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Fault-tolerant quantum computation can be achieved by creating constant-sized, entangled resource states
and performing entangling measurements on subsets of their qubits. Linear optical quantum computers can
be designed based on this approach, even though entangling operations at the qubit level are nondeterministic
in this platform. Probabilistic generation and measurement of entangled states must be pushed beyond the
required threshold by some combination of scheme optimization, introduction of redundancy, and auxiliary state
assistance. We report progress in each of these areas. We explore multiqubit fusion measurements on dual-rail
photonic qubits and their role in measurement-based resource state generation, showing that it is possible to boost
the success probability of photonic Greenberger-Horne-Zeilinger state analyzers with single-photon auxiliary
states. By incorporating generators of basic entangled “seed” states, we provide a method that simplifies the
process of designing and optimizing generators of complex, encoded resource states by establishing links to ZX
diagrams.
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I. INTRODUCTION

It has long been known that universal quantum computa-
tion can be achieved with a source of single photons, linear
optics, and photon number detection [1]. Approaches best
suited to the flying qubits present in linear optical quantum
computers are measurement based [2–4] and rely on generat-
ing entangled states as a resource.

Entangled resource states allow for modular construction
of fault-tolerant measurement-based architectures [5,6], for
instance, by first combining small resource states through
entangling measurements into a cluster state, and then per-
forming single-qubit measurements [7–9]. More streamlined
approaches achieve fault tolerance by directly performing
small entangling measurements on a collection of constant-
sized resource states [10–12], forgoing the generation of
any particularly large entangled state. Beyond quantum
computation, resource states have found applications in
quantum communication, where they enable fault-tolerant
long-distance entanglement distribution [13–15] and in quan-
tum metrology [16–18].

In addition to acting on prepared resource states, entan-
gling measurements are central to generating the resource
states themselves. Methods for generating the smallest, most
basic of resource states, known as “seed states” [19], from
single photons rely on entangling measurements to operate in
a useful way [20,21]. Furthermore, generating larger resource
states from seed states typically depends on two-qubit entan-
gling measurements, such as Bell state measurements [8,22].

Useful entanglement-generating operations are intrinsi-
cally nondeterministic using linear optics, and their success
probabilities are degraded by photon loss. While these facts do
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not rule out useful linear optical quantum computing, they do
necessitate particularly careful design of state generation and
measurement schemes. Significant effort has been made to
increase their efficiencies via auxiliary assistance [19,23,24],
adding redundancy with error-correcting codes [10,13,15,25–
27], and general device optimization [19,28].

Designing schemes for generating larger resource states,
such as those with encoded qubits, can be challenging.
Existing techniques [7,14,29] typically involve finding an LU-
equivalent graph state for a target stabilizer state and breaking
that graph state into smaller ones that are connected via fusion
measurements. However, these techniques apply to specific
classes of graph states and are limited in efficiency due to their
reliance on single-qubit and fusion measurements. The need
for something beyond the graph state–fusion paradigm is well
illustrated in the case of inner-encoded graph states. While
the description of the logical state and inner code may be
quite simple, representing this type of concatenated structure
as a graph state on the physical qubits reveals a complex web
of correlations between qubits, which can lead to convoluted
fusion-based generation schemes.

In this paper, we introduce a framework that simplifies rea-
soning with linear-optical resource state generation by using
connections between specific measurement devices and ZX
diagrams [30,31]. By shifting the focus from the usual two-
qubit entangling measurements, we also propose auxiliary
assistance schemes for general Greenberger-Horne-Zeilinger
(GHZ) analyzer devices which provide a relative performance
boost per auxiliary photon that grows with the size of the
measurement.

II. LINEAR-OPTICAL STATE-GENERATION TOOLS

We consider spatial dual-rail (DR) encoded photonic
qubits, for which there is the following correspondence
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between qubits and two-mode Fock states:

|0〉 = |10〉〉
|1〉 = |01〉〉, (1)

where we use |·〉 to refer to a qubit state and |·〉〉 to a multi-
mode Fock state.

The purpose of this section is to outline a set of basic
tools for devising schemes for generating complicated entan-
gled states with linear optics, seed states, and single-photon
detectors. These tools are type-I n-fusion, which generalizes
two-qubit type-I fusion, and entangled state analyzers, which
can be used to implement type-II n-fusion.

We will make associations between each of these tools with
certain ZX diagrams, which will enable us to make use of ZX
calculus for the intuitive redesign and optimization of state
generation devices.

When graphically representing linear optical devices, we
follow Ref. [19] in representing beam splitters in the way that
CZ gates typically are for quantum circuit diagrams. More
concretely, we use

to represent a 50:50 beam splitter applied to two optical
modes, which correspond to the horizontal lines.

A. Entangled-state analyzers

The state analyzer devices that we study in this paper
employ photon number resolving detector (PNRD) arrays
coupled to linear optical networks (LONs), which perform
destructive measurements. The action of a bare array of m
PNRDs can be described by a generalized measurement with
Kraus operators of the form

m⊗
i=1

|0i〉〉〈〈ri| = |0〉〉〈〈r|, (2)

where r = (r1, . . . , rm) is referred to as the detector (“click”)
pattern. In the n-photon subspace we have

∑
i ri = n.

A LON with scattering matrix U preceding the PNRD
array transforms the Kraus operators such that

|0〉〉〈〈r| �→ |0〉〉〈〈r|U (U ), (3)

where U (U ) is the multiphoton transformation associated with
U , the elements of which are proportional to permanents
of submatrices of U [32]. When the measurement device is
operating on some subspace of input states—as is the case
for idealized DR qubits—an additional projection onto that
subspace is made. As such, the Kraus operator associated with
detector pattern r for an n-qubit measurement device restricted
to n-qubit DR inputs can be written as

Kr = |0〉〉〈〈r|UP⊗n
DR , (4)

where PDR = |10〉〉〈〈10| + |01〉〉〈〈01|, and the association
between qubits and multimode Fock states can be made ac-
cording to Eq. (1). As the measured photons always end up in
the vacuum state of a mode which is subsequently discarded,
we will use a shorthand notation in which Kraus operators
take the form 〈〈ψr|, or 〈ψr| if a projection has been made onto

Qubit 1

Qubit 2

r1

r2

r3

r4

FIG. 1. A Bell state analyzer device composed of a linear optical
network and single-photon detectors. When acting on two dual-rail
input qubits, a measurement pattern r = (r1, r2, r3, r4) containing
ri ∈ {0, 1} ∀ i indicates a destructive projection onto a specific dual-
rail Bell state. Other measurement patterns correspond to projections
onto specific separable states.

the DR subspace. When at least one operator takes the form
〈ψr| such that |ψr〉 is an entangled state, we refer to that device
as an entangled state analyzer.

1. Bell state analyzer

An example of a Bell state analyzer device [33] is depicted
in Fig. 1. By applying Eq. (4) with a projection of the inputs
onto the two-qubit DR subspace for each detector pattern, it is
straightforward to show that this device performs a measure-
ment described by the Kraus operators

K(1,1,0,0) = K(0,0,1,1) = 1√
2

× 1√
2

(〈00| + 〈11|)

K(1,0,1,0) = K(0,1,0,1) = 1√
2

× 1√
2

(〈00| − 〈11|)

K(2,0,0,0) = K(0,0,0,2) = 1√
2
〈01|

K(0,2,0,0) = K(0,0,2,0) = 1√
2
〈10|, (5)

up to global phases.
Given a maximally mixed input, each of the eight possible

detector patterns occur with equal probability, and four of
them—(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), and (0, 1, 0, 1)—
correspond to projection onto a Bell state. The success
probability of this device is therefore said to be PS = 1/2,
which has been shown to be optimal for linear optical schemes
without auxiliary assistance [34].

By restricting ourselves to successful outcomes, it is pos-
sible to provide an alternative representation of the Bell state
analyzer device in terms of the ZX diagram

aπ , (6)

where a ∈ {0, 1} depends on the observed detector pattern,
such that if r = (1, 1, 0, 0) or r = (0, 0, 1, 1) is observed, then
a = 0, and if r = (1, 0, 1, 0) or r = (0, 1, 0, 1) is observed,
then a = 1.

An important use case for linear optical Bell state measure-
ments is in the generation of particular long-range quantum
correlations which can allow for fault-tolerant quantum com-
putation to be performed [5,10]. When considered in this
context, successful Bell state analyzer outcomes are often
referred to as (type-II) fusion [22] operations, because of their
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FIG. 2. An n-GHZ analyzer device composed of a linear optical
network and single-photon detectors, which is an n-qubit generaliza-
tion of Fig. 1’s Bell state analyzer device. A measurement pattern
r = (r1, . . . , r2n) containing ri ∈ {0, 1} ∀ i indicates a destructive
projection onto a specific dual-rail n-GHZ state. Measurement pat-
terns containing at least one ri = 2 correspond to projections onto
known separable dual-rail states.

utility in merging two disconnected graph states into a single
graph state.

As an instructive example [19], consider applying the Bell
state analyzer device to the two isolated qubits of the state

1√
2

(|ψ1〉|0〉 + |φ1〉|1〉) ⊗ 1√
2

(|0〉|ψ2〉 + |1〉|φ2〉)

= 1

2
(|ψ1〉|00〉|ψ2〉 + |ψ1〉|01〉|φ2〉

+ |φ1〉|10〉|ψ2〉 + |φ1〉|11〉|φ2〉),

where |ψi〉 and |φi〉 are ki-qubit states. It is straightforward to
verify that a postmeasurement state of the form

1√
2

(|ψ1〉|ψ2〉 ± |φ1〉|φ2〉)

is obtained with probability 1/2, where the relative
phase is determined by the observed detector pattern.
If |ψ1〉, |ψ2〉, |φ1〉, and |φ2〉 are all product states, and
〈ψ1|φ1〉 = 〈ψ2|φ2〉 = 0, then the postmeasurement state is
equivalent to a (k1 + k2)-qubit GHZ state.

The Bell state analyzer is a fully loss-detecting device (also
referred to as loss-tolerant [21]) because both input photons
must be accounted for by the detectors in order to herald a
successful outcome. When used as a partial measurement on
a subset of qubits of some input state, a fully loss-detecting
measurement does not impart any lossy channel on the sur-
viving qubits [21], regardless of how lossy the measurement
device is. The success probability of the measurement is, how-
ever, degraded by loss, as it is proportional to the probability
that all input photons are detected.

2. n-GHZ state analyzer: Type-II n-fusion

The design of the Bell state analyzer can be extended to
n > 2 qubit inputs, as per Fig. 2, to form an n-GHZ state
analyzer [35,36].

The Kraus operators for each detector pattern, when re-
stricted to receiving n-qubit DR inputs, can be computed
using Eq. (4). As was the case the for two qubits, multiple

detection patterns are associated with the same transfor-
mation. We make use of this by grouping together Kraus
operators that project onto a common state, and write
them as

KS1 = 1√
2

(〈0|⊗n + 〈1|⊗n)

KS2 = 1√
2

(〈0|⊗n − 〈1|⊗n)

KFi = 〈xi|, (7)

where xi is the ith element of the set {0, 1}n \ {0 . . . 0, 1 . . . 1},
and S and F label success and failure outcomes, respectively
(see Appendix A for more detail). In this form, there are 2n

unbiased Kraus operators, and two of them project onto an
n-GHZ state. The success probability for an n-GHZ analyzer
can therefore be shown to be PS = 1/2n−1. An experimentally
friendly feature of the successful detection patterns is that they
only involve ri ∈ {0, 1}, i.e., at most one photon present at
each detector. This means that, discounting the possibility of
errors occurring from, for example, inputs containing N > n
photons, photon number resolving detectors are not required
if only successful events are useful. However, if information
obtained from the failure events is also required, then photon
number resolution of up to and including two photons is
necessary.

The successful operation of an n-GHZ analyzer can be
represented by the ZX diagram

, (8)

where a ∈ {0, 1} is determined by the observed detection
pattern.

n-GHZ analyzers can perform a generalized, n-qubit ver-
sion of type-II fusion (i.e., type-II n-fusion) in the GHZ basis.
Consider an extension of the example given for the Bell state
analyzer, wherein we apply an n-GHZ analyzer device to the
isolated qubits of the state

1

2n/2

n⊗
i=1

(|ψi〉|0〉 + |φi〉|1〉),

where |ψi〉 and |φi〉 are, again, ki-qubit states. The postmea-
surement state is given by

1√
2

(
n⊗

i=1

|ψi〉 ±
n⊗

i=1

|φi〉
)

,

where the relative phase depends on the observed detector
pattern. This is equivalent to a (

∑
i ki )-qubit GHZ state if

|ψi〉, |φi〉 are product states and 〈ψi|φi〉 = 0 for all values of i.
n-GHZ analyzers possess the same full loss-detection prop-

erty as Bell state analyzers. n photons must be accounted for
by the detectors to herald a valid outcome, and if the device
acts on part of a larger state, the uncorrelated loss rate for the
surviving qubits is the same as for the input qubits.
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|1
|1

Qubit i

FIG. 3. An auxiliary device, which we call SQA-β, can be used
to increase the success probability when coupled to a pair of qubit
modes (dashed) within an n-GHZ state analyzer.

3. Auxiliary assistance

Increasing the success probability of two-qubit entangled
state analyzers using auxiliary assistance has been well stud-
ied [23,24] and experimentally demonstrated [37]. Here, we
begin investigating extending this concept to larger entangled
state analyzers.

A restricted set of modular auxiliary devices can be built
from smaller, single-qubit auxiliary devices. A further restric-
tion can be made, such that only single-qubit auxiliary states
of the form

|ψaux〉〉k =
ma⊗
i=1

|ni〉〉 (9)

are considered, where k labels the DR qubit that the device
couples to and ma is the number of auxiliary modes. Com-
pound auxiliary devices can be built by coupling more than
one qubit to single-qubit auxiliary devices.

The Kraus operators associated with a state analyzer device
coupled to an auxiliary device are given by

Kr = |0〉〉〈〈r|U ′P′, (10)

where U ′ is the transformation enacted by composite LON
(i.e., the one formed after coupling to any auxiliary modes)
and P′ is a map onto valid input states, taking into account
auxiliary input states. For example, the projector onto n-
qubit DR inputs, each with an associated auxiliary input state
|φaux〉〉, is given by P⊗n

DR′ , where

PDR′ = |φaux〉〉|10〉〉〈〈10| + |φaux〉〉|01〉〉〈〈01|,
and the association between multimode Fock states and DR
qubits can be made according to Eq. (1).

In this paper we focus on the single-qubit auxiliary device
depicted in Fig. 3. The device can couple to any two modes of
a state analyzer device which have not yet interacted, but for
simplicity, we choose to couple to two qubit-paired modes in
this paper. We refer to this device as SQA-β.1

Coupling this to qubit 1 of the Bell state analyzer (Fig. 1)
gives an overall device that performs a modified measurement.
The Kraus operators for this device can be computed using
Eq. (10) with

P′ = (|1110〉〉〈〈10| + |1101〉〉〈〈10|)
⊗ (|10〉〉〈〈10| + |01〉〉〈〈01|)

1Single-qubit auxiliary device, which prepares an auxiliary state
|β−〉 (as defined in Ref. [24]).

as

KS1 = 1√
2

(〈00| + 〈11|)

KS2 = 1√
2

(〈00| − 〈11|)

KS3 = 1

2
× 1√

2
(〈01| + 〈10|)

KS4 = 1

2
× 1√

2
(〈01| − 〈10|)

KF1 =
√

3

2
〈01|

KF2 =
√

3

2
〈10|, (11)

where we have combined similar Kraus operators (i.e., those
associated with different detector patterns, but which project
onto the same state) to avoid visual clutter. The auxiliary
device has introduced outcomes associated with projection
onto the Bell states 1√

2
(|01〉 ± |10〉) which do not exist for

the unassisted Bell state analyzer, without impacting the other
successful outcomes. The success probability associated with
this measurement is therefore boosted relative to the unas-
sisted version. Taking into account the weight of these extra
Kraus operators gives a success probability PS = 5/8—an
additional 1/8 provided by the auxiliary device.

When both qubits of the Bell state analyzer are each
coupled to an independent copy of SQA-β, an overall Bell
state analyzer with PS = 3/4, equivalent to that introduced by
Ewert and Van Loock [24], is formed. Each copy of SQA-β
here boosts the success probability of the Bell state analyzer
by 1/8.

As auxiliary assistance modifies the set of “success” Kraus
operators, it is necessary to modify the success-associated ZX
diagrams acccordingly. For the above example, the relevant
ZX diagram is given by

, (12)

where now a, b ∈ {0, 1} each depend on the detector pattern.
The utility of applying SQA-β carries over from the Bell

state analyzer to the n-GHZ analyzer. While it may be tempt-
ing to assume that the per-qubit boost to success probability is
1/2n+1—such that PS = (4 + n)/2n+1 if the device is applied
to all n qubits—the reality is subtly better. The smallest ex-
ample for which this additional boost can be witnessed is an
auxiliary-assisted 4-GHZ measurement. In this case, applying
a copy of SQA-β to every even, or every odd qubit, introduces
Kraus operators

K ′
S1 =

√
wS1√

2
(〈0101| + 〈1010|)

K ′
S2 =

√
wS2√

2
(〈0101| − 〈1010|), (13)
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respectively. When one (or both) of these subsets of qubits are
auxiliary coupled, wS1 = wS2 = 1/256 (1/128). Combining
these contributions to success of the overall device with the
others gives PS = 25/128 (17/64).

We conjecture that the success probability of an n-GHZ
analyzer coupled on all qubits to a copy of SQA-β is given by

PS =
⎧⎨
⎩

4+n
2n+1 + 1

2
5n−8

2
n even

4+n
2n+1 + n

2
5n−9

2
n odd,

(14)

although we leave formal proof of such a success probability
for future work.

Modification of the “success” Kraus operators again ne-
cessitates modification of the ZX diagram used to represent
the device. One can incorporate the additional outcomes by
prepending X-spiders to the diagram in Eq. (8) to obtain

, (15)

where a, bi ∈ {0, 1} depend on the detector pattern.
The introduction of auxiliary photons and circuits changes

the relationship between photon loss and success probability.
In Appendix B we present numerically obtained data for the
success probability of auxiliary-assisted 3- and 4-GHZ ana-
lyzer devices under a simple loss model in which each photon
sees a loss channel with loss rate 1 − η. Here, we note that not
all input photons need to be detected to herald a success, due
to some redundancy in the associated detector patterns.

In both cases, there exist feasible loss-rate regimes in
which auxiliary assistance increases the success probability.
Whether this benefit outweighs the cost of generating the
auxiliary states, and the additional burden on PNRD perfor-
mance, will depend on the specifics of a given platform and
hardware [38].

One potential drawback of auxiliary assistance is that, un-
like in the unassisted case, the successful detection patterns
are not restricted to having ri ∈ {0, 1}. Indeed, photon number
resolution up to 5 can be required when SQA-β is utilized.

B. Type-I n-fusion

We refer to the device depicted in Fig. 4 as a type-I n-fusion
device. When restricted to acting on n-qubit DR input states,
the device implements the linear map

Mn = (−1)k|0〉〈0|⊗n + |1〉〈1|⊗n (16)

conditional on detecting n − 1 photons in a pattern such
that ri ∈ {0, 1} ∀ i, and where k is the number of times
the subpattern (r2i = 0, r2i+1 = 1)—i.e., zero clicks from an
even-labeled detector and one click from the next detector—
appears in the detection pattern.

The success probability of the device, in the absence of
errors, can be shown to be PS = 1/2n−1. This is equivalent
to that of the (unassisted) n-GHZ analyzer device, and has
the benefit of leaving one qubit alive at the output rather than
zero. Full loss detection, however, is not possessed by type-I

Qubit 1

Qubit 2

Qubit n

r1

r2

r3

r4

r2n−3

r2n−2

FIG. 4. A linear optical heralded type-I n-fusion device. The
map Mn = (−1)k |0〉〈0|⊗n + |1〉〈1|⊗n is applied to n dual-rail qubits,
conditional on detecting n − 1 photons in a pattern such that
ri ∈ {0, 1} ∀ i, and where the value of binary integer k is a function
of the detection pattern.

n-fusion devices. Despite this, we will later see that full loss
detection can be achieved if the device is used as part of a
larger, compound measurement device.

For n = 2, this scheme is commonly referred to simply as
type-I fusion [22]. The general device performs the decoder
map for the n-qubit repetition code, up to a known local
correction, and as such we can again represent the successful
application of the device as a ZX diagram:

. (17)

Recognizing this as a decoder, and therefore its inverse opera-
tion as an encoder, will help to form an intuitive link between
encoded states and linear optical devices later in this paper.

While it is possible to boost the success probability of type-
I fusion [19], we are not aware of any scheme for this which
uses separable, single-photon auxiliary inputs. Because we do
not consider entangled auxiliary states in this paper, we also
do not study auxiliary-assisted type-I n-fusion devices.

III. FLEXIBLE STATE GENERATION

In this section we combine the tools described in the previ-
ous section to highlight the flexibility and power they lend to
the task of linear optical state design.

We imagine a situation in which one has a target state
and would like to design a probabilistic scheme in which
small entangled seed states, which can be generated using
the techniques described in Ref. [19], are combined using
LONs and single-photon detectors. To achieve this, we write
the state as a ZX diagram in an LO-convertible form, which
restricts the input-output relationship of the component spi-
ders. Allowed spiders are (1) 0-to-n, representing input seed
states; (2) n-to-1, representing type-I n-fusion devices, (3)
n-to-0, representing n-GHZ analyzer devices, and (4) 1-to-1
spiders (including Hadamards), representing deterministic
single-qubit unitary devices.

It is often significantly easier to work with phase-free ZX
diagrams, which only correspond to a single possible out-
come for every constituent type-I n-fusion and GHZ analyzer.
One can insert the phases associated with other measurement
outcomes after rewriting of the phase-free ZX diagrams, and
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manipulate them such that they emerge as single-qubit gates
applied to the output state. Different single-qubit correction
operations may need to be applied for different rewritten
schemes generating the same target state. With the above in
mind, we will restrict ourselves to dealing exclusively with
phase-free ZX diagrams in the remainder of this paper.

A. LO-convertible ZX diagrams and LO scheme extraction

Rewriting of a ZX diagram in LO-convertible form re-
quires the elimination of n-to-m spiders for n, m > 1. This can
be achieved by applying the identity

=n m

n

m − 1
n m

n

m − 1
, (18)

wherein m − 1 output wires become interpreted as outputs
from independent Bell states, and the remaining Bell state
qubits become inputs to the spider.

A state generation scheme can be extracted from an LO-
convertible ZX diagram by replacing each of the following:

(1) Bare wire with two modes capable of supporting a
dual-rail qubit (e.g., spatially distinct waveguides or optical
fibers).

(2) Hadamard with a beam splitter.
(3) n-to-0 spider with an n-GHZ analyzer device. If boost-

ing is not considered, then this device is the one given in
Fig. 2.

(4) n-to-1 spider with a type-I n-fusion device, as depicted
in Fig. 4.

(5) 0-to-n spider (where “cups” are equivalent to 0-to-2
spiders) with a n-GHZ generator device.
These conversion rules are summarized graphically in Fig. 5.

There are often many possible LO-convertible ZX dia-
grams associated with a given target state, all of which can be
transformed to one another using the graphical rewrite rules
of ZX calculus. The overall success probability of a scheme
is not necessarily conserved when rewriting, especially when
auxiliary assistance is considered. Indeed, the ZX diagrams
themselves contain no information about the success probabil-
ity of a given scheme, but rather an indication that the scheme
is valid. Associating each spider with an LO device enables
success probabilities to be calculated, and this, alongside other
metrics relating to errors (loss, etc.) and ease of implemen-
tation (e.g., cost of reliable large-number PNRD) allows for
scheme optimization via ZX calculus.

A device being fully loss detecting is often desirable, as
it helps to keep the photons appearing in the final resource
state from seeing too lossy a channel. A scheme associated
with an LO-convertible ZX diagram is fully loss detecting if
none of the output qubits can be traced back to the output of
a type-I n-fusion. In other words, resource states generated
in a fully loss-detecting scheme are composed of unmeasured
qubits from the seed states. Importantly, this does not make
type-I n-fusions incompatible with full loss detection—if their
output qubit is later measured in a GHZ analyzer, the overall
device is still fully loss detecting. As a consequence, it is

almost always wasteful to create a measurement device for
resource state generation exclusively from GHZ analyzers.

B. Encoding

Encoding photonic qubits with error-correcting codes is a
way to improve performance in the presence of errors. Often,
the qubits of a resource state will be consumed in entangling
measurements such as Bell state measurements as part of a
computation [8,10,11,39] or quantum communication proto-
col [13–15]. The success probability of these measurements
can both increase [25] and become more tolerant to photon
loss [26] when the qubits are encoded with a suitable error-
correcting code.

Encoder maps expressed in the form of ZX diagrams have
been explored for CSS [40] and Clifford encoders [41], and
these allow us to represent a broad class of encoded resource
states as ZX diagrams. The process of encoding a qubit within
our procedure is straightforward—take the unencoded qubit
and apply to it the encoder map corresponding to the desired
error correcting code. Codes can be concatenated by sequen-
tial application of encoders.

A particularly useful encoder is that for QPC(n, m) [42],
which is a generalization of Shor’s nine-qubit code. In one
LO-convertible form, this encoder is given by

... m
.

n
...

... m

(19)

In Appendix C we similarly show the encoder-map ZX
diagrams for the five-qubit perfect code and surface code in
LO-convertible form.

C. Examples

All of the schemes obtained in this section via our proce-
dure that involve only two-qubit operations can also be found
by reasoning with type-I and type-II fusion operations on
(possibly Hadamard rotated) graph states. While we have not
devised a way to identify previously unidentifiable schemes,
it is possible that our procedure makes it significantly easier
and quicker to find and verify them.

While we only show the phase-free ZX diagrams for each
example scheme in order to avoid clutter, we again note that
the diagrams depicting the required single-qubit corrections
can be obtained by including them in each measurement de-
vice ZX diagram, and then propagating them to the output
wires. The state generation schemes involving seed state gen-
erators, linear optical circuits, and detector arrays for the ZX
diagrams in example 1 can be found in Appendix D. We
emphasize, however, that such a scheme can be extracted from
any LO-convertible diagram using the conversions presented
in Fig. 5.
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ZX diagram Linear optical device

(a)

(b)

(c)

(d)

(e) n-GHZ

n

n

n

r2n

r1

r2n−2

r1

n

n

n

n

r2n

r1

r2n−2

r1

n

FIG. 5. Informal conversion between phase-free ZX diagrams and linear optical devices. (a) Bare wires correspond to a pair of modes
supporting a DR qubit. (b) Hadamards correspond to beam splitters. (c) n-to-0 spiders (n-GHZ effects) correspond to n-GHZ analyzer devices,
conditional on obtaining a successful detector click pattern. The linear optical device can be replaced with any measurement device possessing
at least one Kraus operator locally equivalent to an n-GHZ state, e.g., an n-GHZ analyzer coupled to k � n SQA-β auxiliary devices. In the
ZX diagram we omit phases, which depend on the specifics of the device and the observed detector pattern. (d) n-to-1 spiders correspond to
type-I n-fusion devices, conditional on observing a valid detector pattern. The phase on the ZX diagram depends on the detector pattern. (e)
0-to-n spiders (n-GHZ states) correspond to n-GHZ generator devices. In some cases, 0-to-2 spiders (Bell states) may be represented without
the green node, i.e., as a “cup.” These devices can be of any form (e.g., from multiplexed linear optical GHZ state generator schemes, or from
quantum emitters) as long as they generate the indicated state.
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1. 4-GHZ state

A 4-GHZ state is perhaps the smallest resource state that
one might consider generating. It has been shown to be a valid
resource state for fault-tolerant, measurement-based quantum
computing when coupled with suitably enhanced two-qubit
entangling measurements [10].

While there are a variety of ways to generate this state, in-
cluding directly from single photons [19], the optimal scheme
will depend on the specifications of available hardware. As
such, it makes for a reasonable, simple example to highlight
the ease with which different schemes can be devised. It turns
out that this example also exposes some interesting features
of auxiliary-assisted entangling measurements.

We begin with the most obvious form of the ZX diagram
for the 4-GHZ state

. (20)

Strictly speaking, this is already in an LO-convertible form,
representing the direct output of a 4-GHZ state from a seed-
state generator device.

The size of the seed state required can be decreased by
bending the output wires via the input, as per

, (21)

corresponding to a fully loss-detecting scheme taking four
Bell seed states and collectively measuring one qubit from
each with a 4-GHZ analyzer device, which has an unboosted
success probability PS = 1/8. This can be generalized to the
loss-detecting generation of n-GHZ states—n Bell states can
be fused together with an n-GHZ measurement with base
success probability PS = 1/2n−1.

It is always possible to decompose n-to-0 spiders into ZX
diagrams involving 2-to-1 and 2-to-0 spiders, by iteratively
applying the inverse of the spider fusion rule. Using this on
(21) results in

, (22)

where the base success probability of measurement remains
unchanged at PS = 1/8. A glance at the schemes extracted
from these two ZX diagrams (see Appendix D) reveals the
reason for this: they are the same device. In the absence of
auxiliary assistance, all n-GHZ analyzers can, in fact, be inter-
preted as trees of connected two-qubit measurement devices.
n-GHZ states can, therefore, be generated in a fully loss de-
tecting scheme using Bell seed states and standard type-I and

type-II fusion devices. Visually breaking schemes down into
smaller, connected devices can be useful for identifying how
groups of these subdevices can be multiplexed independently
in order to ease demands on switching networks.

Comparing the schemes in (21) and (22) when auxiliary
assistance is considered reveals an interesting difference be-
tween previously studied boosting schemes and assisted GHZ
analyzers. Consider adapting scheme (21) by coupling a copy
of SQA-β independently to qubits 1 and 3 of the 4-GHZ
analyzer, which involves four auxiliary photons and modes
and has a success probability (discounting errors and the prob-
ability of generating the seed states) of PS = 25/128. This
does not have an equivalent assisted scheme of the form of
(22)—the auxiliary assistance would need to be spread across
the two layers of the device, and the state between layers is
not confined to the subspace of dual-rail qubits. A slightly
different assisted scheme which is more naturally suited to
(22) involves coupling SQA-β to each qubit of the final Bell
analyzer, and achieves a success probability of PS = 3/16. Be-
yond this, there is no obvious way to boost (22) further using
single photon auxiliary inputs. In contrast, it is straightforward
to boost (21) further using another four photons and modes,
by coupling additional copies of SQA-β to qubits 2 and 4.
This achieves a success probability of PS = 17/64, a 41.7%
increase over the boosted version of (22).

While it is unsurprising that a scheme restricted to boosting
the success probability of a subdevice is suboptimal, schemes
without this restriction have until now been neglected. The
moral to take from this is similar to that expressed in Ref. [19]:
forcing photons to act as qubits at intermediate stages is un-
necessary, and lifting this restriction can be beneficial.

One can arrive at perhaps the most obvious way of gen-
erating a 4-GHZ by combining smaller entangled states by
applying the spider fusion rule between the left and middle
layers of (22) to give

. (23)

Here, two 3-GHZ seed states are fused via a Bell state an-
alyzer with base success probability PS = 1/2 (boostable to
PS = 3/4 when coupled to two copies of SQA-β).

2. Six-qubit ring state

The six-qubit ring graph state was introduced in Ref. [10]
as an improvement over the 4-GHZ state as a resource state.
A scheme has been proposed [12] for generating this state
by inputting three 3-GHZ states, and performing three type-I
fusion operations across them in a cyclic fashion. This scheme
can be expressed as the LO-convertible ZX diagram

, (24)
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which achieves a measurement success probability PS = 1/8,
but lacks full loss detection because half of the resource state
qubits are output from type-I fusion.

A simple rewriting of the above adds full loss detection
at the detriment of input resources and measurement success
probability. Bending the type-I n-fusion outputs via the input
results in

, (25)

which takes three 3-GHZ and three Bell seed states, and per-
forms a PS = 1/64 measurement via three 3-GHZ analyzers.

At this point we can try to optimize the scheme to reduce
the resource burden as much as possible. Guided by the princi-
ple that n-GHZ analyzers are less resource efficient than type-I
n-fusions (without considering auxiliary assistance), the state
can be written as

. (26)

While this scheme still requires a PS = 1/64 measurement,
it only needs one 3-GHZ and five Bell seed states at the in-
put. Furthermore, application of identity (18) with n = 0 and
m = 3 allows us to replace the 3-GHZ seed state with two Bell
seed states and a type-I two-fusion

. (27)

This shows that the six-qubit ring state can be generated with
full loss detection from (seven) Bell seed states, with an (un-
boosted) PS = 1/128 measurement. Additional optimization
of six-ring state generation is left for future investigations.

A version of the six-qubit ring state which has enhanced
error-tolerance properties has also been proposed [10]. In this
version, each of the six qubits are encoded using the quantum
parity code QPC(2,2). By appending the QPC(2,2) encoder
[i.e., Eq. (19) with n, m = 2] to each output wire of Eq. (26)
and applying some simple rewriting, we arrive at the following

scheme for generating this encoded state:

. (28)

Here, 25 Bell seed states are combined via an overall PS =
1/225 measurement, which can be broken down into 13 type-I
two-fusions, 5 type-I three-fusions and a 3-GHZ analyzer.

3. Concatenated QPC(2,2) and two-qubit
repetition encoded two-chain state

This 16-qubit state is an example of a resource state pre-
sented in Ref. [11] for universal, fault-tolerant, measurement-
based quantum computation with enhanced loss tolerance.

We start from the unencoded state—a simple two-qubit
graph state. In the form of a ZX diagram, this is given by

. (29)

The first level of encoding is a two-qubit repetition code.
Applying the encoder map for this code to Eq. (29) results
in the modified ZX diagram

. (30)

To complete the encoding, QPC(2,2) is applied to each of the
qubits. As we are aiming for an overall LO-convertible ZX
diagram, we choose to apply the QPC(2,2) encoder in its LO-
convertible form, which is found from Eq. (19). This results
in

, (31)

which is an LO-convertible diagram for our target state. The
scheme takes eight 3-GHZ seed states, sends two qubits
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from each directly to the output, and measures the rest in a
two-layer entangling measurement with basic overall success
probability PS = 1/128. As we have seen in previous exam-
ples, we can reduce the size of seed states by application of
(18), such that only Bell seed states are required. Here, this
results in

, (32)

which is associated with a scheme that has 16 Bell seed
states, each of which provides a qubit to the output state. The
remaining 16 qubits are measured in a three-layer entangling
measurement, which is a layer of type-I two-fusions before
the two layers from the scheme derived from Eq. (31). Over-
all, the measurement part of the scheme has a basic success
probability PS = 1/32768—a factor of 256 smaller than that
of the previous scheme, which is due to the initial layer of
type-I fusions.

In Example 1, we saw that schemes featuring larger GHZ
measurements had a greater potential for boosting via SQA-
β devices. With this in mind, we can drag the Bell effect in
Eq. (32) through to the input and change it to a Bell state,
resulting in

. (33)

This new scheme features two 5-GHZ measurements, rather
than the two type-I four-fusions and single Bell state mea-
surement of Eq. (32)’s scheme. While this adaptation leads to
a higher success probability measurement with full SQA-β
boosting, there is a higher resource cost to pay—16 extra
auxiliary photons and an additional Bell seed state.

It might also be desirable to break the measurement from
Eq. (32) down into as many layers as possible, which may
aid the design of a multiplexing scheme for the overall near-
deterministic generation of the target state. Application of
the (inverse) spider fusion rule allows us to write the state

generation scheme as

, (34)

which explicitly relies only on Bell seed states, type-I two-
fusions and Bell state measurements.

IV. CONCLUSION

We have outlined a method which makes the task of design-
ing schemes for preparing resource states for linear optical
quantum computing easier. The schemes output by the method
are based on measuring subsets of qubits from seed states
with PNRDs coupled to linear optical networks. By assigning
costs to various aspects of the schemes (e.g., measurement
success probability, difficulty of preparing the seed states,
realistic hardware performance, etc.), the association of sub-
devices with ZX diagrams allows for optimization using ZX
calculus. As seed state generators take a generic form within
this framework, schemes can be easily adapted to assess the
potential benefits of utilizing different seed states, e.g., one-
dimensional graph states from quantum emitters [43].

We have provided concrete circuits for dual-rail linear op-
tical implementation of arbitrarily sized GHZ state analysis,
with and without auxiliary assistance. While only investigat-
ing one specific modular auxiliary state, we were able to find
enhanced boosted GHZ analyzers that appear to have no ana-
log expressible in terms of boosted two-qubit measurements.
Furthermore, assessment of the performance of these boosted
GHZ analyzers with loss suggests that their use could be
beneficial for state preparation in a loss-rate regime compati-
ble with near-term experimental reality. Investigating a more
general form of auxiliary assistance for GHZ analyzers, for
example, one not limited to being applied in a qubit-wise
fashion, could be an interesting topic of future research.

We anticipate that adaptations and refinements can be made
to our state generator design process in order to allow for
further optimization and resource savings to be made. In
particular, allowing seed and intermediate states to exist as
nonqubit states, and therefore taking a more photon-centric
approach (e.g., Ref. [44]), could be a promising way to build
upon the work presented in this paper, while retaining its ease
of application and the flexibility it provides.
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APPENDIX A: KRAUS OPERATORS FOR LINEAR
OPTICAL n-GHZ ANALYZERS

Here, we show that linear optical n-GHZ analyzers perform
generalized measurements with Kraus operators which project
onto two out of 2n possible maximally entangled states on n
dual-rail encoded qubits.

As stated in the main text, an array of 2n photon number
resolving detectors (PNRDs) detecting n photons perform a
measurement with Kraus operators

m⊗
i=1

|0i〉〉〈〈ri| = |0〉〉〈〈r|, (A1)

where
∑

i ri = n and inclusion of the ith mode vacuum is
indicative of a destructive measurement.

When considering a measurement device comprised of a
linear optical network preceding a PNRD array, the above
operators are transformed according to

|0〉〉〈〈r| �→ |0〉〉〈〈r|U (U ), (A2)

where U (U ) is the transformation applied to an n-photon
state due to the linear optical network with unitary scattering
matrix U .

As we are dealing with dual-rail photonic qubits, we must
also consider a projection to the dual-rail Hilbert space from
the larger multiphoton, multimode Hilbert space. Starting with
a projection from a single photon in two modes to the dual-rail
subspace,

PDR = |10〉〉〈〈10| + |01〉〉〈〈01|, (A3)

we can write the projector onto a system of n dual-rail qubits
as the tensor product of n single-qubit projectors: P⊗n

DR . An
arbitrary n-qubit state in the computational dual-rail basis
corresponds to a 2n-mode Fock state

n⊗
i=1

|xi〉 = |x〉

�→ |f(x)〉〉

=
n∏

i=1

(â†
2i−1)δxi ,0 (â†

2i )
δxi ,1 |0〉〉, (A4)

where xi ∈ {0, 1} and |0〉〉 is the 2n-mode vacuum. The func-
tion f(x) maps from length n bitstrings to length 2n bitstrings,
such that 0i �→ 12i, 02i+1 and 1i �→ 02i, 12i+1.

Using this notation, we can write

P⊗n
DR =

∑
x∈{0,1}n

|f(x)〉〉〈〈f(x)|. (A5)

Combining the evolved n-photon PNRD measurement
Kraus operators with a projection onto n dual-rail qubits gives
an effective Kraus operator in the dual-rail Hilbert space

given by

Kn
r = |0〉〉〈〈r|UP⊗n

DR

= |0〉〉〈〈r|U
⎡
⎣ ∑

x∈{0,1}n

|f(x)〉〉〈〈f(x)|
⎤
⎦

= |0〉〉〈〈r|
⎡
⎣ ∑

x∈{0,1}n

U |f(x)〉〉〈〈f(x)|
⎤
⎦. (A6)

In order to evaluate these operators, we first examine the
evolution of multimode Fock states due to the linear optical
network. The linear optical circuit part of the n-GHZ mea-
surement device performs the transformation

U = U 1,2n
BS

n−1∏
i=1

(
U 2i,2i+1

BS

)
(A7)

on the spatial modes, where U i, j
BS is the standard beam-splitter

transformation

UBS = 1√
2

(
1 1
1 −1

)
(A8)

between modes i, j ∈ [2n] (i.e., U i, j
BS is a 2n × 2n matrix). The

linear optical network described by U transforms each state as

U |f(x)〉〉 = U
n∏

i=1

(â†
2i−1)δxi ,0 (â†

2i )
δxi ,1 |0〉〉

= 1

2
n
2

(â†
1 + â†

2n)δx1 ,0 (â†
1 − â†

2n)δxn ,1

×
n−1∏
i=1

(â†
2i + â†

2i+1)δxi ,1 (â†
2i − â†

2i+1)δxi+1,0 |0〉〉,

(A9)

which is a sum of 2n terms, where each term contains a
product of n creation operators.

From (A9) and a given heralding pattern r we can directly
deduce which input qubit states x satisfy 〈〈r|U |f(x)〉〉 �= 0 and
therefore contribute to a particular Kraus operator. We start
by breaking up the detection pattern to highlight the pairs of
modes r2i and r2i+1,

〈〈r| = 〈〈r1, r2n|
( ⊗n−1

i=1 〈〈r2i, r2i+1|
)
; (A10)

plugging this into (A9), we arrive at

〈〈r|U |f(x)〉〉

= 1

2
n
2
〈〈r1, r2n|(â†

1 + â†
2n)δx1 ,0 (â†

1 − â†
2n)δxn ,1 |0〉〉

×
n−1∏
i=1

〈〈r2i, r2i+1|(â†
2i + â†

2i+1)δxi ,1 (â†
2i − â†

2i+1)δxi+1,0 |0〉〉,

(A11)

032402-11



BRENDAN PANKOVICH et al. PHYSICAL REVIEW A 110, 032402 (2024)

where now |0〉〉 is cast as a two-mode vacuum state. We now
focus our attention on the factors

〈〈r2i, r2i+1|(â†
2i + â†

2i+1)δxi ,1 (â†
2i − â†

2i+1)δxi+1,0 |0〉〉

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δr2i,2δr2i+1,0 − δr2i,0δr2i+1,2 if xi = 1, xi+1 = 0

δr2i,0δr2i+1,0 if xi = 0, xi+1 = 1

δr2i,1δr2i+1,0 − δr2i,0δr2i+1,1 if xi = 0, xi+1 = 0

δr2i,1δr2i+1,0 + δr2i,0δr2i+1,1 if xi = 1, xi+1 = 1,

(A12)

with a similar expression holding for modes 1 and 2n. There
is a lot to unpack from this expression, however it is key to
understanding the relationship between the input state and the
detection patterns. If we observe the patterns r2i = 2, r2i+1 =
0 or r2i = 0, r2i+1 = 2, then we know that the input state must
have xi = 1, xi+1 = 0. Similarly, if we observe the pattern
r2i = 0, r2i+1 = 0, then we know that the input state satisfied
xi = 0, xi+1 = 1. For the case where we observe the patterns
r2i = 1, r2i+1 = 0 or r2i = 0, r2i+1 = 1, we are not able to
unambiguously identify the values for xi and xi+1, however
we do know that they must be equal to each other.

From these observations, we can now take an observed
detection pattern r and determine the unique corresponding
input state |xr〉, unless all of the observed pattern pairs are
either 01 or 10, in which case we only know that xi = xi+1

for all i. With this in mind, we proceed by considering two
distinct cases for which to evaluate Pr:

Case 1: x /∈ {(0, . . . , 0), (1, . . . , 1)}.
The valid rs associated with this case are such that not

all pattern pairs (r2i, r2i+1) and (r1, r2n) are equal to (0, 1) or
(1, 0). By (A12), then, there is at least one pattern pair from
{(2, 0), (0, 2)}. As

∑
ri = n, there must be as many (0, 0)

pairs as pairs from {(2, 0), (0, 2)}.
A consequence of the above is that there is a unique x such

that

〈〈r|U |f(x)〉〉 �= 0 (A13)

for a given valid r. This x can be inferred from a single
instance of (r2i, r2i+1) ∈ {(2, 0), (0, 2), (0, 0)} by the relations
given in (A12). We label this specific x as xr.

Inserting xr into Eq. (A6) gives

Kr = 1

2
n
2

∏
i

√
ri! |0〉〉〈〈f(xr)|. (A14)

Furthermore, there are 2n
∏

i
1

ri!
different rs for a given xr

(all of which contain the same number of ri = 2 elements).
Combining all of these Kraus operators to form one effective
Kraus operator associated with multiple outcomes gives

K{r} = |0〉〉〈〈f(xr)|. (A15)

Because x ∈ {0, 1}n \ {(0, . . . , 0), (1, . . . , 1)}, the set of
Kraus operators associated with this case, {K{r}}, amount to
Kraus operators projecting onto all n-qubit dual-rail computa-
tional basis states except |0〉⊗n and |1〉⊗n.

If instead we fix |x〉, we can find the measurement patterns
corresponding to a projection onto this state by associating
one pattern to each term in U |f(x〉〉, as per Eq. (A9).

Case 2: x ∈ {(0, . . . , 0), (1, . . . , 1)}.
The cases of 00 . . . 0 and 11 . . . 1 can be directly computed.

They are automatically distinct from the other states because
their detection patterns only consist of 0′s and 1′s. By taking
the linear combinations of the two states, we get the separation
in the detection patterns:

U |f(0)〉〉 = 1

2
n
2

(â†
1 + â†

2n)
n−1∏
i=1

(â†
2i − â†

2i+1)|0〉〉

U |f(1)〉〉 = 1

2
n
2

(â†
1 − â†

2n)
n−1∏
i=1

(â†
2i + â†

2i+1)|0〉〉. (A16)

The goal is to describe precisely the relationship between
the detection patterns r and the observed state |nGHZ±〉. This
is determined by the even- or odd-ness of the number of 01′s
that are observed in the mode pairs (2i, 2i + 1) plus (1, 2n),

U |f(0)〉〉 = 1

2
n
2

(â†
1 + â†

2n)
n−1∏
i=1

(â†
2i − â†

2i+1)|0〉〉 = 1

2
n
2

(|1, 0〉〉1,2n + |0, 1〉〉1,2n) ⊗
∑

y∈{0,1}n−1

(−1)p(y)| f (y)〉〉

U |f(1)〉〉 = 1

2
n
2

(â†
1 − â†

2n)
n−1∏
i=1

(â†
2i + â†

2i+1)|0〉〉 = 1

2
n
2

(|1, 0〉〉1,2n − |0, 1〉〉1,2n) ⊗
∑

y∈{0,1}n−1

| f (y)〉〉, (A17)

where p(y) represents the parity of the bitstring y (sum of bits modulo 2),

1√
2
U (|f(0)〉〉 + |f(1)〉〉) = 1√

2n+1

(
|1, 0〉〉1,2n ⊗

∑
y∈{0,1}n−1

[(−1)p(y) + 1] ⊗ | f (y)〉〉 + |0, 1〉〉1,2n ⊗
∑

y∈{0,1}n−1

[(−1)p(y) − 1]| f (y)〉〉
)

= 1√
2n−1

( ∑
y:p(y)=0

|1, 0〉〉1,2n|f(y)〉〉 −
∑

y:h(y)=1

|0, 1〉〉1,2n ⊗ |f(y)〉〉
)
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1√
2
U (|f(0)〉〉 − |f(1)〉〉) = 1√

2n+1

(
− |1, 0〉〉1,2n ⊗

∑
y∈{0,1}n−1

[(−1)p(y) − 1]| f (y)〉〉 + |0, 1〉〉1,2n ⊗
∑

y∈{0,1}n−1

[(−1)p(y) + 1]| f (y)〉〉
)

= 1√
2n−1

( ∑
y:p(y)=1

|1, 0〉〉1,2n ⊗ |f(y)〉〉 +
∑

y:p(y)=0

|0, 1〉〉1,2n ⊗ |f(y)〉〉
)

. (A18)

The string y can be determined from an observed detection pattern r using the rule that yi = 0 if r2i, r2i+1 = 1, 0, and yi = 1
if r2i, r2i+1 = 0, 1 for i = 1, . . . , n − 1. If the detection pattern is such that r1 = 1, r2n = 0, then an even parity y indicates
|nGHZ+〉 while an odd parity y indicates |nGHZ−〉. On the other hand, if we have r1 = 0, r2n = 1, then the relationship between
the parity of y and the states |nGHZ±〉 is reversed.

Consider, as an example, r′ = (1, 1, 0, 1, 0, . . . , 1, 0, 0), which should correspond to a projection onto |nGHZ+〉 according
to the above. We have

〈〈r′|
[∑

x

U |f(x)〉〉〈〈f(x)|
]

= 〈〈r′|(U |10 . . . 10〉〉〈〈10 . . . 10| + U |01 . . . 01〉〉〈〈01 . . . 01|)

= 2− (n−1)
2

[
1√
2

(〈〈10 . . . 10| + 〈〈01 . . . 01|)
]
. (A19)

There are 2n−1 distinct rs that give the same Kraus operator
as in Eq. (A19). These are associated with each of the terms
in the superposition

1√
2

(U |10 . . . 10〉〉 + U |01 . . . 01〉〉)

= 2− n+1
2 [(â†

1 + â†
2n)(â†

2 − â†
3) · · · (â†

2n−2 − â†
2n−1)

+ (â†
1 − â†

2n)(â†
2 + â†

3) · · · (â†
2n−2 + â†

2n−1)]|0〉〉,
(A20)

and the example of r′ = (1, 1, 0, 1, 0, . . . , 1, 0, 0) given
above comes from the product of the first term in each bracket.
Combining all of these Kraus operators to form one effective
Kraus operator gives

K{r∈G+} = 1√
2

(〈〈10 . . . 10| + 〈〈01 . . . 01|), (A21)

where G+ = {r : 〈〈r|U |01〉〉⊗n + 〈〈r|U |10〉〉⊗n �= 0}, i.e., the
set of vectors associated with the projectors in Eq. (A19).

Similarly, there are also 2n−1 rs such that

〈〈r|
[∑

x

U |f(x)〉〉〈〈f(x)|
]

=〈〈r|(U |10 . . . 10〉〉〈〈10 . . . 10| + U |01 . . . 01〉〉〈〈01 . . . 01|)

= 2− (n−1)
2

[
1√
2

(〈〈10 . . . 10| − 〈〈01 . . . 01|)
]

(A22)

for each of them. These rs are associated with the terms in the
superposition

1√
2

(U |10 . . . 10〉〉 − U |01 . . . 01〉〉)

= 2− n+1
2 [(â†

1 + â†
2n)(â†

2 − â†
3) · · · (â†

2n−2 − â†
2n−1)

− (â†
1 − â†

2n)(â†
2 + â†

3) · · · (â†
2n−2 + â†

2n−1)]|0〉〉.
(A23)

This time, the sum of the Kraus operators gives an over-
all effective Kraus operator projecting onto the nGHZ state

1√
2
(|0〉⊗n − |1〉⊗n):

K{r∈G−} = 1√
2

(〈〈10 . . . 10| − 〈〈01 . . . 01|), (A24)

where G− = {r : 〈〈r|U |01〉〉⊗n − 〈〈r|U |10〉〉⊗n �= 0}.
As cases 1 and 2 cover all possible error-free outcomes,

we can summarize in the following way by making associa-
tions between multimode Fock states and DR states: the ideal
measurement device performs a measurement with Kraus
operators

KS1 = 1√
2

(〈0|⊗n + 〈1|⊗n)

KS2 = 1√
2

(〈0|⊗n − 〈1|⊗n)

KFi = 〈xi|, (A25)

where xi is the ith element of the set {0, 1}n \ {0 . . . 0, 1 . . . 1},
and S and F label “success” and “failure,” in terms of the
outcome corresponding to a projection onto a maximally en-
tangled state.

APPENDIX B: SUCCESS PROBABILITY PERFORMANCE
OF BOOSTED 3-GHZ AND 4-GHZ ANALYZER DEVICES IN

THE PRESENCE OF LOSS

In a simple model in which all system and auxiliary pho-
tons see a lossy channel with loss rate 1 − η, we plot the
success probability PS for lossy, auxiliary assisted Bell state
analyzers, 3-GHZ analyzers and 4-GHZ analyzers in Fig. 6.
In each case, the assistance is given by coupling of SQA-β to
the number of qubits given on the plot.

When copies of SQA-β are coupled to multiple qubits
of an analyzer device, there exists some redundancy in the
successful detector patterns that provides some loss tolerance.
In basic terms, some successful events would remain as such
if one or more of the SQA-β devices were removed. For
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FIG. 6. Success probability of SQA-β assisted (a) Bell state analyzers, (b) 3-GHZ analyzers, and (c) 4-GHZ analyzers, for single-photon
efficiency η � 1.

those events, it does not matter if those auxiliary photons get
lost. Taking this effect into account, we find the following
expressions for lossy success probabilities for analyzers cou-
pled to SQA-β devices on all qubits:

PS,Bell(η) = 1
2η4 + 1

4η6 (B1)

PS,3GHZ(η) = 3
8η7 + 1

16η9 (B2)

PS,4GHZ(η) = 1
16η8 + 3

16η10 + 1
64η12, (B3)

where (B1) is equivalent to the expression derived by Ewert
and van Loock [24].

APPENDIX C: SOME ENCODER MAPS AS
LO-CONVERTIBLE ZX DIAGRAMS

We provide examples of encoder maps explicitly in LO-
convertible form to outline schemes that can realize them, and
associate some notion of difficulty in applying them in a linear
optics setting.

1. Five-qubit code

An encoder map for the five-qubit code can be found in
Ref. [41]. We restate it here as

= , (C1)

where the right-hand side has been rewritten in an LO-
convertible form. Due to both the cyclic and highly connected
nature of the encoder, it unfortunately seems to require exten-
sive application of the identity (18) in order to be stated in
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an LO-convertible form, bloating the resource requirements
for implementing it. In the form presented above, the cost of
applying the encoder is ten input Bell states, five type-I three-
fusions and one 5-GHZ analyzer. Discounting the probability
of generating the Bell states, the unboosted version of this
device has a daunting success probability of PS = 1/16 384.
Furthermore, a modular scheme for multiplexing subdevices
is not immediately evident due to the sharing of Bell pairs
between the type-I three-fusions.

2. Surface code

Any CSS encoder can be converted to two equivalent ZX
diagrams using a procedure outlined in Ref. [40]. Here, we
pick the distance-3 surface code encoder as an example. The
form given for the encoder in Ref. [40] is

, (C2)

which can be rewritten in an LO-convertible form as

. (C3)

This version of the encoder does not make use of the identity
(18) and therefore is somewhat more resource efficient to
implement than that for the five-qubit code. In this form, it
requires two Bell states, four 3-GHZ states, and one 4-GHZ
state as inputs, and the measurement device consists of three
networked 4-GHZ analyzers. Discounting the generation of
seed states, the success probability of the measurement device
is PS = 1/512.

BellBell

Bell

Bell

Bell

(a)

BellBell

Bell

Bell

Bell

(b)

3-GHZ3-GHZ

3-GHZ

(c)

FIG. 7. Fully loss-detecting 4-GHZ generation schemes from seed state generators, linear optics, and single-photon detectors, correspond-
ing to ZX diagrams (a) Eq. (21), (b) Eq. (22), and (c) Eq. (23). For compactness, the output state exits to the left, as indicated by the arrows.
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APPENDIX D: LO SCHEMES FOR 4-GHZ STATE GENERATION

In Fig. 7, we show some concrete examples of LO-based resource state generator schemes, converted from Example 1 in the
main text, using the conversion rules given in Fig. 5.
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