥ with
J1,2

d = 0 is plotted in Fig. 5. Our data indicate that inside
the perturbation regime [Eq. (32) with J1,2

d = 0], as expected,
D ∼ 0, while outside the perturbation regime [Eq. (33) with
J1,2

d = 0], D > 0. It is, therefore, expected that a physical
quantity whose evaluation requires information about the ther-
mal ground state away from the perturbation regime would
be difficult to estimate using the effective 1D theory. We will
revisit this point as we discuss the evaluation of energy gap,
expectation values of Hermitian operators, and entanglement
in the subsequent subsections.

A. Energy gap

We first consider the energy gap �Ell ′ = El − El ′ between
two low-lying states (l and l ′) of the original model H , given
by [see Eq. (41)]

�Ell ′ = J−1
⊥ �E (1)

ll ′ + J−2
⊥ �E (2)

ll ′ + O(J−3
⊥ ), (45)

with �E (i)
ll ′ = E (i)

l − E (i)
l ′ , i = 1, 2. Note that �Ell ′ is almost

the same as �Ẽll ′ = Ẽl − Ẽl ′ up to O(J−3
⊥ ) obtained from the

second-order effective Hamiltonian H̃ [Eq. (29)] as long as
the perturbation theory is valid [i.e., the system parameters
obey Eq. (31)]. We would, however, like to check if �Ẽll ′

faithfully represents �Ell ′ when the system parameters are
chosen from beyond the perturbation regime. In Figs. 6(a) and
6(b), we plot the variations of respectively �E10 = E1 − E0

and �Ẽ10 = Ẽ1 − Ẽ0 as functions of J||/J⊥ and �h/J⊥ with
J1

d = J2
d = 0, where the range of values of J||/J⊥ and �h/J⊥

include both Eqs. (32) and (33). Here El and Ẽl are com-
puted via exact diagonalization (ED) respectively from the 2D
model H [Eq. (1)] over a 20-qubit system on a 10 × 2 lattice,
and from the second-order H̃ [Eq. (29)] defined on a 1D lattice
of 10 spins. It is clear from the Figs. 6(a) and 6(b) that the
landscape �E10 of the actual model is imitated qualitatively
as well as quantitatively by �Ẽ10 obtained from the second-
order effective model, even for almost all points outside the
parameter space where perturbation theory is valid. Similar
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FIG. 6. Variations of the energy gap �E10 obtained from H on a 10 × 2 (20 qubits) 2D lattice with (a–c) J1,2
d = 0 and (d–f) J1,2

d = 5 × 10−2

as functions of J||/J⊥ and �h/J⊥ outside the perturbation regime. The corresponding �Ẽ10 obtained from the (b, e) second-order effective
Hamiltonian H̃ [Eq. (29)], and the same obtained from (c, f) the first-order effective Hamiltonian H̃ [Eq. (25)], both defined on a chain of 10
spins, as functions of J||/J⊥ and �h/J⊥ outside the perturbation regime, are depicted in (b), (e), (c), and (f). Similar plots for a lattice of 16
spins (4 × 4) are given in (g), (h), and (i) for J1,2

d = 0, while nonzero values of J1,2
d produce qualitatively similar results. All quantities plotted

are dimensionless.
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TABLE I. Typical observables A on the 2D model and the corresponding low-energy components Ã, i.e., AS [Eq. (48)] in terms of τ x,y,z,
where PBC along both rungs and legs have been used for calculation. A subset of these operators for L = 2 can be found in [26]. Note that
Ã corresponding to σα

i, j , α = x, y, z, is consistent with the operator identification of Jz
i in terms of τ z

i , as given in Eqs. (20) and (17). Among

these operators, Eq. (49) is satisfied for
∑L

j=1 σ z
i, j (No. 3) and ⊗L

j=1σ
z
i, j (No. 6). More of such operators can be constructed on the 2D model

by considering these operators on different rungs; for example, A = (
∑L

j=1 σ z
i, j ) ⊗ (

∑L
j=1 σ z

i+r, j ) is also an operator satisfying Eq. (49), having
support on the rungs i and i + r.

No. A Ã (≡ AS ) No. A Ã (≡ AS )

1 σα
i, j

(−1) j√
L

τα
i , for α = x, y 12 σ z

i,1 ⊗ σ
y
i,2

1√
2
τ

y
i

2 σ z
i, j

L−1
L Ii + 1

L τ z
i 13 σ x

i,1 ⊗ σ
y
i,2 0

3
∑L

j=1 σ z
i, j (L − 1)Ii + τ z

i 14 σ
y
i,1 ⊗ σ x

i,2 0

4
∑L

j=1 σ x
i, j 0 15 σα

i, j ⊗ σα
i+r, j′

(−1) j+ j′

L τα
i ⊗ τα

i+r for α = x, y

5
∑L

j=1 σ
y
i, j 0 16 σ z

i, j ⊗ σ z
i+r, j′

(L−1)2

L2 I + 1
L2 τ z

i τ
z
i+r + L−1

L2 (τ z
i + τ z

i+r )

6 ⊗L
j=1σ

z
i, j τ z

i 17 σ x
i, j ⊗ σ z

i+r, j′
(−1) j√

L
[ L−1

L τ x
i + 1

L τ x
i τ z

i+r]

7 ⊗L
j=1σ

x
i, j

(
1
2 (τ z

i − Ii ) for L = 2
0 for L > 2

)
18 σ z

i, j ⊗ σ x
i+r, j′

(−1) j′√
L

[ L−1
L τ x

i+r + 1
L τ z

i τ
x
i+r]

8 ⊗L
j=1σ

y
i, j

(
1
2 (τ z

i − Ii ) for L = 2
0 for L > 2

)
19 σ

y
i, j ⊗ σ z

i+r, j′
(−1) j√

L
[ L−1

L τ
y
i + 1

L τ
y
i τ z

i+r]

9 σ x
i,1 ⊗ σ z

i,2 − 1√
2
τ x

i 20 σ z
i, j ⊗ σ

y
i+r, j′

(−1) j′√
L

[ L−1
L τ

y
i+r + 1

L τ z
i τ

y
i+r]

10 σ z
i,1 ⊗ σ x

i,2
1√
2
τ x

i 21 σ x
i, j ⊗ σ

y
i+r, j′ 0

11 σ
y
i,1 ⊗ σ z

i,2 − 1√
2
τ

y
i 22 σ

y
i, j ⊗ σ x

i+r, j′ 0

analysis for nonzero values of the diagonal interactions J1,2
d ,

with J1
d = J2

d = 5 × 10−2, on a 10 × 2 lattice is presented in
Figs. 6(d)–6(f), indicating a similar inference. In order to see
if this observation holds for 2D lattices with L > 2, we per-
form similar investigations for a 4 × 4 lattice, and present the
results in Figs. 6(g)–6(i) for J1,2

d = 0, while nonzero values
of J1,2

d produce qualitatively similar results. Our data clearly
indicate that in addition to the perturbation regime, given by
[see Eq. (32)]

0 � J||/J⊥, |�h/J⊥|, J1,2
d /J⊥ � 0.1, (46)

there exists points outside the perturbation regime on which
the 1D effective model up to second order estimates the energy
gap of the 2D model with L = 4 satisfactorily. However, the
validity of this observation at different parameter space point
outside the perturbation regime and for different values of L
needs to be tested in a case-by-case basis.

B. Expectation values of Hermitian operators

We now consider Hermitian operators in the 2D Heisen-
berg model, and discuss estimation of their expectation values
in the low-energy manifold of H using the representation of
the manifold via the effective 1D model. We first stress the
following points regarding the notations used in the rest of the
paper.

(a) Each operator A defined on the Hilbert space of the 2D
model can be decomposed as

A = PgAPg + PeAPe + PgAPe + PeAPg, (47)

where the projector Pg [Eq. (9)] projects an operator onto the
low-energy subspace S (see Secs. II A and II B). We denote

AS = PgAPg, (48)

and note that AS can be thought of as an operator on the
Hilbert space of the 1D effective model representing the low-
energy component of A. We typically denote such operators,
when written in terms of τ x,y,z by Ã. Also, we call all operators
with

PgAPe = PeAPg = 0 (49)

low-energy operators.
(b) These details also apply to a state ρ of the 2D model,

which is a Hermitian operator. However, in the case of density
matrices, we are interested only in states for which PeρPe =
PgρPe = PeρPg = 0. We call them low-energy density matri-
ces. Note that both the states ρ0 [Eq. (42)] and 0 obtained
from ̃0 [Eq. (43)] are low-energy density matrices.

We consider a number of relevant operators A on the space
of the 2D model (see Table I), and determine (a) the corre-
sponding AS , and (b) their closed forms in terms of τ x,y,z,
denoted by Ã. Note that the expectation value of any operator
w.r.t. a low-energy density matrix ρ is given by

〈A〉 = Tr(ρA) = Tr(ρAS ), (50)

which equals 〈Ã〉 = Tr(Ã̃) up to O(J−3
⊥ ) in the perturbation

regime of the parameter space, where ̃ provides the first-
order approximation of ρ obtained using the second-order 1D
effective Hamiltonian (our numerical analysis performed on
moderate-sized systems confirms this). Since computation of
〈A〉 for the 2D model is difficult owing to the large Hilbert
space dimension, this provides a computational advantage in
estimating 〈A〉 using 〈Ã〉, and subsequently the second-order
1D effective Hamiltonian.

We are, however, interested in exploring whether this ad-
vantage persists even beyond the realm of perturbation theory,
i.e., whether 〈Ã〉 can mimic 〈A〉 when the system parameters
are chosen outside the perturbation regime. We answer this
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FIG. 7. Variations of (a) 〈A〉 and (b) 〈Ã〉 as functions of J||/J⊥ and
�h/J⊥ outside the perturbation regime, with J1,2

d = 0, where A =
σ z

i,1 ⊗ σ z
i,2. We use a 6 × 2 lattice for computing 〈A〉, while 〈Ã〉 is

computed for a 1D lattice of six effective spins. All quantities plotted
are dimensionless.

question affirmatively for the class of low-energy operators
[see Eq. (49)]. To demonstrate this, we choose the low-energy
operators A = ⊗L

j=1σ
z
i, j listed in Table I in the case of L = 2,

and compute 〈A〉 = Tr(ρ0AS ) and 〈Ã〉 = Tr(̃0Ã), where ρ0

and ̃0 are given in Eqs. (42) and (43) respectively. Varia-
tions of 〈A〉 and 〈Ã〉 as functions of J||/J⊥ and �h/J⊥ (with
J1,2

d = 0), computed for a system of 12 spins on a 6 × 2
lattice, are depicted in Figs. 7(a) and 7(b), respectively. The
figures clearly indicate that outside the perturbation regime of
the parameter space (where D > 0; see Fig. 5), 〈Ã〉 mimics
〈A〉.

C. Entanglement

We now extend the discussion towards nonlocal correla-
tions that are properties of a multiqubit quantum states, e.g.,
entanglement [9]. While the distribution of entanglement in
a quantum spin model can be varied, such as bipartite and
multipartite entanglement over different subsystems, it often
adapts a partial trace-based methodology for computation [9].
For example, the bipartite entanglement between two subsys-
tems constituting a bipartite system in a pure state is inferred
from the reduced density matrix of one of the subsystems
obtained by tracing out the other subsystem from the pure
state. As examples, we choose ρ0 and ̃0 for discussions. The
reduced density matrix ρ0,i obtained by tracing out all rungs
except the rung i from ρ0, and the reduced density matrix
̃0,i obtained from ̃0 by tracing out all spins except the spin
corresponding to i are equal up to O(J−3

⊥ ) (see Sec. II E), i.e.,
ρ0,i − 0,i = O(J−3

⊥ ), where 0,i is obtained from ̃0,i by using
the definitions of |ψ0,1〉.2 This implies that any entanglement
measure [9] E computed from these density matrices are
expected to match, although the difference between E (ρ0,i )
and E (̃0,i ) depends on the explicit functional form E , and

2One can also extend it further to the reduced density matrix of a
subsystem composed of a set of arbitrary number of rungs obtained
from the state ρ0 of the 2D model H , and the reduced density matrix
of the corresponding set of spins obtained from the state ̃0 of the 1D
effective model H̃ [Eq. (28)].

FIG. 8. Variations of (a) S and (b) S̃ in the perturbation regime,
and the same outside the perturbation regime (c, d) as functions of
J||/J⊥ and �h/J⊥ with J1,2

d = 0. For computation of S, we determine
ρ0 for a 2D lattice of size 6 × 2, while S̃ is computed on a chain of
effective spins of size 6. All quantities plotted are dimensionless.

an accumulation of factors O(J−3
⊥ ) may also take place giving

rise to a higher difference. For demonstration, we compute
von Neumann entropy [9,39] S and S̃ of the reduced density
matrices ̃0,i and ρ0,i respectively.3 For an arbitrary density
matrix ρ, it is computed as

S(ρ) = −Tr[ρ log2 ρ] = −
∑

i

λi log2 λi, (51)

where {λi} is the set of eigenvalues of ρ. In Figs. 8(a) and
8(b) we respectively plot S and S̃ as functions of J||/J⊥ and
�h/J⊥ within the perturbation regime, with J1,2

d = 0. It is
evident from the figures that S̃ can faithfully represent S in
the perturbation regime.

We further consider the two-rung reduced density matrix
ρ

(i,i′ )
0 over the rungs i and i′ = i + 1 in the 2D model, and the

corresponding two-spin density matrix ̃
(i,i′ )
0 in the 1D effec-

tive model, and compute negativity [40], denoted by N and Ñ
respectively, quantifying bipartite entanglement between the
rungs (spins) i and i′ = i + 1. For an arbitrary density matrix

3Von Neumann entropy of the reduced density matrix of a rung
(an effective spin) in the 2D model (effective 1D model) quantifies
entanglement between the rung (spin) and the rest of the system if the
original state of the full system is pure. While it is not the situation
in the present case, it is sufficient to consider von Neumann entropy
function for discussion.
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FIG. 9. Variations of (a) N and (b) Ñ in the perturbation regime,
and the same outside the perturbation regime (c, d) as functions of
J||/J⊥ and �h/J⊥ with J1,2

d = 0. The system sizes and states are the
same as in Fig. 8. All quantities plotted are dimensionless.

ρ for a composite quantum system constituted of two parties
A and B, negativity is defined as

N (ρ) =
∑

i

|λi|, (52)

where {λi} is the set of all negative eigenvalues of the partially
transposed density matrix ρTA , the partial transposition being
taken w.r.t. the subsystem A. In the present case, we identify
the two rungs (spins) as the two subsystems. In Figs. 9(a)
and 9(b) we respectively plot N and Ñ as functions of J||/J⊥
and �h/J⊥ within the perturbation regime, with J1,2

d = 0. It is
evident from the figures that Ñ can faithfully represent N in
the perturbation regime.

However, unlike the expectation values of low-energy
operators, E (̃0,i ) fails to represent E (ρ0,i ) outside the per-
turbation regime. This can be understood from the fact that
the density matrix ρ0,i corresponding to the rung i can be
decomposed in terms of Pauli matrices as

ρ0,i = 1

2L

∑
{α j }

c{α j }
[⊗L

j=1σ
α j

i, j

]
, (53)

where σα j α j = 0, 1, 2, 3 correspond respectively to the oper-
ators I , σ x, σ y, and σ z respectively, and

c{α j } = Tr
[
ρ0,i
(⊗L

j=1σ
α j

i, j

)]
. (54)

Since Eq. (48) is not satisfied for a subset of the operators
A = ⊗L

j=1σ
α j

i, j , outside the perturbation regime ̃0,i (and sub-
sequently 0,i) fails to mimic ρ0,i, resulting in a considerable
difference between E (̃0,i ) and E (ρ0,i ). We demonstrate this

by plotting S and S̃ in Figs. 8(c) and 8(d), and N and Ñ
in Figs. 9(c) and 9(d) respectively as functions of J||/J⊥ and
�h/J⊥ outside the perturbation regime, with J1,2

d = 0, where
the differences between S and S̃, and between N and Ñ are
evident from the figures.

IV. CONCLUSION AND OUTLOOK

In this paper, we consider a spin-1/2 isotropic Heisenberg
model in a magnetic field on a rectangular zig-zag lattice of
arbitrary size N × L. We show that irrespective of the values
of N and L, the low-energy manifold of the 2D model in the
strong-rung-coupling limit can be well approximated by a 1D
effective spin-1/2 XXZ model up to the first order in perturba-
tion theory, while using the second-order perturbation theory,
the manifold is represented by the 1D effective spin-1/2 XXZ
model with specific three-body interactions. We use this map-
ping to determine the phase diagram of the 2D model in
the strong-rung-coupling limit, and calculate the energy gap,
operator expectation values, and the von Neumann entropy in
the 2D model. Also, we analytically determine the low-energy
components of a number of Hermitian operators defined on
the Hilbert space of the 2D model with arbitrary system size.
Further we go beyond the perturbation regime of the parame-
ter space, and show that the energy gap of the 2D model can
be quantitatively represented by the same in the case of the 1D
model even away from the strong-rung-coupling limit. Also,
for a specific class of operators, the low-energy operators, we
show that their expectation values in the states belonging to
the low-energy subspace of the 2D model can be mimicked
satisfactorily by the second-order 1D effective model. While
these class of observables can be faithfully mimicked by the
1D theory outside the perturbation regime, we argue that it
is not possible to do so for nonlocal correlations such as
entanglement present in the low-lying states of the 2D model.

We conclude with a discussion on possible future works.
While we focus on correlation functions and entanglement in
this work, it would be interesting to explore the implication
of the mapping of the 2D model to an effective 1D model
in specific quantum information theoretic protocols, such as
quantum state transfer [6,41]. Also, an interesting direction
would be to generalize the calculation where ground states of
individual rungs have higher degeneracies (d > 2), so that 2D
models with d degrees of freedom per cite can be addressed. It
is also important to ask whether expectation values of Hermi-
tian operators defined on the 2D model for specific purposes,
such as order parameters [42], or entanglement witness oper-
ators [43], can be estimated using the effective 1D model. The
calculation can also be extended by working to higher orders
in perturbation theory so that all degeneracies are lifted. It is
also worthwhile to note that the advantage in using the 1D
effective model lies in the drastic reduction in the degrees of
freedom in certain parameter regimes. It would be interesting
to also look for other quantum many-body models where this
happens.
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APPENDIX: 1D EFFECTIVE HAMILTONIAN

In this section, we explicitly work out the low-energy ef-
fective Hamiltonian H̃ for periodic boundary conditions along
the legs and rungs up to second order in perturbation theory.
From the Hamiltonian HRi given in Eq. (4), it is obvious that
for large h, the minimum energy state is given by all up spins∣∣ψ (i)

0

〉 = ⊗L
j=1|0i, j〉, (A1)

having energy L( 1
4 − h

2J⊥
) − Eg. The next higher energy states

at large h are given by one spin flip; since this can occur
at any of the L rung sites, there are L such states. Since the
Hamiltonian HRi is translationally invariant, we can switch to
momentum basis via

|q〉 = 1√
L

L∑
j=1

e2iq jπ/L σ x
i, j

∣∣ψ (i)
0

〉
, (A2)

where q = 0, 1, 2, . . . , L − 1. These states are energy eigen-
states for all values of h:

HRi |q〉 =
[

cos

(
2πq

L

)
+ L

(
1

4
− h

2J⊥

)
+ h

J⊥
− 1 − Eg

]
|q〉.

(A3)

For even L(> 2), the minimum energy eigenstate corresponds
to q = L/2, with energy eigenvalue L( 1

4 − h
2J⊥

) + h
J⊥

− 2 −
Eg. This state becomes degenerate with the minimum energy
state at

h′ = 2J⊥, (A4)

while the state itself is given by

∣∣ψ (i)
1

〉 = |q = L/2〉 = 1√
L

L∑
j=1

(−1) j | j〉. (A5)

For L = 2, periodic and open boundary conditions are equiv-
alent, and h′ = J⊥, while |ψ (i)

0 〉 and |ψ (i)
1 〉 given by Eqs. (A1)

and (A5) respectively. For odd L, the minimum energy states
in this sector correspond to (L ± 1)/2. This leads to a three-
fold degeneracy of ground states of the rung at h = h′, which
is beyond the scope of our consideration in this paper. We
must comment here that while it is reasonable to expect that
the first excited state at large h becomes degenerate with the
minimum energy state as we dial down h, it is not guaran-
teed to be. However, our numerical investigation verifies this
expectation to be correct.

1. First-order calculation

Since the first-order effective Hamiltonian is guaranteed to
be at most nearest-neighbor in the effective spins, the most
general form of z-rotationally invariant H̃ [= J−1

⊥ H̃ (1); see
Eq. (23)] is a nearest-neighbor XXZ model [30] in a magnetic

field, given by

H̃ =
N∑

i=1

[
J̃ (1)

xy

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ J̃ (1)
zz τ z

i τ
z
i+1

]

+ h̃(1)
N∑

i=1

τ z
i + NC̃, (A6)

where NC̃ is an irrelevant additive constant. To determine the
coefficients J̃ (1)

xy , J̃ (1)
zz , and h̃(1) as functions of the couplings

J||/J⊥, J1,2
d /J⊥, and �h/J⊥ in the perturbation Hamiltonian

H ′, we match the matrix elements of H and H̃ [= J−1
⊥ H̃ (1);

see Eq. (23)] in the following states:

|�0〉 = ⊗N
i=1

∣∣ψ (i)
0

〉
,

|� j〉 = ∣∣ψ ( j)
1

〉⊗N
i=1
i �= j

∣∣ψ (i)
0

〉
,

|� j, j+1〉 = ∣∣ψ ( j)
1

〉⊗ ∣∣ψ ( j+1)
1

〉⊗N
i=1

i �= j, j+1

∣∣ψ (i)
0

〉
, (A7)

and obtain

J̃ (1)
xy = 1

4

(
J||
J⊥

− J1
d

J⊥
− J2

d

J⊥

)
,

J̃ (1)
zz = 1

4L

(
J||
J⊥

+ J1
d

J⊥
+ J2

d

J⊥

)
,

h̃(1) = 1

2

[
(L − 1)

L

(
J||
J⊥

+ J1
d

J⊥
+ J2

d

J⊥

)
− �h

J⊥

]
, (A8)

in the cases of L > 2. For L = 2 [20,25,26,29] where OBC
along the rungs is equivalent to PBC, we separately work out
the effective couplings as

J̃ (1)
xy = 1

8

[
2

(
J||
J⊥

)
− J1

d

J⊥
− J2

d

J⊥

]
,

J̃ (1)
zz = 1

16

[
2

(
J||
J⊥

)
+ J1

d

J⊥
+ J2

d

J⊥

]
,

h̃(1) = 1

8

[
2

(
J||
J⊥

)
+ J1

d

J⊥
+ J2

d

J⊥
− 4

(
�h

J⊥

)]
. (A9)

Similar mapping and analysis can also be done when the
legs obey open boundary condition (OBC). In this case, the
effective 1D model is given by H̃ + h̃′(1)(τ z

1 + τ z
N ), with H̃

as in Eq. (A6) and its effective couplings given in Eq. (A8),
where the edge inhomogeneity in the field strength, for L > 2,
is

h̃′(1) = − (L − 1)

4L

(
J||
J⊥

+ J1
d

J⊥
+ J2

d

J⊥

)
, (A10)

while for L = 2, it is

h̃′(1) = − 1

16

[
2

(
J||
J⊥

)
+ J1

d

J⊥
+ J2

d

J⊥

]
. (A11)

2. Second-order calculation

We now derive the effective Hamiltonian up to the sec-
ond order in perturbation theory for arbitrary rung size L
and for PBC along both rungs and legs, given by H̃ =
J−1
⊥ H̃ (1) + J−2

⊥ H̃ (2) [see Eq. (23)]. Note that J−1
⊥ H̃ (1) alone has
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already been derived in Appendix A 1. Note also that H̃ now can involve at most next-nearest-neighbor terms in effective spins.
The most general z-rotationally invariant form of H̃ is given by

H̃ =
N∑

i=1

[
J̃xy
(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ J̃zzτ
z
i τ

z
i+1

]+
N∑

i=1

[
J̃ ′

xy

(
τ x

i−1τ
x
i+1 + τ

y
i−1τ

y
i+1

)+ J̃ ′
zzτ

z
i−1τ

z
i+1

]

+ J̃xyz

N∑
i=1

[
τ z

i−1

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ (
τ x

i−1τ
x
i + τ

y
i−1τ

y
i

)
τ z

i+1

]+ J̃ ′
xyz

N∑
i=1

(
τ x

i−1τ
x
i+1 + τ

y
i−1τ

y
i+1

)
τ z

i

+J̃zzz

N∑
i=1

τ z
i−1τ

z
i τ

z
i+1 + h̃

N∑
i=1

τ z
i + NC̃, (A12)

where NC̃ is a constant that we ignore. Clearly, the nearest-neighbor and single-site terms in effective spins have both first- and
second-order contributions (see Sec. 1 of this Appendix for the first-order contributions alone). We first consider the case of even
values of L, with L � 4. Taking PBC along both legs and rungs, and following the same line of calculation as in Sec. 1 of this
Appendix, we match the matrix elements of H and H̃ in the following states:

|�0〉 = ⊗N
i=1

∣∣ψ (i)
0

〉
,

|� j〉 = ∣∣ψ ( j)
1

〉⊗N
i=1
i �= j

∣∣ψ (i)
0

〉
,

|� j, j+1〉 = ∣∣ψ ( j)
1

〉⊗ ∣∣ψ ( j+1)
1

〉⊗N
i=1

i �= j, j+1

∣∣ψ (i)
0

〉
,

|� j, j+2〉 = ∣∣ψ ( j)
1

〉⊗ |ψ ( j+2)
1 〉 ⊗N

i=1
i �= j, j+2

∣∣ψ (i)
0

〉
,

|� j, j+1, j+2〉 = ∣∣ψ ( j)
1

〉⊗ ∣∣ψ ( j+1)
1

〉⊗ ∣∣ψ ( j+2)
1

〉⊗N
i=1

i �= j, j+1, j+2

∣∣ψ (i)
0

〉
. (A13)

We point out here that unlike the first-order perturbation theory, in the present case, application of the perturbation term J−1
⊥ H ′

on the state of a rung in its ground-state manifold can give rise to excited states, which, in turn, involves calculation of the energy
of the excited rung states. We achieve this via thermodynamic Bethe ansatz [31], and subsequently obtain

J̃xy = 1

4

(
J|| − Jsum

d

J⊥

)
,

J̃zz = 1

4

[
1

L

(
J|| + Jsum

d

J⊥

)
+ F

2

(
J|| − Jsum

d

J⊥

)2

+ G

]
,

J̃ ′
xy = F

16

(
J|| − Jsum

d

J⊥

)2

,

J̃ ′
xyz = − F

16

(
J|| − Jsum

d

J⊥

)2

,

h̃ = 1

2

[
L − 1

L

(
J|| + Jsum

d

J⊥

)
− �h

J⊥
− F

2

(
J|| − Jsum

d

J⊥

)2

− G

]
, (A14)

while J̃ ′
zz, J̃xyz, J̃ ′

zzz vanish, and the factors F and G are given by

F = −2J−1
⊥ L−2

L/2−1∑
m=0

⎡
⎢⎢⎣(1 + cos am)

∑
l1,l2
l2>l1

cos2 (am fl1,l2

)
⎤
⎥⎥⎦

−1

L∑
l1,l2=1

l2>l1

L∑
l ′1,l

′
2=1

l′2>l′1

[
(−1)� cos

(
am fl1,l2

)
cos
(
am fl ′1,l

′
2

)]
,

G = −J−3
⊥ L−4

L−1∑
m1,m2=0
m2 �=m1 �=L/2

Xm1,m2

L∑
j, j′=1

exp [2π i(m1 + m2)( j′ − j)/L]

cos bm1 + cos bm2 + 2
, (A15)

where

Xm1,m2 = (J||)2 + (J1
d

)2 + (J2
d

)2 − 2J||
(
J1

d cos bm2 + J2
d cos bm1

)+ 2J1
d J2

d cos
(
bm2 − bm1

)
, (A16)
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and � = l1 + l2 + l ′
1 + l ′

2, aα = 4πα/(L − 1), bα = 2πα/L,
fα,β = α − β + 1/2, and h′ is the strength of the magnetic
field at which the rung ground states are doubly degenerate.
Finally we combine the terms corresponding to J̃ ′

xy and J̃ ′
xyz,

and write the form of H̃ as

H̃ =
N∑

i=1

[
J̃ (2)

xy

(
τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)+ J̃ (2)
zz τ z

i τ
z
i+1

]

+ K̃ (2)
xyz

N∑
i=1

(
τ x

i−1τ
x
i+1 + τ

y
i−1τ

y
i+1

)(
Ii − τ z

i

)+ h̃(2)
N∑

i=1

τ z
i ,

(A17)

where we define K̃xyz = J̃ ′
xy = −J̃ ′

xyz.
Similar to the case of first-order perturbation theory, we

work out the details of the effective couplings separately for
L = 2, and get

J̃xy = 1

8

(
2J|| − Jsum

d

J⊥

)
− 1

32J⊥

(
J1

d − J2
d

J⊥

)2

,

J̃zz = 1

16

(
2J|| + Jsum

d

J⊥

)
+ 1

32J⊥

(
J1

d − J2
d

J⊥

)2

− 3

128J⊥

(
2J|| − Jsum

d

J⊥

)2

,

J̃ ′
xy = 1

64J⊥

(
J1

d − J2
d

J⊥

)2

− 1

128J⊥

(
2J|| − Jsum

d

J⊥

)2

,

J̃ ′
zz = 1

64J⊥

(
J1

d − J2
d

J⊥

)2

,

J̃xyz = 1

64J⊥

(
J1

d − J2
d

J⊥

)2

,

J̃ ′
xyz = 1

64J⊥

(
J1

d − J2
d

J⊥

)2

+ 1

128J⊥

(
2J|| − Jsum

d

J⊥

)2

,

J̃zzz = − 1

64J⊥

(
J1

d − J2
d

J⊥

)2

,

h̃(1) = 1

8

(
2J|| + Jsum

d

J⊥

)
− �h

2
+ 1

64J⊥

(
J1

d − J2
d

J⊥

)2

+ 3

64J⊥

(
2J|| − Jsum

d

J⊥

)2

. (A18)

Unlike the case of L � 4, in this case, all effective coupling
constants are nonvanishing, and the effective Hamiltonian
is given by Eq. (A12). Note that for J1,2

d = 0 as well as
J1

d = J2
d �= 0, the 1D effective Hamiltonian for L = 2 also

takes the form given by Eq. (A17), while the corresponding
coupling constants for L = 2 are given by Eqs. (A14) only
when J1,2

d = 0.

3. Open rungs: Outlines

Here we present the details required to work out the 1D
effective Hamiltonian when open boundary condition (OBC)
along the rungs is considered. In this case, exact calculation of
the degenerate ground states and the strength of the magnetic
field at which the degeneracy occurs is difficult for arbitrary
L. However, our numerical analysis suggests that for open
(periodic) boundary condition along the rungs (legs), and for
arbitrary L, |ψ (i)

0 〉 is still given by Eq. (A1), while |ψ (i)
1 〉 is

found in the 〈Zi〉 = L − 2 sector and has the form

∣∣ψ (i)
1

〉 = L∑
j=1

a j | j〉, (A19)

with a j ∈ R, and
∑L

j=1 a2
j = 1. Note further that due to Z2

symmetry, a1 = ±aL. The system parameters of the effective
Hamiltonian depends on the coefficients {a j, j = 1, . . . , L}.
For example, the first-order effective Hamiltonian for the case
of OBC (PBC) along the rungs (legs) with L � 3 would still
be given by Eq. (A6), with

J̃ (1)
xy = 1

4

[
J||
J⊥

+ A0

(
J1

d

J⊥
+ J2

d

J⊥

)]
,

J̃ (1)
zz = 1

16

[
(4 − L + A1)

J||
J⊥

+ (L − 1 + A3 − 2A2)

(
J1

d

J⊥
+ J2

d

J⊥

)]
,

h̃(1) = 1

8

[
(L − A1)

J||
J⊥

+ (L − 1 − A3)

(
J1

d

J⊥
+ J2

d

J⊥

)
− 4

�h

J⊥

]
,

(A20)

where Ai, i = 0, 1, 2, 3, are constants given by

A0 =
L−1∑
j=1

a ja j+1, (A21)

A1 = L
L∑

j=1

a4
j + (2L − 8)

L∑
j=1

∑
k< j

a2
j a

2
k , (A22)

A2 = L − 3 + 2a2
1, (A23)

A3 = (L − 1)

⎧⎨
⎩

L−1∑
j=1

a2
j a

2
j+1 + a2

La2
1

⎫⎬
⎭

+ (L − 3)

⎧⎨
⎩

L−1∑
j=1

a2
j a

2
1 +

L∑
j=2

a2
La2

j

⎫⎬
⎭

+ (L − 5)

⎧⎨
⎩

L−1∑
j=1

L∑
k= j+2

a2
j a

2
k +

L∑
j=2

L−1∑
k= j

a2
ka2

j

⎫⎬
⎭. (A24)
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