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The measurement and characterization of noise is a flourishing area of research in mesoscopic physics. In
this work, we propose interaction-free measurements as a noise-detection technique, exploring two conceptually
different schemes: the coherent and the projective realizations. These detectors consist of a qutrit whose second
transition is resonantly coupled to an oscillatory field that may have noise in amplitude or phase. For comparison,
we consider a more standard detector previously discussed in this context: a qubit coupled in a similar way
to the noise source. We find that the qutrit scheme offers clear advantages, allowing precise detection and
characterization of the noise, while the qubit does not. Finally, we study the signature of noise correlations
in the detector’s signal.
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I. INTRODUCTION

The main obstacle in realizing large-scale quantum com-
puters is noise, which hinders the realization of high-fidelity
gates and readout [1–3]. This problem is often addressed with
quantum error correction, which requires precise knowledge
of the type of noise acting on the system, but may also be ap-
proached by passive methods such as dynamical decoupling,
decoherence-free subspaces, and minimal noise subsystems
[4–6]. Phase noise is also an important factor for another
quantum technology: it affects the quantum bit error rate in
cryptography protocols based on weak coherent states, for
example, twin-field quantum key distribution [7] that can, in
principle, also be implemented in the microwave range. Thus,
diagnosing various sources of noise and the errors they pro-
duce is of utmost importance for the success of fault-tolerant
quantum computing [8]. Noise is also a significant source of
information for the dynamics of electrons at the nanoscale, as
summarized by the famous dictum of Landauer, “noise is the
signal” [9].

Since qubits are highly sensitive to perturbations, a natural
idea would be to use them as detectors of noise. Indeed,
in first-order perturbation theory, the excitation and decay
probabilities are proportional to the noise spectral density
at the negative and positive qubit frequencies, respectively
[10]. Alternatively, one can exploit the sensitivity to dephas-
ing for magnetometry, where Ramsey interferometry with
superconducting qubits has been used as a sensitive tool
for measuring magnetic fields [11–13]. Several techniques
have been proposed, such as using dynamical decoupling
and its filtering properties to reconstruct the power spectral
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density [14,15], employing the qubit as a vector network
analyzer for characterizing the control lines [16], and iden-
tifying long-range correlations to reconstruct experimentally
observed error rates [17]. Further proposals include methods
for characterizing low-frequency noise, where correlations
can be obtained through repeated Ramsey measurements [18],
and using spectator qubits and machine learning to monitor
noise in quantum processors [19]. In exploring the dynamics
of electronic transport, significant effort has been dedicated
to developing detectors sensitive to full counting statistics.
Qubit-based detectors can be used to measure the characteris-
tic function by performing Ramsey measurements at different
values of the coupling [20] or to extract the third cumulant
from changes in their effective temperature [21].

Here, we focus on the detection of oscillator noise, a
paradigmatic type of noise which becomes relevant especially
in quantum control, when attempting to resonantly drive quan-
tum systems which in general may interfere with the intended
operations and lead to errors. We exploit a recent [22,23]
coherent interaction-free measurement (cIFM) protocol for
the detection of resonant noise in microwave circuits and
investigate its efficacy at detecting both amplitude and phase
noise. This scheme is based on a three-level quantum system
(qutrit) whose basis states are labeled as |0〉, |1〉, |2〉, where
the allowed transition between levels |0〉 − |1〉 and levels
|1〉 − |2〉 corresponds to transition frequencies ν01 and ν12,
respectively. As per the cIFM protocol, there is a train of
identical beam-splitter unitaries targeting the |0〉 − |1〉 transi-
tion, with its consecutive blocks being separated by a fixed
duration. In between each pair of beam-splitter unitaries,
|1〉 − |2〉 microwave pulses called B pulses may be sand-
wiched; whose presence is ascertained in an interaction-free
manner [22,23]. There are three possible outcomes of the
protocol which leave the three-level system in one of the basis
states (|0〉, |1〉, |2〉) with respective occupation probabilities:
p0, p1, and p2. For a qutrit initialized in its ground state |0〉,
and undergoing the cIFM protocol, one can have a successful
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interaction-free detection of a B pulse with probability p0, a
nondesirable non-interaction-free detection with a probabil-
ity p2, and inconclusive results with probability p1. These
probabilities have a direct correspondence with the popula-
tions of the respective energy levels of the qutrit. A different
interaction-free concept, which we call projective interaction-
free measurement (pIFM), interjects projective measurements
on state |2〉 after each interaction with the microwave B pulses
[23]. Projective interaction-free measurements have been per-
formed in various quantum optics experiments that followed
the original theoretical proposal [24–27]. The projective mea-
surement needed can also be implemented in circuit quantum
electrodynamics, for example, by employing the switching of
a Josephson junction when one of the excited states in the
washboard potential is close to being delocalized [28–30].
It has also been proposed to use the Zeeman states of a
trapped ion in conjunction with polarized photon states as a
means of realizing projective interaction-free measurements
[31]. For nonrandom pulses, the coherent protocol turns out to
be more efficient. In fact, it has been shown that the coherent
protocol reaches the Heisenberg limit when the Fisher infor-
mation is evaluated at small strengths of the B pulses, whereas
the projective protocol only reaches the standard quantum
limit [23].

We study noise detection using the cIFM and pIFM pro-
tocols in a systematic manner, by considering a drive acting
resonantly on the |1〉 − |2〉 transition. Noise can be present
either in the amplitude or in the phase of the drive. If the cor-
relation time of the noise is much larger than the total duration
T of the sequence plus the measurement time, the problem of
characterizing the noise is trivial since each nearly constant
value of the drive can be detected with high efficiency. The
interesting situation that we consider in this work, is when the
correlation time is much larger than τB and of the same order
or smaller than T . This allows us to sample the noise in small
τB intervals where it is nearly constant. This arrangement
requires, ideally, that N is very large, while in real experiments
N is limited by decoherence.

To understand the advantage of interaction-free measure-
ments, we consider for comparison a paradigmatic detector
based on absorption, consisting of a single qubit with transi-
tion |g〉 − |e〉 at the frequency ωge, which interacts resonantly
with the noise. The simplest detection scheme is to allow a
qubit to evolve under this noise and read the qubit’s state after
some time. If the noise has reasonably strong coupling with
the detector qubit, then the state of the qubit will be influenced
in the presence of noise. Therefore, a qubit initialized in its
ground state |g〉 exhibits nonzero probability to be found in
the excited state |e〉. Consequently, one can use the excited
state population pe as a marker to ascertain the presence
of noise. This mechanism might seem simple and useful at
first, but this is not so reliable in practice. The detector qubit
evolves randomly under the influence of this noise leading to
arbitrarily varying outcomes that average to zero. Moreover,
if the noise sums arbitrarily close to zero in a given time, the
qubit detector will not be able to detect the noise.

The paper is organized as follows. In Sec. II, we in-
troduce the three detector models: the qubit and the two
interaction-free protocols utilizing the qutrit. Our main results
are presented in Sec. III, where we consider (white) noise

with a small correlation time relative to the total duration
T , yielding results consistent with the standard decoherence
approach. Section IV discusses the case of binary noise de-
scribed by a Poisson probability distribution with a correlation
time comparable to T . In Sec. V, we examine the signatures
of autocorrelations in the detector output, again with a corre-
lation time comparable to T . Then, in Sec. VI, we present two
experimental platforms (the flux qutrit and Rydberg atoms)
where our protocols can be readily implemented. We conclude
in Sec. VII.

II. DETECTOR MODELS

In the following subsections, we describe systematic and
efficient techniques to detect resonant noise, exploiting qutrit-
based protocols. Further, we compare the efficacies of these
qubit-based and qutrit-based models to detect noise, high-
lighting the difference between absorptive and interaction-free
measurements. In both cases we start with a generic oscil-
latory noisy source at a frequency ω0, which is resonantly
coupled into the corresponding transition with a generic Rabi
coupling. The phase χ (t ) is in general noisy, and we can also
separate a noisy amplitude component ζ (t ) in the Rabi cou-
pling. An overview of standard notations and results related
to amplitude and phase noise is presented in Appendix A.
As we shall see, successful detection is established when the
population pe on the excited state |e〉 for the qubit or the
population p0 of the ground state |0〉 for the qutrit is nearly
1. Finding the detector in these respective states is, therefore,
highly indicative of the presence of noise. We will refer to
these probabilities generically as marker populations. The oc-
cupation probabilities on either of these states can be obtained
by partial tomography, depending on the specific experimental
platform (see, e.g., Sec. VI for some specific examples).

A. Qubit-based detector

Consider a qubit with the computational basis denoted by
ground and excited states |g〉, |e〉, see Fig. 1(a). The Hamilto-
nian under the drive provided by the noisy oscillator is

Hge = h̄ωge|e〉〈e| + h̄�ge(t ) cos(ω0t + χ (t ))[|e〉〈g| + |g〉〈e|],
(1)

where �ge(t ) = �ge + ζ (t ), and ζ (t ) is the amplitude noise.
By introducing a unitary Uge = |g〉〈g| + eiωget |e〉〈e| we can

transform this Hamiltonian into a frame rotating at the qubit
frequency, Hge → UgeHgeU †

ge + ih̄(dUge/dt )U †
ge, obtaining in

the rotating wave approximation and at resonance (ωge = ω0),

Hge(t ) = h̄�ge(t )

2
[e−iχ (t )|e〉〈g| + eiχ (t )|g〉〈e|] (2)

= h̄�ge(t ) cos χ (t )

2
σ x

ge − h̄�ge(t ) sin χ (t )

2
σ y

ge (3)

= h̄�ge(t )

2
n̂χ (t ) · σge, (4)

where σ x
ge = |g〉〈e| + |e〉〈g| and σ

y
ge = −i|g〉〈e| + i|e〉〈g|,

σge = (σ x
ge, σ

y
ge), and n̂χ (t ) = [cos χ (t ),− sin χ (t )] is a rota-

tion axis in the xOy plane. In general, the Hamiltonian above
does not commute with itself at different times. To deal with

032404-2



COHERENT INTERACTION-FREE DETECTION OF NOISE PHYSICAL REVIEW A 110, 032404 (2024)

(b)

(a)

FIG. 1. The three noise detection schemes studied in this work:
(a) qubit, (b) cIFM, and (c) pIFM. The qubit detector is an aborptive
detector, whereas cIFM and pIFM detectors utilize interaction-free
measurements on a qutrit by employing a sequence of Ramsey
pulses on the |0〉 − |1〉 transition. Noise is coupled into the |g〉 − |e〉
transition in the case of the qubit detector and into the |1〉 − |2〉
transition for the qutrit. In the case of the pIFM, the unitary evolution
is interrupted by a detector that is triggered if the state of the qutrit
is |2〉 and does not produce a detection event otherwise. Finally, at
time T , a partial tomography (population detection) is performed at
the end of the sequence.

this issue, we divide the time into N intervals j of duration τB,
during which χ (t ) is approximately constant. In this case, the
phase ϕ of the unitary transformation is the same as the noise
phase χ (t ). During these intervals, the unitary transformation
produced by the pulses is

Bge(θ j, ϕ j ) = e−iθ j n̂ j ·σge/2 = Ige cos
θ j

2
− i(n̂ j · σge) sin

θ j

2
,

(5)

where θ j = ∫ t j+τB

t j
�ge(t )dt = �geτB + ∫ t j+τB

t j
ζ (t )dt is the ar-

bitrary angle corresponding to the noisy drive [32], n̂ j =
(cos ϕ j,− sin ϕ j ) is the axis of rotation, and Ige is the unit
2 × 2 matrix. Here, t j and t j + τB are the initial and final times
of the intervals.

In a more general situation the noise phase χ (t ) varies sig-
nificantly; in this case the unitary transformation of duration
τB, effective angle θ j , and an overall axis of rotation ϕ j can be
written as

Bge(θ j, ϕ j ) = e−iθ j n̂ j ·σge/2 =
P∏

p=1

e−iδθpn̂χp ·σge/2, (6)

where δθp = �ge(t )δt is the effective angle of rotation
along the axis n̂χp (t ) = [cos χp(t ),− sin χp(t )] during the pth

transient of duration δt . Here, δt is the infinitesimal time
interval during which the noise amplitude ζ (t ) and the noise
phase χ (t ) are approximately constant, which in the worst
case is the inverse of the noise sampling rate. The number
of noise samples in duration τB is denoted by P , which is
approximately equal to the ratio τB/(δt ).

B. Qutrit-based detectors

Our models to detect noise using a qutrit with computa-
tional basis states (|0〉, |1〉, |2〉) are based on the cIFM and
pIFM protocols, which aim to efficiently detect noise resonant
with the |1〉 − |2〉 transition. A crucial component of these
protocols is the implementation of additional beam-splitter
pulses of duration τbs, which are realized by resonantly cou-
pling a control field into the |0〉 − |1〉 transition, as shown in
Figs. 1(b) and 1(c). The Hamiltonian under these drives is

H = h̄ω01|1〉〈1| + h̄(ω01 + ω12)|2〉〈2|
+ h̄�01(t ) cos(ω01t )[|1〉〈0| + |0〉〈1|]
+ h̄�12(t ) cos(ω0t + χ (t ))[|2〉〈1| + |1〉〈2|], (7)

where �12(t ) = �12 + ζ (t ) consists of ζ (t ), the noisy part in
the amplitude of the field coupled to the |1〉 − |2〉 transition.
This amplitude noise is shown as the red-colored arbitrarily
varying signal in each of the protocols illustrated in Fig. 1.
The phase noise χ (t ) is also depicted as a red signal in the
schematic of each protocol.

With the unitary U = |0〉〈0| + eiω01t |1〉〈1| +
ei(ω01+ω12 )t |2〉〈2| we can transform this Hamiltonian as
H → UHU † + ih̄ dU

dt U † and apply the rotating wave
approximation under the resonance condition ω0 = ω12

to obtain

H (t ) = ih̄�01(t )

2
[|1〉〈0| − |0〉〈1|]

+ h̄�12(t )

2
[e−iχ (t )|2〉〈1| + eiχ (t )|1〉〈2|]. (8)

The cIFM and pIFM protocols employ a series of beam-
splitter pulses of duration τbs on the |0〉 − |1〉 transition,
intercalated with detection times τB onto which the noise
is sensed. We denote Ikl = |k〉〈k| + |l〉〈l|, σ

y
kl = −i|k〉〈l| +

i|l〉〈k|, σ x
kl = |k〉〈l| + |l〉〈k|, with k, l ∈ {0, 1, 2} and k < l

that are described by the unitary

S(φN ) = e−iφN σ
y
01/2 (9)

= I01 cos
φN

2
− iσ y

01 sin
φN

2
+ |2〉〈2|. (10)

Here, the beam-splitter strengths φN are chosen such
that φN = π/(N + 1) by appropriately choosing the Rabi
strengths φN = ∫

�01(t )dt corresponding to each pulse.
We use similar notations as for the qubit detector n̂ j =
(cos ϕ j,− sin ϕ j ), when χ (t ) is approximately constant for
the duration τB, i.e., χ (t ) = ϕ(t ), and σ12 = (σ x

12, σ
y
12). Ex-

plicitly, the unitary operation B(θ j, ϕ j ) is given by

B(θ j, ϕ j ) = e−iθ j n̂ j ·σ12/2 (11)

= |0〉〈0| + I12 cos
θ j

2
− i(n̂ j · σ12) sin

θ j

2
, (12)
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where the definition of θ j used in the qubit case applies. If
χ (t ) is not constant, the effective unitary transformation over
the duration τB takes a form similar to Eq. (6),

B(θ j, ϕ j ) =
P∏

p=1

e−iδθpn̂χp ·σ12/2. (13)

1. Coherent IFM-based protocol

The cIFM protocol involves using a train of beam-splitter
unitaries S(φN ) with a duration τbs, separated from each other
by an interval τB, as shown in Fig. 1(b). These are applied
resonantly to the first transition, while the noise couples into
the second transition. We consider a sample of this noise
for a duration T = (N + 1)(τbs + τB), initialize our detector
(qutrit) in state |0〉, and allow it to evolve with the series of
beam-splitter unitaries. Results from this protocol are read
in a counterintuitive manner; i.e., if no noise is present, the
qutrit is found in state |1〉, while in the presence of noise,
the state of the qutrit remains the same (ground state |0〉)
with high probability. We use the ground-state probability
p0 of the qutrit as a marker for the detection of noise. We
obtain p0 values at time T from several implementations with
N ∈ {1, . . . , 100}. The entire process is then repeated several
times, and the average value of p0, i.e., E[p0] is observed.

2. Projective IFM-based model

This is also a qutrit-based model to detect resonant noise,
which we present schematically in Fig. 1(c). As described
earlier, in the pIFM-based model, there are also (N + 1)
beam-splitter unitaries of duration τbs, each implementing a
rotation of angle φN = π/(N + 1) around the y axis. Similar
to the cIFM protocol, the noise acts at the frequency ω12.
Unlike the cIFM protocol, where coherences are preserved as
an asset to be used later, in pIFM, coherences between levels
|1〉 − |2〉 are erased via projective measurements at the end of
each noise pulse interaction with the detector, i.e., at times
j(τbs + τB), where j ∈ {1, . . . , N}. These projectors, which
are applied immediately after each noise pulse, are defined
as Pabs = |2〉〈2| (detection of excitation on |2〉) and Pabs =
|0〉〈0| + |1〉〈1| (the absence of a detection event on |2〉). Here,
we also use the ground state population as a marker, a nonzero
value which is the signature of noise.

III. DETECTION OF WHITE NOISE

In this section, we consider noise with correlation times
much smaller than T , such that different noise events are
almost independent of each other and are hence uncorrelated.
This noise can be assumed to be effectively white without
loss of generality. Further, we allow the qubit or qutrit de-
tectors to interact with noise for a fixed amount of time and
measure their respective final states. This process is repeated
several times and the final qubit or qutrit states obtained are
averaged out. This leads to the same results as expected from
the standard master equation approach, where correlations are
neglected with respect to the time T [3,10,33].

We simulate qubit-based and qutrit-based detectors to
ascertain the presence of resonant white Gaussian noise
with a maximum amplitude |ζ (t )|max = max(θ j )/τB, and

we analyze the detection in three possible situations: (i)
variation of ζ (t ) at a constant phase, i.e., amplitude noise, (ii)
variation of χ (t ) with ζ (t ) constant in time, i.e., phase noise,
and (iii) a general case of both ζ (t ) and χ (t ) varying with
time, i.e., amplitude and phase noise. For concreteness, in
superconducting-circuit-based realizations, we could have a
sampling rate of 107 samples/s, as well as beam-splitter and
sensing times of τbs = 20 ns and τB = 200 ns, respectively. In
all these cases, we divide this noise into several consecutive
intervals of length τB and τbs.

The evolution in the jth interval can be described by a uni-
tary pulse B(θ j ) of duration τB, with an effective angle θ j and
an overall axis of rotation ϕ j . We assume that in the cIFM and
pIFM protocols, the three-level quantum system undergoes
nearly instantaneous beam-splitter operations, as ensured by
the condition τbs � τB. This produces a negligible error in the
case of continuous noise, where τbs is the time for which there
exists simultaneous driving of |0〉 − |1〉 and |1〉 − |2〉. Thus,
the sequence can be simplified to a series of beam-splitter
unitaries and unitary pulses of arbitrary angles θ j .

1. Amplitude noise

We first consider amplitude noise, which in each interval j
produces a unitary pulse B of duration τB and effective angle
θ j = �ge(12)τB + ∫ t j+τB

t j
ζ (t )dt with a fixed axis of rotation

(χ = −π/2 and hence, ϕ j = −π/2). Here, t j = jτbs + ( j −
1)τB and t j + τB = j(τB + τbs) are the initial and final times
of each pulse, with j ∈ {1, . . . , N}. To clearly demonstrate the
difference between qubit and qutrit detectors, we engineer the
noise at a sampling rate of 5 × 106 samples/s, ensuring its
net sum over a long period is arbitrarily close to zero with
a signal-to-noise ratio (SNR) of 1. Specifically, in this case,
we have

∑N
j=1 θ j = 0, with a constant noise amplitude during

a given B pulse duration, such that θ j = ζ (t j )τB. The results
from this simple model are shown in Figs. 2(a) and 2(b). In
Fig. 2(a), we present the mean value of the marker populations
(E[pe] for the qubit and E[p0] for the qutrit), averaged over
500 realizations of the same experiment for various values
of N ∈ {1, . . . , 100}. Figure 2(b) presents the corresponding
variance values for this state. Here, the continuous blue curve
represents the excited state population of the qubit-based
detector, which is nearly zero; therefore, the qubit detector
completely misses the presence of noise. Further, the contin-
uous red curve and the dashed black curve correspond to the
average value of p0 resulting from cIFM and pIFM protocols,
respectively. In both cases, E[p0] approaches 1 for large N ,
signifying that both cIFM and pIFM-based detectors are al-
most equally efficient at detecting noise in such scenarios.

In general, the net sum of the noise may not approach
zero over a long time range (≈ T ). In that case, the qubit
detector will evolve with the net sum of the noise, such that
pe = sin2(θT ), where θT = ∑N

j=1 θ j . Thus, the mean value
E[pe] approaches 0.5 after several repetitions, which is also
consistent with the average value of sin2(θT ) for θT ∈ [0, π ].
Such situations are shown in Figs. 2(c), 2(e) and 2(g), and are
discussed in the following subsections.

We also consider a situation with only positive values
of noise, i.e., ζ (t ) > 0, and observe that the qubit detector
leads to the same outcome, as expected. Interestingly, the
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FIG. 2. Mean (top row) and variance (bottom row) of the marker populations (p�), i.e., pe for the qubit-based detector and p0 for the qutrit-
based detectors, extracted from 500 realizations of the protocol, each with �ge(12) = 0, and N ∈ {1, . . . , 100}. Panels (a) and (b) correspond
to the case of amplitude noise with a net sum of zero, i.e.,

∑N
j=1 θ j = 0. Results from the general case are shown in panels (c) and (d), which

include both amplitude and phase noise. Panels (e) and (f) correspond to the case of amplitude noise with small values of arbitrarily chosen θ .
Panels (g) and (h) show the results for phase noise at a constant noise amplitude. The ranges of amplitude (θ ) and phase (ϕ) are given at the
top of each column. All noises considered are white Gaussian.

pIFM-based qutrit detector also yields the same outcomes,
while the cIFM protocol leads to improvement in the aver-
age values. In this case, the cIFM protocol outperforms the
pIFM protocol for the detection of positive amplitude noise. In
special circumstances, where the noise sampling rate = τ−1

B ,
such that there is only one noise sample (P = 1) in the entire
τB duration, the pIFM protocol is independent of the axis of
rotation ϕ j , while the cIFM protocol is very sensitive to it.
Thus, we can acquire information about the phase ϕ j from
the cIFM protocol but not from the pIFM protocol. Next, we
consider a situation with small values of θ j ∈ [0, π/6] with
ϕ j = −π/2, as shown in Figs. 2(e) and 2(f). In this case,
E[p0] from cIFM approaches 1 for N > 20, which is much
better than pIFM, where E[p0] ≈ 0.25 for N = 100. The
qubit initially oscillates at sin2(

∑
θ j ) and finally attains the

value 0.5.

2. Amplitude and phase noise

A more general noise may have time dependence for both
its amplitude and phase. The results from this general scenario
are shown in Figs. 2(c) and 2(d). As expected, the mean values
for the qubit detector tend to stay close to 0.5. For strong-
enough noise, such that θ j ∈ [0, π ], both mean and variance
values are independent of the value of N . Thus, by increasing
the value of N , i.e., for a larger T , we do not see any enhance-
ment in the detection of noise with this absorption-based qubit
detector. The best result that this detection protocol can yield
in this case is the maximally mixed state of the qubit, leading
to an equally populated ground state and excited state. This
is equivalent to obtaining the mean values of the populations,
E[pg] = E[pe] = 0.5 with significantly large values of vari-
ance. Thus, we can conclude that due to quite large variance
values, a widely varying output, and having less sensitivity,
the qubit detector is less efficient.

We then allow the same noise to be accessed by the qutrit
detectors, and the corresponding mean and variance values

are shown as the continuous red curve for the case of cIFM
and as the dashed black curve for the case of pIFM in Fig. 2.
For large values of N , the variance is quite close to zero
and E[p0] is close to 1, signifying a very efficient detection
of noise. Interestingly, the continuous red and dashed black
curves in Figs. 2(c) and 2(d) follow a similar trend as those
in Figs. 2(a) and 2(b). This demonstrates the efficiency of
qutrit-based protocols irrespective of whether noise sums to
zero or not.

3. Phase noise

Here, we consider a constant amplitude of noise such that
ζ (t ) ∝ π/τB and an arbitrarily chosen phase, ϕ j ∈ [−π, π ],
with a noise sampling rate of 107 samples/s, resulting in two
noise samples in the jth pulse, P = 2. In the case of phase
noise, for situations with P > 1, θ j values may differ for
different j as per Eq. (13), even if the noise amplitude ζ (t )
is constant. The corresponding results are shown in Figs. 2(g)
and 2(h). As expected, the pIFM-based protocol is less sen-
sitive to changes in ϕ j . However, the cIFM-based protocol
is highly sensitive to variations in ϕ j and can thus be more
effective at determining the nature of the noise. Moreover, for
P = 1, the pIFM-based protocol is not sensitive to changes
in ϕ j and hence cannot characterize phase noise. The qubit-
based protocol is the least informative about noise, with its
mean value staying close to 0.5 with significantly high values
of variance. Additionally, the qubit-based protocol does not
detect the presence of phase noise when θ is an integral
multiple of π .

IV. DETECTION OF BINARY PROCESSES

In this and the following sections, we consider noise corre-
lation times on the order of T . Specifically, we focus on binary
noise, e.g., generation-recombination noise and random tele-
graph (burst) noise, which span the correlation times in a wide
range from T/100 to T , and attempt to detect its presence
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FIG. 3. Binary noise over time T , generated by a Poisson
point process with mean 〈m〉 = κT and correlation time κ−1 ∈
[T/250, T/5]. Panel (a) displays a complete matrix representation
of one realization of this noise, while panels (b) and (c) show 1D
traces corresponding to two extreme values of the correlation time.

via IFM-based protocols [34–37]. We model the noise using
a Poisson point process, which results in noise with steps of
±π :

P(m, T ) = (κT )m

m!
e−κT , (14)

where κ is the switching frequency and P(m, T ) represents
the probability of m switching events during the time interval
T . This process has an exponentially-decaying autocorrelation
function and a Lorentzian power spectral density. Poisso-
nian processes are fundamentally important because they are
simple and can be used as building blocks for generating pro-
cesses with power-law spectral densities by considering that
the time κ−1 is probabilistically distributed (see Appendix A)
[38–40].

The correlation time κ−1 is considered such that T �
κ−1 > 0, where T = (N + 1)(τB + τbs). The mean 〈m〉 of
the distribution P(m, T ) is 〈m〉 = κT . Thus, as κ decreases,
the switching frequency decreases, leading to a decrease in
the mean and variance of the distribution. Figure 3 shows an
example of noise with amplitudes ±θ where the phase can be
flipped at a rate of up to 20/T for the duration T . This allows
for a maximum of 20 switching events or noise samples within
T , with κ−1 varying linearly from τbs to T . To enhance clarity,
Fig. 3 shows only a part of this noise, with values of κ−1 being
limited to the range κ−1 ∈ [τbs, 0.2T ]. A qubit detector would
be very inefficient at detecting this type of noise. An intuitive
explanation for this is given in Appendix B.

Here, we first analyze the case of binary noise, switching
between ±θ at a rate of up to 109 times in one second. We
consider an intercept of such a noise for a fixed duration of
time T and try to detect it using cIFM and pIFM protocols.
Fixing T and taking τbs = T/400 or as small as possible,
we arbitrarily choose the value of N ∈ {1, . . . , 40}. For in-
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FIG. 4. Panels (a) and (b) present the average of p0, while pan-
els (c) and (d) show the corresponding standard deviations. Panels
(a) and (c) correspond to strongly coupled noise with δθp = ±π/250,
whereas panels (b) and (d) correspond to relatively weaker noise with
δθp = ±π/1000.

stance, N = 1 requires two beam-splitter unitaries S1(π/2):
one at the start and one at the end of the noise, with B pulse
duration τB = T . For any N , N + 1 beam-splitter unitaries
S(φN ) are placed at intervals of τB = T/N on resonance with
the |0〉 − |1〉 transition frequency, with the noise coupled as
before into the |1〉 − |2〉 transition. Ideally, the protocol is
designed in such a way that the beam-splitter pulses act instan-
taneously with τbs → 0. However, due to the constraints set
by the quantum speed limit and experimental feasibility, τbs is
finite. The values of T , τbs, and N are chosen such that even
for the largest N , τbs � τB, and the qutrit’s evolution under
the |1〉 − |2〉 drive can be ignored during the short intervals
τbs when the beam-splitter unitaries act within the |0〉 − |1〉
subspace.

We consider the evolution of our detector qutrit under such
noise (see Fig. 3) as per the cIFM and pIFM protocols. When
the number of noise samples, P [as described in Eq. (6)] in
a pulse is much larger than N , the cIFM and pIFM protocols
give rise to similar results. However, when P ≈ N , the cIFM
and pIFM protocols can lead to quite different results. In
this section, we take P 	 N , and present only the cIFM
protocol to avoid any confusion. Figure 4 shows the mean
(E[p0]) and standard deviations (σ [p0]) of the ground-state
population (p0) from 500 realizations of the cIFM simulation
with T fixed at 10 µs and a noise sampling rate of 109 sam-
ples per second. Figures 4(a) and 4(c) correspond to effective
angle δθp = ±π/P(min) and Figs. 4(b) and 4(d) correspond
to δθp = ±π/(4P(min)), where P(min) = 250 is the number of
noise samples in τB, corresponding to the largest N (= 40) in
the given range. These values of δθp’s for the left and right
panels of Fig. 4 are kept fixed throughout the simulation.
Therefore, for a given N , the jth effective noise pulse angle θ j

can assume values in the range [−δθpP, δθpP], with discrete
steps of 2δθp. For N = 40, the extreme values of θ j are ±π
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for the left panel and ±π/4 for the right panel of Fig. 4,
while for N = 2, extreme θ j values can be up to ±20π and
±5π , respectively. Interestingly, for a given N , it is very likely
for θ j’s to assume the extreme values, which can also lead to
certain anomalies, as explained later in this section.

As shown in Fig. 4(a), for strongly coupled noise, the mean
of the marker population E[p0] swiftly approaches 1 for small
N and is almost independent of κ−1, with negligibly small
standard deviations [Fig. 4(c)], depicting a highly efficient
noise detection. Despite its high efficiency, the cIFM protocol
also leads to systematic anomalies, which occur due to the
fact that the cIFM and pIFM protocols are transparent to
values of θ j which are an integral multiple of 4π [22]. These
anomalies manifest as horizontal lines where E[p0] almost
vanishes and σ [p0] values are exceptionally high in Figs. 4(a)
and 4(c). Such situations arise for the values of N that result
in integral values of the ratio: δθpP/(4π ). For Figs. 4(a) and
4(c), this ratio simplifies to 10/N , leading to anomalies at
N = 1, 2, 5, 10. For the simulations in Figs. 4(b) and 4(d), we
need 2.5/N to be integral, which is never satisfied, leading to
no such anomalies.

Therefore, in the case of a fast-transiting and strongly cou-
pled noise [Figs. 4(a) and 4(c)], the cIFM or pIFM protocols
are quite efficient in confirming its presence, even for small
values of N . However, if this noise, with θ = π , interacts
with a qubit on resonance, the qubit will typically not detect
anything at all, as the noise is very likely to sum up to zero.

For relatively weakly coupled noise [Figs. 4(b) and 4(d)],
the marker population p0 assumes higher values as κ−1 in-
creases, reflecting the Poisson point process with a smaller
mean and consequently a lower switching frequency of the
noise. These weaker noises also swiftly saturate the p0 val-
ues for κ−1 � T/5 and N � 5. Above a certain threshold of
κ−1, p0 shows almost no dependency on the correlation time.
Therefore, with optimal values of N and κ−1, cIFM-based
protocols can efficiently detect noise.

V. NOISE CORRELATIONS

The correlations present in the noise can often be used to
reveal the underlying mechanism responsible for the fluctua-
tions. In this section, we first show how a qubit detector can be
used to measure the full counting statistics of the noise. Then,
we demonstrate that in the case of a lower noise-sampling rate
such that there is only one noise sample per τB duration, cor-
relations of random binary processes lead to different marker
populations in the qutrit detectors.

A. Full counting statistics with a qubit detector

The problem of extracting the correlations of a random
event is especially relevant in mesoscopic physics, where the
challenge of measuring the statistics of electronic transport in
nanoelectronic devices has led to the so-called problem of full
counting statistics [41]. In full counting statistics, we are in-
terested in the probability distribution P(m, T ) of events m in
a given time interval T . The complete information about cor-
relations is encapsulated in the generating function, defined as
the Fourier transform of P(m, T ), which allows us to calculate
arbitrarily high-order cumulants associated with P(m, T ). The

compact variable of this transform, called the counting field,
can be understood as a variable coupling between the noise
and a detector. For example, in proposals that use a qubit
to characterize the statistics of electrons transmitted through
a quantum point contact, the counting field is the coupling
between the current generated by the electrons and the σz

operator of the qubit [20]. We now consider the qubit detector
as described above and ask the question: what is the signature
of higher-order cumulants of amplitude noise in the measured
signal?

A straightforward realization of these events in our qubit-
detector setup is to take a series of pulses θ j ∈ {0, θ}
distributed in accordance with the probability P(m, T ), and
introduce a scaling factor λ which can serve as the counting
field. In practice, λ can be realized simply by introducing
a variable attenuator between the noise to be detected and
the qubit. We consider the time interval of a full sequence
T = τbs(N + 1) + NτB and count how many times m we had
a non-zero θ , with the total angle accumulated being θT =∫ T

0 �(t )dt = ∑N
i=1 θ j = mθ .

The generating function can be defined as

�θ (λ) = 〈eiλθT 〉 =
∑

m

P(m, T )eimλθ , (15)

from which the kth-order moments 〈θ k
T 〉 of the total angle can

be obtained by〈
θ k

T

〉 = 〈mk〉θ k = (−i)k lim
λ→0

∂k
λ�θ (λ). (16)

A qubit detector would then have a probability pe(mλθ )
of ending up in the marker state |e〉 if there are m
events, leading to an overall average probability E[pe](λθ ) =∑

m P(m, T )pe(mλθ ) for the entire ensemble. Let us assume,
for simplicity, that the coupling of the B pulses is via the
vector n̂ j = (0, 1) for all j’s, in other words, ϕ j = −π/2 [see
Eq. (5)]. If the qubit starts in the state |g〉, we obtain that the
probability of having |e〉 is

pe(mλθ ) = 1
2 [1 − cos(mλθ )], (17)

therefore,

E[pe](λθ ) = 1

2

∑
m

P(m, T )[1 − cos(mλθ )]

= 1

2
{ 1 − Re[�θ (λ)]}. (18)

Similarly, starting with the state (1/
√

2)[|g〉 + |e〉], we obtain

pe(mλθ ) = 1
2 [1 + sin(mλθ )], (19)

and therefore,

E[pe](λθ ) = 1

2

∑
m

P(m, T )[1 + sin(mλθ )]

= 1

2
{ 1 + Im[�θ (λ)]}. (20)

This means that we can directly obtain both the real and imagi-
nary part of the moment generating function by measuring the
average probability E[pe] with two different initial conditions.
We can then repeat this for various values of λ (which can be
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varied by using an appropriate attenuator), obtain an approx-
imate functional dependence �θ (λ), and extract the moments
using Eq. (16).

Full counting statistics offers a different perspective on
characterizing noise than the usual analysis of correlations,
by counting events in a time interval. The two perspectives
are, of course, connected to one another, although the re-
lationship may not always be simple [41]. For example, in
our case, the second-order moments can be connected to the
zero-frequency power spectral density

〈
θ2

T

〉 =
∫ T

0

∫ T

0
〈�(t1)�(t2)〉dt1dt2 (21)

= T
∫ ∞

−∞
〈�(0)�(τ )〉dτ = T S�( f = 0), (22)

where the second row is obtained by a change of variables
T = (t1 + t2)/2, τ = t2 − t1, with T assumed to be large.

For example, consider the Poisson distribution P(m, T ) =
(κT )m exp(−κT )/m!. The generating function is obtained
from the definition Eq. (15) as

�θ (λ) = exp[κT (eiλθ − 1)]. (23)

This generating function can be obtained experimentally by
following the protocol described above and using Eqs. (18)
and (20). In particular, from Eq. (16), we find 〈θ2

T 〉 = κT θ2 +
(κT θ )2, demonstrating that the variance of a Poisson distri-
bution equals its mean, as expected. This approach allows us
to extract the rate κ and also characterize the zero-frequency
power spectral density of the underlying noise in �.

B. Signatures of correlations in cIFM

In the previous subsection, we have seen that the response
of the qubit does not depend on how the m occurrences
of θ pulses are distributed in the time interval T : they
would simply sum up to mθ and the response would be
a sine or cosine of mθ . This is not the case for cIFM,
which is sensitive to how these events are correlated. To
illustrate this, consider a uniform distribution of θ values
over the N τB durations. In this case, for cIFM, we have
S(φN )[B(θ )S(φN )]N |0〉 as the final state and can utilize the
results for the probability amplitudes from Ref. [23]. Let
us now consider he opposite situation: we concentrate all
the driving power in one single interaction with the qutrit,
occurring after the nth application of S(φN ) (0 < n < N).
We obtain the final state [S(φN )]N+1−nB(Nθ )[S(φN )]n|0〉 =
c0|0〉 + c1|1〉 + c2|2〉, with probability amplitudes

c0 = sin(nφN ) sin2 Nθ

4
, (24)

c1 = cos2 Nθ

4
+ cos(nφN ) sin2 Nθ

4
, (25)

c2 = sin
Nθ

2
sin

nφN

2
. (26)

In comparison with the uniform case, the differences are
significant. For example, increasing N at fixed m does not
suppress the coefficient c1 as in the uniform case. In fact, at
large N we would get c0 � 0, c1 � 1, c2 � 0, so the detection
signal produced is the same as for the case when no pulse is

TABLE I. Marker populations p0 resulting from cIFM and pIFM
protocols for N = 4, with the qutrit initialized in state |0〉.

Configuration cIFM pIFM
θ1, θ2, θ3, θ4 p0 p0

1 π, π, 0, 0 0.611 0.283
2 π, 0, π, 0 0.646 0.387
3 π, 0, 0, π 0.393 0.283
4 0, π, π, 0 0.937 0.387
5 0, π, 0, π 0.646 0.387
6 0, 0, π, π 0.611 0.283
7 π, π, −π, −π 0.599 0.605
8 π, −π, π, −π 0.183 0.605
9 π, −π, −π, π 0.361 0.605
10 −π, π, π, −π 0.361 0.605
11 −π, π, −π, π 0.183 0.605
12 −π, −π, π, π 0.599 0.605

present. In other words, the detector completely misses the
extremely strong Nθ pulse.

Now consider the more realistic case of N = 4,
which has four B pulse slots and five beam-splitter
pulses. As per the cIFM protocol, the unitary evo-
lution can be explicitly represented as: S(π/5)B(θ4)
S(π/5)B(θ3)S(π/5)B(θ2)S(π/5)B(θ1)S(π/5), see Fig. 1(b).
Let us fix two of these B pulse angles at θ and set the remain-
ing two to zero. There are six possible combinations, shown
in the second column of Table I. Corresponding to each of
these configurations, the marker population (p0) values for
cIFM and pIFM are specified. Clearly, these values differ
markedly across configurations, with significant differences
for cIFM and relatively smaller differences for pIFM. This
signifies the role of correlations between the pulses in the
cIFM and pIFM protocols. In the lower part of Table I, we
also consider another set of combinations of θ values, where
two of these values are π and the other two are −π . Again, in
cIFM, we observe clear differences in p0 values for different
configurations, while pIFM is insensitive to the correlations in
this case.

This feature means that under certain conditions, cIFM
can distinguish between clustered noises and other arbitrarily
correlated noises. To exploit this feature of cIFM, one must
consider a lower sampling rate, such that there is only one
noise sample (P = 1) in one whole τB duration. Otherwise,
noise amplitudes in the given pulse duration get averaged,
leading to P + 1 possibilities of θ j values, and hence the
clustering patterns of the original binary noise waveform will
be lost. To illustrate this, we simulate binary noise with am-
plitudes θ j = ±π , assuming that each noise amplitude stays
constant within a B pulse duration. For an arbitrary value
of N , we generate m events using the Poisson point pro-
cess as described in Sec. IV, with a noise sampling rate of
NτB/T corresponding to different values of κ−1 ∈ [T/10, T ]
and observe the ground-state populations for different values
of κ−1 and N . The results are shown in Fig. 5(b), where the
panel on the right presents an example of the binary noise
for N = 10 at κ−1 = T/10 (first column, labeled as κmax) and
at κ−1 = 10τB = T (third column, labeled as κmin), while the
noise for an arbitrary κ−1 is shown in the second column. The
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FIG. 5. (a) Average of p0 over 2000 realizations as a function
of κ−1, with different curves corresponding to various values of N .
(b) Illustration of a binary random process for N = 10 for three
different values of the switching frequency κ , where the trace on the
extreme right demonstrates clustering of the pulses.

mean value of the Poisson distribution (κT ) is quite different
in the two extreme situations, as reflected in the nature of these
noises. For larger κ−1, it is more likely to have less frequent
switching of the noise amplitude, leading to more clustering
of the noise pulses. Figure 5(a) presents the mean value of p0

obtained from several repetitions of the cIFM protocol as a
function of correlation time κ−1. Different curves correspond
to different values of N , as specified in the plot legends. As we
move from left to right, the same amplitude values of the noise
are more likely to be clustered together, leading to higher p0

values. Also note that as N increases, the detection becomes
more insensitive to the underlying correlations of the noise.

In contrast, the pIFM protocol is not sensitive to this par-
ticular type of correlation, as we could anticipate from the
previous analysis in Table I. In the example above, the noise
can also be regarded as binary noise with constant amplitude
θ j = const. and flipping phase ϕ j = ±π . Since the pIFM
protocol is not sensitive to phase information, noises with
different correlations cannot be distinguished. In the pIFM
protocol, this noise does not lead to a distinct signal from that
of a train of π pulses, which gives rise to a constant detector
qutrit ground state population, p0 = cos2(N+1)(π/[2(N + 1)])
for an arbitrary N [22,23]. We have also verified this result nu-
merically, an example of which can be seen in rows numbered
7 to 10 of Table I.

VI. APPLICATIONS

The cIFM noise-sensing protocol can be adapted to a vari-
ety of experimental platforms where a controllable three-level
system exists. Below, we give two such examples: flux qutrits
and Rydberg systems. Another immediate implementation
could be in trapped ions, which has already been investigated
in the context of realizing interaction-free CNOT gates [31,42].

The cIFM protocol has already been implemented in a
transmon qubit [22], and noise detection in this setup would
be straightforward. Instead, we discuss here a different su-
perconducting qubit – a flux qubit – which, by virtue of its
large anharmonicity, would allow us to access noise around
higher frequencies and in larger bandwidths than a transmon
(∼300 MHz) [43,44]. Due to this sizable anharmonicity, a flux

qutrit will have a reduced coupling of the noise into its lower
transition, making it principally a more suitable candidate for
implementing cIFM noise detection.

The level separations can be adjusted by changing the
external magnetic flux applied to the qutrit loop. When
the reduced magnetic flux �ext/�0 is a half-integer value,
the potential energy is symmetric. Here, �ext is the exter-
nal magnetic flux threading the superconducting loop, and
�0 = h/2e is the flux quantum. At these so-called sweet spots
in the reduced magnetic flux, where the potential energy is
symmetric, the energy levels of the qubit are less sensitive to
small variations in the external magnetic flux. This is because
the first derivative of the energy levels with respect to the
flux bias is zero. As a result, the qubit’s transition frequency
is less affected by flux noise, which typically manifests as
low-frequency (1/ f ) noise [45]. Since flux noise can cause
fluctuations in the qubit’s transition frequency, leading to
dephasing, the qubit is also less sensitive to flux noise at
the sweet spots, resulting in longer dephasing times [46].
This means the qubit can maintain coherent superpositions
for a longer duration, improving the performance of quantum
operations.

For a three-junction flux qubit, the typical frequency range
of the energy level splitting at the symmetry point, i.e., the
sweet spot, is generally within the range of a few GHz. Specif-
ically, the transition frequency typically falls in the range of
approximately 5 to 10 GHz [43].

To calibrate this system, external noise around the qubit
frequency can be generated artificially and coupled into the
qubit. This type of noise injection has already been utilized
for characterizing dephasing noise using transmon qubits [47].
Alternatively, if the flux qutrit is coupled to a resonator for
readout, noise can be injected via the resonator [43]. Readout
can be performed by inductively coupling the flux qutrit to
a dc-superconducting quantum interference device (SQUID)
and measuring the switching currents [48], or alternatively, by
using dispersive readout via a resonator [49].

Our cIFM noise detection protocol can also be adapted
for sensing with Rydberg atoms. These atoms are in highly
excited states, which consequently makes them extremely sen-
sitive to microwave fields; indeed, the dipole moment between
nearby states scales as ∼n2 and the polarizability scales as
∼n7 [50]. The transition energies between adjacent Rydberg
states span a broad spectrum, ranging from MHz to THz,
allowing us to access high frequencies where conventional
off-the-shelf electronics are not available [51].

A schematic for implementing cIFM is shown in Fig. 6(b).
The atoms can be placed either in a vapor cell or loaded
into an optical-tweezer trap. We identify |0〉 = |5S1/2〉, |1〉 =
|63P1/2〉, and |2〉 = |62D3/2〉. Due to their frequency differ-
ence being in the ultraviolet range, it is practically convenient
to couple states |0〉 and |1〉 using a two-photon process driven
by standard optical lasers with wavelengths 795 nm and
474 nm, with |5P1/2, F = 2, mF = 2〉 as the intermediate state
(single-photon detuning of 740 MHz). In this setup, typical
values for the effective two-photon Rabi frequency �01/(2π )
range from 500 kHz to 5 MHz [52,53], while �12/(2π ) is
approximately 5 to 7 MHz [54]. The time T of our protocol
is limited by the finite lifetime of the Rydberg states and off-
resonant excitations on |5P1/2, F = 2, mF = 2〉; in practice,
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FIG. 6. (a) A schematic showing how cIFM noise detection
could be adopted for a flux qutrit, where the pronounced anharmonic-
ity is exploited to detect noise resonant with the |1〉 − |2〉 transition.
The inset on the left side of the potential depicts a schematic of a
flux qutrit with three Josephson junctions, while the inset extending
from the right illustrates amplitude ζ (t ) and phase χ (t ) noise. (b) A
schematic demonstrating the adaptation of our noise detection pro-
tocol to Rydberg atoms, specifically 87Rb, driven by a two-photon
process detuned by 750 MHz from the intermediate state |5P1/2〉.
The atoms can be placed in a vapor cell or optical-tweezer trap,
with an avalanche photodiode used to monitor probe laser beam
transmission. Microwave noise can be coupled in using a dipole or
horn antenna.

T ∼ 4 µs allows for the maximum value of θ = π , enabling
the realization of around N ∼ 40 pulses, each with a duration
of about 100 ns [54]. The readout scheme is based on monitor-
ing the optical transmission through the atomic gas in vapor
cells [51,55,56] or, in the case of optical tweezers, on the fact
that Rydberg states are not trapped; therefore, the signal in
fluorescence measurements disappears unless the atoms are
in the ground state [52–54]. Tunability in terms of the 1–2
frequency can be achieved in this system either by resorting to
the Zeeman effect or in discrete steps using different Rydberg
transitions.

VII. CONCLUSION

Characterizing noise at certain frequencies is essential
for the development of quantum technologies. By using
interaction-free measurements implemented with a qutrit, we
demonstrate the ability to sense low-intensity noise and ob-
serve features that depend on correlations. This is compared
with the case of a single detector qubit, the simplest example
of an absorption detector, where noise creates an excitation
that can be subsequently observed.

In a qubit-based detector, noise detection characterized by
small correlation times results in the system being driven
towards a maximally mixed state. This state corresponds to a
situation where the probabilities of finding the qubit in either
of its basis states (|g〉 or |e〉) are equal, leading to a marker
population of 0.5. In contrast, qutrits, having an extra degree
of freedom, allow for a more sophisticated noise detection
protocol where detection does not result in any excitations.
We find that for a variety of noise types, these interaction-free
measurements are much more effective.

The application of cIFM and pIFM protocols leads to high-
purity states with marker populations approaching 1, while the
absence of noise is characterized by p0 = 0. The efficiency
of the cIFM and pIFM protocols increases with N , as evi-
dent from the increasing mean values and almost diminishing

variance in marker populations, indicating that only a few
repetitions of the detection protocol are sufficient to detect the
presence of noise.

While a qubit detector can measure the full counting statis-
tics of noise events in a given time interval, the cIFM detector
is also sensitive to how these events are correlated and is ef-
fective at distinguishing clustered noises and other arbitrarily
correlated noises.

In essence, cIFM-based protocols are more robust and ver-
satile in efficiently detecting resonant noise. Our results are
general and applicable to any experimental platform where
interaction-free measurements can be implemented.
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APPENDIX A: NOISE CHARACTERISTICS

For completeness, we give a brief presentation of the no-
tations and concepts related to noise utilized in this work. In
general, for a random time-dependent variable X (t ), we define
the double-sided power spectral density at a frequency f as

SX ( f ) =
∫ ∞

−∞
RXX (τ )e−i2π f τ dτ, (A1)

where RXX (τ ) = E[X (t )X (t + τ )] is the autocorrelation func-
tion. Alternatively, this Fourier-transform connection between
autocorrelation and power spectral density can be introduced
as the result of the Wiener-Khinchin theorem. For ergodic
processes, the ensemble average is identical to the time-
average in a window defined from −W/2 to W/2, therefore,
RXX (τ ) = limW →∞ 1

W

∫ W/2
−W/2 X (t )X (t + τ )dt . Moreover, the

average power X 2 can be obtained as X (t )2 = RXX (0) =∫ ∞
−∞ SX ( f )df . If X (t ) is a real random variable, then it fol-

lows directly from the definitions that both RXX and SX ( f )
are even and real-valued. The power spectral density can
more conveniently be obtained from the windowed Fourier
transform

XW ( f ) =
∫ W/2

−W/2
dtX (t )e−i2π f t , (A2)

as

SX ( f ) = lim
W →∞

1

W
|XW ( f )|2. (A3)

From here, we see that SX ( f ) is also positive. Since the
frequency f is positive in real experiments, it is convenient to
introduce the single-sideband power spectral density defined
by SX ( f ) = 2SX ( f ) if f > 0, and zero otherwise (see, e.g.,
Ref. [57] for more details).

For example, consider the Poissonian process introduced
in Sec. IV. In a time interval τ , the probability of m events
is P(m, τ ) = (1/m!)(κτ )me−κτ . Here, the events are defined
by the variable X taking one of the two discrete values
x or −x. To calculate the autocorrelation function RXX (τ ),
we consider a time interval τ and separate the probabilities

032404-10



COHERENT INTERACTION-FREE DETECTION OF NOISE PHYSICAL REVIEW A 110, 032404 (2024)

corresponding to an even number of switches (producing
an x2 value in the autocorrelation) and the probabilities
corresponding to an odd number of switches (producing
a −x2 value). Thus, RXX (τ ) = x2(P(0, |τ |) + P(2, |τ |) +
· · · ) − x2(P(1, |τ |) + P(3, |τ |) + · · · ). Here, the modulus ap-
pears because, in general, τ can be negative. This yields the
double-sided exponential

RXX (τ ) = x2 exp(−2κ|τ |). (A4)

The clustering effect can be observed by defining the nor-
malized correlation RXX (τ )/RXX (0) = exp(−2κ|τ |) < 1. We
can calculate the spectrum SX ( f ) by explicitly calculating
the integral Eq. (A1). Note that the result is real because
we can write exp(−i2π f τ ) = cos(2π f τ ) − i sin(2π f τ ), and
the integral containing the sine vanishes due to the τ → −τ

antisymmetry. From the remaining cosine part, we obtain the
Lorentzian

SX ( f ) = x2κ

κ2 + π2 f 2
. (A5)

In the case of a generic drive with nominal frequency ω0 and
Rabi coupling �(t ), we can write �(t ) cos[ω0t + χ (t )], where
χ (t ) is the phase noise, and �(t ) = � + ζ (t ), with amplitude
noise ζ (t ). The Rabi coupling is also noisy, with an associated
double-sided spectral density

S�( f ) = lim
W →∞

1

W
|�W ( f )|2 (Hz). (A6)

The double-sided spectral density of the phase noise is

Sχ ( f ) = lim
W →∞

1

W
|χW ( f )|2 (rad2/Hz), (A7)

which is typically expressed in decibel units dBc/Hz by ap-
plying the logarithmic scaling 10 log10. Here, the subscript c
denotes the carrier.

It is also convenient to introduce the fractional fre-
quency noise, defined via the random variable y(t ) =
�ω(t )/ω0, where �ω(t ) = ω(t ) − ω0 and ω(t ) = d

dt [ω0t +
χ (t )] = ω0 + χ̇ (t ); the power spectral density of the frac-
tional frequency noise is given by

Sy( f ) = (2π f )2

ω2
0

Sχ ( f ). (A8)

Different power laws as a function of frequency f can be
obtained depending on the mechanism, with various types of
noise dominating at low, intermediate, or high frequencies.
The primary types encountered in oscillators, listed in increas-
ing frequency scaling of the power spectral density (PSD),
include: a random walk of frequency [Sy( f ) ∼ 1/ f 2, Sχ ( f ) ∼
1/ f 4]; frequency flicker [Sy( f ) ∼ 1/ f , Sχ ( f ) ∼ 1/ f 3]; ran-
dom walk of phase (brown phase noise) or white noise of
frequency [Sy( f ) ∼ const., Sχ ( f ) ∼ 1/ f 2]; phase flicker or
pink phase noise [Sy( f ) ∼ f , Sχ ( f ) ∼ 1/ f ]; and white phase
noise [Sy( f ) ∼ f 2, Sχ ( f ) ∼ const.].

Moreover, noise is often characterized according to the
frequency scaling of its PSD, known as its color. White noise,
characterized by a constant power spectral density and often
simulated using a random number generator, has equal power
at all frequencies. Filtered white noise is referred to as col-
ored or correlated noise [58], resulting from the convolution

FIG. 7. A pink phase (phase flicker) noise χ (t ) with 5 × 104

samples. Panel (a) shows the noise in the time domain, and (b) dis-
plays its power spectral density (PSD) with frequency offsets at
0.1 and 1 kHz. The PSD confirms the noise’s pink nature, as indi-
cated by the semi-log fit showing a decrease of approximately 10
dBc/decade.

of white noise with an impulse response. Colored noise, in
general, can be created by applying a Fourier filter of specific
power.

Brown noise, the integral of white noise, exhibits an ampli-
tude response proportional to 1/ f and is typically generated
by low-pass filtering white noise. Its power spectral den-
sity decreases by 20 log10(0.5) = −6.02 dB per octave or
−20 dB/decade. Pink noise, often referred to as 1/ f noise
due to its PSD proportionality, cannot be perfectly obtained
by filtering white noise because the filter’s amplitude response
must scale as f −1/2 [58]. However, it can be approximated
by filtering uniformly distributed random numbers through a
finite impulse response (FIR) filter with a 1/ f passband. Pink
noise exhibits a power spectral density decreasing by approx-
imately 10 log10(0.5) = −3.01 dB per octave or −10 dB per
decade (see Fig. 7).

Blue noise, which has a power spectral density that scales
linearly with frequency, can be efficiently generated using
Poisson disk sampling [59]. It exhibits an approximate de-
crease of 3.01 dB per octave (10 dB per decade). Purple noise,
the derivative of white noise, has a power spectral density that
decreases by approximately 6.02 dB per octave (20 dB per
decade) and can be generated by combining blue noise and
brown noise or using a band-stop filter.

Noises with different spectral exponents can be generated
by considering the Poissonian process discussed in Secs. IV
and V, incorporating an appropriate power-law distribution of
the characteristic correlation time τ [38–40].

In Fig. 8, we compare the marker probabilities of pIFM
with those of cIFM at different phase noise colors, where there
is only one noise sample per B pulse (P = 1). In particular, we
observe marker probabilities for brown noise [Sχ ( f ) ∼ 1/ f 2],
pink noise [Sχ ( f ) ∼ 1/ f ], white noise [Sχ ( f ) ∼ const.], blue
noise [Sχ ( f ) ∼ f ], and purple noise [Sχ ( f ) ∼ f 2]. From
Fig. 8, it is evident that the cIFM protocol is not effective at
distinguishing between the different colors of phase noise, as
the mean marker probabilities E[p0] (averaged over 5 × 104
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FIG. 8. (a) cIFM marker probabilities (solid curves) versus N at
θ j = π/2 and various colors of phase noise ϕ j ∈ [−π, π ] averaged
over 5 × 104 realizations. Here, there is only one noise sample per B
pulse. Note that the pIFM marker probabilities (dashed black curve)
are insensitive to phase and thus are the same regardless of the phase
noise color. Panel (b) shows the corresponding variances.

realizations) cluster tightly together with variances peaking at
approximately the same N .

APPENDIX B: COMPARISON BETWEEN CIFM
AND QUBIT-BASED PROTOCOLS

To understand why the cIFM detector performs better than
the qubit detector, especially in the case of alternating-sign
binary noise, consider the case N = 2. Here, S2 is realized by
a φ2 = π/3 pulse and takes the form

S2 =
√

3

2
I01 − i

2
σ

y
01 + |2〉〈2|. (B1)

Let us now assume the first B pulse has angle θ > 0, while
the second one has angle −θ . For a qubit detector, this would
result in a complete cancellation of the detection signal.

However, with cIFM, the state after applying the algorithm is(
3
√

3

8
− 2

√
3

8
cos

θ

2
−

√
3

8
cos2 θ

2
− 1

4
sin2 θ

2

)
|0〉

+
(

3

8
+ 2

8
cos

θ

2
+ 3

8
cos2 θ

2
+

√
3

4
sin2 θ

2

)
|1〉

+
(

2 − √
3

4
sin

θ

2
cos

θ

2
−

√
3

4
sin

θ

2

)
|2〉. (B2)

One clearly sees that the amplitude probability for the state |0〉
is not zero. Even for θ � 1, we can approximate the state as

− θ2

16
|0〉 +

[
1 + (2 + √

3)θ2

16

]
|1〉 + θ

4
(1 −

√
3)|2〉, (B3)

showing that the amplitude for |0〉 is second-order in θ , but
not zero.

Now, consider the general case of sampling the noise with
values θ and −θ with equal probability using N + 1 beam-
splitter unitaries. If N = 2, as above, the sampling space
consists of (+θ,+θ ), (+θ,−θ ), (−θ,+θ ), and (−θ,−θ ).
The alternating-sign situations occur with the same proba-
bility as the same-sign situations, hence there is no clear
advantage for cIFM. However, when N gets large, the number
of cases where the sum of θ j = ±θ is k, i.e.,

∑N
j=1 θ j =

(N − k)θ + k(−θ ) = (N − 2k)θ , is determined by the bino-
mial coefficient CN

k . Specifically, the probability distribution
is binomial

p(k) = 1

2N
CN

k . (B4)

In the limit of large N , this approximates to a normal
distribution

p(k) = 2√
πN

e−2(k− N
2 )2

/N . (B5)

The maximum of p occurs at k = N/2, in which case∑N
j=1 θ j = 0.
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