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Conditions for separability in multiqubit systems with an accelerating
qubit using a conditional entropy
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We study the separability in multiqubit pure and mixed Greenberger-Horne-Zeilinger (GHZ) and W states
with an accelerating qubit using the Abe-Rajagopal (AR) q-conditional entropy. We observe that the pure
multiqubit GHZ and W states in the inertial-noninertial bipartition with one of their qubits accelerated will
remain nonseparable irrespective of the qubit’s acceleration. In these systems, we capture the variation of their
nonseparability with respect to the acceleration of the qubit and the AR q-conditional entropy parameter q.
However, in the corresponding multiqubit mixed states obtained by introducing a global noise to the above pure
states, we could get stronger conditions on their separability in the inertial-noninertial bipartition, in terms of the
acceleration of the qubit, the noise parameter, and the number of qubits in the system, in the asymptotic limit of
the parameter q. These conditions obtained from the AR q-conditional entropy serve as necessary conditions for
separability in such multiqubit states with a relativistic qubit.
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I. INTRODUCTION

A vast majority of quantum information tasks, such as
quantum teleportation [1–3], quantum dense coding [4], and
quantum key distribution, [5,6] rely on quantum correlations
present in quantum systems [7,8]. Recently, it has been es-
tablished that the quantum correlations present in quantum
systems vary when their subsystems are relativistically accel-
erated [9–11]. The characterization of quantum correlations
and quantum information protocols in quantum systems with
accelerated subsystems has led to the emergence of rela-
tivistic quantum information. Currently, relativistic quantum
information involves studies that characterize and quantify
entanglement in bosonic [9,12–16] and fermionic [17–27]
modes when their subsystems are in noninertial frames, en-
tanglement near black holes [28–33], entanglement in the
expanding universe [34–38], relativistic quantum metrol-
ogy [39–42], quantum discord in relativistic states [11,43],
relativistic quantum teleportation [44–46], the relativistic
quantum speed limit [47–49], etc.

There has been considerable interest in using entropic
measures to characterize separability in composite quantum
systems in the inertial frame [50–55]. For pure states, the
separability criteria using von Neumann conditional entropy
suggest that nonseparable quantum systems are more disor-
dered locally than globally [56]. In the case of mixed states,
the generalized entropic measures have been introduced to
better understand and explore valuable quantum informa-
tion properties [57–61]. The two prominent families of these
generalized entropies are the Tsallis q entropy [62,63] and
α-Rényi entropy [64], which reduce to the von Neumann en-
tropy as q approaches 1. Their positive values help distinguish
between global and local disorder in mixed states.

To study the separability of quantum states with an acceler-
ating qubit, we use a generalized form of conditional entropy

called the Abe-Rajagopal (AR) q-conditional entropy, derived
from the Tsallis q entropy [65,66]. The AR q-conditional
entropy depends on the global versus local spectra of the
composite quantum system and it assumes a negative value
for nonseparable states. However, AR q-conditional entropic
characterization is not always a necessary and sufficient con-
dition for separability. Notwithstanding, it can offer stricter
limitations on separability compared to traditional methods
like the von Neumann conditional entropy [67]. Further, a
negative AR q-conditional entropy indicates that the com-
posite quantum state is distillable, as it implies a violation
of the reduction criterion [68]. Previously, this conditional
entropy was applied to study the separability in a single pa-
rameter family of mixed multiqubit states [67] and Gaussian
states [69]. Here we use the AR q-conditional entropy to char-
acterize the nonseparability of several multipartite quantum
states in the inertial-noninertial bipartition.

We initially consider a generalized pure two-qubit
Greenberger-Horne-Zeilinger (GHZ) state with one of its
qubits under acceleration and characterize its nonseparability
in the inertial-noninertial bipartition with respect to system
parameters, acceleration of the qubit, and the parameter q.
Since the characterization of nonseparability using the AR
q-conditional entropy uses all the eigenvalues of the state
and corresponding subsystem, we introduce an eigenvalue
truncation procedure to handle the infinite eigenvalues in such
systems numerically. Subsequently, we will extend our non-
separability characterization to the pure multiqubit GHZ and
W states. Later, we will explore the nonseparability in mixed
states generated by mixing a global noise with the above
pure multiqubit GHZ and W states. Since these accelerated
mixed states and their subsystems do not possess a block
structure to obtain their eigenvalues analytically, we intro-
duce a density-matrix truncation procedure to evaluate the AR
q-conditional entropy numerically. We derive conditions for
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separability in these mixed multiqubit states, which depend
on their mixing parameter, the acceleration of the qubit, and
the number of qubits in the multiqubit state in the asymptotic
limit of the parameter q. The findings on the nonseparability
conditions for the mixed multiqubit states reveal significant
insights when compared with the entanglement measure of
logarithmic negativity. The AR q-conditional entropy imposes
a more stringent condition for nonseparability than logarith-
mic negativity in single-qubit-accelerated multiqubit mixed
states. However, both measures are equivalent for single-
qubit-accelerated pure multiqubit states, a crucial observation
in the study of nonseparability measures.

This paper is structured as follows. In Sec. II we describe
the bosonic quantum system in a noninertial frame. In Sec. III
we succinctly describe the quantification of nonseparability
using the AR q-conditional entropy in an arbitrary bipar-
tite quantum system. In Sec. IV the nonseparability of pure
multiqubit GHZ and W states with one of its qubits being
accelerated using the AR q-conditional entropy is character-
ized with respect to acceleration, the parameter q, and the
number of qubits in the system. In Sec. V we give a detailed
account of obtaining the nonseparability of mixed multiqubit
states obtained by adding a global noise to the pure states
considered in Sec. IV. Also, the strongest condition for sep-
arability for these states is identified in the asymptotic limit
of q. A comparison of separability criteria obtained from AR
q-conditional entropy and logarithmic negativity is presented
in Sec. VI. In Sec. VII we present a summary and discuss
prospects for future work.

II. RELATIVISTICALLY ACCELERATED
QUANTUM STATE

Consider an arbitrary two-qubit state ρAB in an inertial
frame shared between the two observers Alice and Bob. When
Bob undergoes a relativistic acceleration, henceforth called
Rob (relativistically accelerated Bob), his qubit experiences a
different space-time around it. While Minkowski coordinates
are commonly employed to depict the qubits in the inertial
frames, they are unsuitable for describing the motion of an
accelerated qubit. In noninertial frames, Rindler coordinates
are more appropriate for describing the accelerating qubits.
The schematic representation of the Rindler space-time is
provided in Fig. 1. The Rindler space-time is divided into two
distinct regions, region I (pink shade) and region II (green
shade), containing all points mapped from the Minkowski
coordinates. Using Bogoliubov transformations, the vacuum
state and the single excited state in Minkowski coordinates
will individually take the form of a two-mode squeezed state
in Rindler space-time [9,44], i.e.,

|0k〉M = 1

cosh r

∞∑
n=0

tanhn r |nk〉I ⊗ |nk〉II (1)

and

|1k〉M = 1

cosh2 r

∞∑
n=0

tanhn r
√

n + 1 |(n + 1)k〉I ⊗ |nk〉II ,

(2)

FIG. 1. Schematic representation of Rindler space-time [44],
where t is the proper time, and x = const is the trajectory of a qubit
with constant acceleration. The pink-shaded region to the right of the
vertical axis denotes region I and the green-shaded region to the left
of the vertical axis denotes region II of Rindler space-time.

respectively. Here |nk〉I and |nk〉II are the number states of
the kth mode in regions I and II of the Rindler space-time,
respectively. The right-hand sides of Eqs. (1) and (2) cor-
respond to a two-mode squeezed state, with the squeezing
parameter r being related to the acceleration a of Rob’s qubit
as cosh r = (1 − e−2π |k|c/a)−1/2. Here c is the speed of light in
a vacuum.

A composite state shared between Alice and Bob in the
inertial frame ρAB transforms as ρARIRII when Bob’s qubit is
accelerated. However, the qubit moving in one of the regions
of the Rindler space-time cannot travel into the other region
as they are causally disconnected. Without any loss of gen-
erality, one can trace out the modes of region II (RII) of the
accelerating qubit. Since a part of the accelerating state has
been traced out, the final state between Alice A and Rob’s
modes in the region I (RI) is a mixed state and is in the
basis {|0〉M |n〉I , |0〉M |n + 1〉I , |1〉M |n〉I , |1〉M |n + 1〉I} with
n going from zero to ∞. Henceforth, we will drop all the
subscripts M and I in the inertial basis {|0〉 , |1〉} as well as
accelerating qubit’s basis {|n〉 , |n + 1〉} and denote the resul-
tant mixed state of Alice and Rob’s mode in the region I by
ρAR and Rob’s subsystem by ρR.

III. ABE-RAJAGOPAL q-CONDITIONAL ENTROPY

The Tsallis q entropy gives a nonextensive generaliza-
tion of Shannon entropy [62,63], which is always positive
and adheres to the nonadditivity relationship for the bi-
partite state ρXY , i.e., ST

q (ρXY ) = ST
q (ρX ) + ST

q (ρY ) + (1 −
q)ST

q (ρX )ST
q (ρY ), where ST

q (ρ) is given by

ST
q (ρ) = Tr(ρq) − 1

1 − q
. (3)
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Here Tr denotes the trace of the corresponding density matrix.
However, this nonadditivity condition is violated by the state
ρXY when subsystems X and Y exhibit long-range interac-
tions, such as entanglement, which persists even when they
are spatially separated by a long distance. To address this, a
conditional form of Tsallis q entropy was introduced by Abe
and Rajagopal [65], called the Abe-Rajagopal q-conditional
entropy, and is defined as

Sq(X |Y ) = ST
q (ρXY ) − ST

q (ρY )

1 + (1 − q)ST
q (ρY )

, (4)

where ST
q (ρXY ) and ST

q (ρY ) denote the Tsallis q entropies as-
sociated with the composite system ρXY and its subsystem ρY .
The computable form of this conditional entropy for any X -Y
bipartition in a multiqubit state can be obtained by plugging
Eq. (3) in Eq. (4) and is given by

Sq(X |Y ) = 1

q − 1

(
1 − Tr

(
ρ

q
XY

)
Tr

[
ρ

q
Y

]
)

= 1

q − 1

(
1 −

∑
n λ

q
n(ρXY )∑

m λ
q
m(ρY )

)
, (5)

where λn and λm are the eigenvalues of the whole system ρXY

and one of its subsystem ρY , respectively. This conditional
entropy adheres to the nonadditivity relation: ST

q (ρXY ) =
Sq(X |Y ) + ST

q (ρY ) + (1 − q)Sq(X |Y )ST
q (ρY ). The AR q-

conditional entropy yields negative values for the nonsepara-
ble states and hence the positivity of the AR q-conditional
entropy forms a criterion for capturing the separability in
bipartite states. From here on, we represent Sq(X |Y ) and
Sq(X |Y ) as the AR q-conditional entropy for pure ρXY and
mixed �XY states with one of their qubit being accelerated,
respectively.

IV. PURE MULTIQUBIT STATES WITH AN
ACCELERATING QUBIT

In this section we consider pure multiqubit GHZ and W
states with an accelerated qubit and characterize their nonsep-
arability in the inertial-noninertial bipartition using the AR
q-conditional entropy given in Eq. (5) with respect to their
system parameters, the parameter q, and acceleration of the
qubit in the noninertial frame.

A. Pure multiqubit GHZ states

1. Generalized pure two-qubit GHZ state

A generalized pure two-qubit GHZ state shared between
Alice and Bob in the inertial frame is given by

|GHZ2〉 = cos θ |00〉 + sin θ |11〉 , cos2 θ + sin2 θ = 1,

(6)
which belongs to the Hilbert space HA ⊗ HB. Let Bob’s qubit
be relativistically accelerated with respect to Alice’s qubit,
and the resulting composite state ρ

GHZ2
ARIRII

is obtained by using
the transformations of |0〉 and |1〉 from Minkowski space-time
to Rindler space-time as given in Eqs. (1) and (2). We now
obtain the marginal mixed density matrix between Alice and
Rob’s modes in region I, by following the recipe given in

Sec. II, as

ρ
GHZ2
AR = 1

cosh2 r

∑
n

tanh2n r

(
cos2 θ |0n〉 〈0n| + n + 1

cosh2 r

× sin2 θ |1n + 1〉 〈1n + 1| +
√

n + 1

cosh r

× cos θ sin θ (|1n + 1〉 〈0n| + |0n〉 〈1n + 1|)
)

. (7)

The structure of this density matrix contains 2 × 2 blocks
along the diagonal, with the remaining off-diagonal elements
being zero, and is given by

ρ
GHZ2
AR = 1

cosh2 r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
�0

�1
. . .

�n
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where

�n
(
ρ

GHZ2
AR

) = tanh2n r

(
cos2 θ αn cos θ sin θ

αn cos θ sin θ α2
n sin2 θ

)
, (9)

with αn =
√

n+1
cosh r . The eigenvalues of this nth block of the state

ρ
GHZ2
AR are 0 and

	n = tanh2n r

cosh2 r

(
cos2 θ + n + 1

cosh2 r
sin2 θ

)
. (10)

Therefore, Tr(ρGHZ2
AR ) = ∑∞

n=0 	n = 1.
The marginal density matrix ρ

GHZ2
R corresponding to the

modes of Rob in region I of Rindler space-time is computed
by tracing out Alice’s subsystem A, i.e., ρ

GHZ2
R = TrA(ρGHZ2

AR ),
and is given by

ρ
GHZ2
R = 1

cosh2 r

∞∑
m=0

tanh2m r

(
cos2 θ |m〉 〈m|

+ m + 1

cosh2 r
sin2 θ |m + 1〉 〈m + 1|

)
. (11)

This is an infinite-dimensional diagonal matrix whose mth
eigenvalue is given by

	m = tanh2m r

cosh2 r

(
cos2 θ + m

sinh2 r
sin2 θ

)
. (12)

Here Tr(ρGHZ2
R ) = ∑∞

m=0 	m = 1.
To characterize the nonseparability of the state ρ

GHZ2
AR given

in Eq. (7), we substitute the eigenvalues 	n of ρ
GHZ2
AR [see

Eq. (10)] and 	m of ρ
GHZ2
R [see Eq. (12)] in the AR q-

conditional entropy given in Eq. (5) to obtain

SGHZ2
q (A|R)

= 1

q − 1

(
1−

∑∞
n=0

[
tanh2n r

(
cos2 θ+ sin2 θ n+1

cosh2 r

)]q∑∞
m=0

[
tanh2m r

(
cos2 θ+ sin2 θ m

sinh2 r

)]q

)
.

(13)
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FIG. 2. (a) Variation of the Abe-Rajagopal q-conditional entropy as a nonseparability feature of a single-qubit-accelerated generalized
pure two-qubit GHZ state as a function of cos2 θ and λ for the parameter q = 2 and 4. The upper blue solid mesh corresponds to q = 2 and
the lower red solid mesh corresponds to q = 4. The SGHZ2

q (A|R) is negative everywhere, implying that the state is nonseparable. For this plot,
we have chosen 100 values each of cos2 θ and λ to create the surface, and the meshes are drawn for representation purposes. (b) Variation of
the AR q-conditional entropy of the pure two-qubit GHZ state with θ = π/4 as a function of λ for different values of the parameter q.

The negative values of this AR q-conditional entropy
SGHZ2

q (A|R) characterize the nonseparability between Alice’s
qubit and Rob’s mode in region I of the Rindler space-time.
As the above expression contains summations running up to
infinity, we have to evaluate SGHZ2

q (A|R) numerically to study
its behaviors with respect to the state parameter, the accelera-
tion parameter r, and the parameter q.

Eigenvalue truncation procedure. To numerically compute
this conditional entropy, we make use of the fact that the
sum of the nonzero eigenvalues of ρ

GHZ2
AR and ρ

GHZ2
R tends

to 1 as their respective numbers of eigenvalues n and m ap-
proach infinity. We achieve this numerically by fixing a large
value of n � k and m � k such that the sum of k eigenvalues
approaches 1. By inspection, we find that this is satisfied
for both states ρ

GHZ2
AR and ρ

GHZ2
R when k ≈ 104. Now, us-

ing these k eigenvalues of ρ
GHZ2
AR and ρ

GHZ2
R , we numerically

compute the AR q-conditional entropy given in Eq. (13) and
characterize the nonseparability of the state in Eq. (7) with
respect to the parameter q, the state parameter θ , and Rob’s
acceleration r.

We now introduce the modified acceleration parameter
λ = tanh r, which carries all the characteristics of Rob’s ac-
celeration r, i.e., we use λ ∈ (0, 1) instead of r ∈ (0,∞). For
simplicity, we call λ Rob’s acceleration. The AR q-conditional
entropy for the state given in Eq. (7) is then plotted as a
function of its state parameter θ and acceleration of Rob’s
λ in Fig. 2(a) for q = 2 (upper blue surface) and 4 (lower
red surface). We observe that SGHZ2

q (A|R) always remains
less than zero, implying that the state remains nonsepara-
ble for any values of λ and θ . A higher negative value of
the AR q-conditional entropy implies higher nonseparability;
however, this does not necessarily imply a higher entangle-
ment in mixed states. Note that SGHZ2

q (A|R) attains maximum

nonseparability at θ = π/4, irrespective of the parameter q.
When θ = π/4, Eq. (6) corresponds to a maximally entangled
two-qubit Bell state in an inertial frame. Hence, in Fig. 2(b)
we plot the characterization of SGHZ2

q (A|R) for the state ρ
GHZ2
AR ,

given in Eq. (7), with the initial state chosen as the Bell state,
with respect to λ for various values of q. We observe that,
irrespective of the value of q, the nonseparability of ρ

GHZ2
AR

will be high at lower values of acceleration and decreases
with the increase in acceleration; in particular, SGHZ2

q (A|R)
tends to 0 as λ approaches 1. As the value of q increases, the
AR q-conditional entropy suggests that the state ρ

GHZ2
AR may

transition towards separability in the limit λ → 1. However,
SGHZ2

q (A|R) approaching 0 becomes steeper at large values of
both acceleration λ and the parameter q.

2. Generalized pure three-qubit GHZ state

Let us consider a generalized pure three-qubit GHZ state
given by

|GHZ3〉 = cos θ |000〉 + sin θ |111〉 , cos2 θ + sin2 θ = 1,

(14)

shared between Alice and Bob, with the first two of its qubits
in Alice’s possession while the remaining qubit is in Bob’s
possession, i.e., they belong to the HA1 ⊗ HA2 ⊗ HB Hilbert
space. By accelerating Bob’s qubit, we study the nonsepara-
bility between inertial Alice’s two qubits and Rob’s modes
in region I of Rindler space-time by exploring the AR q-
conditional entropy. Using the recipe given in Sec. II, we get
the composite state of the inertial A1A2 and noninertial R as
ρ

GHZ3
A1A2RIRII

, and the state ρ
GHZ3
A1A2R as the mixed subsystem after

tracing out the modes of Rob’s qubit in region II. The density
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matrix of ρ
GHZ3
A1A2R is given by

ρ
GHZ3
A1A2R = 1

cosh2 r

∞∑
n=0

tanh2n r

(
cos2 θ |00n〉 〈00n|

+
√

n + 1

cosh r
cos θ sin θ (|00n〉 〈11n + 1|

+ |11n + 1〉 〈00n|)

+ n + 1

cosh2 r
sin2 θ |11n + 1〉 〈11n + 1|

)
. (15)

Generally, there are two independent q-conditional entropies
associated with arbitrary three-qubit states [58], which are
given by

Sq(AB|C) = ST
q (ρABC ) − ST

q (ρC )

1 + (1 − q)ST
q (ρC )

(16)

and

Sq(A|BC) = ST
q (ρABC ) − ST

q (ρBC )

1 + (1 − q)ST
q (ρBC )

, (17)

where ST
q (ρi ) is the Tsallis q entropy of any state ρi. Since

one of the qubits in the shared initial state is accelerating in
a noninertial frame, a simultaneous measurement cannot be
performed on the inertial and the noninertial qubits together.
Hence, we choose the conditional entropy such that inertial
Alice’s qubits A1 and A2 are conditioned on noninertial Rob’s
modes R. Therefore, we proceed to investigate the separability
using the AR q-conditional entropy SGHZ3

q (A1A2|R) in the

A1A2-R bipartition for the state ρ
GHZ3
A1A2R given in Eq. (15).

To get the eigenvalues of the states ρ
GHZ3
A1A2R and ρ

GHZ3
R to

evaluate SGHZ3
q (A1A2|R), we make use of the fact that their

density matrices have the same nonzero eigenvalues as those
of ρ

GHZ2
AR and ρ

GHZ2
R , respectively. Hence, the behavior of

SGHZ3
q (A1A2|R) with respect to the state parameter θ , accel-

eration λ, and q is exactly the same as the behavior of the
AR q-conditional entropy for the pure two-qubit GHZ state
with one of its qubit in acceleration SGHZ2

q (A|R) as given in
Figs. 2(a) and 2(b). For logistical reasons, which will be clear
later, we now study the nonseparability of the pure N-qubit
GHZ state instead of the generalized N-qubit GHZ state.

3. Pure N-qubit GHZ state

Here we generalize the characterization of the nonsepara-
bility of the pure GHZ states to the N-qubit GHZ state when
one of its qubits is accelerated using the AR q-conditional
entropy. Then the pure N-qubit GHZ state is given by

|GHZN 〉 = |0〉⊗N + |1〉⊗N

√
2

, (18)

belonging to Hilbert space HA1 ⊗ HA2 ⊗ · · · ⊗ HAN−1 ⊗ HB,
i.e., the first N − 1 qubits are with Alice and the last qubit
is in Bob’s possession. The choice of the qubit, among pure
N-qubit GHZ states, to be accelerated does not change the
study of nonseparability among the inertial and noninertial
qubits as the density-matrix structure of the composite state
and its subsystem remain the same. When Bob accelerates,

the resulting composite state of inertial Alice and noninertial
Rob, denoted by ρ

GHZN
A1A2···AN−1RIRII

, is obtained by using the trans-
formations from Minkowski to Rindler space-time given in
Eqs. (1) and (2). Then ρ

GHZN
A1A2···AN−1R, after tracing out one of the

disjoint regions in Rindler space-time (region II), is given by

ρ
GHZN
A1A2···AN−1R = 1

2 cosh2 r

∞∑
n=0

tanh2n r

(
|00 · · · 0n〉 〈00 · · · 0n|

+
√

n + 1

cosh r
(|00 · · · 0n〉 〈11 · · · 1n + 1|

+ |11 · · · 1n + 1〉 〈00 · · · 0n|)

+ n + 1

cosh2 r
|11 · · · 1n + 1〉 〈11 · · · 1n + 1|

)
.

(19)

Rob’s subsystem ρ
GHZN
R is equivalent to Eq. (11) with θ =

π/4. These two density matrices have the same nonzero
eigenvalues as those of ρ

GHZ2
AR and ρ

GHZ2
R given in Eqs. (10)

and (12) with θ = π/4. Therefore, the behavior of the AR
q-conditional entropy remains the same with respect to λ for
various values of q as seen in Fig. 2(b). Increasing the number
of qubits in the inertial frame does not affect the nonsepara-
bility behavior of the pure N-qubit GHZ state when any of its
qubits is accelerated.

Hence, we can conclude that the pure multiqubit GHZ
state with one of its qubits under acceleration always remains
nonseparable throughout the range of λ and for any choice
of q. The states are more nonseparable when the acceleration
is low, and the nonseparability reduces as the acceleration
increases, irrespective of the value of the parameter q. The
nonseparability of the state in Eq. (19) approaching 0 becomes
steeper for large values of λ and q.

B. Pure multiqubit W states

1. Generalized pure two-qubit W state

A generalized pure two-qubit state |W2〉 shared between
Alice and Bob in the inertial frame is given by

|W2〉 = cos θ |01〉 + sin θ |10〉 , cos2 θ + sin2 θ = 1. (20)

If we let Bob’s qubit be relativistically accelerated with re-
spect to Alice’s qubit, the resulting composite state is ρ

W2
ARIRII

.

Then the mixed density matrix ρ
W2
AR, by following the recipe

given in Sec. II, is given by

ρ
W2
AR = 1

cosh2 r

∑
n

tanh2n r

(
n + 1

cosh2 r
cos2 θ |0n + 1〉 〈0n + 1|

+ sin2 θ |1n〉 〈1n| +
√

n + 1

cosh r
cos θ sin θ (|0n + 1〉

× 〈1n| + |1n〉 〈0n + 1|)
)

. (21)

The structure of this state ρ
W2
AR is made up of 2 × 2 blocks

along the diagonal, with the remaining off-diagonal elements
being zero. This structure is the same as Eq. (8) but with the
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nonzero blocks given by

�n
(
ρ

W2
AR

) = tanh2n r

(
α2

n cos2 θ αn cos θ sin θ

αn cos θ sin θ sin2 θ

)
. (22)

Here αn =
√

n+1
cosh r . The eigenvalues of this nth block of the state

ρ
W2
AR are 0 and

	′
n = tanh2n r

cosh2 r

(
sin2 θ + n + 1

cosh2 r
cos2 θ

)
, (23)

satisfying Tr(ρW2
AR ) = ∑∞

n=0 	′
n = 1.

The marginal density matrix ρ
W2
R is computed by tracing

out the other subsystem A and is given by

ρ
W2
R = 1

cosh2 r

∞∑
m=0

tanh2m r

(
sin2 θ |m〉 〈m|

+ m + 1

cosh2 r
cos2 θ |m + 1〉 〈m + 1|

)
. (24)

This is an infinite-dimensional diagonal matrix whose mth
eigenvalue is given by

	′
m = tanh2m r

cosh2 r

(
sin2 θ + m

sinh2 r
cos2 θ

)
, (25)

where Tr(ρW2
R ) = ∑∞

m=0 	′
m = 1.

To characterize the nonseparability of the state of inertial
Alice and noninertial Rob given in Eq. (21), we substitute the
eigenvalues 	′

n of ρ
W2
AR and 	′

m of ρ
W2
R in the AR q-conditional

entropy given in Eq. (5) to obtain

SW2
q (A|R)

= 1

q − 1

(
1−

∑∞
n=0

[
tanh2n r

(
sin2 θ+ cos2 θ n+1

cosh2 r

)]q∑∞
m=0

[
tanh2m r

(
sin2 θ+ cos2 θ m

sinh2 r

)]q

)
.

(26)

Using the eigenvalue truncation procedure introduced ear-
lier, we choose a sufficiently large k � 104 and numerically
compute the AR q-conditional entropy given in Eq. (26) and
characterize the same with respect to the parameter q, the
state parameter θ , and Rob’s acceleration λ. The SW2

q (A|R)
always remains less than zero, implying that the state remains
nonseparable for any values of λ, θ , and q. We observe that,
irrespective of the value of q, the nonseparability of ρ

W2
AR

will be high at lower values of acceleration and decreases
with the increase in acceleration. When θ = π/4, Eq. (20)
corresponds to a two-qubit Bell state in an inertial frame and
the corresponding SW2

q (A|R) attains maximum nonseparability
irrespective of the parameter q. These observations are similar
to that of the two-qubit GHZ state given in Eq. (7), except
the variation with respect to cos2 θ in Fig. 2(a) is shifted in
the case of ρ

W2
AR. The characterization of SW2

q (A|R) for ρ
W2
AR in

Eq. (21) with the initial state being the Bell state, with respect
to λ for various values of q, is the same as that given in
Fig. 2(b).

2. Generalized pure three-qubit W state

A generalized pure three-qubit W state, shared between
Alice and Bob, is given by

|W3〉 = sin θ cos φ |001〉 + sin θ sin φ |010〉 + cos θ |100〉 .

(27)
Let x = sin θ cos φ, y = sin θ sin φ, and z = cos θ , giving
x2 + y2 + z2 = 1, which normalizes the given state for any θ

and φ. Consider a scenario where the first two qubits belong
to Alice, and Bob holds the third qubit. Subsequently, as Bob
undergoes uniform acceleration (Rob) relative to Alice in an
inertial frame, it gives rise to the composite state ρ

W3
A1A2RIRII

.
The final mixed state after tracing out Rob’s mode in region II
is expressed as

ρ
W3
A1A2R = 1

cosh2 r

∞∑
n=0

tanh2n r
[
α2

nx2 |00n + 1〉 〈00n + 1|

+ xzαn(|00n + 1〉 〈10n| + |10n〉 〈00n + 1|)
+ xyαn(|00n + 1〉 〈01n| + |01n〉 〈00n + 1|)
+ z2 |10n〉 〈10n| + y2 |01n〉 〈01n|
+ yz(|10n〉 〈01n| + |01n〉 〈10n|)]. (28)

The density matrix of this state ρ
W3
A1A2R assumes a block struc-

ture along the diagonal as given in Eq. (8) and the remaining
off-diagonal elements are zero. However, here the diagonal
blocks are given by

�n
(
ρ

W3
A1A2R

) = tanh2n r

⎛
⎜⎜⎝

y2 yz 0 xyαn

yz z2 0 xzαn

0 0 0 0
xyαn xzαn 0 x2α2

n

⎞
⎟⎟⎠. (29)

The nonzero eigenvalue of this nth block of the state ρ
W3
A1A2R is

given by

δn = tanh2n r

cosh2 r

(
1 + n + 1 − cosh2 r

cosh2 r
x2

)
. (30)

The reduced density matrix ρ
W3
R corresponding to the modes

of Rob in region I of the Rindler space-time is an infinite-
dimensional diagonal matrix, with δm as its diagonal elements.
Then the mth eigenvalue of ρ

W3
R is given by

δm = tanh2m r

cosh2 r

(
1 + m − sinh2 r

sinh2 r
x2

)
. (31)

To characterize the nonseparability in the state ρ
W3
A1A2R given

in Eq. (28), we substitute these eigenvalues δn and δm in the
expression for the AR q-conditional entropy for the A1A2-R
bipartition to obtain

SW3
q (A1A2|R)

= 1

q − 1

(
1 −

∑∞
n=0

[
tanh2n r

(
1 + n+1−cosh2 r

cosh2 r
x2

)]q

∑∞
m=0

[
tanh2m r

(
1 + n−sinh2 r

sinh2 r
x2

)]q

)
.

(32)

We are considering the nonseparability in the inertial-
noninertial bipartition, as simultaneous measurements cannot
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FIG. 3. Variation of the AR q-conditional entropy for the pure
three-qubit W state as a function of the acceleration parameter λ for
various values of q, with θ = cos−1(1/

√
3) and φ = π/4.

be done in the other possible partitions. To compute this con-
ditional entropy numerically, we use the eigenvalue truncation
procedure and get k � 104. Now, using these k eigenval-
ues of ρ

W3
A1A2R and ρ

W3
R , we numerically compute the AR

q-conditional entropy in Eq. (32) and characterize the same
with respect to its state parameters θ and φ, acceleration λ, and
parameter q.

We observe that SW3
q (A1A2|R) consistently remains below

zero, suggesting the nonseparability of the state for the en-
tire range of system parameters, the acceleration λ, and the
parameter q. The maximum nonseparability for the general-
ized pure three-qubit W state occurs for θ and φ such that
sin θ cos φ = 1/

√
2. Moreover, to understand the behavior of

SW3
q (A1A2|R) with respect to the other numerous parameters

involved, we choose a pure three-qubit W state with equal
coefficients, i.e., with state parameters θ = cos−1(1/

√
3) and

φ = π/4. Subsequently, the AR q-conditional entropy for this
state is plotted as a function of the acceleration parameter λ in
Fig. 3 for various values of q.

When Rob’s acceleration is low, the nonseparability of the
state ρ

W3
A1A2R is most pronounced, as indicated by the minimum

of SW3
q (A1A2|R). However, with increasing acceleration, the

conditional entropy increases and approaches 0 as λ tends to
1, for all values of q. As q increases, SW3

q (A1A2|R) becomes
more negative for low λ but converges to 0 as λ tends to 1.
Although the choices of θ and φ are not unique, the behavior
of SW3

q (A1A2|R) with respect to λ will follow the same trend.
However, these values of conditional entropy are higher than
the corresponding conditional entropy for the generalized pure
three-qubit GHZ state with one of its qubits in acceleration,
hence indicating generalized pure three-qubit W states hav-
ing weaker nonseparability than generalized pure three-qubit
GHZ states with one of its qubits being accelerated. Similar to
the case of pure multiqubit GHZ states, we only consider the
pure N-qubit W state instead of the generalized pure N-qubit
W state.

3. Pure N-qubit W state

A pure N-qubit W state, shared between Alice and Bob, is
given by

|WN 〉 = |00 · · · 01〉 + |00 · · · 10〉 + · · · + |10 · · · 00〉√
N

, (33)

where the first N − 1 qubits are with Alice while the last qubit
is in Bob’s possession. Here we again consider only the pure
N-qubit W state instead of the generalized N-qubit W state for
logistical reasons. The final Alice-Rob state, after accelerating
Bob’s qubit and tracing out the second Rindler region of Rob’s
space-time using the recipe given in Sec. II, is given by

ρ
WN
A1A2···AN−1R

= 1

N cosh2 r

∞∑
n=0

tanh2n r
{
α2

n |00 · · · 0n+ 1〉 〈00 · · · 0n+ 1|

+ (|00 · · · 1n〉 + · · · + |01 · · · 0n〉 + |10 · · · 0n〉)

× (〈00 · · · 1n| + · · · + 〈01 · · · 0n| + 〈10 · · · 0n|)
+ αn[|00 · · · 0n + 1〉 (〈00 · · · 1n| + · · · + 〈01 · · · 0n|
+ 〈10 · · · 0n|) + c.c.]

}
. (34)

Since one of the qubits is accelerating in a noninertial frame,
a simultaneous measurement cannot be done on the inertial
and the noninertial qubits together. Hence we continue our
investigation by choosing the A1A2 · · · AN−1–R bipartition to
calculate the AR q-conditional entropy SWN

q (A1A2 · · · AN−1|R).
This conditional entropy is evaluated explicitly for the state
given in Eq. (34), using the eigenvalues of the reduced system
ρ

WN
A1A2···AN−1R and its subsystem ρ

WN
R and is given by

SWN
q (A1A2 · · · An−1|R)

= 1

q − 1

(
1 −

∑∞
n=0

[
tanh2n r

(
N − 1 + n+1

cosh2 r

)]q∑∞
m=0

[
tanh2m r

(
N − 1 + m

sinh2 r

)]q

)
.

(35)

This conditional entropy SWN
q (A1A2 · · · An−1|R) can be nu-

merically computed for various values of N , λ, and q using
the eigenvalue truncation procedure given previously. With
k � 104, the SWN

q (A1A2 · · · An−1|R) is found to be again non-
separable throughout the ranges of the system parameters,
acceleration λ, and q. The conditional entropy is plotted for
various values of N and λ for q = 2 in Fig. 4. We observe
that irrespective of N , the nonseparability of ρ

WN
A1A2···AN−1R is

high at lower values of acceleration and decreases with the
increase in acceleration as SWN

q (A1A2 · · · An−1|R) tends to 0
when λ reaches 1. However, as N increases, the variation of
SWN

q (A1A2 · · · An−1|R) with respect to λ becomes less steep.
Hence, we can conclude that the nonseparability of the state
ρ

WN
A1A2···AN−1R is reduced as the number of qubits in the inertial

subsystem increases. This observation remains true for all
values of the parameter q.

To summarize, all the pure multiqubit GHZ and W states
with one of its qubits under acceleration will remain non-
separable in the inertial-noninertial bipartition throughout the
ranges of its state parameters, the parameter q, and accelera-
tion λ. The states are highly nonseparable at low acceleration
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FIG. 4. Variation of the AR q-conditional entropy of the pure N-
qubit W state as a function of the acceleration λ for different values
of N , with q = 2.

λ and tend towards separability at very high acceleration of λ

tending to 1. Moreover, with one of its qubits under acceler-
ation, the nonseparability of the pure multiqubit GHZ and W
states becomes steeper while approaching 0 at large values
of acceleration λ and the parameter q. The nonseparability
of the pure N-qubit GHZ state with one of its qubits being
accelerated is independent of the number of qubits N , while
for the pure N-qubit W state, the nonseparability decreases
with an increase in the number of qubits. Consequently, the
pure N-qubit W state with one of its qubits under acceleration
has weaker nonseparability than the pure N-qubit GHZ state
with one of its qubits under acceleration.

V. MIXED MULTIQUBIT STATES WITH AN
ACCELERATING QUBIT

In this section we introduce a global noise to all the pure
states considered in Sec. IV when they have equal probability
in their superposed states and study the nonseparability of
resultant mixed states when one of its qubits is accelerated,
using the AR q-conditional entropy. The nonseparability of
the mixed states with an accelerating qubit thus obtained is
characterized with respect to the parameter q, acceleration
parameter λ, and mixing parameter p.

A. Mixed multiqubit GHZ states

1. Mixed two-qubit GHZ state

A mixed two-qubit GHZ state shared between Alice and
Bob, obtained by adding a global noise to the pure two-qubit
GHZ state, is given by

�
GHZ2
AB = p

4
Id + (1 − p) |ψAB〉 〈ψAB| , (36)

where |ψAB〉 = (|00〉 + |11〉)/
√

2, Id is the 4 × 4 identity ma-
trix, and p is the global noise or the mixing parameter. Note
that p is a parameter in the range [0, 1]; p = 0 denotes the
pure two-qubit GHZ state and p = 1 denotes the maximally
mixed two-qubit GHZ state. Let us consider that Bob is
now relativistically accelerating with respect to Alice and the

resulting composite state is �
GHZ2
ARIRII

. We now obtain the reduced
state of Alice and Rob in region I by tracing out Rob’s mode
in region II, using the recipe given in Sec. II, as

�
GHZ2
AR = 1

cosh2 r

∞∑
n=0

tanh2n r

×
[

2 − p

4

(
|0n〉 〈0n| + n + 1

cosh2 r
|1n + 1〉 〈1n + 1|

)

+ p

4

(
|1n〉 〈1n| + n + 1

cosh2 r
|0n + 1〉 〈0n + 1|

)

+ 1 − p

2

√
n + 1

cosh r
(|0n〉 〈1n + 1| + |1n + 1〉 〈0n|)

]
.

(37)

Rob’s subsystem in region I, by tracing out Alice’s qubit, is
given by

�
GHZ2
R = 1

2 cosh2 r

∞∑
n=0

tanh2n r

×
(

|n〉 〈n| + n + 1

cosh2 r
|n + 1〉 〈n + 1|

)
. (38)

These infinite-dimensional density matrices do not possess
a block-diagonal structure; hence, arriving at the analytical
form for their eigenvalues is not straightforward and one
has to resort to numerical techniques. Below, we describe a
procedure for obtaining the eigenvalues of these two density
matrices to evaluate the AR q-conditional entropy.

Density-matrix truncation procedure. To numerically com-
pute the AR q-conditional entropy, we make use of the fact
that the sum of the eigenvalues of �

GHZ2
AR and �

GHZ2
R tends to 1

as n and m approach infinity, respectively. However, unlike the
case of pure states, we do not have the analytical expression
for S W2

q (A|R) in terms of the eigenvalues of �
GHZ2
AR and �

GHZ2
R .

Therefore, we use the numerical technique in which the matrix
dimension of infinity is approximated to an agreeable finite
dimension l × l of the density matrix such that Tr(�GHZ2

AR )
approaches 1. For the density matrix given in Eq. (37), the
dimension of �

GHZ2
AR for which Tr(�GHZ2

AR ) approaches 1 is
found to be around l ≈ 103. Similarly, eigenvalues are also
obtained for Rob’s subsystem in region I, �

GHZ2
R , by limiting

its dimension to finite l × l such that Tr(�GHZ2
R ) approaches 1.

Now the AR q-conditional entropy is numerically com-
puted for the state given in Eq. (37) using the density-matrix
truncation procedure described above, for various values of
Rob’s acceleration λ, the mixing parameter p, and the parame-
ter q. The AR q-conditional entropy for the initial mixed state
whose subsystem is accelerated is given by S GHZ2

q (A|R). It
is plotted as a function of the acceleration λ and parameter
p in Fig. 5(a) for q = 2. We can observe that in the plot
of S GHZ2

q (A|R) for the state given in Eq. (37), there exist
regions of both separability (red shades) and nonseparabil-
ity (blue shades) depending on the choices of λ and p. The
S GHZ2

q (A|R) = 0 (black dotted) curve indicates the transition

of �
GHZ2
AR from nonseparability to separability and it depends

on values of λ and p. The whole transition curve shifts towards
the right as q increases, indicating that with an increase in the
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FIG. 5. (a) Variation of the Abe-Rajagopal q-conditional entropy of a single-qubit-accelerated mixed two-qubit GHZ state as a function
of p and λ for q = 2. The black solid line corresponds to the transition from negative to positive AR q-conditional entropy. (b) Variation of
the mixing parameter p for which S GHZ2

q (A|R) = 0, with respect to q for the acceleration parameter λ. We can observe that the values of the
mixing parameter saturate as q → ∞ for a given acceleration λ. (c) Variation of the mixing parameter p for which S GHZ2

q (A|R) = 0, with
respect to the acceleration parameter λ for q = 150. The blue region denotes the region where the state remains nonseparable, while the red
region denotes the separability.

q value, the area of the nonseparability region with respect
to λ and p keeps increasing. As q is increased to large values,
say, 50 and above, the transition curve becomes saturated with
respect to λ and p as interpreted from Fig. 5(b). Hence, the
strongest condition for separability can be obtained in the
asymptotic limit of q tending to ∞ (q → ∞).

For the asymptotic limit of q → ∞, in Fig. 5(c) we plot the
transition point from nonseparability to separability obtained
numerically, i.e., S GHZ2

q (A|R) = 0 with respect to p and λ

(dashed curve). Note that the saturation occurs beyond q =
50, and we choose a reasonably high value of q = 150 to study
separability. The blue-shaded region denotes the nonsepara-
ble states, while the red-shaded region denotes the separable
states. These transition points for different acceleration can be
fitted to a curve of the form

(p/b)x + λy = 1. (39)

The choice of the function for the fitted curve is made using
the fact that the separability occurs at p = b when the accel-
eration λ = 0 and at p = 0 as the acceleration λ → 1. Hence,
the separability criterion for the state in Eq. (37), which relates
the mixing parameter p and Rob’s acceleration λ, is given by

p > 2
3 (1 − λ2.2)(1/2.05). (40)

When Rob’s acceleration λ = 0, the necessary and sufficient
condition for separability of this state occurs at p > 2

3 [70],

which is recovered from Eq. (40). As the acceleration in-
creases, the nonseparable region keeps decreasing, and the
nonseparability vanishes only at acceleration λ approaching 1.
Hence, Eq. (40) gives the strongest condition for separability
in the asymptotic limit of q for the mixed two-qubit GHZ state
with one of its qubits being accelerated.

2. Mixed N-qubit GHZ state

We add a global noise to the pure N-qubit GHZ state to
obtain a mixed N-qubit GHZ state, which is shared between
two parties Alice and Bob in the inertial frame, where Alice
has the first N − 1 qubits and Bob has the N th qubit in his
possession. This state is given by

�
GHZN
A1A2···AN−1B = p

2N
Id + (1 − p)

∣∣ψA1A2···AN−1B
〉 〈

ψA1A2···AN−1B

∣∣ ,
(41)

where |ψA1A2···AN−1B〉 = (|0〉⊗N + |1〉⊗N )/
√

2, Id is the 2N ×
2N identity matrix, and p is the mixing parameter. Let us now
consider that Bob is uniformly accelerating with respect to Al-
ice and the resulting state �

GHZN
A1A2···AN−1RIRII

is obtained by using
the transformations from Minkowski to Rindler space-time in
Eqs. (1) and (2). The final state �

GHZN
A1A2···AN−1R shared between

Alice and Rob’s mode in the region I is obtained using the
recipe given in Sec. II and is given by

�
GHZN
A1A2···AN−1R = 1

cosh2 r

∞∑
n=0

tanh2n r

(
2 − p

2N

[
(|00 · · · n〉 + |01 · · · n〉 + · · · + |11 · · · n〉)(〈00 · · · n| + 〈01 · · · n| + · · · + 〈11 · · · n|)

+ α2
n (|00 · · · n + 1〉 + |01 · · · n + 1〉 + · · · + |11 · · · n + 1〉)(〈00 · · · n + 1| + 〈01 · · · n + 1|

+ · · · + 〈11 · · · n + 1|)] + 1 − p

2

[ |00 · · · 0n〉 〈00 · · · 0n| + αn(|00 · · · 0n〉 〈11 · · · 1n + 1|

+ |11 · · · 1n + 1〉 〈00 · · · 0n|) + α2
n |11 · · · 1n + 1〉 〈11 · · · 1n + 1| ]). (42)
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FIG. 6. Variation of the nonseparable to separable transition points of the AR q-conditional entropy for the (a) mixed N-qubit GHZ state
and (b) mixed N-qubit W state, with one of its qubits in uniform acceleration, as a function of the acceleration parameter λ and mixing
parameter p for N = 3, 4, and 5. The fitted curves are shown by the colored solid lines.

Rob’s subsystem is obtained by tracing out inertial Alice’s
qubits, i.e.,

�
GHZN
R = TrA1A2···AN−1

(
�

GHZN
A1A2···AN−1R

)
.

Using the density-matrix truncation procedure given in the
preceding section, we can numerically obtain the AR q-
conditional entropy S GHZN

q (A1A2 · · · AN−1|R) in the inertial-
noninertial bipartition for any choice of N . For example, when
a mixed three-qubit GHZ state with one of its qubits under
acceleration is considered (see Sec. 1 in the Appendix), we
observe a transition from nonseparability to separability de-
pending on the values of acceleration λ, the parameter q, and
the mixing parameter p. In the asymptotic limit of q → ∞,
the transition from nonseparability to separability saturates to
a curve, which is fitted to the function given in Eq. (39). Then
the separability criterion for the state �

GHZ3
A1A2R [see Eq. (A2)], in

terms of the mixing parameter, is given as

p > 0.56(1 − λ2.47)(1/1.49). (43)

Here the separability occurs at p = 0.56 when the acceleration
λ = 0 and it reduces to p = 0 when λ = 1, indicating that
the region of nonseparability decreases with an increase in
acceleration for the three-qubit mixed GHZ state with one of
its qubits being accelerated.

A similar investigation is performed for mixed multiqubit
GHZ states with N = 4 and 5 when one of their qubits
is accelerated. The nonseparability to separability transition
with respect to λ and p in the asymptotic limit of q → ∞
is observed to be similar to the N = 3 case. To study the
impact of N on the nonseparability to separability transition,
we plot S GHZN

q (A1A2 · · · AN−1|R) = 0 with respect to p and
λ for N = 3, 4, and 5 in Fig. 6(a). The strongest condition
for separability obtained in the asymptotic limit of q → ∞
for these states is fitted to the family of curves in Eq. (39).
The nonseparability region of mixed N-qubit GHZ states with

one of its qubits under acceleration decreases as N increases.
The states tend to become separable for all choices of N as
the acceleration λ approaches 1. These separability conditions
for the different mixed N-qubit GHZ states with one of their
qubits being accelerated (N = 2, 3, 4, and 5) are consolidated
in Table I.

B. Mixed multiqubit W states

1. Mixed two-qubit W state

A mixed two-qubit state shared between Alice and Bob,
obtained by introducing a global noise to the pure two-qubit
W state, is given by

�
W2
AB = p

4
Id + (1 − p) |ψAB〉 〈ψAB| , (44)

where |ψAB〉 = (|01〉 + |10〉)/
√

2, Id is the 4 × 4 identity ma-
trix, and p is the mixing parameter. Let us consider that Bob is
now relativistically accelerating with respect to Alice and the
resulting composite state is �

W2
ARIRII

. We now obtain the reduced
state of Alice and Rob in region I by tracing out Rob’s mode
in region II, using a recipe given in Sec. II, as

�
W2
AR = 1

cosh2 r

∞∑
n=0

tanh2n r

×
[

2 − p

4

(
|1n〉 〈1n| + n + 1

cosh2 r
|0n + 1〉 〈0n + 1|

)

+ p

4

(
|0n〉 〈0n| + n + 1

cosh2 r
|1n + 1〉 〈1n + 1|

)

+ 1 − p

2

√
n + 1

cosh r
(|0n + 1〉 〈1n| + |1n〉 〈0n + 1|)

]
.

(45)
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TABLE I. Conditions for separability obtained using the AR q-conditional entropy for multiqubit GHZ and W states. The pure multiqubit
states with one of its qubits in acceleration remain nonseparable (NS) everywhere. The conditions for mixed GHZ and W states fit the family
of curves given in Eq. (39).

N Pure ρ
GHZN
AR /ρ

WN
AR Mixed �

GHZN
AR Mixed �

WN
AR

2 NS 2
3 (1 − λ2.2)(1/2.05) 2

3 (1 − λ1.57)(1/2.6)

3 NS p > 0.56(1 − λ2.47)(1/1.49) p > 0.47(1 − λ1.86)(1/1.68)

4 NS p > 0.53(1 − λ1.92)(1/1.78) p > 0.36(1 − λ2.04)(1/1.32)

5 NS p > 0.51(1 − λ2.14)(1/1.55) p > 0.29(1 − λ2.28)(1/1.12)

Rob’s subsystem �
W2
R is obtained by tracing out inertial Alice’s

qubits from the state �
W2
AR and is the same as �

GHZ2
R given

in Eq. (38). Now, using the density-matrix truncation proce-
dure given in Sec. V A, the conditional entropy S W2

q (A|R)
can be numerically evaluated for this state. The characteri-
zation of S W2

q (A|R) for this state qualitatively remains the
same as given in Figs. 5(a) and 5(b) for the mixed two-qubit
GHZ state with one of its qubit in acceleration, but differ
in values. The nonseparability to separability transition for
this state in the asymptotic limit of q can also be fitted to
the function given in Eq. (39). Thus, the separability cri-
terion in terms of the mixing parameter and acceleration λ

for ρ
W2
AR is given by

p > 2
3 (1 − λ1.57)(1/2.6), (46)

indicating that when λ = 0 we get p > 2
3 as the separable

region and the separable region increases as λ increases. The
mixing parameter p above which the state is separable tends
to 0 as the acceleration λ tends to 1 in the asymptotic limit of
q.

2. Mixed N-qubit W state

We get a mixed N-qubit W state by introducing a global
noise to the pure N-qubit W state, which is given by

�
WN
A1A2···AN−1B = p

2N
Id + (1 − p)

∣∣ψA1A2···AN−1B
〉 〈

ψA1A2···AN−1B

∣∣ ,
(47)

where |ψA1A2···AN−1B〉 = (|00 · · · 01〉 + |00 · · · 10〉 + · · · +
|10 · · · 00〉)/

√
N , Id is the 2N × 2N identity matrix, and

p is the mixing parameter. In the inertial frame, this state
is shared between the two parties Alice and Bob, where
Alice has the first N − 1 qubits and Bob has N th qubit
in his possession. Let us now consider that Bob is now
uniformly accelerated with respect to Alice and the resulting
state �

WN
A1A2···AN−1RIRII

is obtained by using the transformations
from Minkowski to Rindler space-time given in Eqs. (1)
and (2). The final state �

WN
A1A2···AN−1R between Alice and

Rob’s modes in region I using the recipe given in Sec. II is
given by

�
WN
A1A2···AN−1R = 1

cosh2 r

∞∑
n=0

tanh2n r

(
2 − p

2N

[
(|00 · · · n〉 + |01 · · · n〉 + · · · + |11 · · · n〉)(〈00 · · · n| + 〈01 · · · n| + · · · + 〈11 · · · n|)

+ α2
n (|00 · · · n + 1〉 + |01 · · · n + 1〉 + · · · + |11 · · · n + 1〉)(〈00 · · · n + 1| + 〈01 · · · n + 1|

+ · · · + 〈11 · · · n + 1|)] + 1 − p

N

{
α2

n |00 · · · 0n + 1〉 〈00 · · · 0n + 1| + αn[|00 · · · 0n + 1〉 (〈00 · · · 1n|

+ · · · + 〈10 · · · 0n|) + (|00 · · · 1n〉 + · · · + |10 · · · 0n〉) 〈00 · · · 0n + 1|]

+ (|00 · · · 1n〉 + · · · + |10 · · · 0n〉)(〈00 · · · 1n| + · · · + 〈10 · · · 0n|)}). (48)

Rob’s subsystem �
WN
R is obtained by tracing out inertial Al-

ice’s qubits. We can numerically obtain the AR q-conditional
entropy S WN

q (A1A2 · · · AN−1|R) in the inertial-noninertial bi-
partition, using the density-matrix truncation procedure given
in Sec. V A for any choice of N . For example, when N = 3, a
mixed three-qubit W state with one of its qubits under accel-
eration, is considered (see Sec. 2 in the Appendix), depending
on the values of acceleration λ, the parameter q, and the
mixing parameter p, we observe a transition from nonsepa-
rability to separability. This transition saturates to a curve in
the asymptotic limit q → ∞, which is fitted to the function
given in Eq. (39). Then the separability criterion for the state
�

W3
A1A2R given in Eq. (A4), in terms of the mixing parameter p

and λ, is

p > 0.47(1 − λ1.86)(1/1.68), (49)

implying that p > 0.47 is a separable region when λ = 0; as λ

tends to 1, the state remains separable irrespective of the value
of mixing parameter p.

Further, we observe a similar nonseparability to separa-
bility transition with respect to λ and p in the asymptotic
limit of q → ∞ for N = 4 and 5. In Fig. 6(b) we plot
S GHZN

q (A1A2 · · · AN−1|R) = 0 with respect to p and λ for
N = 3, 4, and 5. These separability to nonseparability tran-
sitions are fitted to the family of curves in Eq. (39). We
can observe that the nonseparability region is reduced as N
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FIG. 7. Variation of the logarithmic negativity of the single-qubit-accelerated pure N-qubit (a) GHZ state and (b) W state as a function of
the acceleration λ for different numbers of qubits N in these states.

increases. Moreover, this reduction is much faster than its
mixed N-qubit GHZ counterpart, indicating that mixed N-
qubit GHZ states can sustain nonseparability better than
mixed N-qubit W states when one of their qubits is uni-
formly accelerated with respect to others. The consolidated
conditions for separability of single-qubit-accelerated mixed
multiqubit GHZ and W states are presented in Table I.

VI. AR q-CONDITIONAL ENTROPY
AND LOGARITHMIC NEGATIVITY

We now draw a comparison between the nonsepara-
bility obtained through AR q-conditional entropy and the
entanglement measure, viz., logarithmic negativity [71,72].
Logarithmic negativity for the state ρARI in the inertial-
noninertial bipartition can be defined as

LN (ρA:RI ) = log2

∥∥ρ
TRI
ARI

∥∥
1, (50)

where TRI is the partial transpose taken over the subsystem ρRI

and ‖·‖ gives the trace norm. In addition, LN (ρAB) = 0 for
separable states and LN (ρAB) > 0 for entangled states. Fur-
ther, the definition of logarithmic negativity can be extended
to the single-qubit-accelerated N-qubit state as

LN
(
ρA1A2···AN−1:RI

) = log2

∥∥ρ
TRI
A1A2···AN−1RI

∥∥
1, (51)

where the bipartition is considered between inertial Alice’s
particles A1, A2, . . . , AN−1 and noninertial Rob’s mode RI .

It has been shown that the logarithmic negativity for a
single-qubit-accelerated maximally entangled two-qubit state
degrades as acceleration increases and it tends to zero in
the infinite-acceleration limit [9]. Here we characterize the
behavior of logarithmic negativity [see Eq. (51)] in single-
qubit-accelerated N-qubit pure GHZ and W states given in
Eqs. (19) and (34), respectively. The variation of logarith-
mic negativity for single-qubit-accelerated N-qubit pure GHZ

FIG. 8. Transitions from nonseparability to separability using AR q-conditional entropy (dash-dotted curves) and entanglement to separa-
bility using the logarithmic negativity (solid curves) for the single-qubit-accelerated N-qubit mixed (a) GHZ state and (b) W state as a function
of the acceleration parameter λ and mixing parameter p. Here the numbers of qubits in the system are N = 2 (black), 3 (violet), and 4 (blue).
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and W states (for N = 2, 3, and 4) with respect to the
acceleration λ is plotted in Figs. 7(a) and 7(b), respectively.
The entanglement for a single-qubit-accelerated N-qubit pure
GHZ state is independent of the number of qubits in the
system, whereas entanglement decreases as the number of
qubits increases for a single-qubit-accelerated N-qubit pure
W state. However, the entanglement in both these pure multi-
qubit states reduces as acceleration λ increases and goes to
zero at infinite acceleration. The AR q-conditional entropy
of single-particle-accelerated N-qubit pure GHZ and W states
also shows the same behavior for nonseparability such that the
nonseparability reduces as acceleration increases and the state
tends towards separability in the infinite-acceleration limit.

The logarithmic negativity for a single-qubit-accelerated
two-, three-, and N-qubit mixed GHZ state [given in
Eqs. (37), (A2), and (42)] and W state [given in
Eqs. (45), (A4), and (48)] in the inertial-noninertial bipartition
can be evaluated using its definition given in Eq. (51). The
entanglement to separability transition in these states as a
function of the acceleration and mixing parameter p is given
in Figs. 8(a) and 8(b). For any N , all multiqubit mixed states
for which the logarithmic negativity lies under the transition
curve represent the entangled states, whereas those with log-
arithmic negativity above the transition curve represent the
separable states. For N = 2, the transition curves obtained
from AR q-conditional entropy and logarithmic negativity are
equivalent for both mixed GHZ and W states. However, as
N increases, the entanglement to separability transition from
logarithmic negativity is obtained at higher mixing parameter
p for a particular acceleration λ, whereas the nonseparability
to separability transition from AR q-conditional entropy oc-
curs at a lower p for the same λ [see Figs. 6(a) and 6(b)].
Strikingly, the entanglement (nonseparability) provided by
the logarithmic negativity (AR q-conditional entropy) for the
single-qubit-accelerated N-qubit mixed GHZ state is stronger
than that of the single-qubit-accelerated N-qubit mixed W
state. Therefore, we can conclude that the AR q-conditional
entropy of single-particle-accelerated mixed multiqubit GHZ
and W states provides a more robust condition for nonsepara-
bility than the logarithmic negativity as the number of qubits
in the system increases.

VII. CONCLUSION

In an inertial frame, a shared state between two parties
Alice and Bob, ρAB, can be represented using Minkowski
coordinates. When Bob undergoes a uniform acceleration,
the vacuum and excited states in Minkowski coordinates
transform into the corresponding two-mode squeezed-vacuum
states in Rindler coordinates. The two modes of this acceler-
ated Bob (Rob) state belong to the two disjoint regions of the
Rindler space-time. Therefore, the final mixed state of inertial
Alice and noninertial Rob, ρAR, can be obtained by tracing
out region II of the Rindler space-time. The nonseparability
of this relativistic reduced state is characterized using the
AR q-conditional entropy, which takes negative values for
nonseparable states and positive values for separable states.
We captured the nonseparability of pure multiqubit GHZ and
W states when one of their qubits is accelerated. Further,
we studied the nonseparability of mixed states generated by

adding a global noise to the same multiqubit GHZ and W
states when one of their qubits is in uniform acceleration.

The analytical form of the AR q-conditional entropy for
pure multiqubit GHZ and W states was evaluated using
eigenvalues of the state of inertial Alice and Rob’s mode
in region I (ρA1A2···AN−1R) and Rob’s subsystem (ρR). We
then numerically studied the nonseparability using the eigen-
value truncation procedure (see Sec. IV A) performed on
these infinite-dimensional density matrices ρA1A2···AN−1R and
ρR to get their required nonzero eigenvalues, respectively.
The AR q-conditional entropy Sq(A1A2 · · · AN−1|R) in the
inertial-noninertial bipartition always remains less than zero
for both pure multiqubit GHZ and W states with one of their
qubits under uniform acceleration, implying that they remain
nonseparable for any values of their state parameters and
acceleration λ. We observed that irrespective of the value of q,
the nonseparability of ρA1A2···AN−1R will be high at low values of
acceleration and decreases with the increase in acceleration; in
particular, the AR q-conditional entropy Sq(A1A2 · · · AN−1|R)
tends to 0 as λ → 1. The nonseparability of both the pure
multiqubit GHZ and W states with one of their qubits under
acceleration became steeper in its approach to zero as the
acceleration λ and the parameter q increased. Further, we
observed that the nonseparability of the pure multiqubit GHZ
state with one of its qubits in acceleration is not dependent
on the N , i.e., it is independent of the number of qubits in
the inertial frame. However, when the number of qubits in
the inertial frame of the pure multiqubit W state with one
of its qubits in acceleration is increased, the nonseparability
decreases as N increases.

We further extended our study to various mixed multi-
qubit states �A1A2···AN−1B, which are generated by mixing a
global noise with the pure multiqubit GHZ and W states.
The nonseparability using the AR q-conditional entropy
Sq(A1A2 · · · AN−1|R) in the inertial-noninertial bipartition
was evaluated for these mixed multiqubit states �A1A2···AN−1R

when one of their qubits is accelerated. For these mixed mul-
tiqubit states, the AR q-conditional entropy was numerically
calculated by employing the density-matrix truncation proce-
dure (see Sec. V A). We observed that there exist regions of
both separability and nonseparability of the state �A1A2···AN−1R

depending on the choices of acceleration λ, mixing parameter
p, and parameter q. As q is increased to large values, the
transition curve Sq(A1A2 · · · AN−1|R) = 0 becomes saturated
with respect to λ and p. Hence, the strongest condition for
separability for these states in terms of the acceleration and
mixing parameter was obtained in the asymptotic limit of
q tending to ∞. These transition points were fitted to the
family of curves given by (p/b)x + λy = 1. The separability
conditions for all these mixed multiqubit GHZ and W states
when one of their qubits is in uniform acceleration considered
in our study were consolidated in Table I. For a mixed N-qubit
GHZ and W states with one of their qubits accelerated, we
observed that the nonseparable region decreases as the number
of qubits in the inertial frame increases. The reduction of the
nonseparable region, as acceleration λ is increased, is much
faster for the N-qubit mixed W state �

WN
A1A2···AN−1R than its

N-qubit mixed GHZ counterpart �
GHZN
A1A2···AN−1R, indicating that,

in general, GHZ states can sustain the nonseparability better
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than W states when one of its qubit is uniformly accelerated
with respect to the others.

A comparison was made between the nonseparability de-
rived from AR q-conditional entropy and the entanglement
measure logarithmic negativity. In single-qubit-accelerated
N-qubit pure and mixed GHZ and W states, the nonseparabil-
ity and entanglement decrease with increasing acceleration,
eventually reaching zero in the infinite-acceleration limit.
Moreover, the nonseparability and entanglement in the single-
qubit-accelerated pure and mixed GHZ states consistently
surpass the corresponding W states for all ranges of accel-
eration and mixing parameters. Furthermore, in single-qubit-
accelerated N-qubit mixed GHZ and W states, we observed
that the transition from entanglement or nonseparability to
separability occurs at different mixing parameter values at
different accelerations. For N = 2, the transition curves for
logarithmic negativity and AR q-conditional entropy are
equivalent. However, as N increases, AR q-conditional en-
tropy imposes stricter conditions for nonseparability than the
logarithmic negativity.

Note that this study can be extended to a fermionic sys-
tem when one of its qubits is in acceleration; however, this
warrants a separate investigation. We believe that our study
of nonseparability in various multiqubit states with their sub-
system under acceleration will pave the way for exploring
numerous information-theoretic physical quantities in rela-
tivistic scenarios. This in turn would help in understanding
the effect of relativity on quantum systems used in space-
based technology or other areas of research where relativity
and quantum mechanics are considered together [73,74].

This study also may play a pivotal role in realizing various
quantum information protocols where relativistic effects can-
not be neglected.
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APPENDIX

1. Mixed three-qubit GHZ state

A mixed three-qubit GHZ state, with the first two qubits
with Alice and the third qubit in Bob’s possession, is given by

�A1A2B = p

8
Id + (1 − p)

∣∣ψA1A2B
〉 〈

ψA1A2B

∣∣ , (A1)

where |ψA1A2B〉 = (1/
√

2)(|000〉 + |111〉), Id is the 23 × 23

identity matrix, and p is the mixing parameter. Let us consider
that Bob is now uniformly accelerating with respect to Alice
and the resulting state, denoted by �

GHZ3
A1A2RI RII

, is obtained by
using the transformations from Minkowski to Rindler space-
time in Eqs. (1) and (2). Then the mixed state �

GHZ3
A1A2R after

tracing out one of the disjoint regions in Rindler space-time
(region II) is given by

�
GHZ3
A1A2R = 1

cosh2 r

∞∑
n=0

tanh2n r

[
4 − 3p

8

(
|00n〉 〈00n| + n + 1

cosh2 r
|11n + 1〉 〈11n + 1|

)

+ 1 − p

2

√
n + 1

cosh r
(|00n〉 〈11n + 1| + |11n + 1〉 〈00n|) + p

8

(
|11n〉 〈11n| + |10n〉 〈10n| + |01n〉 〈01n|

+ n + 1

cosh2 r
(|00n + 1〉 〈00n + 1| + |01n + 1〉 〈01n + 1| + |10n + 1〉 〈10n + 1|)

)]
. (A2)

2. Mixed three-qubit W state

A mixed three-qubit inertial state, shared between Alice and Bob, is given by

�
W3
A1A2B = p

8
Id + (1 − p) |ψA1A2B〉 〈ψA1A2B| , (A3)

where |ψA1A2B〉 = (1/
√

3)(|001〉 + |010〉 + |100〉), Id is the 23 × 23 identity matrix, and p is the mixing parameter. We consider
that Bob is now uniformly accelerating with respect to Alice and the resulting state �

W3
A1A2R, after tracing out Rob’s modes in

region II of Rindler space-time, is given by

�
W3
A1A2R = 1

cosh2 r

∞∑
n=0

tanh2n r

[
8 − 5p

24

(
|01n〉 〈01n| + |10n〉 〈10n| + n + 1

cosh2 r
|00n + 1〉 〈00n + 1|

)

+ p

8

(
|11n〉 〈11n| + |10n〉 〈10n| + n + 1

cosh2 r
(|00n + 1〉 〈00n + 1| + |01n + 1〉 〈01n + 1| + |10n + 1〉 〈10n + 1|)

)

+ 1 − p

3

(
|01n〉 〈10n| + |10n〉 〈01n| +

√
n + 1

cosh r
(|01n〉 〈00n + 1| + |00n + 1〉 〈01n| + |00n + 1〉 〈10n|

+ |10n〉 〈00n + 1|)
)]

. (A4)
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