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Stable collective charging of ultracold-atom quantum batteries
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We propose a quantum battery realized with a few interacting particles in a three-well system with differ-
ent on-site energies, which could be realized with ultracold-atom platforms. We prepare the initial state in
the lowest-energy well and charge the battery using a spatial-adiabatic-passage–based protocol, enabling the
population of a higher-energy well. We examine the charging under varying interaction strengths and reveal that
the consideration of collective charging results in an intriguing oscillatory behavior of the final charge for finite
interactions, through diabatic evolution. Our findings provide an opportunity for building stable and controllable
quantum batteries.
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I. INTRODUCTION

Energy storing quantum devices [1,2] emerged as part of a
quantum energy initiative for quantum-inspired technologies
[3], where the energy stored in these quantum batteries (QBs)
would be used for further transfer to quantum consumption
hubs. The performance of QBs is mainly ruled by laws of
quantum thermodynamics, which dictates physical processes
involving entropy production, heat, and work in the quantum
realm [4]. Through this theory, one may properly manage
useful work provided by quantum systems at the single-atom
level [5] and the energy cost to perform quantum tasks [6,7]
and to predict the extractable amount of work stored in such
systems [8], among other applications [9]. By harnessing
genuine effects from interacting quantum systems, QBs ex-
hibit scalable enhanced charging performance (power) with
respect to their noninteracting (classical) counterpart [10–22].
Experimental realizations of QBs have been done with su-
perconducting integrated circuits [23,24], nuclear magnetic
resonance [25], quantum dots [26], and organic microcavities
[27], with the first experiment of a room-temperature QB
designed with carboxylate-based metal complexes [28].

Despite the high performance of these devices, some
properties of such devices make their usage for real-world
applications a challenge. In particular, instantaneous discharg-
ing, the main focus of this work, is observed for always-on
charging of QBs due to the quantum recurrence theorem of
Poincaré [29], demanding then for the development of stable
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charging strategies. The instantaneous discharging is related
to oscillations in time of the stored energy in the battery,
leading to loss of performance due to the energy backflow
from the battery to the charger [30]. Proposals of stable charg-
ing of QBs have been induced through localization effects
in disordered spin systems [31,32], using single [33] and
collective dark states [34], Zeno protection [35], adiabatic
evolutions [33,36], the nonreciprocal approach [37], and tran-
sitionless driving [30], for example, with the first experimental
implementation of optimal stable charging done with super-
conducting three-level atoms [23]. Inspired by QB proposals
with interacting spin chains [38–41], ultracold atoms confined
in optical lattices appear as a promising platform for designing
QBs [42]. The high level of control offered by ultracold atoms
[43–46] makes them unique candidates for developing effi-
cient and stable QBs. In particular, the control over the atomic
internal states and of the interatomic interactions offer novel
configurations of QBs not achievable with other quantum
physical systems.

In this article we propose a three-well QB controlled with
a protocol based on spatial adiabatic passage (SAP) [47–49],
as depicted in Fig. 1(a). The SAP implementation is already
possible in ultracold-atom laboratories [50]. Moreover, and in
contrast to previous related studies [33], we consider quan-
tum collective effects by including on-site interactions. The
interaction effects cause the time evolution to no longer be
adiabatic. However, since we are using the SAP order of
applying the couplings and the final target state, we refer
to our setup as an SAP-based protocol. Our protocol cre-
ates a stable system if we achieve the maximum charge,
and in this study we focus on the charging mechanism. In
addition to the proposed three-well implementation, such a
QB could also be realized with an array of three-level sys-
tems with a protocol based on stimulated Raman adiabatic
passage [51,52].
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FIG. 1. (a) Physical system consisting of N particles which may
populate three wells with different energy. (b) Schematic represen-
tation of the evolution used for the stable charging protocol, in
which the tunneling strengths �12(t ) and �23(t ) are switched on in a
counterintuitive way to avoid populating the intermediate well with
energy ε2.

This article is organized as follows. In Sec. II we present
the model we are working with, including the Hamiltonian
and the charge definition. In Sec. III we explore how the
interaction affects the charging protocol. In Sec. IV we use
analytical models to explain the effects of the interaction
on the charge, being exact for the two-particle case and an
approximation for a larger number of particles. In Sec. V we
summarize our work and present the conclusions.

II. MODEL

We consider as a general case N identical bosons in a
three-well system, where the wells energy is εi, with i = 1–3
in ascending order. In addition, we consider an energy U when
a pair of particles is in the same well. On top of that, our
SAP-inspired protocol considers a time-dependent tunneling
between wells 1 and 2 and also between wells 2 and 3. As
illustrated in Fig. 1, the Hamiltonian in a second quanti-
zation formalism reads Ĥ = Ĥ0 + Ĥcoll + Ĥch, where Ĥ0 =∑3

i=1 εib̂
†
i b̂i is the self-Hamiltonian of the system that sets the

energy scale of the battery, Ĥcoll = 1
2U

∑3
i=1 n̂i(n̂i − 1) is the

in situ particle-particle interaction that describes the collective
(quantum) aspect of the battery charging, and the charging Ĥch

describes the time-dependent tunneling between wells

Ĥch = �12(t )eiω12t b̂†
1b̂2 + �23(t )eiω23t b̂†

2b̂3 + H.c., (1)

where b̂†
i (b̂i) is the creation (annihilation) operator of a par-

ticle in the well i and n̂i = b̂†
i b̂i is the number operator. The

coupling is assumed to have driving strength �i j (t ) in reso-
nance with the energy transitions of the system at a frequency
ωi j = (ε j − εi )/h̄. The SAP is implemented by the suitable
choice of the tunneling such that �12(0) = �23(τ ) = 0 and
�12(τ ),�23(0) �= 0. Here we choose a lineal transition given
by �12(t ) = t�/τ and �23(t ) = � − �12(t ). So, according
to the adiabatic theorem [53], for large enough τ the system
will move the particles from the lowest- to the highest-energy
well.

At the end of the charging, the extractable amount of en-
ergy by coherent drives from a QB is defined by ergotropy
[8], which for a unitary evolution charging can be uniquely
obtained as [36]

C = 〈�(τ )|Ĥ0|�(τ )〉, (2)

where |�(τ )〉 is the state at the end of the SAP protocol. By
exploiting the definition of battery capacity as the energy of
the most active state [54], it is possible to get the maximum

charge for our system with N particles as Cmax. = Nε3, cor-
responding to an eigenstate of the final Hamiltonian and thus
stable. The energy charging of the QB may be obtained from
the Schrödinger equation in the interaction picture as

Ĥint = Ĥcoll + h̄�12(t )b̂†
1b̂2 + h̄�23(t )b̂†

2b̂3 + H.c., (3)

and thus the charging performance depends only on the tun-
neling amplitudes and the collectivity parameter U .

III. INTERACTING SYSTEM CHARGE

Now we analyze the final charge diagram as a function of
the coupling τ� and the internal interaction τU . In Fig. 2
we show the charge diagram corresponding to N = 2–4. The
charge only depends on the absolute value of the interaction
|U |, but not on its sign. The energy spectra are computed with
negative interactions U < 0 for description simplicity, but the
physics is the same for U > 0.

First, we note that the noninteracting limit U = 0 (left side
of the panels) corresponds to the single-particle configuration
studied with a stimulated Raman adiabatic passage protocol
in Ref. [33], which does not consider collective charging.
For |U | > 0, Fig. 2 shows two distinct regions. On one side,
when the coupling τ� is much smaller than the interaction
τU (bottom right regions of the panels), the system ends with
essentially a null final charge (C ≈ 0). On the other hand,
when the coupling is much larger than the interaction (top
regions of the panels), the system produces a finite final charge
C but also shows an intriguing oscillation of C with increasing
τ |U | between maximum and partial charging.

To understand why the system does not charge in the weak
tunneling region, we examine the system with N = 2, even
though our arguments can be generalized for more particles.
A system with two bosons on a triple-well potential has six
states in its Hilbert space. Due to the large interaction U , the
system will form two manifolds, one with the three states
with the particles in the same well and the other with both
particles in different wells. Both manifolds are separated by
an energy gap approximately equal to U . In addition, our
tunneling is a single-particle operator and thus it can only
move the particles individually. The latter connects the states
with two particles in the same well to states with particles at
different wells. If the coupling is weak compared with the gap
between the states that are connecting, the transition is almost
suppressed. Therefore, by starting from both particles in the
lowest-energy well, if U � � the state cannot evolve with
time, and thus both particles remain in the same initial site
during the evolution, preventing charging.

In the second region, where the coupling is much larger
than the interaction (above the red solid line in the panels), the
results do not depend on the value of the coupling τ�. We find
oscillations in the charge as a function of |U | for any number
of particles N , where the period of these oscillations depends
on N . Interestingly, we also find that systems with odd and
even numbers of particles show a distinct onset of oscillations
with U . Indeed, with even N the oscillations are approxi-
mately periodic and with a fixed amplitude. In contrast, for
odd N the amplitude of the oscillations decreases but achieves
periodic full charging. We will explain this phenomenon
later on.
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FIG. 2. Normalized final (t = τ ) charge C/Cmax as a function of the interaction τ |U |/h̄ and the coupling τ�/h̄, for (a) N = 2, (b) N = 3,
and (c) N = 4. The red solid line on the charge map indicates the line with |U | = 0.1�.

Importantly, our results show that it is possible to reach
Cmax for any N and if one chooses |U | to the regions of max-
imum charge. This feature could be exploited in experiments
to get a full charge by tuning the interatomic interactions. The
maximum charge is also achievable for a finite interaction
when the interaction strength and the coupling have similar
values. That situation is interesting, but we focus on the situa-
tion where � � |U |.

IV. ANALYTICAL TIME EVOLUTION

Having examined the charging from our numerical calcu-
lations, we now provide an analytical interpretation of our
results. We focus on the case with �/|U | � 1, corresponding
to the region above the red solid lines in Figs. 2(a)–2(c).

We first analyze the two-particle case, which can be ex-
amined analytically for �/|U | � 1. By taking t as a fixed
parameter in Eq. (3), we can diagonalize the Hamiltonian for
two particles analytically, resulting in an energy spectrum like
the one shown in Fig. 3. The spectrum has states with an
energy proportional to ±� and others to ±2�. While these
states show a weak dependence on U and t/τ , the gap between
these states is approximately �. In addition, at the center
of Fig. 3(a) the spectrum shows two states whose energy
does not depend on the coupling � but depends instead on
U . These two states can be better appreciated in Fig. 3(b).
Moreover, at t = 0, the state with both particles in the lowest-
energy well (our initial state |ϕ0〉) is an eigenstate with energy
E = U , belonging to the central manifold. At t = τ , the state
with both particles in the higher-energy well (the state with
maximum charge |ϕ1〉) is also an eigenstate with energy E =
U , belonging to the central manifold as well.

FIG. 3. Energy spectrum for two particles with interaction U =
−0.02�: (a) the complete energy spectrum for E/� and (b) close-up
of the two states in the central manifold for E/U .

Therefore, the battery starts from a state in the central
manifold, disconnected from the other states by a factor �.
If the coupling � is much larger than the energy scales of
the central manifold (U ), one can expect that all the physics
will happen through the two states of Fig. 3(b). From now
on, we will refer to them as |φ0(t )〉 with energy E0(t ) and
|φ1(t )〉 with energy E1(t ). These states are the instantaneous
eigenstates of the Hamiltonian. The state |φ0〉 does not depend
on time and has a constant energy E0(t ) = U , while |φ1〉 is
time dependent.

By computing the time evolution of the state in a super-
position between |φ0〉 and |φ1〉 with the parallel transport
condition [55], the final ergotropy is

C = Cmax{1 − β sin2[3(π − 4)τU/16h̄]}, (4)

with β = 4(2ε3 − ε1 − ε2)/9ε3 (see Appendix A). As in
Fig. 2(a), Eq. (4) shows oscillations as a function of τU . In
Fig. 4 we show a comparison between the results obtained
with the numeric time evolution and the results from the ana-
lytic result (4). We observe almost perfect agreement for large
�τ , while we observe increasing discrepancies for decreasing
�τ , as expected.

Now we turn our attention to the general N > 2 case, which
can be analyzed with an effective theory. Once we add more
particles, the spectral properties observed with N = 2 become
slightly different. However, the main argument is similar; the
system has a set of states with an energy proportional to
�, whereas a few of them do not depend on that coupling.

FIG. 4. Charge as a function of the interaction τ |U |/h̄ for N = 2.
The red solid line shows the analytical result (4) for large �τ , while
the other lines show numerical calculations for the indicated values
of τ�.
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FIG. 5. Energy spectrum for (a) N = 3, (b) N = 4, (c) N = 5,
and (d) N = 6 and its population (in color) corresponding to a time
evolution with parameters τU = −20h̄ and τ� = 1000h̄. The dash-
dotted lines are the fit corresponding to the energies of Eq. (7). Only
the equivalent states of Fig. 3(b) are shown.

For N = 2 only two states do not depend on � [Fig. 3(b)].
However, we find that for N particles �N/2 + 1	 states fulfill
such condition.

In Fig. 5 we show these states for several numbers of
particles, from N = 3 to N = 6. In contrast to Fig. 3(b), here
the states are not degenerate at the beginning and the end
of the protocol. In that case, our initial state at t = 0 and
our target state at t = τ correspond to states with energy
E/U = N (N − 1)/2 and thus in Fig. 5 can be identified as
the manifold ground state.

In Fig. 5 the colors show the probability associated with
each instantaneous eigenstate |�i(t )〉 for a time evolution. We
obtain a slight difference between the odd and even numbers
of particles, as we observed in the charge diagrams from
Fig. 2. For an odd N , the minimum gap between the manifold
ground state (the initial state) and the first excitation of that
manifold one is on the order of U . On the other hand, for
systems with even N , the minimum gap is approximately
0.2U . The latter indicates that for an odd N it is easier to have
an adiabatic evolution due to the larger gap. For the limit of
large N , even if the gaps still remain with the same ratios, the
relative gaps will vanish. As the total energy scales as N2, the
differences between odd and even numbers of particles will
disappear in the thermodynamic limit.

For these systems, we have modeled an effective two-level
model of the time evolution. In that situation, the initial state
(from now on |�0〉) in Fig. 5 has an avoided crossing with
the first excitation of the manifold (from now on |�1〉) at
t ∼ 0.3τ ≡ τ0 and also at t ∼ 0.7τ ≡ τ1. In the general case,
we define τ0 and τ1 as the times where the gap is minimum.
One can assume that the evolution is adiabatic and there is
a level transition only at the avoided crossings, with the same
probabilities at both times. We also assume that all the relevant
physics occurs between these two states, ignoring the rest.

FIG. 6. Charge as a function of the interaction U for (a) N = 3,
(b) N = 4, (c) N = 5, and (d) N = 6 computed with τ� = 10000h̄.
Blue solid lines correspond to the numerical time-evolution calcula-
tions and the orange dashed lines to the predictions of the model of
Eq. (5), where the probability is computed using Eq. (6).

With that mechanism, by assuming that transitions may
occur in an avoided crossing with probability P�, it is possible
to show that the final ergotropy is (see Appendix B)

C

Cmax
= 1 − 4cP̄�P� sin2

(∫ τ1

τ0

(E0 − E1)dt/2h̄

)
, (5)

where c = 1 − 〈�1|H0|�1〉/〈�0|H0|�0〉 and P̄� = 1 − P�,
with P� given by the Landau-Zener transition probability

P� = exp(−2πa2/h̄|α|), (6)

where both a and α are obtained by the adjustment in the
lowest gap in the spectrum of the two states considered. Near
the transition, in the Landau-Zener approximation, the energy
of the states is

E (t ) = 1
2 [(k1 + k2)t ±

√
4a2 + (k1 − k2)2t2)], (7)

where we fit the parameters α, k1, and k2 and we compute
α = k1 − k2. We plot the lines of the energy obtained in the fit
as dash-dotted lines in Fig. 5.

In Fig. 6 we compare the numerical results of the final
charge as a function of τU for a large value of τ� with
the predictions of the two-level model using the Landau-
Zener transition probability. With our model, we only use
information about the energy spectrum. We obtain good
agreement with the numerical time-evolution simulation, es-
pecially on the frequency of the oscillations, but also in the
decay of the amplitude with more accurate results for N =
3 and 4. We observe a discrepancy for small interactions
and also in the decay of the amplitude for large interac-
tions, indicating that the two-level model is more robust for
intermediate U .

V. CONCLUSION

In this article we have shown how a battery based on a
three-well system charges when we consider the interaction.
We have demonstrated that it is possible to reach the max-
imum charge for a finite value of the interaction through a
diabatic procedure. In addition, we have explained the time
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evolution of the system with simple models that use only the
information of the energy spectrum. Our quantum battery pro-
posal is feasible experimentally in ultracold-atom laboratories
nowadays.

A future perspective to extend this study could be to
explore the effects of temperature and check if the battery re-
mains stable. Additionally, it could be interesting to examine
the effects of a larger chain, opening the possibility to study
the effect of fermionic statistics.
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APPENDIX A: DEVELOPMENT OF THE
TWO-PARTICLE TIME EVOLUTION

Our initial state |ϕ〉 can be expressed as a superposition of
both states |φ0(t = 0)〉 and |φ1(t = 0)〉 as

|�(t = 0)〉 = |ϕ〉 =
√

1
3 |φ0(t = 0)〉 +

√
2
3 |φ1(t = 0)〉.

(A1)
Assuming an adiabatic evolution with the parallel transport
condition 〈φi| ∂

∂t φi〉 = 0, the time evolution of the state can be

expressed as

|�(t )〉 =
√

1
3 exp

(
−i

∫
E0(t )dt/h̄

)
|φ0(t )〉

+
√

2
3 exp

(
−i

∫
E1(t )dt/h̄

)
|φ1(t )〉, (A2)

and taking into account that E0 is constant, we can rearrange
it as

|�(t )〉 =
√

1
3 |φ0(t )〉

+
√

2
3 exp

(
−i

∫
[E1(t ) − E0]dt/h̄

)
|φ1(t )〉. (A3)

Now, by computing the integral from t = 0 to t = τ , we
obtain the state at the end of the SAP protocol:

|�(τ )〉 =
√

1
3 |φ0(τ )〉 +

√
2
3 e−i3(π−4)τU/8h̄|φ1(τ )〉. (A4)

Note that the final state is also described by the two instanta-
neous time eigenstates with a relative phase proportional to
τU . Using this state, we can recover the charge using our
definition.

APPENDIX B: DEVELOPMENT OF THE
FEW-PARTICLE TIME EVOLUTION

Using the two-level model, the time-dependent state will
be

|�(t < τ0)〉 = |�0〉, (B1)

until the first crossing. After that, there will be a transition
with probability P� and so the state just after the transition
will be

|�(t = τ0)〉 = √
(1 − P�)|�0〉 + √

P�|�1〉; (B2)

with a parallel transport, we assume an adiabatic evolution
until the second transition. So the state will arrive with the
phases

|�(τ0 < t < τ1)〉 =√
(1 − P�) exp

(
−i

∫ t

τ0

E0dt/h̄

)
|�0〉

+ √
P� exp

(
−i

∫ t

τ0

E1dt/h̄

)
|�1〉.

(B3)

After the second transition, we can express the state as

|�(t � τ1)〉 =
[

P� + (1 − P�) exp

(
−i

∫ τ1

τ0

(E0 − E1)dt/h̄

)]
|�0〉 + √

P�(1 − P�)

[
1 − exp

(
−i

∫ τ1

τ0

(E0 − E1)dt/h̄

)]
|�1〉.

(B4)

Note the negative sign in the second term. This sign is needed to preserve the norm of the wave function and it comes from the
relative phase in the transition. With this state, we can derive the charge at t = τ .
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