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We demonstrate a controllable and tunable topological beam splitter with a multiport based on the one-
dimensional extended Su-Schrieffer-Heeger model, which supports the topological interface by introducing the
nearest-neighbor (NN) coupling defect at the central site. The quantum state initially prepared at the interface can
be transmitted with high fidelity to multiple output ports with equal or unequal probability on both sides of the
model by modulating the NN coupling between the sites in the time domain. We show that the output port can be
added by increasing the number of sublattices a. Especially, by setting the on-site potential energy, we can easily
control the direction of the quantum state transfer process and ensure that this state is only transmitted to the
multiple output ports on the left or multiple output ports on the right, which realizes the function of topological
switching. Benefiting from the topological protection of the edge states, the quantum states can be transmitted
with high fidelity even if there is the NN coupling disorder. Our work realizes a robust and multifunctional
topological beam splitter.
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I. INTRODUCTION

Reliable and controllable quantum state transfer (QST) is
one of the important components of quantum networks, and
the efficiency of QST between different nodes directly affects
the accuracy of the quantum communication process [1–5].
However, the process of QST is inevitably affected by system
defects and environmental disturbances, which leads to the
decoherence effect [6,7]. In order to improve the fidelity of
QST, a variety of effective schemes have been proposed, such
as quantum error correction [8–10], dynamical decoupling
[11–13], and dark mode assistance [14–16]. In recent years,
high-fidelity and robust QST processes have been demon-
strated in topological insulators that benefit from protected
topological boundary states [17–24].

In recent years, topological insulators have been widely
studied in condensed-matter physics because of their con-
ductive boundary states and insulating bulk states [25–30].
Different from traditional insulators, topological insulators
have nonequivalence energy bands in momentum space
[31–36]. The topological boundary state is immune to the
local disturbance and disorder of the environment [37–39],
so it can be used to transmit information efficiently and uni-
directionally, making it an excellent QST platform [40–45].
For example, the Su-Schrieffer-Heeger (SSH) model, as the
simplest one-dimensional topological insulator, has been suc-
cessfully used for robust and high-fidelity quantum state
transfer processes. Mei et al. constructed an extended SSH
model by plugging superconducting qubits into a tunable
array, and they demonstrated that single-qubit and two-qubit
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entangled states can achieve robust transmission over long
distances [21]. Moreover, the quantum state transfer process
can be accelerated by controlling the strength of the nearest-
neighbor hopping and introducing next-neighbor coupling
[22,23]. Obviously, the above studies focus on the transfer
of quantum states from one site to another, and the system
has only one input port and one output port. In Ref. [24],
the interface can be introduced by splicing two Rice-Mele
models, and then the initial state prepared on the interface (as
an input port) can be transmitted to two ports on both sides
with equal probability. Reference [46] shows a planar tunable
transport scheme that can increase the number of output ports
by increasing the number of SSH chains, but there is always
only one input port. However, complex quantum networks
may require more input and output ports than just a single
input port. Therefore, in order to realize diversified informa-
tion distribution and transmission in quantum networks, it is
necessary to construct a topologically protected channel that
includes multiple input ports and output ports.

In this paper, by splicing the extended SSH models, as
displayed in Fig. 1, we propose a multiport input and output
scheme. We can realize the transfer of the quantum state
initially prepared at the interface to multiple ports with equal
or unequal probability by controlling the nearest-neighbor
coupling at the interface. Specifically, when the interface site
is coupled equally to the left site and the right site, the energy
will be evenly transmitted to both ends, but when the coupling
is unequal, a variety of distributions can be displayed. In addi-
tion to the Hermitian case, we also consider the non-Hermitian
case, where gain and loss are added at the lattice site. In
general, the nonuniform loss at the sites can be equivalent to
the gain-loss system. We find that the quantum states prepared
at the interface only transfer to the left multiple output ports
or the right output ports by controlling the gain-loss on the
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FIG. 1. The diagrammatic sketch of the extended SSH model with modulated nearest-neighbor hopping. Each unit cell has three sites and
the size of this array is L = 3N − 1 (N is the number of unit cells and is odd). The NN hopping J1,2 and the on-site gain and loss γ1,2 except
interface sites we considered.

lattice. This can be understood as the quantum state being
preferentially transferred to the side of the effective gain.
Therefore, it can be constructed as bidirectional topological
switches with multiple input and output ports. In addition, we
find that topological beam splitters with more ports can be
constructed by increasing the number of sublattices a. When
considering the disorder in the NN coupling, we find that the
QST channel can still achieve high-fidelity transmission with
slight interference.

The paper is organized as follows: In Sec. II, we introduce
an extended SSH model that enables multiport input and out-
put. On the one hand, the extended SSH model can realize
topological beam splitters with equal or unequal probability,
and on the other hand, bidirectional topological switches can
be constructed by adjusting the on-site potential. The QST
channel is immune to disorder. In Sec. III, we show how to
construct more input and output ports by adding sublattices a.
Finally, we give a brief conclusion in Sec. IV.

II. TOPOLOGICAL BEAM SPLITTER BY EDGE PUMPING
IN A SPLICING EXTENDED SSH MODEL

A. Model and Hamiltonian

To establish a controlled topological beam splitter, we con-
sider a splicing extended SSH model as shown in Fig. 1. This
lattice consist of three sublattice sites, an,1, an,2, and bn, with
n = 1, 2, . . . , N , in each unit cell and the total site number is
L = 3N − 1. Here, the lattice size N is set as an odd number,
so that the extended SSH model has a topological interface at
site aN+1/2. This system can be governed by the Hamiltonian
[47–49], as seen in Eq. (1).

Here, J1 = J0[1 + cos( πt
t∗ )] and J2 = J0[1 − cos( πt

t∗ )] are
the modulated coupling strengths of nearest-neighbor hopping
while γ1,2 is the strength of on-site gain and loss. t∗ is the
total transfer time. T denotes the coupling between sites an,1

and an,2 for each unit cell of the SSH array, respectively. At
the topological interface, J2 and J ′

2 denote hopping between
interface sites and nearest-neighbor sites. When γ1,2 = 0, this
system returns to the Hermitian:

H =
N/2−1∑

n=1

[−iγ1a†
n,1an,1 − iγ1a†

n,2an,2 − iγ2b†
nbn]

+
N∑

n= N+1
2 +1

[−iγ2a†
n,1an,1 − iγ2a†

n,2an,2 − iγ1b†
nbn]

+
N/2−1∑

n=1

[Ta†
n,1an,2 + J1a†

n,1bn + J2a†
n+1,1bn + H.c.]

+
N∑

n= N+1
2 +1

[Ta†
n,1an,2 + J2a†

n,1bn + J1a†
n+1,1bn + H.c.]

+
∑

n= N+1
2

[Ta†
n,1an,2 + iγ1b†

nbn + J ′
2a†

n,1bn + J1a†
n+1,1bn

+ H.c.]. (1)

To explore the topological character of the array, we now
consider a finite-sized lattice array without gain or loss with
J2 = J ′

2. Figure 2(a) displays the energy spectrum of the sys-
tem with size N = 5; it clearly shows that the topological
edge states (marked red) are located at the bulk gaps. We
plot the eigenstate distribution of the upper red gap state.
Obviously, the gap state is mainly distributed in a-type sites
at the interface when J1 > J2 (t/t∗ ∈ [0, 0.5] ∪ [1.5, 2]), but
when J1 < J2 (t/t∗ ∈ [0.5, 1.5]), it is mainly distributed at the
two ends of the array, as displayed in Fig. 2(b). Particularly,
by diagonalizing Eq. (1) under the open boundary condition,
this state can be described as

|�〉 = |1, 1, 0, η, η, 0, η2, η2, 0, . . . , η
N+1

2 , η
N+1

2 ,

0, . . . , 0, η2, η2, 0, η, η, 0, 1, 1〉. (2)

where η = −J1/J2 manifests the probability amplitude hinge
on NN hopping J1 and J2. Equation (2) is consistent with the
behaviors shown in Fig. 2(b).

FIG. 2. (a) The energy spectrum of this array with γ1,2 = 0, in
which the two red lines denote topological edge states. (b) The
distribution of the edge states [located in the upper band gap of panel
(a)] as a function of t/t∗. The system parameters are set to T = 1 and
L = 3N − 1 = 14.
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FIG. 3. Fidelity F as a function of total transfer time t∗. We set
the initial state �(0) = 1/

√
2|0, 0, 0, 0, . . . , 1, 1, . . . , 0, 0, 0, 0〉 and

other parameters are the same as those Fig. 2.

Based on Fig. 2, if we consider the a-type sites at the
interface as two input ports, and the a1,1, a1,2, aN,1, and aN,2

sites as the four output ports, then this lattice array can be
regarded as a topological beam splitter and realize quantum
state transfer from multiple ports to multiple ports. On the
other hand, the QST process is protected by the gap and
immune to some disorders. In order to illustrate the reliability
of the beam splitter on the topological QST process, we can
use transfer fidelity for evaluation and the fidelity is defined as
F = |〈� f |�(t∗)〉|2. Here, |� f 〉 represents an ideal final state
we need, in which � f = 1/

√
4|1, 1, 0, 0, . . . , 0, 0, 1, 1〉, and

|�(t∗)〉 is the evolved final state in the real space, which can be
obtained by solving the Schrödinger equation i ∂�

∂t = H |�〉.
Figure 3 displays transfer fidelity versus total evolution time
t∗. It is clearly shown that F → 1 when J0t∗ > 40 and the
topological edge transfer is under adiabatic evolution. Fig-
ure 4 plots the distribution of edge states in the gap with
different transfer times. When J0t∗ = 10, energy does not
transfer well from the interface sites to the two ends, as dis-
played in Fig. 4(a). However, when we added J0t∗ to 60, as
seen in Fig. 4(b), energy can be transferred adiabatically from
the two interface ports to the four edge ports with equal prob-
ability. So, this multiport beam splitter that depends on the
topological edge channel is successful on the one-dimensional
(1D) array.

Benefiting from the development of quantum optics and
wave optics, a series of excellent experimental platforms have

FIG. 4. Evolution of the upper gap state with different total trans-
fer time. (a) J0t∗ = 10. (b) J0t∗ = 60. We take T = 1, L = 3N − 1 =
14, and γ1 = γ2 = 0, and the initial state is the same as that in Fig. 3.

FIG. 5. Fidelity F as a function of NN disorder with different
sizes of N . Green squares, red asterisks, and blue dots indicate system
sizes N = 3, 5, and 7, respectively. Here, we consider J0t∗ = 150 and
another parameter set as T = 1.

emerged. Our QST scheme is based on a one-dimensional
extended SSH model, which can be easily implemented in
superconducting systems (qubit arrays and resonator arrays)
[50–52] and waveguide arrays [53–55]. In addition to this, the
use of ultracold atoms in optical lattices is also widely used
to study various topological topics [56–58]. For example, for
the multiport topological beam splitter, we can use a series
of waveguide arrays. The NN hopping and on-site poten-
tial energy are modulated by adjusting the distance between
waveguides and the refractive index of individual waveguides.
However, in practice, the coupling parameters cannot be com-
pletely accurate. Therefore, it is necessary to evaluate the
robustness of the topological beam splitter. Here, the disorder
adding to system can be governed by

J1 → J1 + δV, J2 → J2 + δV, T → T + δV, (3)

where V is the strength of disorder and δ is a random number
within the range [−0.5, 0.5]. For each δV , we choose 100
samples and average them. In order to guarantee the adiabatic
evolution of the QST process, we choose the total transfer
time of J0t∗ = 150.

Figure 5 shows the relationship between average fidelity
and disorder during quantum state transfer for different
system sizes N (N = 3, 5, and 7). Clearly, the proposed topo-
logical beam splitter can maintain sufficiently high fidelity
during the quantum state transfer when the strength of the NN
hopping disorder is −3 < log10(V/J0) < −1. Therefore, the
multiport beam splitter is robust to slight disorder during the
QST process.

B. Multiport beam splitter with unequal probabilities

We have demonstrated a topological beam splitter that can
be transmitted to both ends with equal probability, because
the interface site has the same coupling weight as the left
and right sites, and that perfectly implements multiport-to-
multiport transmission in this 1D model. Next, we investigate
a multiport beam splitter with unequal probabilities, i.e.,
J2 
= J ′

2. When J1 : J2 = 2 : 1, we plot the energy spectrum
in Fig. 6(a1), and it has two gap states similar to Fig. 2(a).
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FIG. 6. Energy spectrum, distribution of the gap state, and fidelity. The energy spectra of the extended SSH model are shown in panels
(a1)–(a3), and the red lines are the edge states with (a1) J1 : J2 = 2 : 1, (a2) J1 : J2 = 1 : 2, and (a3) J1 : J2 = 4 : 3. The distribution of the
edge states versus t/t∗ corresponds to panels (b1)–(b3), respectively. We prepare the initial state at the interface and it can be transferred to
four output ports with unequal probability, and the fidelity versus total evolved time t∗ is shown in panels (c1)–(c3). Panels (d1)–(d3) show the
quantum state transfer process when J0t = 0 or J0t = 100.

The probability distribution of the upper edge state is shown
in Fig. 6(b1). We can see that the energy mainly occupies
two resonators at the interface when the normalized time is
t/t∗ ∈ [0, 0.5] ∪ [1.5, 2], while it is distributed in the four res-
onators at the edge within t/t∗ ∈ [0.5, 1.5]. In particular, the
adiabatic QST process is realized within the transfer total time
J0t∗ > 100 and the high fidelity F ≈ 1, as seen in Fig. 6(c1).
In the process of quantum state evolution, we show that the
initial state is prepared with equal probability at two ports on
the interface. This state is transferred from the interface sites
to both ends, and the probability distribution of the four end
ports is 2.3 : 2.3 : 1 : 1 when J0t = 100, as seen in Fig. 6(d1).
In this way, we construct an unequal probability topological
beam splitter with two-port input and four-port output.

Similarly, by modulating the NN coupling at the interface,
we can realize that more QST channels benefit from the
nonuniform distribution of the edge states. We also display
the QST process within J1 : J2 = 1 : 2 and J1 : J2 = 4 : 3.
Although the energy spectra of these two cases are different,
the two edge states always exist with the change of normal-
ization time t/t∗, as can be seen from Figs. 6(a2) and 6(a3).
Distribution of the eigenstate as a function of t/t∗ is shown in
Figs. 6(b2) and 6(b3). The probability transfers from two sites
at the interface to both ends of the array with unequal proba-
bilities, and the QST process has high fidelity when J0t∗ > 70
and J0t∗ > 40, respectively. The probability distribution of the

final state about the four end ports is 1 : 1 : 2.9 : 2.9 with J1 :
J2 = 1 : 2 and 5 : 5 : 7 : 7 with J1 : J2 = 4 : 3 of the four out
ports. Namely, it is clearly shown that multiport and tunable
beam splitters can be implemented.

In order to test the robustness of this probability-adjustable
topological beam splitter, we plot the average fidelity versus
the disorder, as seen in Fig. 6. Similarly, to satisfy adiabatic
evolution in QST, we take J0t∗ = 120. Figure 7 shows the
fidelity average based on 100 samples. For different couplings
at the interface, we find that, when log10(V/J0) < −0.7, the
transmission fidelity is F → 1. Similar to a multiport topo-
logical beam splitter with equal probability, the quantum state
can still be transferred to the target ports with high fidelity
when a small perturbation is applied to the system.

C. Multiport beam splitter with topological switch

To further understand this multibeam splitter, we consider
the effects of adding gain-loss to the system. In this case,
the eigenvalues are complex numbers. The real part and the
imaginary part of the energy spectrum are shown in Figs. 8(a)
and 8(b), respectively. Clearly, the real part Re(E ) of the edge
state always has the symmetric eigenvalues Re(−E ) located
in the bulk gaps, and the imaginary parts of two edge states
are always equal.

032406-4



CONTROLLABLE AND TUNABLE TOPOLOGICAL … PHYSICAL REVIEW A 110, 032406 (2024)

FIG. 7. Fidelity as a function of disorder V with unequal cou-
pling at interface sites. The size of the array is N = 5 and the total
transfer time is J0t∗ = 120.

Figure 9 reflects the effect of unbalanced loss on the dis-
tribution of the edge state. It is widely known that unbalanced
loss is equivalent to the gain-loss system. Figure 9 displays
the upper edge state versus normalized time t/t∗. When we
consider γ1 = 0.2 and γ2 = 0.4, it can be seen from Fig. 9(a)
that this state is mainly distributed in the central sites corre-
sponding to J1 > J2 and located at the left ports corresponding
to J1 < J2. However, when γ1 = 0.4 and γ2 = 0.2, as shown
in Fig. 9(b), the probability distribution for this edge state
is reversed from Fig. 9(a). Therefore, we can conclude that
the QST process is transmitted to the left two ports with
γ1 < γ2, because −iγ1a†

1,ia1,i is equivalent to an effective gain

compared to −iγ2a†
N,iaN,i (i = 1 and 2), and it is transmitted

to the right two ports with γ1 > γ2. γ1/γ2 = 1 is a critical
value, and the direction of the topological beam splitter can
be selected by adding effective on-site gain and loss.

Here, in order to further understand the effect of virtual
on-site potential energy added to sites on quantum state trans-
fer, we simulate the system evolution process corresponding
to different values of γ1,2. First, for γ1 < γ2, fidelity and
topological excitation transfer are exhibited in Figs. 10(a1)–
10(d1). Herein, |L〉 and |R〉 represent the ideal left and right
edge states, denoted as |L〉 = 1/

√
2|1, 1, . . . , 0, 0, . . . , 0, 0〉

and |R〉 = 1/
√

2|0, 0, . . . , 0, 0, . . . , 1, 1〉, respectively. Com-
paring Figs. 10(a1) and 10(b1), the quantum state initially
prepared at the interface is efficiently transmitted to the left

FIG. 8. Energy spectrum. (a) The real part and (b) the imaginary
part of the energy spectrum with γ1 = 0.4 and γ2 = 0.2. Other pa-
rameters are the same as those in Fig. 2.

FIG. 9. The distribution of the upper gap state as a function of
t/t∗ with (a) γ1 = 0.2 and γ2 = 0.4 and (b) γ1 = 0.4 and γ2 = 0.2.

ports but cannot be transferred to the right output ports, and
when total evolution time J0t∗ > 60, the fidelity of the quan-
tum state transferred to the left side is F → 1. For J0t∗ = 80,
the dynamic evolution of the system with time is shown in
Fig. 10(c1), which displays the QST from central multiple
input ports to left multiple output ports. To make the state
distribution in the QST process more clear, we plot the prob-
ability distribution at J0t = 0 and J0t = 80 in Fig. 10(d1).
Moreover, for γ1 > γ2, we also plot the fidelity and topo-
logical excitation transfer in Figs. 10(a2)–10(d2), which are
in sharp contrast to the results of γ1 < γ2. In addition, we
also analyzed the case when γ1 = γ2. In this case, the den-
sity distribution of the system gap states is similar to that in
the Hermitian case. When J1 > J2, the density is distributed
at the interface, while when J1 < J2, the density is mainly
distributed at the sublattice a on both sides of the array. There-
fore, when the system is at a uniform loss, the QST process is
similar to the Hermitian case.

Next, we continue to discuss the quantum state transfer of
the system when γ1 and γ2 are positive and negative, respec-
tively. For γ1 = −0.2 and γ2 = 0.4, the quantum state can be
transmitted to the left end of the array with extremely high fi-
delity when J0t∗ > 20. According to Eq. (1), when γ1 < 0 and
γ2 > 0, −iγ1a†

1,ia1,i correspond to gain sites and −iγ2a†
N,iaN,i

(i = 1 and 2) correspond to loss sites. Therefore, when we
prepare the initial state at the interface, it passes towards the
left end of the array, as shown in Figs. 10(a3)–10(d3). But for
γ1 > 0 and γ2 < 0, as displayed in Figs. 10(a4)–10(d4), it is
shown that the quantum state is only transmitted to the right
side of the array. To sum up, in our quantum state transfer
scheme, when the initial state is prepared at the interface, the
quantum state is biased towards the gain-sublattice transfer,
which can realize the function of topological switching, con-
sistent with our discussion above.

So far, we have implemented a multiport topological beam
splitter with equal or unequal probability distribution based
on the extended SSH model and controlled the direction of
the QST process through on-site gain or loss so as to realize
the function of topology switching.

III. EXTENDED MULTIPORT BEAM SPLITTER BY
ADDING SUBLATTICES A

In the above, we have shown the controlled QST process
in which quantum states can be transferred from the interface
to multiple output ports in different forms. Here, we can
increase the input and output ports by adding the sublattices
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FIG. 10. Fidelity and topological excitation transfer. Evolution of the initial state is |�(0)〉 = 1/
√

2|0, 0, . . . , 1, 1, . . . , 0, 0〉, and it is
shown that the initial state is evenly distributed in the middle two sites. (a1)–(a4) Fidelity F for quantum state transfer to the left edge versus
transfer total time t∗. (b1)–(b4) Fidelity F for quantum state transfer to the right edge versus transfer total time t∗. The evolution of the system
with J0t∗ = 80 for panels (c1) and (c2) and J0t∗ = 40 for panels (c3) and (c4). Quantum state distribution with J0t = 0 or J0t = 80 for panels
(d1) and (d2) and J0t = 0 or J0t = 40 for panels (d3) and (d4). The parameters are γ1 = 0.2 and γ2 = 0.4 for panels (a1)–(d1), γ1 = 0.4 and
γ2 = 0.2 for panels (a2)–(d2), γ1 = −0.2 and γ2 = 0.4 for panels (a3)–(d3), and γ1 = 0.4 and γ2 = −0.2 for panels (a4)–(d4).

a. Figure 11 shows a schematic of a model that implements
more input and output ports. Now, we consider sublattices
a that contain three sites, and we can control quantum state
transmission from the interface to both ends of the array by
adjusting the hopping between lattice sites.

Figure 12(a) displays the probability amplitude distribution
of an edge state with normalized time t/t∗. Clearly, it is shown
that, if we change the hopping J1 from 0 to 2 and the hopping
J2 from 2 to 0, the quantum states initially prepared at the in-
terface will evolve to both sides of the array. This also reveals
the potential application of this model to construct a topolog-
ical beam splitter. Subsequently, we investigate the fidelity of
this QST process. We think about the initial state being |�0〉 =
|0, 0, 0, . . . , 1

2 ,
√

2
2 , 1

2 , . . . , 0, 0, 0〉, and the ideal final state

of evolution is |�〉 = |
√

2
4 , 1

2 ,
√

2
4 , . . . , 0, 0, 0, . . . ,

√
2

4 , 1
2 ,

√
2

4 〉.
The fidelity as a function of total transfer time t∗ is seen in

Fig. 12(b), where it is displayed that the quantum state can be
transferred to the output port in high quality when J0t∗ > 80.
On the other hand, it also shows that when the evolution
time is long enough, the system follows adiabatic topological
transmission. For J0t∗ = 100, the process of topological state
transfer is shown in Fig. 12(c). During this evolution, the
probability amplitude of the input ports is a3,1 : a3,2 : a3,3 =
1 : 2 : 1 when t = 0 and the amplitudes of the output ports
are a1,1 : a1,2 : a1,3 = 1 : 2 : 1 and a5,1 : a5,2 : a5,3 = 1 : 2 : 1
when J0t = 100, as exhibited in Fig. 12(d). The simulation
shows that the edge state in this extended SSH system can be
used as a topology channel to realize multiple output ports.

Similarly, to analyze the robustness to disorder of the quan-
tum state transmission process with multiple input ports, as
shown in Fig. 13, we plot the fidelity of the QST from the
interface to both ends as a function of the disorder strength.
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FIG. 11. Schematic diagram of the extended SSH resonator array to realize more ports. Here, each unit cell contains four resonators. For
this model, the number of output ports is controlled by controlling the number of sublattices a.

The numerical results show that, when the disorder strength
is log10(V/J0) < −0.3, the quantum state can be transmitted
perfectly, and the fidelity is F → 1. Therefore, it is feasible to
implement the operation of multiple input ports by increasing
the sublattice a, which is robust to slight perturbations. This
facilitates the construction of complex quantum networks.

IV. CONCLUSIONS

In conclusion, we have revealed a scalable and robust
topological multiport beam splitter based on the extended
SSH model. On the one hand, the output ports with equal or
unequal probabilities can be realized by adjusting the coupling
between the two sides of the sites at the interface. On the
other hand, we can control the number of ports of the topo-
logical beam splitter by increasing the number of sublattices

FIG. 12. (a) The probability amplitude of a gap mode versus t/t∗.
(b) Fidelity of the quantum state initially prepared at the interface
sites transferred to an,1, an,2, and an,3 (n = 1 and 5). (c) The process
of quantum state transfer with the total evolution time J0t∗ = 100.
(d) The probability distribution of the evolution state at different
times. The size of the system L = 4N − 1 = 19, T = 1, and γ1 =
γ2 = 0.

a. Benefiting from the topological protection of edge states,
we find that the system is robust to nearest-neighbor coupling
disorder during the quantum state transfer process. Moreover,
we can flexibly control the direction of the output port by
adjusting the ratio of on-site potential energy. When γ1 < γ2,
topology transmission is biased to the left ports, while when
γ1 > γ2, topology transmission is biased to the right ports.
When γ1 = γ2 and the interface state is initially excited, the
quantum state is transferred to both the left and right ends.
Our research provides a reference for multiport transmission
based on a one-dimensional structure.
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FIG. 13. The fidelity F of the quantum state transfer process
against the NN coupling disorder. The size of the array is N = 5
and the total transfer time is J0t∗ = 100. The other parameters are
the same as those in Fig. 12.
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