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We give two upper bounds to the mutual information in arbitrary quantum estimation strategies. The first
is based on some simple Fourier properties of the estimation apparatus. The second is derived using the
first, but, interestingly, depends only on the Fisher information of the parameter, so it is valid even beyond
quantum estimation. We illustrate the usefulness of these bounds by characterizing the quantum phase estimation
algorithm in the presence of noise. In addition, for the noiseless case, we extend the analysis beyond applying
the bound and we discuss the optimal entangled and adaptive strategies, clarifying inaccuracies appearing on this
topic in the literature.
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I. INTRODUCTION

Classical strategies, where the estimation is simply re-
peated N times independently, can only achieve the standard
quantum limit (SQL) in precision: the root mean square error
(RMSE) achieves the central limit scaling of N−1/2, and the
Fisher information scales as N . Quantum metrology [1–6]
uses quantum properties, such as entanglement, to improve
the precision of parameter estimation [7–12]. In the idealized
noiseless case, many quantum strategies have been proposed
to achieve the Heisenberg scaling (HS): the RMSE scales as
N−1, or the Fisher information scales as N2. In the presence
of noise the HS is rarely achieved, e.g., using error correction
[13]. Although a scaling better than SQL appears in some
scenarios [14–17], typically only the SQL can be achieved
[5,6,18], and the quantum enhancement is only a constant
factor.

Mutual information (MI) in quantum metrology is typically
used in connection to the RMSE [19–21], but it can also be
used in a purely information-theoretic way [22]. This allows
one to easily account for the prior information on the param-
eter, which is otherwise cumbersome to deal with [23,24]. In
this scenario, the HS and the SQL refer to the cases when the
mutual information scales as log2 N and 1

2 log2 N , respectively
[22]. In the noiseless case, the HS can be achieved using the
quantum phase estimation (QPE) algorithm, and the SQL can
be achieved by separable parallel strategies.

In this paper, we give two upper bounds (the “Fourier
bound” and the “Fisher bound”) to the mutual information
of quantum estimation, for both periodic and infinite-range
parameters. The first bound connects the mutual information
to some Fourier properties of the estimation procedure, and
implies the second bound which is given in terms of the Fisher
information. As such, the second bound is still valid in a
more general setting, beyond quantum estimation. We illus-
trate some maximum-likelihood-based cases where the Fisher
bound is a good approximation to the mutual information.
Two applications for these bounds are provided: a case study

to show how the bounds also work for noisy quantum estima-
tion where the direct calculation is practically impossible and
the analysis of the optimal general separable and entangled
strategies in the noiseless case (fixing some inaccurate claims
in the literature). We show some interesting unknown features
of the dephasing channel. In [25] we found different bounds
for the MI, derived from purely mathematical considerations.
In contrast, knowledge of the estimation procedure is required
here for the derivation of the Fourier bound (and the Fisher
bound is, in turn, derived from it). We compare all these
bounds showing no one is tighter than the others in all situ-
ations.

Finally, for the noiseless case, we go beyond the applica-
tion of the bound, performing the detailed analysis of optimal
entangled and adaptive strategies.

II. FOURIER BOUND

Consider a quantum channel that encodes a parameter φ

onto a pure normalized state |ψφ〉 (e.g., a unitary encod-
ing), followed by any positive operator-valued measurement
(POVM). The following holds.

Theorem 1. “Fourier bound.” Given a parameterized quan-
tum state φ �→ |ψφ〉, with φ having period L and prior density
p(φ), and any POVM that returns some classical information
m, the mutual information between φ and m satisfies

I (m : φ) � −
∞∑

k=−∞
f̂k log2 f̂k − log2 L + H (φ), (1)

where H (φ) := − ∫ dφ p(φ) log2 p(φ) is the entropy of φ,
f̂k = 1

L 〈ψ̂k | ψ̂k〉,

|ψ̂k〉 :=
∫

dφ q(φ)e−i 2πk
L φ |ψφ〉 , (2)

for any complex-valued function q(φ) such that q(φ)q∗(φ) =
p(φ).
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The right-hand side (RHS) of Eq. (1) is independent of
the measurement that returns m because the inequality uses
the Holevo bound [26] which is valid for any measurement.
Throughout the paper, all integrations are over one period of
the periodic variable. Note that the RHS of Eq. (1) depends on
the choice of q(φ), which counterbalances the arbitrary global
phase of |ψφ〉. The bound is not tight, as the Holevo bound is
used in the proof, which is not tight in general.

Proof. Construct another parameterized quantum state

θ �→ |�θ 〉 :=
∫

dφ′ q(φ′ + θ ) |ψφ′+θ 〉 |φ′〉 , (3)

where |φ〉 lives in an additional L2(R) rigged Hilbert space
with 〈φ2 | φ2〉φ1 = δ(φ2 − φ1). We can measure the first reg-
ister the same way as the original state, and the second
register on the computational basis, to obtain a joint measure-
ment result, say (m, φ′). The probabilities of the additional
θ -parameterized state (with subscripts i) and the original φ-
parameterized state (with subscripts o) are related via

pi(m, φ|θ ) = p(φ + θ )po(m|φ + θ ), (4)

where p without subscripts is for the prior distribution. Let the
parameter θ in the new state be distributed uniformly in [0, L],
then the joint distribution of m and φ in the new state is

pi(m, φ) = 1

L

∫
dθ p(φ + θ )po(m|φ + θ )

= 1

L

∫
dφ p(φ)po(m|φ) = 1

L
po(m). (5)

The mutual information between measurement result
(m, φ) and the parameter θ is

Ii(m, φ : θ )

=
∑

m

∫
dθdφ

1

L
pi(m, φ|θ ) log2

pi(m, φ|θ )

pi(m, φ)

= 1

L

∑
m

∫
dθ

∫
dφ p(φ + θ )po(m|φ + θ )

× log2
p(φ + θ )po(m|φ + θ )

1
L po(m)

= 1

L

∑
m

∫
dθ

∫
dφ p(φ)po(m|φ) log2

Lp(φ)po(m|φ)

po(m)

=
∑

m

∫
dφ p(φ)po(m|φ) log2

Lp(φ)po(m|φ)

po(m)

= Io(m : φ) +
∫

dφ p(φ) log2[Lp(φ)], (6)

where the last equality uses
∑

m po(m|φ) = 1. We can use the
Holevo bound [26] which says that the mutual information
I (m : φ) between the parameter and any measurement is upper
bounded by the Holevo-χ quantity

χ = S

(∫
dφ ρφ p(φ)

)
−
∫

dφ S(ρφ )p(φ), (7)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy,
ρφ is the density matrix of the channel output state, and
the integral is over a period when φ is periodic, or over

the real line when φ has infinite range. Applying Holevo’s
bound to the new state we get Ii(m, φ : θ ) � S(ρ), where
ρ = 1

L

∫ |�θ 〉〈�θ |dθ , and the second term in Holevo’s bound
vanishes since pure states |�θ 〉〈�θ | have zero von Neumann
entropy.

Since |�θ 〉 is L periodic in θ , we can expand it in a Fourier
series |�θ 〉 = ∑

k |�̂k〉 ei 2πk
L θ , where

|�̂k〉 = 1

L

∫
q(φ + θ )e−i 2πk

L θ |ψφ+θ 〉 |φ〉 dθdφ

= 1

L

∫
q(θ ′)e−i 2πk

L (θ ′−φ) |ψθ ′ 〉 |φ〉 dθ ′dφ

= |ψ̂k〉
(

1

L

∫
ei 2πk

L φ |φ〉 dφ

)
. (8)

Moreover,

〈�̂ j | �̂ j〉�̂k = 1

L2
〈ψ̂ j | ψ̂ j〉ψ̂k

∫
dφ′dφei 2π

L (kφ− jφ′ )〈φ′ | φ′〉φ

= 1

L2
〈ψ̂ j | ψ̂ j〉ψ̂k

∫
dφei 2π

L (k− j)φ

= f̂kδ jk, (9)

where δ jk is the Kronecker delta.
Finally, from

ρ = 1

L

∫
dθ

∞∑
j,k=−∞

ei 2π
L ( j−k)θ |�̂ j〉〈�̂k|

=
∞∑

k=−∞
|�̂k〉〈�̂k|, (10)

we know that ρ has eigenvalues { f̂k} with eigenstates {|�̂k〉},
thus

S(ρ) = −
∞∑

k=−∞
f̂k log2 f̂k . (11)

Combining Eqs. (6) and (11), we have the desired
result. �

Corollary 1. Theorem 1 applied to the standard problem
of the phase estimation with uniform prior and covariant
measurement, results in the well-known entropic uncertainty
relations [27,28]

H (φ̃ − φ) + H (|ck|2) � 0, (12)

where H (φ̃ − φ) and H (|ck|2) are the entropies of phase and
number measurements (and where the parametrization chosen
here removes the constant sometimes found on the RHS).

Indeed, consider the family of states

|ψφ〉 =
∞∑

k=0

ckeik2πφ |k〉 , (13)

where φ ∈ [0, 1) and the (uniform) prior is p(φ) = 1 (see
Sec. V for the broader context). Then ∀k |ψ̂k〉 = |k〉, so the
bound gives

I (m : φ) � −
∞∑

k=0

|ck|2 log2 |ck|2. (14)
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Next, note that the mutual information may be written as
I (m : φ) = H (φ) − H (φ|m), where H (φ|m) is the conditional
entropy. Finally, for the covariant measurement, the POVM is
given by

{Mφ̃}φ̃ = {|φ̃〉 〈φ̃|}φ̃ , with |φ̃〉 =
∞∑

k=0

eik2πφ̃ |k〉 (15)

(where the measurement outcome is labeled directly but the
value of corresponding estimator φ̃ instead of m), we have
H (φ|m) = H (φ|φ̃) = H (φ̃ − φ). As here H (φ) = 0, we have
I (φ̃ : φ) = −H (φ̃ − φ), so the bound for MI is exactly equiv-
alent to Eq. (12).

The results in this section can be extended to the nonperi-
odic case, see Appendix A.

III. FISHER BOUND

We now use the Fourier bound above to derive the Fisher
one. Since the Fisher bound is independent of the quantum
encoding, it is valid in a more general setting as follows.

Theorem 2. “Fisher bound.” Consider a general parameter
estimation problem that estimates a parameter φ (with prior
density p) from a conditional probability density p(m|φ). If φ

has period L, then

I (m : φ) �1

2
log2

(
1 + eL2

8π

∫ [
ṗ(φ)2

p(φ)
+ p(φ)F (φ)

]
dφ

)

− log2 L + H (φ), (16)

where F (φ) = ∑
m ṗ(m|φ)2/p(m|φ) is the Fisher informa-

tion, with ṗ(m|φ) = ∂ p(m|φ)/∂φ.
The proof relies on Theorem 1 and as a consequence, the

Fisher bound is not tight either.
Proof. Consider the quantum parameter estimation prob-

lem φ �→ ∑
m

√
p(m|φ) |m〉, with the prior density p(φ). If we

measure on the computational basis, we obtain the same prob-
ability distribution as the original problem, thus they share
the same mutual information, and any bound on the mutual
information of the quantum estimation problems also works
on the original problem. Using the notations from Theorem 1,
in which we choose q(φ) = √

p(φ),

f̂k = 1

L

∥∥∥∥∥∑
m

∫ √
p(φ)p(m|φ)e−i 2πk

L φ |m〉 dφ

∥∥∥∥∥
2

= 1

L

∑
m

∣∣∣∣
∫ √

p(φ)p(m|φ)e−i 2πk
L φdφ

∣∣∣∣2, (17)

where ‖ |ψ〉 ‖2 := 〈ψ | ψ〉.
Define σ 2 := ∑

k2 f̂k , then

σ 2 = 1

L

∑
m,k

∣∣∣∣
∫ √

p(φ)p(m|φ)ke−i 2πk
L φdφ

∣∣∣∣2

= L3

4π2

∑
m,k

∣∣∣∣ 1L
∫ [

d

dφ

√
p(φ)p(m|φ)

]
e−i 2πk

L φdφ

∣∣∣∣2

= L2

4π2

∑
m

∫ ∣∣∣∣ d

dφ

√
p(φ)p(m|φ)

∣∣∣∣2dφ

FIG. 1. Numerical results (solid line) to prove the upper bound
(dash line) in Eq. (20).

= L2

16π2

∫ ∑
m

[
ṗ(φ)2

p(φ)
p(m|φ) + 2 ṗ(φ) ṗ(m|φ)

+p(φ)
ṗ(m|φ)2

p(m|φ)

]
dφ

= L2

16π2

∫ [
ṗ(φ)2

p(φ)
+ p(φ)F (φ)

]
dφ, (18)

in which the third equality uses the identity
∑

k |F̂k|2 =
1
L

∫ |F (φ)|2dφ for any period-L function F (φ) and its Fourier

coefficients F̂k = 1
L

∫
F (φ)e−i 2πk

L φdφ, and the last equality
uses

∑
m p(m|φ) = 1 and

∑
m ṗ(m|φ) = 0.

By Lagrange’s multiplier method, the optimal f̂k that
maximizes −∑k f̂k log2 f̂k with constraints

∑
k f̂k = 1 and∑

k k2 f̂k = σ 2 is the Gauss-like sequence

f̂k = 1√
2πc

e− k2

2b2 , (19)

for some b, c > 0. One should determine b and c by the two
constraints. In Fig. 1, we numerically calculate the optimal
−∑k f̂k log2 f̂k using Eq. (19). These numerical results sug-
gest

−
∑

k

f̂k log2 f̂k � 1

2
log2(1 + 2πeσ 2). (20)

although this inequality is not strictly proven analytically.
Combining Eq. (18) and Theorem 1, we obtain Eq. (16). �
To show how closely the bound Eq. (16) can be achieved,

consider the case of a quantum estimation where N circuit
units are used independently on separately prepared probes,
see Eq. (3a). For simplicity, we assume the uniform prior
p(φ) = 1

L and constant Fisher information F in the circuit
unit. The total Fisher information is NF . The bound is there-
fore simplified to

I (m : φ) � 1

2
log2

(
1 + eL2

8π
NF

)
. (21)
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If different φ’s lead to different states in the circuit unit, then
the maximum likelihood estimator is asymptotically efficient,
and we can obtain a lower bound to the mutual information
[29]

I (m : φ) �H (φ) −
∫

dφp(φ)
1

2
log2

2πe

NF

= log2 L − 1

2
log2

2πe

NF = 1

2
log2

L2NF
2πe

. (22)

In the large N limit, the difference between the upper and
lower bounds is approximately log2

e
2 ≈ 0.44 bits.

We now compare Theorem 2 with the Fisher information
based bound given in [25]. On one hand, when L = 1, p(φ) =
1 and F (φ) = F is constant over φ, Theorem 2 gives

I (m : φ) � 1

2
log2

(
1 + e

8π
F
)
� log2

(
1 +

√
e

8π

√
F
)

,

(23)
which is slightly tighter than

I (m : φ) � log2

(
1 + 1

2

√
F
)

, (24)

from [25]. On the other hand, when p(φ) has discontinu-
ities, there are delta function terms appearing in ṗ(φ), which
make the right-hand side of Eq. (16) diverge, while the bound
Eq. (24) can still converge. Namely, the two types of bounds,
Eqs. (16) and (24), complement each other in different situa-
tions.

Note also that, as discussed in [25], Efroimovich’s inequal-
ity [30–32] cannot be applied for L-periodic problem in its
basic form. See [32] for its generalization for log-concave
priors, which requires much more complicated mathematical
formalism.

IV. NOISY PHASE ESTIMATION

Now we analyze the case of phase estimation in the
presence of noise. Obtaining the performance of quantum
metrology in the presence of noise is extremely cumbersome
already for the RMSE [5,6,14–18], but the bounds presented
above allow us to give sophisticated bounds also for the MI.

As an example, we consider the QPE algorithm with M
qubits, shown in Eq. (3b). Although the theorems work only
for pure states, they can be used in the presence of noise
by purifying the output state. Start with the dephasing chan-
nel �φ (ρ) = Uφ ( 1+η

2 ρ + 1+η

2 σzρσz )U †
φ with Uφ = |0〉〈0| +

ei2πφ |1〉〈1|, η the noise parameter. The density matrix before
the measurement is

ρ = ⊗M−1
j=0

1

2

[
1 (ηe−i2πφ )2 j

(ηei2πφ )2 j
1

]
. (25)

It can be purified as

|ψφ〉 = ⊗M−1
j=0

1√
2

[|0〉sys |0〉env + (ηei2πφ )2 j |1〉sys |0〉env

+
√

1 − η2 j+1 |1〉sys |1〉env], (26)

with env a purification space. This is a unitary encoding
|ψφ〉 = eiφH |ψ0〉 for some Hermitian operator H . By Theo-
rem 1, { f̂k} are the Fourier coefficients of the function f (φ) =

FIG. 2. The mutual information upper bound for noisy QPE.

〈ψ0 | ψ0〉ψφ such that f (φ) = ∑
k f̂kei2πkφ , and I (m : φ) �

χ ( f ) := −∑∞
k=−∞ f̂k log2 f̂k . Here,

f (φ) =
M−1∏
j=0

(
1 − η2 j+1

2
+ (ηei2πφ )2 j

2

)
,

⇒χ ( f ) =
M−1∑
j=0

Hbin

(
η2 j+1

2

)
, (27)

where Hbin(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function. In Fig. 2 we show χ as a function of N for
different noise levels η. In the low N and low noise regime,
each new qubit provides approximately one extra bit of mutual
information as expected. For larger N , the gain of extra qubits
tends to zero and χ converges to a constant value in the
asymptotic limit even in the presence of slight noise. This
implies that, in the presence of noise, the QPE should use
smaller quantum Fourier transform (QFT) units, and repeat
the procedure several times, instead of using a single large
QFT circuit. Namely, the circuit in Fig. 3(a), in which the
circuit unit is Fig. 3(b). In this case, the total number of calls
to the phase gate is N = R(2M − 1) where M is the number of
qubits in the circuit unit, and R the number of repetitions. In
the large N limit, Theorem 2 gives

I (m : φ) � 1

2
log2 N + 1

2
log2

eF
8π (2M − 1)

, (28)

(a) (b)

FIG. 3. (a) Repeated circuits. (b) Quantum phase estimation
(QPE), where the inverse quantum Fourier transform is included in
the measurement and is not shown explicitly.
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FIG. 4. Quantum enhancement, namely, the second term in the
RHS of Eq. (28), for the dephasing QPE as a function of the noise,
are shown as the continuous lines. The markers of the same colors
and detached from the lines show that mutual information calculated
by numerical experiments.

where F = (2π )2∑M−1
j=0 4 jη2 j

is its constant quantum Fisher
information. This is an SQL asymptotic scaling, with a con-
stant factor which encodes the quantum enhancement and
which is plotted in Fig. 4. As expected, larger QFT units
perform better in the small-noise region, but also are more
affected in the large-noise region. As the noise level increases,
the optimal strategy for the dephasing changes from the
full-size QPE to the classical separate strategy (M = 1). In
comparison, we numerically calculated the mutual informa-
tion of Eq. (3a) with ten repetitions of the QPE unit and the
final estimation is obtained by Bayesian estimation, shown
as the markers in Fig. 4. The calculation uses Monte Carlo
importance sampling on m in the definition of I (m : φ) since
there is an intractable amount of measurement results in this
setting and it is computationally impossible to calculate it
explicitly. The comparisons between each pair of upper bound
and experimental results show that the bound Eq. (28) can
characterize correctly how the mutual information behaves in
the noisy setting, and the easy-to-compute upper bound can
be a nice indicator on the choice of optimal noisy estimation
scheme, compared to the hard-to-compute mutual informa-
tion.

Qualitatively similar results hold also for the amplitude
damping and erasure noise, see Appendix B.

V. DISCUSSION OF NOISELESS ESTIMATION
BEYOND THE BOUNDS

In this section, we discuss an optimal joint use of all N
gates in the noiseless case with uniform prior. Start with
the case where they are used in parallel, acting on a single
entangled input state, see EN in Fig. 5. Without loss of the
generality, we may restrict to fully symmetric input states.
Then, the output state is fully characterized by the number

FIG. 5. Different possible quantum estimation schemes, using
N elementary gates jointly: starting from an entangled input state
(shaded box) in EN or in an adaptive way in AD (Vi representing
joint unitaries). EN may be seen as a special case of AD.

k of bits in the |1〉 position via

|ψφ〉 =
N∑

k=0

ckeik2πφ |k〉 . (29)

[Compared to Eq. (13), here the maximal value of index index
k is set to be N .] As observed in corollary 1, Theorem 1
applied to this problem results in bounding the MI by the
entropy of the |ck|2 coefficients

I (m : φ) � −
N∑

k=0

|ck|2 log2 |ck|2. (30)

The input state maximizing the bound is the one with uniform
weights 1√

N+1

∑N
n=0 |n〉. For fixed covariant measurement

{Mφ̃}φ̃ = {|φ̃〉 〈φ̃|}φ̃ , with |φ̃〉 =
N∑

k=0

eik2πφ̃ |k〉 , (31)

MI is shown to be equal to −H (φ̃ − φ). The analytical mini-
mization of H (φ̃ − φ) is nontrivial and no general formula is
known for arbitrary N . However, such minimization is sim-
ple to do by numerical means, see Fig. 6. Interestingly, the
optimal state turns out to be significantly different than the
one maximizing H (|ck|2), which follows from the fact that the
entropic uncertainty relation (12) is not tight, in general.

FIG. 6. Posterior distributions p(φ̃ − φ) for the EN protocol with
different input states, the optimal one and the one with uniform
weights (N = 255 here). Inset: Square modulus of the amplitudes
of the above states.
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Now, is the measurement (31) indeed optimal for the max-
imizing MI in the EN scheme? Can these results be overcome
by applying a more advantage adaptive scheme (AD in Fig. 5),
where the gates are used sequentially acting on the state
entangled with ancilla, with arbitrary unitary controls acting
between?

While the measurement Eq. (31) is commonly believed to
be optimal, its optimality has been not proven formally yet.
This measurement is known to be optimal for minimizing
standard Bayesian cost [26], for which it is also proven, that
its performance cannot be overcome by any AD strategy [33].
However, in the case of MI the optimality of single-seed
covariant measurements has been proven only for irreducible
group representations [34,35] or for a single use of the Uφ gate
[36] (more details in Appendix C).

Here we show, that also in the MI case a full optimization
over the whole protocol AD resorts to an optimization over
the input state in the entangled protocol EN, using the mea-
surement of Eq. (31). Indeed, even if we are not able to prove
the general optimality of this measurement for any input state,
we can show that it is optimal, if also the state is optimal.

Theorem 3. Consider the most general estimation protocol
for phase estimation with a uniform prior p(φ) = 1, (AD) of
Fig. 5. Then, the optimal performance is the same as the best
one obtainable for EN using the covariant measurement of
Eq. (31)

max
(AD)

I = max
(EN )

I = max
|ψ〉

I[|ψ〉 , {|φ̃〉 〈φ̃|}φ̃], (32)

where in the RHS I[|ψ〉 , {|φ̃〉 〈φ̃|}φ̃] indicates the MI from the
POVM (31) on the state |ψ〉.

This simplifies the entire optimization of finding the best
strategy to an optimization only over the input state’s N + 1
real coefficients. (The question of whether this measurement
is optimal also for a broader class of input states remains open.
Numerics support this conjecture, but we have no general
analytical proof.)

Proof. The proof is inspired by reasoning from [37], ap-
plied to Bayesian estimation there. First, from the convexity
of MI, the optimal input state is a pure state and the optimal
measurement is the rank-one measurement (see Appendix D
for a detailed justification).

Next, note that the output state for any adaptive strategy
may be written as

|ψφ〉 =
∏N

i=1
Vi(
∑

bi∈{0,1} eibi2πφ |bi〉 〈bi| ⊗ 1)V0 |ψ〉

=
∑

{b1,b2,...bN }

∏N

i=1
Vi(e

ibi2πφ |bi〉 〈bi| ⊗ 1)V0 |ψ〉

=
N∑

k=0

eik2πφ

⎡
⎣ ∑

{bi}:
∑

bi=k

N∏
i=1

Vi(|bi〉 〈bi| ⊗ 1)V0 |ψ〉
⎤
⎦

︸ ︷︷ ︸
=:ck |gk〉

,

(33)

where 1 acts on all ancillas, the |gk〉 are normalized, but
not necessarily orthogonal (namely,

∫ +∞
−∞ dφ e−ip2πφ |ψφ〉 is

nonzero only for p ∈ [0, 1, . . . , N]), and |ψ〉 is the global
initial state.

Then, since I (x, φ) = H (φ) − H (φ|x), for fixed prior the
maximization of MI is equivalent to minimization of the con-
ditional entropy H (φ|x), which may be seen as the average
of entropies of the posterior distribution. Therefore, it may
be bounded from below by the minimal possible entropy of a
posterior distribution obtained for a single element, rank-one
measurement |χ〉 〈χ |:

H (x|φ) � min
|ψ〉,{Vi}i,|χ〉

−
∫

dφ p(φ|χ )log2 p(φ|χ ), (34)

where p(φ|χ ) = Nχ | 〈χ |ψφ〉 |2, with Nχ the normaliza-
tion. This allows us to write p(φ|χ ) = Nχ | 〈χ |ψφ〉 |2 =
|∑N

k=0 eik2πφdn|2, with dk := √
Nχcn 〈χ |gn〉. Then the RHS

of Eq. (34) may be further bounded by

� min
dn

−
∫

dφ|
∑N

k=0
eik2πφdk|2log2|

∑N

k=0
eik2πφdk|2,

(35)
with

∑N
k=0 |dk|2 = 1. Moreover, for the optimal performance,

all dk may be chosen real. Finally, note that, after finding the
optimal dk , the inequality (34) may be saturated by taking
an entangled input state |ψ〉 = ∑

k dk |n〉 and the covariant
measurement (31), without the need for any adaptivity. �

VI. CONCLUSION

In conclusion, we have given two types of upper bounds
to the mutual information: (i) the Fourier bounds given by
Eq. (1) for periodic parameters (phase); and (ii) the Fisher
bound of Eq. (16), which is written only in terms of the Fisher
information of the parameter, rather than on the details of
the estimation, so it applies even beyond quantum estimation,
where it has been derived above. As shown in Eq. (22), the
bound in terms of Fisher information for periodic parame-
ters are asymptotically a good approximation to the mutual
information (namely, it is almost attainable) for the maximum
likelihood estimator. These bounds are useful to characterize
the noisy QPE algorithm.
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APPENDIX A: NONPERIODIC ESTIMATION

Theorem 1 was derived for periodic parameters (phase
estimation). It can be extended to cases with unbounded range
but finite support of the prior.

Theorem 4. Given a parameterized quantum state φ �→
|ψφ〉 with prior density p(φ) having finite support, then the
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mutual information between the measurement result m and the
parameter φ satisfies

I (m : φ) � −
∫

f̂ (k) log2 f̂ (k)dk + H (φ), (A1)

where f̂ (k) = 〈ψ̂ (k) | ψ̂ (k)〉, with |ψ̂ (k)〉 :=∫
q(φ)e−i2πkφ |ψφ〉 dφ.
Proof. Pick large-enough L such that p vanishes outside an

interval of length L. We can treat p as the periodic case, and
obtain from Theorem 1,

I (m : φ) � − 1

L

∑
k∈ 1

L Z

f̂ (k) log2 f̂ (k) + H (φ), (A2)

in which we use
∑

k∈ 1
L Z

1
L f̂ (k) = 1. Taking L → ∞, we get

the desired result. �
A similar argument also holds for the Fisher bound

[Eq. (16)], but one obtains a bound that, in this case, is strictly
looser than Efroimovich’s inequality [30–32].

APPENDIX B: QUANTUM PHASE ESTIMATION WITH
OTHER NOISY CHANNELS

For the amplitude damping noise

�φ (ρ) :=
[
ρ00 + (1 − η)ρ11

√
ηe−i2πφρ01√

ηei2πφρ10 ηρ11

]
. (B1)

The density matrix before the measurement is

ρ = ⊗M−1
j=0

1

2

[
2 − η2 j

(
√

ηe−i2πφ )2 j

(
√

ηei2πφ )2 j
η2 j

]
. (B2)

We use the purification

|ψφ〉 = ⊗M−1
j=0

1√
2

⎡
⎣√2 − η2 j |0〉sys |0〉env

+ (
√

ηei2πφ )2 j√
2 − η2 j

|1〉sys |0〉env

+
√

η2 j 1 − η2 j

2 − η2 j |0〉sys |1〉env

⎤
⎦. (B3)

Then,

f (φ) =
M−1∏
j=0

(
1 − η2 j

4 − 2η2 j + (ηei2πφ )2 j

4 − 2η2 j

)
, (B4)

and

χ ( f ) =
M−1∑
j=0

Hbin

(
η2 j

4 − 2η2 j

)
. (B5)

For the erasure noise

�φ (ρ) :=
⎡
⎣ ηρ00 ηρ01e−i2πφ 0

ηρ10ei2πφ ηρ11 0
0 0 1 − η

⎤
⎦, (B6)

where a third dimension is added indicating qubit loss.

The density matrix before the measurement is

ρ = ⊗M−1
j=0

1

2

⎡
⎢⎣ η2 j

(ηe−i2πφ )2 j
0

(ηe−i2πφ )2 j
η2 j

0
0 0 2(1 − η2 j

)

⎤
⎥⎦.

(B7)
We use the purification

|ψφ〉 = ⊗M−1
j=0

[
η2 j−1 |0〉sys + ei2 j+1πφ |1〉sys√

2
|0〉env

+
√

1 − η2 j |2〉sys |1〉env

]
. (B8)

Then,

f (φ) =
M−1∏
j=0

(
1 − η2 j

2
+ (ηei2πφ )2 j

2

)
, (B9)

and

χ ( f ) =
M−1∑
j=0

Hbin

(
η2 j

2

)
. (B10)

APPENDIX C: ABOUT THE NONAPPLICABILITY OF
DAVIES THEOREM

For the general problem of maximizing the mutual in-
formation in a group estimation with a covariant prior, the
optimal POVM is always guaranteed to be the one of the form
[34,35]

{Mi,g}i,g =
{

1

|G|U
†
g AiUg

}
i,g

, (C1)

where Ai (called seed) is a one-rank operator. In [34] the
minimal number of seeds that guaranteed the optimal per-
formance was derived, depending on the group representation
properties. Specifically, the sufficiency of using a single seed
Ai is guaranteed only in the case where the group represen-
tation is irreducible (Davies theorem [35]), which is not the
case discussed in this paper. Indeed, to see the essence of the
problem, consider the question of whether we can find a better
measurement than

{U †
φ̃

|χ〉 〈χ |Uφ̃}φ̃ , with |χ〉 =
n∑

n=0

|n〉 , (C2)

for which p(φ̃|φ) = Tr(ρφ−φ̃ |χ〉 〈χ |). Consider the case in
which one has two seeds:

|χ1〉 =
N∑

n=0

an |n〉 , |χ2〉 =
N∑

n=0

bn |n〉 , (C3)

where ∀n|an|2 + |bn|2 = 1. Then the set of operators

{U †
φ̃

|χi〉 〈χi|Uφ̃}i,φ̃ (C4)

is a proper POVM, with probability distribution given as
q(i, φ̃|φ) = Tr(ρφ−φ̃ |χi〉 〈χi|). Note, that the label i gives no
information on φ, as λi = ∫

dφ̃ q(i, φ̃|φ) is φ independent.
We may even construct the realization of the POVM where

i is drawn randomly before measuring φ̃. To do that, we need
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to consider an ancillary system, such that the output state is
given by

|ψφ〉 =
∑

ei2πnφcn |n〉 ⊗ |1〉 . (C5)

Then we apply the unitary operation

U =
N∑

n=0

|n〉 〈n|

⊗ (a∗
n |1〉 〈1| + b∗

n |2〉 〈1| − bn |2〉 〈1| + an |2〉 〈2|),
(C6)

getting as a result

|ψ ′
φ〉 =

∑
ei2πnφa∗

ncn |n〉 ⊗ |1〉 +
∑

ei2πnφb∗
ncn |n〉 ⊗ |2〉 .

(C7)

Next we perform a projective measurement on the ancillary
system on a basis {|1〉 , |2〉}. Then, the probabilities are given
by λ1 = ∑ |a∗

ncn|2, λ2 = ∑ |b∗
ncn|2, which are clearly inde-

pendent on φ. Finally, after performing the POVM Eq. (C2)
on the remaining post-measurement state, we have globally
realized Eq. (C4). Define

q(i, φ̃, φ) = λiq(φ̃, φ|i). (C8)

Even if for each i, {U †
φ̃

|χi〉 〈χi|Uφ̃}φ̃ by itself does not form

a POVM, the probabilities q(φ̃, φ|1), q(φ̃, φ|2) are well de-
fined, and they should be understood as the probabilities
obtained in the postselection process.

To compact the notation, from now on by I[p(φ̃, φ)] we
indicate the mutual information between the variables φ̃, φ,
for the joint probability p(φ̃, φ). From the convexity of MI,

I[λ1q(φ̃, φ|1) + λ2q(φ̃, φ|2)]

� λ1I[q(φ̃, φ|1)] + λ2I[q(φ̃, φ|2)], (C9)

where the left-hand side corresponds to the POVM
{U †

φ̃
(|χ1〉 〈χ1| + |χ2〉 〈χ2|)Uφ̃}φ̃ , i.e., the one where the ex-

perimentalist has lost knowledge about i, while the RHS
corresponds to {U †

φ̃
|χi〉 〈χi|Uφ̃}i,φ̃ .

One can easily prove that, without knowledge of i, it would
indeed perform worse than Eq. (C2):

∀|χ1〉,|χ2〉I[λ1q(φ̃, φ|1) + λ2q(φ̃, φ|2)] � I[p(φ̃, φ)], (C10)

which is in favor of Eq. (C2) However, it is easy to find an
example for which

∃|χ1〉I[p(φ̃, φ)] � I[q(φ̃, φ|1)], (C11)

which is in favor of Eq. (C4).
However, the choice of |χ1〉 imposes conditions on the |χ2〉.

As a result, it is not clear if there exists a pair |χ1〉, |χ2〉
(satisfying ∀n|an|2 + |bn|2 = 1) for which

(∃|χ1〉,|χ2〉?)I (p(φ̃, φ)) < λ1I (q(φ̃, φ|1)) + λ2I (q(φ̃, φ|2)).
(C12)

Numerical calculations suggest that there is no such a pair, and
Eq. (C2) is indeed optimal. So far, for all examples checked
numerically, the inequality Eq. (C12) holds in the opposite
way.

Once again, an analogous problem does not appear in the
case of Bayesian cost, as then the analog of Eq. (C9) is an
equality, so Eq. (C10) would imply the falsity of Eq. (C12).

Regarding the Lemma for real representation

In [22] the authors proposed using Lemma 2 from [36] to
extend Davies theorem [35] to the problem of phase estima-
tion (which is an reducible representation). However, while it
works for the single gate case [36], it cannot be easily applied
to a larger number of gates, as we show below.

Lemma 2 from [36] is as follows. For input state |ψ〉
and group representation Ug, assume that there exists a basis
H = spanC{|vi〉}i, such that both |ψ〉 and Ug has only real
coefficients in this basis. Then if Ug acting on spanR{|vi〉}i

is a real irreducible representation, one may apply Davies’
theorem.

For further discussion, it is worth noticing that our problem
of measuring φ for state |ψφ〉 = ∑N

k=0 ckeik2πφ |k〉 may be
seen as measuring the rotation of the spin-N/2 particle, so
from now we will use the notation connected with angular
momentum.

To investigate the consequences of Lemma 2, we choose
the basis in which the evolution is generated by Jy (which is
purely imagined), so ei2πφJy is purely real.

For spin-1/2, if we start from the real state |ψ〉 =
cos(θ ) |− 1

2 〉 + sin(θ ) |+ 1
2 〉, it evolves as |ψφ〉 = cos(θ +

πφ) |− 1
2 〉 + sin(θ + πφ) |+ 1

2 〉, so U(1) indeed acts irre-
ducible on spanR{|−1/2〉 , |+1/2〉}, as noticed in [36].
However, it stops working for higher spins.

For example, for spin-1, the Jy matrix has the following
form:

Jy = 1√
2

⎡
⎣0 −i 0

i 0 −i
0 i 0

⎤
⎦, (C13)

with eigenvectors

|+1〉y = 1

2

⎡
⎣ −1

−i
√

2
1

⎤
⎦, |0〉y = 1√

2

⎡
⎣1

0
1

⎤
⎦,

|−1〉y = 1

2

⎡
⎣−1

i
√

2
1

⎤
⎦. (C14)

Therefore, we may distinguish two real subspaces, on which
ei2πφJy acts irreducibly

V1 = spanR{|0〉y} = spanR

{
1√
2

(|−1〉z + |+1〉z )

}
,

V2 = spanR

{
1√
2

(|−1〉y + |+1〉y),
i√
2

(|−1〉y − |+1〉y)

}

= spanR

{
1√
2

(|−1〉z − |+1〉z ), |0〉z

}
, (C15)

while the whole representation is clearly reducible. Specif-
ically, if, following [22], we consider the product state of
two spin-1/2 particles, oriented perpendicular to the axis of
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rotation

|φ〉⊗2 =
[

1√
2

(
sin(πφ)

∣∣∣∣+1

2

〉
z

+ cos(πφ)

∣∣∣∣−1

2

〉
z

)]⊗2

= sin2(πφ) |+1〉z +
√

2 sin(πφ) cos(πφ) |0〉z

+ cos2(πφ) |−1〉z , (C16)

we see, that it belongs solely neither to V1 nor V2, so Lemma
2 from [36] cannot be applied here.

APPENDIX D: OPTIMALITY OF RANK-ONE
MEASUREMENT AND PURE INPUT STATE

First, we argue that, for maximizing MI, we may al-
ways restrict to rank-one measurements. Indeed, assume
by contradiction that some of the {Mk}k is not rank-one.
Then for each Mk , we consider its eigendecomposition Mk =∑

i Mi
k |mi

k〉 〈mi
k| and construct a rank-one POVM of the form

{Mi
k |mi

k〉 〈mi
k|}i,k . It is clear, that the new POVM has at least

the same mutual information as the original one, as any
statistic obtained from {Mk}k may be also obtained from
{Mi

k |mi
k〉 〈mi

k|}i,k by neglecting information related to the in-
dex i. Note that, in general, {Mi

k |mi
k〉 〈mi

k|}i,k does not need to
be a projective measurement (as Mi

k may be smaller than one),
but this not affects the following reasoning.

Next, the fact that for any fixed POVM {M}k the minimum
is obtained for pure states comes directly from the convexity
of Shannon entropy

H[λp1 + (1 − λ)p2] � λH (p1) + (1 − λ)H (p2)

� min{H (p1), H (p2)} (D1)

and the linearity of the Born rule, i.e., for ρ = ∑
i xi |ψi〉 〈ψi|:

p(x|φ) = Tr(ρφMx ) =
∑

i

xi Tr(|ψi〉 〈ψi|φ Mx )︸ ︷︷ ︸
pi (x|φ)

. (D2)
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