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We present a method aimed at protecting unitary dynamics in the presence of decoherence, by integrating
leakage elimination operators (LEOs) into the system’s evolution to create dynamical leakage-free paths.
Deriving the dynamical equation for an open quantum system with general drives can be challenging. Our
approach avoids the rotating wave approximation and instead uses the coarse-grained averaging technique to
derive a quantum master equation for such systems. The combination of the coarse-graining approach and LEO
operators appears suitable to study Markovian control methods. We show that employing LEO pulses in specific
subspaces can reduce errors arising from undesired transitions due to decoherence. Notably, satisfactory final
fidelity can still be achieved even when the reservoir is at a finite temperature. By looking into the dynamical
equation governing the quantum state on the dynamical leakage-free path, we provide analytical insights into the
effectiveness of the LEO method in suppressing decoherence effects.
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I. INTRODUCTION

The importance of precise control over quantum sys-
tems with high fidelity is widely recognized for advancing
quantum science and technology. This approach finds broad
applications in quantum technologies, such as quantum sim-
ulation [1,2] and computation [3,4]. However, a persistent
challenge arises from the impact of dissipation and noise,
which lead to decoherence and leakage. These factors gradu-
ally accumulate errors over time, consequently damaging the
accuracy of control [5]. To address this challenge, various
schemes have been proposed, including the decoherence-free
subspace [6,7], shortcuts to adiabaticity [8–10], and dynami-
cal decoupling [11,12].

These methods effectively shield quantum control pro-
cesses from decoherence in a short time; however, they
show a reduction in robustness when control timescales
are long [13,14]. To enhance the performance of quantum
control processes, a pivotal step involves redesigning the
control strategy within the framework of the theory of open
quantum systems. This redesign has been made to control
schemes for open quantum systems [15–18], as well as to
derive the Markovian master equation for driven quantum sys-
tems [19,20]. It has been demonstrated that under conditions
where the environment is at an ultralow temperature and the
rotating wave approximation (the secular approximation) is
applicable, the time-dependent instantaneous steady state of
the open system can be a pure state. This pure state serves as
a promising candidate for executing quantum state engineer-
ing [19,21]. However, in scenarios where the rotating wave
approximation is unavailable or the environment is at a finite
temperature, the instantaneous steady state never becomes a

pure state. As a result, the quantum control task is destined to
fail due to decoherence.

When the rotating wave approximation is no longer ap-
plicable, a promising method was proposed to derive a
master equation, known as the coarse-graining master equa-
tion [22–25], which satisfies complete positivity and trace
preservation and does not require the rotating wave approx-
imation. The coarse-graining master equations are influenced
by a parameter, the coarse-graining timescale. For short
coarse-graining times that adaptively align with the physi-
cal time, the solution is designed to approximate the result
of the Born approximation. For longer coarse-graining times
and time-independent system Hamiltonians, the rotating wave
approximation is reproduced. For all intermediate coarse-
graining times, the Lindblad form of the resulting differential
equations ensures a positive evolution of the system density
matrix. If we choose the coarse-graining timescale to be the
physical time, this timescale is referred to as the dynamical
coarse-graining time [22,26], which has several advantages.
Dynamical coarse graining can not only significantly decrease
the computational effort required to solve the quantum master
equation, but also can accommodate certain non-Markovian
effects by incorporating memory functions or time-dependent
rates, providing a more accurate description of systems where
memory effects are significant.

Here, we combine the coarse-graining averaging technique
and the leakage elimination operator (LEO) method, and show
that this combination is beneficial to understand the effect
of the dynamical decoupling pulse on the Markovian sys-
tem. This approach operates independently of the rotating
wave approximation and does not require an ultralow envi-
ronmental temperature. The LEO method was first proposed
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in Ref. [27]. This method can suppress leakage from a sub-
system encoding either a single logical qubit or a group of
qubits into the broader framework of a multilevel Hilbert
space [28–31] by employing unbounded fast and strong
pulses, called “bang-bang” control [32], which originate from
the spin-echo effect [33] applied for the first-order corrections
of the evolution. The combination of the coarse-grained aver-
aging technique and the LEO method allows us to examine the
role of dynamical decoupling techniques in quantum control
from a different perspective. By incorporating LEO operators
into a set of time-dependent bases, we succeed in establishing
dynamic leakage-free pathways in the presence of decoher-
ence, including the tracking of eigenstates of a time-dependent
Hamiltonian [34,35], even for open quantum systems [18].
While the LEO method has been extensively utilized in closed
system dynamics, its theoretical framework for open quantum
systems has rarely been thoroughly discussed.

In this paper, we combine the LEO operators method and
dynamical equation for driven open quantum systems where
the rotating wave approximation is inappropriate to protect
unitary dynamics in the presence of decoherence. Although
the Redfield master equation method can yield quite accu-
rate results, especially the non-Markovian Redfield master
equation which may outperform the coarse-graining master
equation [36], To ensure the positivity of the driven open
quantum system dynamics, we would like to focus on the
coarse-graining master equation method. Therefore, we derive
a coarse-graining master equation applicable to open quan-
tum systems with an arbitrary time-dependent Hamiltonian
at first. Through solving the Schrödinger equation of the
system [37,38], we can explicitly determine the correspond-
ing unitary operator for the system’s free propagator [19].
This facilitates a concise and comprehensive formulation of
our coarse-graining master equation, which incorporates ex-
plicit decoherence operators and their associated strengths.
This formulation aids in visualizing the dynamics inherent in
driven open quantum systems. Subsequently, we convert the
coarse-graining master equation into a superoperator form. By
deriving the one-component dynamical equation, we illustrate
the remarkable effectiveness of the LEO method in protecting
a dynamic leakage-free pathway during the system’s interac-
tion with its surroundings. Here, the quantum state shielded by
the LEOs is referred to as the “dynamical leakage-free path”
(DLFP). The one-component dynamical equation provides
further insights into why the LEO pulse mitigates decoherence
effects. It is noteworthy that the LEO pulse diminishes the
impact of antirotating wave terms in the master equation by
removing characteristic frequency degeneracy. Conversely, as
the LEO pulse modifies the system’s characteristic frequen-
cies, it alleviates the influence of environmental temperature
on the control process.

II. COARSE-GRAINING MASTER EQUATION FOR
DRIVEN OPEN SYSTEMS

In this section, we initially introduce the general formula-
tion and derivation of the coarse-graining master equation for
driven quantum systems. Subsequently, we apply this general
form to derive the coarse-graining master equation for the

interaction between a driven system and a bosonic reservoir
with finite temperature.

A. General formalism

As a first step, we employ the temporal coarse-graining
approach [22,25] to derive a master equation for driven open
quantum systems. We assume that the Hamiltonian of the total
system can be expressed as

H (t ) = HS(t ) + HB + HI(t ).

Here, HS(t ) represents the system Hamiltonian with time-
dependent drives, and HB denotes the reservoir Hamiltonian.
The interaction Hamiltonian takes the form

HI(t ) = λ
∑

k

Ak (t ) ⊗ Bk (t ),

where λ is a dimensionless coupling parameter, and Ak(t)
and Bk (t ) are the Hermitian system and reservoir operators,
respectively. Here, we do not restrict the interaction Hamil-
tonian to be time independent. By dynamically altering the
coupling between the system and the environment, the in-
teraction Hamiltonian can depend on time and can indirectly
influence the evolution of the system, thereby enabling inco-
herent control. For instance, being able to smoothly turn on
and off couplings to the reservoir is meaningful to quantum
thermodynamics, such as finite stroke quantum heat engines.

The evolution of the total system follows the von Neumann
equation

ρ̇(t ) = −i[H (t ), ρ(t )].

Here, we set h̄ = 1, and denote operators in the interaction
picture by tilde symbols. The density operator and the inter-
action Hamiltonian in the interaction picture are expressed as

ρ̃(t ) = U †
S (t )U †

B (t )ρ(t )UB(t )US (t ),

H̃I(t ) = λ
∑

k

[U †
S (t )Ak (t )US (t )] ⊗ [U †

B (t )Bk (t )UB(t )]

≡ λ
∑

k

Ãk (t ) ⊗ B̃k (t )

with the free evolution operators of the system and reservoir

US(t ) = T← exp

(
−i

∫ t

0
dτHS(τ )

)
, UB(t ) = exp (−iHBt ).

By following the standard derivation process of the coarse-
graining master equation, the general form of the coarse-
graining master equation can be written as

˙̃ρS(t ) = −i[〈S̃〉�t , ρ̃S(t )]

+ λ2�t

2π

∑
i, j

∫ +∞

−∞
dωγi j (ω)

(〈
Ãω

j

〉
�t

ρ̃S(t )
〈
Ãω

i

〉†
�t

− 1

2

{〈
Ãω

i

〉†
�t

〈
Ãω

j

〉
�t

, ρ̃S(t )
})

,

where the coarse-graining decoherence operators are given by

〈
Ãω

i

〉
�t = 1

�t

∫ t+�t

t
Ãi(τ )eiωτ dτ (1)
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and the Lamb shift operator is

〈S̃〉�t = λ2�t

4π i

∑
i, j

∫ +∞

−∞
dωσi j (ω)

〈
Ãω

i

〉†
�t

〈
Ãω

j

〉
�t

.

The details of the derivation of the above coarse-graining
master equation can be found in the Appendix.

Obtaining an explicit coarse-graining master equation of
driven quantum systems crucially hinges on specifying the
forms of the decoherence operators and Lamb shifts in the
interaction picture. In the following sections, the coarse-
graining decoherence operators 〈Ãω

i 〉�t are identified by
defining the DLFPs. First, we select an arbitrary complete
basis set of the system Hilbert space at t = 0, denoted as
{|ψn(0)〉}. For instance, the initial basis can be chosen as the
eigenstates of the initial Hamiltonian. Then, by applying the
free unitary evolution operator US(t ) to the initial basis, we
can define a time-dependent basis of the system Hilbert space,
termed as the dynamical leakage-free paths, which satisfy

US(t )|ψn(0)〉 = exp[iαn(t )]|ψn(t )〉. (2)

Here, αn(t ) is a global phase appearing in the nth basis. Thus,
the formal solution of the system unitary evolution operator is

US(t ) =
∑

n

exp [iαn(t )]|ψn(t )〉〈ψn(0)|. (3)

Since US(t ) satisfies U̇S(t ) = −iHS(t )US(t ), we can identify
the global phase αn(t ) by substituting Eq. (3) into it, i.e.,

αn(t ) =
∫ t

0
〈ψn(τ )|[i∂τ − HS (τ )]|ψn(τ )〉 dτ. (4)

All of the DLFPs {|ψn(t )〉} are orthogonal and satisfy the
Schrödinger equation

|ψ̇n(t )〉 = −i[HS(t ) + α̇n(t )]|ψn(t )〉, (5)

which can be solved using both numerical and analytical
methods [37,38]. It is evident that by introducing a new time
variable s such that t = s t f with s ∈ [0, 1], we obtain

1

t f
∂s|ψn(s)〉 = −i[HS(s) − En(s)]|ψn(s)〉,

where t f represents the total evolution time and En(s) ≡
−α̇n(s). If the system’s evolution satisfies the adiabatic con-
dition, the first term in the above equation can be omitted,
which leads to

HS(s)|ψn(s)〉 = En(s)|ψn(s)〉.
This implies that {|ψn(s)〉} are the eigenstates of the system
Hamiltonian. Therefore, the adiabatic coarse-graining master
equation can be straightforwardly obtained using our results
when the system’s evolution is adiabatic.

Based on the formal solution of the free evolution operator
US(t ), the system operator in the interaction picture reads as
follows:

Ãi(t ) = U †
S (t )AiUS(t ) =

∑
n,m

eiθ i
mn(t )ξ i

mn(t )F̃mn, (6)

where

θ i
mn(t ) = αn(t ) − αm(t ) + Arg(〈ψm(t )|Ai|ψn(t )〉) (7)

and ξ i
mn(t ) = |〈ψm(t )|Ai|ψn(t )〉|. The time-independent oper-

ators F̃mn = |ψm(0)〉〈ψn(0)| denote decoherence operators in
the interaction picture. It can be observed that θ i

mn(t ) and
ξ i

mn(t ) are real numbers, and ξ i
mn(t ) > 0. Taking the Hermitian

conjugate of Eq. (6), it yields

Ã†
i (t ) =

∑
n′,m′

e−iθ i
m′n′ (t )ξ i

m′n′ (t )F̃ †
m′n′ . (8)

Thus, according to Eq. (1), the coarse-graining decoherence
operators can be obtained as〈

Ãω
i

〉
�t

=
∑
n,m

〈
ci,ω,t

mn

〉
�t

eiωt F̃mn

with time-dependent coefficients

〈
ci,ω,t

mn

〉
�t = 1

�t

∫ �t

0
ei(θ i

mn(t+τ ′ )+ωτ ′ )ξ i
mn(t + τ ′)dτ ′,

where τ has been replaced by t + τ ′. Here, we assume that the
driving rate is much smaller than the inverse of the reservoir
correlation time. In other words, the reservoir correlation time
τB is much shorter than the timescale τd defined as [20]

τd ≡ Minm,n,i,t

{
∂tθ

i
mn(t )

∂2
t θ i

mn(t )

}
.

For τ ′ in the interval [0,�t] and τ ′ 
 t , θ i
mn(t + τ ′) can be

approximated by a polynomial expansion in orders of τ ′ as
follows:

θ i
mn(t + τ ′) ≈ θ i

mn(t ) + ∂tθ
i
mn(t )τ ′ ≡ θ i

mn(t ) + αi
mn(t )τ ′,

(9)

where αi
mn(t ) = ∂tθ

i
mn(t + s)|s=0 represents an instantaneous

frequency. In such a case, the first order is the dominant
contribution to the dynamics. Furthermore, we assume that the
first orders of expansion on ξ i

mn(t + τ ′) are negligible relative
to ξ i

mn(t ), i.e., ξ i
mn(t + τ ′) ≈ ξ i

mn(t ). Under these assumptions,
we have 〈

ci,ω,t
mn

〉
�t = ξ i

mn(t )ei{θ i
mn(t )+[ω+αi

mn(t )]�t/2}

× sinc

[[
ω + αi

mn(t )
]
�t

2

]
,

where sinc(x) = sin(x)/x, and the following relation has been
used: ∫ �t

0
eiατ ′

dτ ′ = �teiα�t/2sinc

(
α�t

2

)
.

Taking the conjugate on 〈ci,ω,t
mn 〉�t , it yields〈

ci,ω,t
m′n′

〉∗
�t = ξ i

m′n′ (t )e−i{θ i
m′n′ (t )+[ω+αi

m′n′ (t )]�t/2}

× sinc

[[
ω + αi

m′n′ (t )
]
�t

2

]
,

resulting in 〈
Ãω

j

〉†
�t

=
∑
n′,m′

〈
c j,ω,t

m′n′
〉∗
�t

e−iωt F̃ †
m′n′ .
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By considering the above coarse-graining decoherence opera-
tors, the coarse-graining master equation reads

˙̃ρS(t ) = −i[〈S̃〉�t , ρ̃S(t )] +
∑

n,m,n′,m′
��t

mn,m′n′ (t )

×
(

F̃mnρ̃S(t )F̃ †
m′n′ − 1

2
{F̃ †

m′n′ F̃mn, ρ̃S(t )}
)

(10)

with the decoherence rates

��t
mn,m′n′ (t ) = λ2�t

2π

∑
i, j

ξ
j

m′n′ (t )ξ i
mn(t )

× ei[θ i
mn(t )−θ

j
m′n′ (t )]ei[αi

mn(t )−α
j
m′n′ (t )]�t/2

×
∫ +∞

−∞
γi j (ω)sinc

[[
ω + α

j
m′n′ (t )

]
�t

2

]

× sinc

[[
ω + αi

mn(t )
]
�t

2

]
dω.

The Lamb shift operator can be written as

〈S̃〉�t =
∑

n,n′,m

S�t
mn,mn′ (t )F̃ †

mn′ F̃mn,

with

S�t
mn,mn′ (t ) = λ2�t

4π i

∑
i, j

ξ
j

mn′ (t )ξ i
mn(t )

× ei[θ i
mn (t )−θ

j
m′n′ (t )]ei[αi

mn (t )−α
j
m′n′ (t )]�t/2

×
∫ +∞

−∞
σi j (ω)sinc

[[
ω + α

j
mn′ (t )

]
�t

2

]

× sinc

[[
ω + αi

mn(t )
]
�t

2

]
dω.

B. Coarse-graining master equation
for a driven two-level system

As an example, let us consider the driven two-level system
in the laser-adapted interaction picture with the following
Hamiltonian:

H0
S = �(t )σz + �(t )σx. (11)

Here, �(t ) = ω0(t ) − ωL represents the time-dependent de-
tuning, with ω0(t ) as the time-dependent Rabi frequency, and
ωL as the constant laser frequency. The driven field is repre-
sented by �(t ). The formal solution also follows the pattern
for the two-level system [39,40]:

|ψ1(t )〉 = cos η(t ) eiζ (t )|1〉 + sin η(t )|0〉,
|ψ2(t )〉 = sin η(t ) eiζ (t )|1〉 − cos η(t )|0〉, (12)

which are the general solutions of the Schrodinger equation.
Here, |1〉 and |0〉 satisfy σz|1〉 = |1〉 and σz|0〉 = −|0〉. The
coefficients in the formal solution (12) are related to the
Hamiltonian (5), in such a way that

∂tη = � sin ζ , sin 2η(2� + ∂tζ ) = 2� cos 2η cos ζ . (13)

According to Eq. (4), the global phases of the DLFPs are

α1 =
∫ t

0
dτ (−∂τ ζ cos2 η − � cos 2η − � cos ζ sin 2η),

α2 =
∫ t

0
dτ (−∂τ ζ sin2 η + � cos 2η + � cos ζ sin 2η). (14)

Therefore, the system’s free evolution operator can be explic-
itly written as

US (t ) =
∑

k=1,2

eiαk (t )|ψk (t )〉〈ψk (0)| (15)

with either �,� or ζ , η.
The driven two-level system is coupled to a bosonic reser-

voir, which can be characterized by the reservoir Hamiltonian
in the laser-adapted interaction picture:

HB =
∑

k

�kb†
kbk .

Here, �k = ωk − ωL, where bk and ωk represent the annihila-
tion operator and the eigenfrequency of the kth mode of the
bosonic reservoir, respectively. Furthermore, we consider the
interaction Hamiltonian as

HI = σy ⊗ By.

Here, By = i
∑

k gy
k (b†

k − bk ), where gy
k denotes the coupling

strength of the driven two-level system to the kth bosonic
mode.

Using the system evolution operator given by Eq. (15), the
system operator σy in the interaction picture is

σ̃y(t ) =
2∑

m,n=1

eiθ y
mn (t )ξ y

mn(t )F̃mn. (16)

Here, the coefficients are defined as follows:

ξ
y
11 = ξ

y
22 = sin 2η sin ζ ,

ξ
y
12 = ξ

y
21 =

√
1 − sin2 2η sin2 ζ ,

and

θ
y
12 = −θ

y
21 = α2 − α1 + ϕ12,

θ
y
11 = π, θ

y
22 = 0.

Here, α1 and α2 are the global phases as given by Eq. (14), and
tan ϕ12 = cos ζ/ cos 2η sin ζ . The instantaneous frequencies
read

α0 ≡ α
y
12 = −α

y
21

= ∂tζ cos 2η + 2� cos 2η + 2� cos ζ sin 2η

+ ∂tη sin 2η sin 2ζ + ∂tζ cos 2η

1 − sin2 2η cos2 ζ
.

We redefine the decoherence operators as �̃+ = F̃21, �̃− =
F̃12, and �̃z = F̃22 − F̃11, satisfying �̃+ = �̃

†
−, [�̃z, �̃+] =

2�̃+, and [�̃z, �̃−] = −2�̃−. By relabeling the indices in
Eq. (16) and replacing 11, 22 with z, 21 with +, and 12 with
−, it yields

σ̃y(t ) =
∑

k=+,−,z

eiθ y
k (t )ξ

y
k (t )�̃k
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with θ
y
z = 0 and ξ

y
z = ξ

y
22. Thus, the coarse-grained master

equation for the driven two-level system can be expressed
explicitly as follows:

˙̃ρS(t ) = −i[〈S̃〉�t , ρ̃S(t )]

+
∑

k,k′=+,−,z

��t
kk′ (t )

(
�̃k ρ̃S(t )�̃†

k′ − 1

2
{�̃†

k′�̃k, ρ̃S(t )}
)

.

The decoherence rates are given by

��t
kk′ (t ) = �t

2π
ξ

y
k′ (t )ξ y

k (t )

× ei[θ y
k (t )−θ

y
k′ (t )]ei[αy

k (t )−α
y
k′ (t )]�t/2

×
∫ +∞

−∞
γ (ω)sinc

[[
ω + α

y
k′ (t )

]
�t

2

]

× sinc

[[
ω + α

y
k (t )

]
�t

2

]
dω, (17)

and the Lamb shift is

〈S̃〉�t =
∑
kk′

S�t
kk′ (t )�̃†

k′�̃k,

where

S�t
kk′ (t ) = �t

4π i
ξ

y
k′ (t )ξ y

k (t )

× ei[θ y
k (t )−θ

y
k′ (t )]ei[αy

k (t )−α
y
k′ (t )]�t/2

×
∫ +∞

−∞
σ (ω)sinc

[[
ω + α

y
k′ (t )

]
�t

2

]

× sinc

[[
ω + α

y
k (t )

]
�t

2

]
dω. (18)

In the Schrödinger picture, the coarse-graining master equa-
tion is expressed as

ρ̇S(t ) ≡ L[ρS(t )]

= H[ρS(t )] + D[ρS(t )] (19)

where the Hamiltonian part is

H[ρS(t )] = −i[HS + 〈S〉�t , ρS(t )]

and the dissipative part is given by

D[ρ S] =
∑
k,k′

��t
kk′ (t )

(
�kρS�

†
k′ − 1

2

{
�

†
k′�k, ρS

})
. (20)

The time-dependent decoherence operators in the Schrödinger
picture, denoted by {�k}, satisfy �̃k = US (t )�kU

†
S (t ).

III. LEOS METHOD FOR DYNAMICAL
LEAKAGE-FREE PATHS

In this section, we demonstrate the effectiveness of the
LEO method [29,35] in protecting quantum states encoded
within the DLFPs.

A. One-component dynamical equation

In this subsection, we will derive a simplified dynamical
equation for the quantum state in the DLFP [27,30]. First,
we present a matrix-to-vector mapping for two-level sys-
tems. The master equation Eq. (19) can be converted into
superoperator form using the “bra-ket” notation for the super-
operator [41,42]:

L[ρS (t )] ↔ L̂|ρS (t )〉〉,
Tr{X †Y } ↔ 〈〈X |Y 〉〉,

XρS (t )Y † ↔ (X ⊗ Y ∗)|ρS (t )〉〉,
where Y ∗ denotes the complex conjugate of the operator Y .
In this superoperator notation, the density matrix can be ex-
panded into a “4 × 1” vector:

|ρS (t )〉〉 =
2∑

m,n=1

ρmn(t )|ψm(t )〉 ⊗ |ψ∗
n (t )〉.

Here, {|ψm(t )〉} are DLFPs which were defined in Eq. (2).
Thus, the coarse-graining master equation Eq. (19) becomes

|ρ̇S (t )〉〉 =
2∑

m,n=1

ρmn(t )(Ĥ + D̂)|ψm(t )〉 ⊗ |ψ∗
n (t )〉, (21)

with

Ĥ = −i[(HS + 〈S〉�t ) ⊗ I − I ⊗ (HS + 〈S〉�t )
∗]

and

D̂ =
∑
k,k′

��t
kk′ (t )

{
�k ⊗ �∗

k′

− 1

2

[
�

†
k′�k ⊗ I + I ⊗ (

�
†
k′�k

)T ]}
,

where AT denotes the transpose of A. Due to
(〈ψm′ | ⊗ 〈ψ∗

n′ |)[|ψm(t )〉 ⊗ |ψ∗
n (t )〉] = δm′mδn′n and |ψ̇m(t )〉 =

−iHS (t )|ψm(t )〉, we use 〈ψm′ | ⊗ 〈ψ∗
n′ | on the left of Eq. (21)

and obtain

ρ̇m′n′ (t ) =
2∑

m,n=1

[〈ψm′ | ⊗ 〈ψ∗
n′ |Ŝ|ψm(t )〉 ⊗ |ψ∗

n (t )〉

+ 〈ψm′ | ⊗ 〈ψ∗
n′ |D̂|ψm(t )〉 ⊗ |ψ∗

n (t )〉]ρmn(t ),

with Ŝ = −i(〈S〉�t ⊗ I − I ⊗ 〈S〉∗�t ). Furthermore, we define
|�i〉〉 = |ψm(t )〉 ⊗ |ψ∗

n (t )〉 with i = m + 2(n − 1), so that it
yields

ρ̇i′ (t ) =
4∑

i=1

(〈〈�i′ |Ŝ|�i〉〉 + 〈〈�i′ |D̂|�i〉〉)ρi(t ).

We rewrite the above equation into a vector equation

�̇ρ = L̄�ρ (22)

with the density operator vector �ρ = [ρ1, ρ2, ρ3, ρ4]T and the
Liouvillian matrix L̄i′i = 〈〈�i′ |Ŝ|�i〉〉 + 〈〈�i′ |D̂|�i〉〉 [41].

To derive an exact one-component dynamical equation for
ρi, we employ the Feshbach P-Q partitioning technique.
This involves dividing the vector �ρ into two parts: a one-
dimensional vector of interest P(t ), referred to as the
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decoherence path, and a three-dimensional vector Q(t ). The
matrices are also decomposed as L̄ = L̄P + L̄Q + L̄L, where
L̄P and L̄Q act on the subspaces defined by P(t ) and Q(t ),
respectively, and L̄L is the off-diagonal part of L̄. Specifically,
�ρ and L̄ can be expressed as

�ρ =
[

P(t )
Q(t )

]
, L̄ =

[
h(t ) R(t )

W (t ) D(t )

]
. (23)

Here, h(t ) is a 1 × 1 matrix acting on the subspace defined by
P(t ), and D(t ) is a 3 × 3 matrix that only acts on Q(t ). The
matrices R(t ) and W (t ) represent off-diagonal contributions,
with dimensions 1 × 3 and 3 × 1, respectively. Suppose that
the quantum state is initially prepared on one of DLFPs ρi

for i = 1 or 4, leading to P(0) = 1 and Q(0) = [0]3×1. Equa-
tion (22) could be decomposed into

Ṗ(t ) = h(t )P(t ) + R(t )Q(t ),

Q̇(t ) = D(t )Q(t ) + W (t )P(t ). (24)

Using Eq. (22), the formal solution for P(t ) is given by

Ṗ(t ) = h(t )P(t ) +
∫ t

0
dt ′g(t, t ′)P(t ′), (25)

where g(t, t ′) = R(t )G(t, t ′)W (t ′) and G(t, t ′) =
T← exp[

∫ t
t ′ D(s)ds]. To obtain a more concise formal solution,

we define

p(t ) = exp

[
−

∫ t

0
h(t ′)dt ′

]
P(t ),

which satisfies

ṗ(t ) = exp

[
−

∫ t

0
h(s)ds

]

×
∫ t

0
dt ′g(t, t ′) exp

[∫ t ′

0
h(s)ds

]
p(t ′). (26)

This integrodifferential equation represents the exact one-
component dynamical equation for ρi(t ).

B. LEOs for open quantum systems

Our objective is to protect the free evolution along with the
dynamical leakage-free paths using the LEOs. Specifically, we
consider a scenario where the detuning �(t ) in the system
Hamiltonian [Eq. (11)] decreases from a constant �0 to � f ,
while the driving strength �(t ) increases from zero to �0.
Without loss of generality, we choose

� = 3 π

2 tf 3

t (t − t f )

sin
(

π
2 − π t

2 tf

) ,

� = 3 πt (t − t f )

2 t f
3

tan

(
π t

2 t f

)
cot

(
π t2 (2 t − 3 t f )

2 t f
3

)

+ π

4 t f
. (27)

The one-component dynamical equation [Eq. (26)] shows that
if ρ̇1(t ) = 0, meaning∫ t

0
dt ′g(t, t ′) exp

[∫ t ′

0
h(s)ds

]
ρ1(t ′) = 0, (28)

then the open two-level system will evolve into |ψ1(t f )〉 along
the decoherence path |ψ1(t )〉 in the Hilbert space.

We examine a driven two-level system interacting with a
bosonic heat reservoir at temperature TB and in its equilibrium
state ρB. The correlation functions of the heat reservoir oper-
ators are delineated by

Tr{bk′b†
kρB} = δk′k

1 − exp(−β�k )
,

Tr{b†
k′bkρB} = δk′k

exp(β�k ) − 1
,

Tr{bk′bkρB} = 0, Tr{b†
k′b

†
kρB} = 0,

where β = T −1
B . In the continuum limit, the summation over

(gy
k )2 is substituted with an integral:∑

k

(
gy

k

)2 →
∫ ∞

0
dω J (ω).

Thus, the correlation function of By(t ) takes the form

Cyy(τ ) = 1

2π

∫ +∞

−∞

2πJ (|ω|)
|1 − exp(−βω)| exp(−iωτ )dω,

yielding

γ (ω) = 2πJ (|ω|)
|1 − exp(−βω)| .

Without loss of generality, we consider an Ohmic spectral
density with an exponential frequency cutoff at the cutoff
frequency ωc:

J (ω) = μω exp

(
− ω

ωc

)
,

where μ represents a dimensionless coupling constant.
To implement the desired dynamical leakage-free path, we

apply a LEO pulse to the system. Mathematically, this is
achieved by introducing the term

HLEO(t ) = c(t )(|ψ1(t )〉〈ψ1(t )| − |ψ2(t )〉〈ψ2(t )|),
into the original system Hamiltonian H0

S (t ) [refer to Eq. (11)],
which is diagonal in the DLFP frame. Here, c(t ) represents
the control function governing the sequence of pulses, while
|ψ1(t )〉 and |ψ2(t )〉 denote the DLFPs. Thus, the updated
system Hamiltonian becomes

HS (t ) = H0
S (t ) + HLEO(t ).

In the experimental frame, the modified system Hamiltonian
can be explicitly expressed as

HS (t ) = �′(t )σz + �′
x(t )σx + �′

y(t )σy,

where

�′
x(t ) = (2∂tη + c sin 2η sin 2ζ )/ sin ζ ,

�′
y(t ) = −2c sin 2η sin ζ ,

�′(t ) = 2c cos 2 η + 2∂tη cot2η cotζ − ∂tζ .

We may have concerns regarding the impact of integrating
LEOs into the system Hamiltonian on the validity of the
coarse-graining master equation (19). However, it is crucial to
note that the LEO Hamiltonian does not affect the DLFPs, as
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demonstrated by the fact that the DLFPs are the eigenstates of
the LEO Hamiltonian. Therefore, the structure of the coarse-
graining master equation (19) remains intact, except for the
adjusted global phases:

α1(t ) =
∫ t

0
dτ [−ζ̇ (τ ) cos2 η(τ ) − �(τ ) cos 2η(τ )

−�(τ ) cos ζ (τ ) sin 2η(τ ) − c(τ )],

α2(t ) =
∫ t

0
dτ [−ζ̇ (τ ) sin2 η(τ ) + �(τ ) cos 2η(τ )

+�(τ ) cos ζ (τ ) sin 2η(τ ) + c(τ )].

Consequently, there is a corresponding adjustment in the in-
stantaneous frequencies:

αc ≡ α0 + 2c

= ∂tζ cos 2η + 2� cos 2η + 2� cos ζ sin 2η

+ ∂tη sin 2η sin 2ζ + ∂tζ cos 2η

1 − sin2 2η cos2 ζ
+ 2c. (29)

More precisely speaking, the instantaneous frequencies read

α
y
− = ∂tζ cos 2η + 2� cos 2η + 2� cos ζ sin 2η

+ ∂tη sin 2η sin 2ζ + ∂tζ cos 2η

1 − sin2 2η cos2 ζ
+ 2c,

α
y
+ = −∂tζ cos 2η + 2� cos 2η + 2� cos ζ sin 2η

− ∂tη sin 2η sin 2ζ + ∂tζ cos 2η

1 − sin2 2η cos2 ζ
− 2c.

In essence, while the addition of the LEO Hamiltonian does
not alter the decoherence operators {�k (t )}, it does affect
the decoherence rates {��t

kk′ (t )} and the Lamb shift strengths
{S�t

kk′ (t )}.

In the context of the LEO method for closed quantum sys-
tems, achieving ṗ(t ) = 0 implies that exp[

∫ t ′

0 h(s)ds] contains
rapidly oscillating functions, or equivalently, that g(t, t ′) → 0
can be fulfilled. To demonstrate this, let us examine the ex-
pression for the elements of the Liouvillian matrix L̄:

L̄i′i = 〈〈�i′ |ĤLEO|�i〉〉 + 〈〈�i′ |Ŝ|�i〉〉 + 〈〈�i′ |D̂|�i〉〉, (30)

where ĤLEO represents the LEO superoperator

ĤLEO = −i(HLEO ⊗ I − I ⊗ H∗
LEO).

This gives us the expression for h(t ):

h(t ) = H̄LEO
11 + S̄11 + D̄11

where H̄LEO
11 = 〈〈�1|ĤLEO|�1〉〉, S̄11 = 〈〈�1|Ŝ|�1〉〉, and

D̄11 = 〈〈�1|D̂|�1〉〉. Since 〈S〉�t and HLEO are Hermitian op-
erators, both S̄11 and H̄LEO

11 are equal to zero. Considering the
dissipator given by Eq. (20), we find h(t ) = D̄11 = −��t

−−.
Hence, the LEO pulse does not introduce rapid oscillations
in exp[

∫ t ′

0 h(s)ds], which distinguishes it from closed sys-
tems [31,34,35]. Moreover, based on the definition of p(t ) as
shown in Eq. (25), P(t ) decays rapidly to zero if ��t

−− greatly
exceeds the other decoherence rates and Lamb shift strengths
in the coarse-graining master equation. This rapid decay is
facilitated by the dissipator, where the term corresponding to
��t

−− describes the decay from |ψ2(t )〉 to |ψ1(t )〉. As a result,
the decoherence path is naturally shielded by decoherence, as
we will discuss further.

Next, let us analyze the term g(t, t ′) in Eq. (28). We aim
to demonstrate that the LEO pulse effectively protects the
quantum state on the decoherence path by inducing modi-
fications to the decoherence rates and Lamb shift strengths.
Substituting Eq. (19) into Eq. (30), we find

RT =

⎡
⎢⎣

1
2

(
2��t

z+ − ��t
+z + ��t

z−
) + i

(
S�t

+z − S�t
z−

)
1
2

(
��t

+z + ��t
z−

) − i
(
S�t

+z − S�t
z−

)
��t

++

⎤
⎥⎦,

W =

⎡
⎢⎣

1
2

(
2��t

z− − ��t
z+ + ��t

−z

) + i
(
S�t

z+ − S�t
−z

)
1
2

(
3��t

−z − ��t
z+

) − i
(
S�t

z+ − S−z
)

��t
−−

⎤
⎥⎦,

D =

⎡
⎢⎣

−�d + iSd − 2ic ��t
+−

1
2

(
��t

z− − 3��t
+z

) − iSn

��t
−+ −�d − iSd + 2ic 1

2

(
��t

z− − ��t
+z − 2��t

z+
) + iSn

1
2

(
��t

−z − ��t
z+

) − iS∗
n

1
2

(
��t

−z − ��t
z+ − 2��t

z−
) + iS∗

n −��t
++

⎤
⎥⎦,

where �d = (��t
++ + ��t

−− + 2��t
zz )/2, Sn = S�t

+z − S�t
z−,

and Sd = S�t
++ − S�t

−−. Upon inspection of Eqs. (31)
and (32), we notice that both the decoherence rates
and Lamb shifts involve nonzero phase factors, such as
exp{i[θ y

k (t ) − θ
y
k′ (t )] + i[αy

k (t ) − α
y
k′ (t )]�t/2} for k �= k′

(the antirotating wave terms), which depend on the LEO
pulse strength c(t ) as illustrated by Eq. (29). If the LEO
pulse strength significantly exceeds the other parameters in
the coarse-graining master equation, these antirotating wave
terms will incorporate rapidly oscillating functions, such as

exp(±4i
∫ t ′

0 c(s)ds) or exp(±2i
∫ t ′

0 c(s)ds). For instance, one
of the decoherence rates is

��t
+−(t ) = �t

2π
ξ

y
−(t )ξ y

+(t ) ei{−2
∫ t

0 [α0(t ′ )+c(t ′ )]dt ′+[α0(t )+c(t )]�t}

×
∫ +∞

−∞
γ (ω)sinc

[
[ω + α

y
−(t )]�t

2

]

× sinc

[
[ω + α

y
+(t )]�t

2

]
dω, (31)
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FIG. 1. The decoherence rates as a function of the dimensionless
time ωet for the dynamics governed by H0

S (t ) (red dashed lines)
and HS (t ) (blue solid lines). The parameters are chosen as �t =
0.1t f , τ = 0.02t f , �τ = 0.6τ , c0 = −100t−1

f , β = 0.1t f , ωc = 1 ×
103t−1

f , and μ = 10(ωct f )−1. We set t f = 1 as a unit for the other
parameters.

and the corresponding Lamb shift strength reads

S�t
+−(t ) = �t

4π i
ξ

y
−(t )ξ y

+(t ) ei{−2
∫ t

0 [α0(t ′ )+c(t ′ )]dt ′+[α0(t )+c(t )]�t}

×
∫ +∞

−∞
σ (ω)sinc

[[
ω + α

y
−(t )

]
�t

2

]

× sinc

[[
ω + α

y
+(t )

]
�t

2

]
dω. (32)

[It is worth noting that when the spectral function J (ω) takes
the Breit-Wigner form [43], C(τ ) and the integrals in Eqs. (31)
and (32) can be expressed analytically.] Therefore, all of the
antirotating wave terms will approximate to zero within the
single pulse time interval �τ , indicating that the rotating wave
approximation can be applied during this interval. For our
analysis, we consider a bang-bang control, with the control
function chosen as

c(t ) =
{

c0, nτ < t < nτ + �τ, for n � 0,

0, otherwise.

Here, c0 is the pulse strength, and τ denotes the single control
time interval. As illustrated in Fig. 1(a), the nonsecular terms
in the coarse-graining master equation, such as ��t

+−(t ), are
effectively suppressed by the LEO in the time interval �τ .
Since the nondiagonal terms in the matrix D can be neglected,
we have

G = diag{e
∫ t

t ′ ds[−�d (s)+iSd (s)−2ic(s)], e
∫ t

t ′ ds[−�d (s)−iSd (s)+2ic(s)],

e− ∫ t
t ′ ds��t

++(s)},
R = [0, 0, ��t

++(t )], W T = [0, 0, ��t
−−(t )].
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FIG. 2. The fidelity as a function of the dimensionless time t/t f

for the dynamics governed by H0
S (t ) (red dotted lines and black

dashed lines) and HS (t ) (blue solid lines and green dot-dashed lines)
with (a) β = 10t f and (b) β = 0.1t f . The parameters are chosen as
τ = 0.02t f , �τ = 0.6τ , c0 = −100t−1

f , ωc = 1 × 103t−1
f , and μ =

10(ωct f )−1. We set t f = 1 as a unit for the other parameters.

This simplifies the expression for g(t, t ′):

g(t, t ′) = ��t
++(t )��t

−−(t ′)e− ∫ t
t ′ ds��t

++(s), (33)

where the decoherence rates are given by

��t
++(t ) = �t

2π
(1 − sin2 2η sin2 ζ )

∫ +∞

−∞
γ (ω)

× sinc2

[
(ω − αc)�t

2

]
dω,

��t
−−(t ) = �t

2π
(1 − sin2 2η sin2 ζ )

∫ +∞

−∞
γ (ω)

× sinc2

[
(ω + αc)�t

2

]
dω. (34)

In the low-temperature limit, as β tends to positive infinity,
the function γ (ω) converges to 2πJ (|ω|) for ω > 0 and zero
for ω < 0. Thus, ��t

++(t ) tends to zero. Utilizing Eq. (33), we
find g(t, t ′) = 0, indicating that the time derivative of ρ1 must
be zero according to Eq. (28). This observation aligns with
the behavior predicted by the coarse-graining master equation.
At zero reservoir temperature, the decoherence rate ��t

−−(t )
persists, while ��t

++(t ) is negligible. The other decoherence
rates are suppressed by HLEO. Hence, in this scenario, the
instantaneous steady state of the coarse-graining master equa-
tion is |ψ1(t )〉, thereby ensuring the protection of ρ1 by both
the LEO Hamiltonian and the decoherence process.

In Fig. 2(a), we depict the evolution of the fidelity F1 =
〈ψ1(t )|ρ(t )|ψ1(t )〉 concerning the reservoir temperature β =
10t f . For a lengthy coarse-graining period (�t = 10t f ), dur-
ing which the rotating wave effects are negligible, both the
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Hamiltonian incorporating the LEO pulse, HS (t ) (represented
by the green solid line), and the Hamiltonian without the LEO
pulse, H0

S (t ) (depicted by the black dashed line), achieve sat-
isfactory final fidelities. However, for a brief coarse-graining
period (�t = 0.1t f ), where the antirotating wave terms cannot
be disregarded, the fidelity diminishes rapidly when the LEO
pulse is not employed (illustrated by the red dotted line). In
contrast, the blue solid line indicates that the LEO pulse effi-
ciently mitigates the rotating wave effect, showcasing superior
performance compared to the control scenario without the
LEO pulse.

In Fig. 2(b), we examine the scenario of finite reservoir
temperature with β = 0.1t f , a value comparable to α0. The
effectiveness of the LEO pulse persists in suppressing leakage
for both short and long coarse-graining times. This effec-
tiveness can be attributed to alterations in the decoherence
rates induced by the leakage elimination pulse. According to
Eq. (34), the driven two-level system couples to the heat reser-
voir with an instantaneous frequency of ±αc. The integrations
in Eq. (34) are chiefly influenced by the reservoir frequency
around αc. This effect becomes more apparent when consid-
ering the limit of a large coarse-graining time, i.e., �t → ∞.
Due to

lim
�t→∞

�t sinc2
(
ω + α

y
k

) = πδ
(
ω + α

y
k

)
,

we have

��t
++(t ) = π (1 − sin2 2η sin2 ζ )

μ|αc| exp
(−|αc|

ωc

)
|1 − exp(−βαc)| ,

��t
−−(t ) = π (1 − sin2 2η sin2 ζ )]

μ|αc| exp
(−|αc|

ωc

)
|1 − exp(βαc)|

with αc(t ) = α0(t ) + 2c(t ). In this limit, the decoherence rates
satisfy ��t

++ ∝ |αc|/|1 − exp(βαc)| and ��t
−− ∝ |αc|/|1 −

exp(−βαc)|, where αc < 0 has been considered. If the pulse
strength |c0| exceeds the instantaneous frequency |α0| signif-
icantly, then |1 − exp[βαc]|−1 
 |1 − exp[βα0]|−1, leading
to the suppression of ��t

++(t ) in the time interval �τ . Thus,
g(t ′, t ) = 0 can be attained if c/α0 → ∞ [see Eq. (33)],
resulting in ρ̇1(t ) = 0. Moreover, |1 − exp(−βαc)|−1 ap-
proaches 1 with increasing c0/α0. Due to ��t

−− ∝ |αc|, the
LEO pulse significantly enhances ��t

−−(t ) in the time interval

�τ , indicating a rapid decay of exp[
∫ t ′

0 h(s)ds]. As a result,
the instantaneous steady state of the coarse-graining master
equation undergoes a change accordingly. This phenomenon
is confirmed by the plots of ��t

++(t ) and ��t
−−(t ) in Figs. 1(b)

and 1(c) for β = 0.1t f . The prevalence of population on
eigenstate |ψ1(t )〉 in the instantaneous steady state suggests
an improved performance of the free evolution along with the
DLFP using the LEO pulse.

The fidelity for the case of finite reservoir temperature
(β ∼ α0) can be further enhanced by increasing the ratio
�τ/τ and the pulse strength c0, as illustrated in Figs. 3(a)
and 3(b). In this scenario, we adopt dynamical coarse grain-
ing, wherein the coarse-graining time dynamically aligns with
the physical time, i.e., �t = t . As seen in both Figs. 3(a)
and 3(b), there is a rapid initial drop in fidelity, which can
be attributed to the small coarse-graining time. However, as
time progresses, fidelity gradually increases. This is because,
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FIG. 3. (a) The fidelity as a function of the dimensionless time
t/t f for different �τ with c0t f = −100. (b) The fidelity as a function
of the dimensionless time t/t f for different c0 with �τ = 0.6τ . The
parameters are chosen as τ = 0.02t f , β = 0.1t f ωc = 1 × 103t−1

f ,
and μ = 10(ωct f )−1. We set t f = 1 as a unit for the other parameters.

with the evolution, the coarse-graining time increases, thereby
enhancing the transition intensity to the DLFP. As depicted
in Fig. 3(a), the ratio �τ/τ notably impacts LEO control.
When �τ/τ = 0, the dynamics revert to the case without
LEO control. The final fidelity improves with an increase in
the pulse time interval �τ . Similar outcomes are observed
when augmenting the pulse strength c0. A stronger bang-bang
pulse yields a superior final fidelity [see Fig. 3(b)]. Moreover,
Figs. 3(a) and 3(b) reveal that fidelities oscillate nonsmoothly
during evolution, primarily due to instantaneous swapping be-
tween different instantaneous steady states. This observation
aligns with our discussion on how the LEO pulse enhances
��t

−− and suppresses ��t
++. Therefore, with a sufficiently strong

LEO pulse and a properly chosen ratio �τ/τ , we can con-
sistently anticipate satisfactory performance by utilizing the
DLFP.

Notably, the LEO pulse can be used to protect the quantum
state encoded in |ψ2〉, the other leakage-free path, or the
DLFPs, if we apply the LEO pulse with c0 > 0. Here, we
maintain the assumptions |c0| � |α0|. The numerical results
are presented in Fig. 4, considering a long coarse-graining
time and ultralow reservoir temperature, with �t = 10t f and
β = 10t f , respectively. In Fig. 4(a), we present the fidelity
F2 = 〈ψ2(t )|ρ(t )|ψ2(t )〉 as a function of t/t f for the open
quantum systems dynamics with the Hamiltonian HS (t ) (the
blue solid line) and H0

S (t ) (the red dotted line). When the LEO
pulse is absent, the instantaneous steady state of the coarse-
graining master equation is |ψ1(t )〉 due to α0 < 0. The initial
state undergoes decay into the instantaneous steady state, re-
sulting in a rapid decrease of fidelity [see the red dotted line
in Fig. 4(a)]. In contrast, when the LEO pulse with c0 > 0
is applied, the instantaneous frequency must satisfy αc > 0
in the time interval �τ if |c0| � α0. At this time, the tran-
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FIG. 4. The fidelities (a) and the decoherence rates (b) as a
function of the dimensionless time t/t f with �τ = 0.6τ . The param-
eters are chosen as τ = 0.02t f , �t = 10t f , c0 = 100t−1

f , β = 10t f ,
ωc = 1 × 103t−1

f , and μ = 10(ωct f )−1. We set t f = 1 as a unit for
the other parameters.

sition direction caused by decoherence will overturn, and the
instantaneous steady state in the time interval �τ is |ψ2(t )〉,
as illustrated by the decoherence rates plotted in Fig. 4(b).
Therefore, the LEO method can still be employed to protect
quantum states encoded in the |ψ2(t )〉, which is illustrated by
the red dotted line in Fig. 4(a).

IV. CONCLUSION

The ability to achieve quantum state engineering in the
presence of uncontrollable coupling between a quantum sys-
tem and its surroundings is crucial for quantum information
processing. In this paper, we combine the coarse-graining
averaging technique and the LEO method [27] to study the
effect of the dynamical decoupling pulse on the open quan-
tum system. First, we derive a comprehensive coarse-grained
master equation to examine the impact of rotating wave terms.
Through the utilization of an LEO Hamiltonian that is diago-
nal in the frame of the DLFPs, we establish that the quantum
state encoded in the DLFPs can be protected.

This protection is because the decoherence rates and Lamb
shifts undergo modification with the addition of the LEO
pulse, effectively canceling rotating wave terms and enabling
the use of the rotating wave approximation. Therefore, it
seems that the combination of the coarse-graining approach
and LEO operators appears promising. Due to the presence
of rapidly oscillating parts in the counter-rotating wave terms,
these terms approximate to zero within a single pulse time
interval, which is similar to the principle of the LEO method
in closed systems [28,30]. But different from the LEO method
in closed systems, the transition towards the protected DLFPs
induced by decoherence is enhanced, while other transitions

are suppressed by the leakage elimination pulse. Therefore,
the quantum state evolving along the DLFP remains well
protected even at finite reservoir temperatures.

It is worth emphasizing that our method is applicable
to the unitary evolution initially from an arbitrary state of
a time-dependent quantum system. This demonstrates the
effectiveness of our approach for various control methods.
Our results coincide with tracking eigenstates of system
Hamiltonians in open quantum systems, particularly at zero
environment temperature [18], providing insights into achiev-
ing adiabatic quantum computation. On the other hand, our
method might also be helpful in designing shortcuts to adi-
abaticity [39], when the initial and final states are set as
eigenstates of the system’s time-dependent Hamiltonians.

Although in this paper we only discuss examples of
open two-level systems, for systems with higher-dimensional
Hilbert spaces, we can directly derive conclusions based
on the coarse-graining master equation [Eq. (10)] and the
one component dynamical equation [Eq. (26)]. For an N-
dimensional quantum system, the Liouvillian matrix and the
density matrix vector can still be decomposed according
to Eq. (23). Similar to the two-level case, in the Liou-
villian matrix L̄, h remains a real number, and all the
off-diagonal elements depend only on ��t

mn,m′n′ and Smn,m′n′

with mn �= m′n′. When we apply LEO pulses to the DLFP,
the phase term ei

∫ t
0 [αi

mn(s)−α
j
m′n′ (s)]ds in ��t

mn,m′n′ and S�t
mn,m′n′ con-

tains rapid oscillation terms, such as exp[±4i
∫ t ′

0 c(s)ds] or

exp[±2i
∫ t ′

0 c(s)ds]. Here, we have considered that αmn(t ) =
α0

mn(t ) ± c(t ), which can be obtained by the same proce-
dure for obtaining Eq. (29). Therefore, all the terms will
approach zero due to the rapid oscillations except ��t

mn,mn

terms. Since ��t
mn,mn depends on the Einstein distribution

|1 − exp(−βωmn)|−1, the LEO pulse can effectively suppress
transitions from the DLFP to the other state which is or-
thogonal to the DLFP, while increasing the transition rate of
reverse transitions. Therefore, for multidimensional quantum
systems, the DLFP can still be effectively protected. However,
this conclusion may not hold for all of the DLFPs, as the
successful protection of DLFPs using LEO pulses still not
only depends on the Hamiltonian of the quantum system but
also on the strength of the pulses.

At last, we would like to emphasize that our method
proposes a control scheme specifically for Markovian envi-
ronments. It is well known that quantum systems coupled
to non-Markovian environments are controllable. By re-
ducing the overlap between the environmental correlation
function and the spectral density, decoherence can be sup-
pressed [44,45]. These methods are particularly effective in
suppressing environmental thermal noise. When the envi-
ronment is Markovian, the environmental spectrum is flat,
causing any characteristic frequency of the system to res-
onantly couple with the environment. Our method provides
some attempts to suppress decoherence caused by Markovian
environments, demonstrating that decoherence induced by
Markovian environments can also be mitigated. On the other
hand, similar to other dynamical decoupling methods, the ap-
plication of the LEO method is subject to several limitations.
For example, the LEO method assumes perfect control pulses,
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meaning they are instantaneous and error free. In reality,
pulses suffer from errors and finite width, which can reduce
the effectiveness of the LEO method [46]. Complex pulse
sequences require precise timing control and high-fidelity
pulse generation, demanding significant computational and
experimental resources. Optimizing these sequences also ne-
cessitates substantial computational effort, which can be
challenging for today’s computer technology.
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APPENDIX: GENERAL FORM OF THE
COARSE-GRAINING MASTER EQUATION

In the interaction picture, the von Neumann equation be-
comes

˙̃ρ(t ) = −i[H̃I(t ), ρ̃(t )]. (A1)

The formal solution to the above equation can be written as
ρ̃(t ) = Ũ (t, t0)ρ̃(t0)Ũ †(t, t0) with the evolution operator

Ũ (t, t0) = T exp

(
−i

∫ t

t0

H̃I(t
′)dt ′

)
,

where T is a time ordering operator. Here, we consider the
weak-coupling limit λ 
 1. Equation (A1) can be formally
integrated to yield

ρ̃(t ) = −i
∫ t

t0

dt1[H̃I(t1), ρ̃(t1)]

and reinserting this result in Eq. (A1) one obtains the follow-
ing exact equation:

˙̃ρ(t ) = −i[H̃I(t ), ρ̃(t )] −
∫ t

t0

dt1[H̃I(t ), [H̃I(t1), ρ̃(t1)]]

+ O(λ3).

Let us consider assumptions that ρ̃(t ) = ρ̃S(t ) ⊗ ρB (the Born
approximation) and TrB(ρBBk ) = 0, where ρB is the thermal
equilibrium state

ρB = exp(−βHB)

TrB{exp(−βHB)}
at the inverse environment temperature β = (kBTB)−1. Un-
der the usual assumptions of initially factorizing the density
matrix and ignoring any changes in the reservoir part of the
density matrix, we obtain

˙̃ρS(t ) = −iTrB{[H̃I(t ), ρ̃S(t ) ⊗ ρB]}

−
∫ t

t0

dt1TrB{[H̃I(t ), [H̃I(t1), ρ̃S(t1) ⊗ ρB]]} + O(λ3)

where TrB{...} denotes the trace over the reservoir degrees of
freedom. Evaluating the traces leads to the definition of the
reservoir correlation functions

Ci j (τ ) = TrB{eiHBτ B†
i e−iHBτ BjρB} = C∗

ji(−τ ),

and omitting the higher-order terms of the coupling coefficient
λ we obtain with 〈Bj〉B = 0

˙̃ρS(t ) = −λ2
∑
i, j

∫ t

t0

dt1Ci j (t − t1)[Ãj(t1)ρ̃S(t1), Ãi(t )] + H.c.,

which is the Redfield master equation in the interaction pic-
ture. By formally integrating the Redfield master equation, we
have

ρ̃S(t ) ≡ ρ̃S(t0) + �tL�t ρ̃S(t0)

= ρ̃S(t0) − i
λ2

2i

∑
i, j

∫ t

t0

∫ t

t0

Ci j (t2 − t1)sgn(t2 − t1)

× [Ã†
i (t2)Ã j (t1), ρ̃S(t0)]dt1dt2

+ λ2
∑
i, j

∫ t

t0

∫ t

t0

Ci j (t2 − t1)[Ã j (t1)ρ̃S(t0)Ã†
i (t2)]

− 1

2
{Ã†

i (t2)Ã j (t1), ρ̃S(t0)}dt1dt2.

The even and odd Fourier transforms of the reservoir correla-
tion function read

Ci j (τ ) = 1

2π

∫ +∞

−∞
γi j (ω)e−iωτ dω,

Ci j (τ )sgn(τ ) = 1

2π

∫ +∞

−∞
σi j (ω)e−iωτ dω

with

γi j (ω) = Ki j (ω) + K∗
i j (ω),

σi j (ω) = Ki j (ω) − K∗
i j (ω),

where Ki j (ω) = ∫ +∞
0 Ci j (τ )eiωτ dτ is the one-sided Fourier

transform of the correlation function.
Here we define a coarse-graining timescale �t = t − t0

which corresponds to the timescale after which the reservoir
has effectively “reset.” By defining time averaging of an oper-
ator O(t ) over the coarse-graining timescale �t as

〈O(t )〉�t = 1

�t

∫ t

t0

O(t ′)dt ′,

we arrive at

〈 ˙̃ρS(t )〉�t = ρ̃S(t ) − ρ̃S(t0)

�t
= L�t ρ̃S(t0). (A2)

In the above equation, the assumption τc 
 �t 
 τs is made,
where τc is the inverse of the high-frequency cutoff ωc in the
reservoir spectral density, and τs corresponds to the character-
istic time for significant changes of ρ̃S(t ). Equation (A2) may
not be suitable for determining the next discretization step of
�t . To address this, assuming that the reservoir resets in the
time �t such that the reservoir interacts with the system in
the same manner at each time step �t , we can replace ρ̃S(t0)
in the right-hand side of Eq. (A2) by ρ̃S(t ) approximately.
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This leads to a Markovian approximation and the following coarse-graining master equation:

˙̃ρS(t ) = −i[〈S̃〉�t , ρ̃S(t )] + λ2�t

2π

∑
i, j

∫ +∞

−∞
dωγi j (ω)

(〈
Ãω

j

〉
�t

ρ̃S(t )
〈
Ãω

i

〉†
�t − 1

2

{〈
Ãω

i

〉†
�t

〈
Ãω

j

〉
�t

, ρ̃S(t )
})

,

where the coarse-graining decoherence operators are given by

〈
Ãω

i

〉
�t = 1

�t

∫ t+�t

t
Ãi(τ )eiωτ dτ (A3)

and the Lamb shift operator is defined as

〈S̃〉�t = λ2�t

4π i

∑
i, j

∫ +∞

−∞
dωσi j (ω)

〈
Ãω

i

〉†
�t

〈
Ãω

j

〉
�t

.
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