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Magnetically induced Schrödinger cat states: The shadow of a quantum space
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Schrödinger cat states, which are superpositions of macroscopically distinct states, are potentially critical
resources for upcoming quantum information technologies. In this paper we introduce a scheme to generate
entangled Schrödinger cat states in a nonrelativistic electric dipole system situated on a two-dimensional plane,
along with an external potential and a uniform strong magnetic field perpendicular to the plane. Additionally,
our findings demonstrate that this setup can lead to the phenomenon of collapse and revival of entanglement for
a specific range of our model parameters.
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I. INTRODUCTION

In quantum theory, the transition between the microscopic
and macroscopic worlds is one of the less understood features
[1]. Such a transition plays a direct role in the realm of
quantum measurements. In an ideal measurement paradigm,
the interaction of macroscopic equipment and a microscopic
system yields entanglement and a superposed quantum state
with both macroscopic and microscopic components [2].
Schrödinger was the first to highlight the physical subtleties
of this kind of superposition by replacing the macroscopic
part of the system by a “cat” in order to illustrate a dra-
matic superposition of “states” of both alive and dead cats
that should, in practice, be distinguished macroscopically
[3]. The superposition of macroscopically different quantum
states, generically referred to as the nonclassical Schrödinger
cat state (SCS) [3–5], is crucial for understanding the con-
ceptual underpinnings of quantum physics, especially with
reference to wave-function collapse models [6–9]. In recent
years, the advancement of quantum technologies has brought
into sharp focus the utility of several quantum phenomena
such as photon antibunching [10], sub-Poissonian statistics
[11], and squeezing [12], along with the dynamics of the SCS.

The success of quantum information theory and its po-
tential applications [13,14] that significantly outperform their
classical equivalents have recently sparked a renewed interest
in the generation of nonclassical states such as the SCS. Sev-
eral applications of cat states have been suggested in the realm
of quantum information [15], quantum metrology [16], quan-
tum teleportation [17], and quantum error correction schemes
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[18,19]. In addition, the concept of decoherence between two
superposed quantum objects, or the quantum-to-classical tran-
sition, can be studied using the SCS as a platform. In quantum
optics, a superposition of two diametrically opposite coherent
states |±α〉, with a large value of |α|, can be interpreted as a
quantum superposition of two macroscopically distinct states,
i.e., a Schrödinger catlike state [20,21]. However, due to decay
of their interference properties, it is extremely difficult to de-
tect such states in practice [22]. Nonetheless, the universality
of the SCS enables it to be realized in a wide variety of physi-
cal arenas such as nonlinear quantum optics [23], quantum-dot
systems [24], superconducting cavities [25], Bose-Einstein
condensates [26], and quantization of weak gravity [27–29].
A fascinating direction of research in recent years has been
the mechanism for the natural generation of the SCS in some
specific condensed-matter systems [30,31].

Schrödinger cat states with entanglement-based protocols
provide a novel technique to explore short-distance quantum
physics in a nonrelativistic domain when there is a magnetic
dipole interaction background [32]. At extremely short dis-
tances, the space-time structure needs to be granular in order
to account for both gravity and quantum uncertainty [33]. A
viable approach towards quantum gravity is through quantiz-
ing space-time itself [34], rather than the construction of an
effective-field theory of gravity. This approach is an active
area of research on quantum gravity, commonly referred to
as noncommutative geometry [35,36]. The fundamental goal
is to derive classical geometry from a suitable limit of a
noncommutative algebra. Though such a proposal may appear
as ad hoc [37], the physical justification for such a noncom-
mutative space-time is strong since it provides a solution to
the geometric measurement problem near the Planck scale.

Noncommutative geometry appears naturally in various
nonrelativistic planar systems. For instance, it occurs using
the lowest-Landau-level projection to study the behavior of
charged particles in a strong magnetic field [38]. Further, the
incompressibility of fractional quantum Hall fluids [39] has
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a strong connection to the emergence of a noncommutative
geometry in which the fundamental Planck length is replaced
by the magnetic length. Noncommutative space-time forms an
alternative paradigm for studying the behavior of relativistic
anyonic systems interacting with the ambient electromagnetic
field [40,41]. Additionally, noncommutative properties of
real-space coordinates in the presence of the Berry curvature
[42] produce skew scattering by a nonmagnetic impurity with-
out relativistic spin-orbit interactions in a condensed-matter
system. Noncommutative space provides a paradigm for de-
scribing the behavior of the quantum-to-classical transition
under the influence of decoherence [43,44], which is relevant
for implementation of quantum information protocols. From
an experimental standpoint, there have been efforts in search
of evidence of possible noncommutative effect manifestations
in cosmology and high-energy physics [45–47]. A testable
framework has been suggested in low-energy experiments in
the arena of the quantum Hall effect [48,49].

The motivation for the present study is to investigate
whether a multicomponent entangled nonclassical SCS could
be produced in deformed quantum space, where noncommu-
tativity arises naturally in an easily accessibly low-energy
physical system. In this article we investigate the phenomenol-
ogy of a two-particle electric dipole model with an additional
harmonic interaction and a strong background magnetic field,
with motion constrained to the plane perpendicular to the
field. Such a system may be considered as a toy version
of a real excitonic dipole setup [50]. By exploring the high
magnetic-field limit, we reveal the emergence of planar non-
commutative space as a natural consequence. Furthermore, we
establish the deformed Heisenberg algebra as the origin of the
multicomponent entangled SCS in this system. Moreover, we
quantify the degree of entanglement of our SCS and show
that the phenomenon of collapse and revival of entanglement
[51–53] occurs in this system under the influence of the har-
monic potential.

The organization of our paper is as follows. The interacting
two-particle electric dipole system is introduced in Sec. II,
showing how classical noncommutative space appears in the
presence of a very strong, constant, uniform magnetic field. In
Sec. III we move on to the quantum picture, where intricacies
of the system dynamics are revealed in the context of mapping
between two reference frames. Section IV discusses how our
model with a harmonic-oscillator potential that is dependent
only on one spatial variable is able to generate entangled
multicomponent Schrödinger cat states. In Sec. V we compute
the degree of entanglement in the generated SCS system and
demonstrate that it exhibits the phenomenon of entanglement
collapse and revival. Section VI provides a summary and
discussion of our results. Appendix A discusses the phase-
space algebra in the center-of-mass and relative coordinate
frames for unequal test masses. The aim of Appendix B is to
derive the explicit structure of the purity function. Appendix C
provides a generalization of our system’s potential and its
consequences.

II. TWO-PARTICLE SYSTEM: CLASSICAL PICTURE

We begin by considering a pair of nonrelativistic, oppo-
sitely charged particles with equal mass m moving on the
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2nd Particle (y1, y2)

FIG. 1. Magnetic field (blue dashed lines) aligned along the z
axis, represented by field lines at different z coordinates. The shaded
parabolic potential well along the 1 axis is depicted with a grid pat-
tern, indicating its shape and position. A positively charged particle
(red circle, labeled +) is located within the well, while a negatively
charged particle (blue circle, labeled −) is outside the well. These
particles are connected by a spring (black wavy line), symbolizing an
interaction between them. The blue dashed curve within the shaded
region represents the potential profile in the x1 direction.

plane subjected to a constant magnetic field B along the z
axis, ignoring Coulomb and radiation effects (see Fig. 1). In
component form, xi and yi (i = 1, 2) represent the positive-
and negative-charge coordinates, respectively. The coordinate
z can be suppressed because the dynamics of the system is
confined to a plane.

A standard Lagrangian in cgs units is used to define the
system as [54–56]

L =1

2
m

(
ẋ2

i + ẏ2
i

) + eB

2c
εi j (x j ẋi − y j ẏi )

− K0

2
(xi − yi )

2 − V (x1), i, j = 1, 2, (1)

where c is the speed of light in a vacuum, εi j is the Levi-
Cività symbol, and K0 is the spring constant corresponding to
the harmonic interaction between the two oppositely charged
particles. This model is constructed in the spirit of the two-
dimensional (2D) excitonic dipole model [57–59], wherein
m can be realized by the effective mass of the electron-hole
pair in some specific cases where the magnitude of the ef-
fective mass of electrons and holes can be considered as
approximately the same and the Fermi velocity provides an
upper bound for its characteristic velocity in a real physical
solid-state system. Note that the first term of the above La-
grangian (1) represents the kinetic term of the charges and
the second term represents their interaction with the external
magnetic field �B. We use a rotationally symmetric gauge to
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define the vector potential �A satisfying the equation �∇ × �A =
Bẑ. The third term is the harmonic interaction between the
two charges. Finally, the fourth term describes the additional
interaction of the positive charge with an impurity in the x1

direction. The limit of a strong magnetic field B and small
mass m such as m

eB → 0 is of interest here, in which the
kinetic energy term becomes negligible in the Lagrangian (1)
[60]. Thus, we may approximate the dynamics by the effective
Lagrangian

Leff = eB

2c
εi j (x j ẋi − y j ẏi ) − V0(xi, yi ), (2)

where V0(xi, yi ) = K0
2 (xi − yi )2 + V (x1).

The Lagrangian equations of motion of the coordinates of
the positively and negatively charged particles are given by

ẋi = c

eB
εi j

∂V0

∂x j
, ẏi = − c

eB
εi j

∂V0

∂y j
. (3)

Since our effective Lagrangian (2) is in first-order form, the
effective Hamiltonian of the model is given by

Heff = V0(xi, yi ). (4)

In order to show the equivalence between the Lagrangian
and Hamiltonian formalism [61,62], we consider Hamilton’s
equations of motion

ẋi = {xi, Heff}SB = {xi,V0(xi, yi )}SB, (5)

ẏi = {yi, Heff}SB = {yi,V0(xi, yi )}SB, (6)

where { , }SB denotes the classical symplectic brackets. The
nontrivial symplectic structure can be readily obtained by
comparing the Lagrangian equations of motion (3) with the
form of Hamilton’s equations of motion (5) and (6), yielding
the following brackets:

{xi, x j}SB = c

eB
εi j, {yi, y j}SB = − c

eB
εi j, {yi, x j}SB = 0.

(7)

The canonical spatial translation generators for individual
charged particles are given by

Pxi = eB

c
εi jx j, Pyi = −eB

c
εi jy j . (8)

Using the above expressions and the nontrivial symplectic
structures between the position coordinates (7), it can be
checked that the momentum coordinates also satisfy a non-
trivial symplectic bracket, given by

{Pxi , Pxj }SB = eB

c
εi j, {Pyi , Pyj }SB = −eB

c
εi j,

{xi, Pxj }SB = {yi, Pyj }SB = δi j . (9)

In our model, it may be noted that we have considered
a sufficiently strong magnetic field such that the kinetic en-
ergy of the charged particles is not dominant compared to
the magnetic term. In the ultrastrong magnetic regime, the
kinetic energy becomes negligible and its effects are entirely
suppressed [38,63]. The energy scale associated with a strong
magnetic field corresponds to the shortest distance, and one
may think that the motion of the charged particle at this

length scale may be treated relativistically. However, the mag-

netic quantum length scale is lB =
√

h̄c
eB ≈ 10−8 m, where the

magnetic field B is on the order of approximately 103 G.
The Compton wavelength is given by λc = h

m∗
e c , where m∗

e is
the effective mass of the electron, ranging from 0.01 to 10
times the mass of a free electron me. The maximum Comp-
ton wavelength (λc)max is approximately 10−10 m, assuming
m∗

e = 0.01me [64], which is much smaller compared to lB. It
is well known that relativistic effects become significant when
the length scale associated with the particle is comparable to
or in the vicinity of the Compton wavelength of the particle
(see [65] for further details). Therefore, the relativistic nature
of our toy model can be completely neglected and it can be
treated as a nonrelativistic model.

III. QUANTUM DYNAMICS

In this section we discuss the quantum theory of our nonrel-
ativistic two-particle model at the strong-magnetic-field limit
by elevating the phase-space variables to the level of quantum
operators. We obtain the nontrivial or unusual commutation
brackets [ , ] = ih̄{ , }SB between the position operators given
by

[x̂i, x̂ j] = il2
Bεi j, [ŷi, ŷ j] = −il2

Bεi j,

[x̂i, ŷ j] = 0, i, j = 1, 2, (10)

with lB =
√

h̄c
eB known as the magnetic quantum length scale.

Likewise, the other nontrivial phase-space noncommutative
algebras are given as

[
P̂xi , P̂x j

] = i
h̄2

l2
B

εi j,
[
P̂yi , P̂y j

] = −i
h̄2

l2
B

εi j, (11)[
x̂i, P̂x j

] = [
ŷi, P̂y j

] = ih̄δi j . (12)

It may be observed that, in this case, neither the coordinates
nor the momentum operators commute [66]. However, the
operators

P̂i = P̂xi + P̂yi = eB

c
εi j (x̂ j − ŷ j ) (13)

can act as proper (commutative) translation generators so that
they satisfy the commutation relations

[x̂i, x̂ j] = il2
Bεi j, [P̂i, P̂j] = 0, [x̂i, P̂j] = ih̄δi j, (14)

which represent a noncommutative Heisenberg algebra
(NCHA) in two dimensions. In this instance, the operator-
valued Hamiltonian of the effective system is given by

Ĥeff = K0

2
(x̂i − ŷi )

2 + V (x̂1). (15)

A more conventional setting of this Hamiltonian in terms of
the commutative translation generator P̂i is

Ĥeff = 1

2mB
P̂2

i + V (x̂1), i = 1, 2, (16)

where mB = e2B2

c2K0
is the effective mass of the reduced two-

particle system. It turns out to be instructive to introduce the

032204-3



NANDI, DEBNATH, KALA, AND MAJUMDAR PHYSICAL REVIEW A 110, 032204 (2024)

pair of canonical variables

R̂i = x̂i + ŷi

2
, P̂i = eB

c
εi j (x̂ j − ŷ j ), i, j = 1, 2, (17)

where R̂i is the center-of-mass coordinate and P̂i is the cor-
responding canonical momentum of our two-particle system.
They satisfy the usual Heisenberg commutation relations as

[R̂i, R̂ j] = 0, [P̂i, P̂j] = 0, [R̂i, P̂j] = ih̄δi j . (18)

However, it is worth noting that the center-of-mass position
coordinates may also satisfy NCHA if the two particles are
assumed to have different masses (for further details, see
Appendix A). Even if the two particles have the same mass,
but their position coordinates satisfy NCHA with different
noncommutativity parameters, in that case also the center-of-
mass position coordinates can give rise to a noncommutative
algebra.

Note further that since the dynamics of the composite sys-
tem is realized in terms of the coordinates of the positively
charged particle, the information of the negatively charged
particle is completely suppressed in Eqs. (14) and (16), but
it is incorporated into the expression of commuting momen-
tum operators. The extended Heisenberg algebra of the type
considered in Eq. (14) has the important property that it is re-
alizable in terms of commutative usual phase-space variables
(17) as

x̂1 = adÛ (R̂1), P̂1 = adÛ (P̂1), (19)

x̂2 = adÛ † (R̂2), P̂2 = adÛ † (P̂2), (20)

where we have made use of the fact of adjoint action
adÛ (Â) = Û ÂÛ † with a quasiunitary operator Û ,

Û = exp

[(
− il2

B

2h̄2

)
P̂1P̂2

]
, (21)

as it does not act unitarily on the entirely noncommutative
phase space.

We can observe from Eqs. (19) and (20) that the non-
commutative phase-space commutation algebra (14) can be
simulated in terms of commutative phase-space variables
(canonical variables), i.e., the center-of mass coordinates, as

x̂i = R̂i − c

2eB
εi j P̂j, i, j = 1, 2. (22)

It may be noted that this transformation is not canonical
because it changes the commutation brackets. This transfor-
mation has occasionally been called a Darboux map [67]
or Bopp’s shift [68], which is of relevance in the Bohmian
interpretation of noncommutative quantum mechanics [69].
Furthermore, this transformation with an explicit dependence
on the deformation parameter allows us to convert the Hamil-
tonian in noncommutative space into a modified Hamiltonian
in commutative equivalent space. It follows that if we are able
to solve the spectrum of the system Hamiltonian in commuta-
tive equivalent space, we can also obtain the spectrum of the
system in primitive noncommutative space, though the states
in both situations are not the same. We will discuss how the
aforementioned maps aid in the extraction of nonclassical cat
states in the next section.

IV. PREPARATION OF SCHRÖDINGER CAT STATES

Using the formalism presented in the preceding section, we
are now in a position to investigate the main goal of this work,
viz., how we might naturally prepare Schrödinger’s cat states.
To do so, we first consider a particular Hamiltonian with a
harmonic-oscillator potential in the x̂1 direction, given by

Ĥeff → ĤNC = P̂2
1

2mB
+ P̂2

2

2mB
+ V (x̂1), (23)

where V (x̂1) = 1
2 Kx̂2

1 and mB = e2B2

c2K0
. The corresponding

time-dependent Schrödinger equation is

ih̄
∂

∂t
|ψ (t )〉NC = ĤNC|ψ (t )〉NC. (24)

Furthermore, because of the noncommutativity of this the-
ory, it is impossible to construct simultaneous eigenstates
with noncommutative coordinates, which makes it difficult to
define a local probability density for the wave function that
corresponds to a particular state |ψ (t )〉NC [70]. However, this
issue can be bypassed by using the interpretation mentioned
in [70] or by using the coherent states formulation of non-
commutative quantum mechanics with the help of the Voros
product [71].

In our present case, it can be easily observed that the
system Hamiltonian mentioned above can be rewritten as

ĤNC = Û Ĥc.m.Û
†, (25)

with

Ĥc.m. = P̂2
1

2mB
+ P̂2

2

2mB
+ V (R̂1), (26)

where we have used the fact that V (x̂1) = V (Û R̂1Û †) =
ÛV (R̂1)Û †. Here Ĥc.m. is the unitarily equivalent form of the
system Hamiltonian expressed in terms of the center-of-mass
(c.m.) coordinates, whereas the ĤNC represents the system
Hamiltonian written in terms of the positively charged particle
coordinates. We can readily recognize that V (R̂1) = 1

2 KR̂2
1,

where K is the spring constant of the impurity interaction
faced by the positive charge in the x̂1 direction only. Accord-
ingly, the Schrödinger equation (24) transforms as

ih̄
∂

∂t
|ψ (t )〉c.m. = Ĥc.m.|ψ (t )〉c.m., (27)

where |ψ (t )〉c.m. = Û †|ψ (t )〉NC.
To describe the natural generation of entangled cat states,

we consider the appropriate eigenstates of the unitarily equiv-
alent Hamiltonian Ĥc.m., now presented as

|ψ0〉c.m. = |0〉 ⊗ (d+|+k2〉 + d−|−k2〉), (28)

where |d+|2 and |d−|2 denote the probability of finding the
free particle with nonzero momentum in |+k2〉 and |−k2〉
states, respectively, and |0〉 represents the ground state of the
1D harmonic-oscillator system with â1 and â†

1 representing
the corresponding annihilation and creation operators, respec-
tively, satisfying the algebra

[â1, â†
1] = I, â1 = mBωBR̂1 + iP̂1√

2mBωBh̄
, â1|0〉 = 0, (29)
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where ωB =
√

K
mB

, and |±k2〉 corresponds to the right- and left-moving free particle’s momentum states, respectively, which

satisfy

P̂2|±k2〉 = ±P2|±k2〉, P2 = h̄k2. (30)

The state vector corresponding to the noncommutative phase space (or in terms of the positively charged particle coordinates) is
given by

|ψ0〉NC = Û |ψ0〉c.m., (31)

where |ψ0〉NC can be expressed as

|ψ0〉NC =
{

exp

[(
− il2

B

2h̄2

)
P̂1 ⊗ P̂2

]}
[|0〉 ⊗ (d+|+k2〉 + d−|−k2〉)], (32)

which leads to

|ψ0〉NC = d+

{[
exp

(
− il2

Bk2

2h̄
P̂1

)]
|0〉

}
⊗ |+k2〉 + d−

{[
exp

(
il2

Bk2

2h̄
P̂1

)]
|0〉

}
⊗ |−k2〉. (33)

On substituting l2
B = h̄c

eB in this equation, we arrive at

|ψ0〉NC = d+

({
exp

[(
−i

ck2

2eB

)
P̂1

]}
|0〉

)
⊗ |+k2〉 + d−

({
exp

[(
i

ck2

2eB

)
P̂1

]}
|0〉

)
⊗ |−k2〉. (34)

Now, for a harmonic-oscillator potential, the momentum operator P̂1 can be written as

P̂1 = i

√
mBωBh̄

2
(â†

1 − â1). (35)

Putting this expression in Eq. (33), we obtain

|ψ0〉NC = d+

({
exp

[(
ck2

2eB

)√
mBωBh̄

2
(â†

1 − â1)

]}
|0〉

)
⊗ |+k2〉

+ d−

({
exp

[(
− ck2

2eB

)√
mBωBh̄

2
(â†

1 − â1)

]}
|0〉

)
⊗ |−k2〉. (36)

It follows that the above state vector (36) may also be written
in the form of a superposition of single-component coherent
states as

|ψ0〉NC = d+|+α〉 ⊗ |+k2〉 + d−|−α〉 ⊗ |−k2〉, (37)

wherein |±α〉 = e±α(â†
1−â1 )|0〉, with α = ck2

2eB

√
mBωBh̄

2 real-
valued coherent states (or a displacement of the vacuum)
that belong to the subset of the overcomplete space of usual
complex parameter-valued coherent states [72].

Here it may be worthwhile to mention a property of the
coherent state |±α〉: The dimensionless parameter α may be
rewritten as

α = 1

2
P2

(
K

K0

)1/4√ c

2eBh̄
= ξk2lB, (38)

with ξ = 1
2 ( K

4K0
)1/4. A coherent state |α〉 can have an arbitrar-

ily large amplitude and hence the energy of a macroscopic
harmonic oscillator [73] can be approximated by the energy of
a one-dimensional quantum-mechanical harmonic oscillator
by suitably choosing |α| to be arbitrarily large. For large
enough |α| values, |+α〉 and |−α〉 correspond to macroscop-
ically distinguishable states and may be labeled as + (alive)
and − (dead) [74,75]. In this sense, we can regard the above
state (37) as an entangled SCS, holding |α|√h fixed with

finite value in the classical limit [76,77]. Accordingly, one
may consider |±α〉 to be classical-like states, but their co-
herent superposition is endowed with nonclassical properties.
A similar type of Schrödinger cat state has been explored in
the context of Rydberg atomic systems using pulsed signals
[78], where the coherent (classical) states are coupled with the
internal spin states of the atom. However, in our present case,
the coherent states are coupled with the left- and right-moving
free-particle states.

In the primitive noncommutative phase space, we may
rewrite the state vectors (36) concisely as

|ψ0〉NC → | 〉 = N [|+α; +k2〉 + eiφ|−α; −k2〉],
|±α; ±k2〉 = |±α〉 ⊗ |±k2〉, (39)

with an arbitrary phase factor φ and normalization constant
N . For the aforementioned reason, the states |±α〉 may be
considered to be macroscopiclike states with the same am-
plitude but opposite in phase. (In the present case, the |α|
parameter is not arbitrary, but is defined in terms of the spring
constants, magnetic field, and electric charge.) However, their
superposition (39) has several nonclassical characteristics
[79]. In particular, for the relative phase factor eiφ = ±1, we
get even and odd cat states that have been well studied in
the literature [4,5]. Moreover, it is evident from (39) that the
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coherent states and the free-particle states are entangled:
When the coherent state parameter has a positive sign, the
free particle state is right moving. On the other hand, the
free-particle state is left moving when the coherent state pa-
rameter has a negative sign. Therefore, |ψ0〉NC is an entangled
Schrödinger cat state containing the coherent superposition
[80,81] of two states that are diametrically opposite to one
another.

It may be emphasized that in our model, the free-particle-
like nature in the x̂2 direction plays a pivotal role in generating
left-right superposition states. These states can entangle with
coherent states to form catlike states. A specific superposition
of free-particle states can also form a localized free-particle
state (wave packet), exhibiting multicomponent cat states. In
this regard, it is important to emphasize that the free-particle
nature in the x̂2 direction of our model is only an effective
description of the system under very-strong-magnetic-field
conditions. In solid-state physics, the concept of free particles
often serves as a starting point to describe more complex
systems. Specifically, in semiconductors, the effective-mass
approximation allows us to treat electrons in the conduction
band and holes in the valence band as free particles. Near the
bottom of the conduction band or the top of the valence band,
the energy-momentum relationship can be approximated by a
parabolic dispersion relation, similar to that of a free particle.
These are often referred to as quasifree particles, simplifying
the analysis of electronic and optical properties.

Since a momentum eigenstate is an idealization [82], we
consider a more realistic scenario in which the system’s mo-
tion in the commutative phase space is localized within a
specific length scale σ in the R̂2 direction. In this case, we
generalize the notion of free-particle states to a propagating
Gaussian state given by

|ψG〉 =
√

σ√
π

∫ +∞

−∞
e−(σ 2/2)(k2−k0 )2 |k2〉dk2, (40)

where σ is the width and k0 is the peak momentum of the
wave packet. Now, following the prescription of (28), we can
write the composite state of the particle, when the dynam-
ics of the system is realized in terms of the center-of-mass
coordinates, as

|ψ0〉c.m. = |0〉 ⊗ |ψG〉. (41)

Accordingly, we can generalize the notion of a two-
component cat state (39) to

| 〉 = Û |ψ〉c.m. =
√

σ√
π

∫ +∞

−∞
|α(k2)〉

⊗ |k2〉e−(σ 2/2)(k2−k0 )2
dk2, (42)

which describes a multicomponent entangled Schrödinger cat
state [83] where each component is specified through the
momentum eigenvalues. Such a state is highly nonclassical,
which can be verified through the corresponding Wigner func-
tion [83]. Thus, in the presence of a strong-magnetic-field
background, one may successfully prepare a Schrödinger cat
state utilizing a nonrelativistic electric dipole model, where
noncommutativity plays an important role. It may be reiter-
ated here that we explore the system in terms of the positively
charged particle coordinates.

Note that we specifically consider the impurity potential
attached to the positively charged particle to depend solely
on one direction, x̂1. This is crucial for achieving our desired
outcome. Introducing a similar (harmonic-oscillator) type of
potential in the x̂2 direction would bring the noncommutative
nature of the two components, [x̂1, x̂2] �= 0, into effect. Trans-
forming the ground state |
g〉c.m. to Û |
g〉c.m. with the unitary
operator Û would result in a superposition of displaced num-
ber states rather than coherent states. This transformation
disrupts the coherent superposition of states necessary for
realizing catlike states. Therefore, we consider the potential as
a function of only x̂1 to naturally demonstrate the emergence
of catlike states. Similarly, if we attach the potential along ŷ1

with the negatively charged particle, the potential term affects
the dynamics of the first charged particle in the presence of the
potential attached to the positively charged particle in the x̂1

direction. This effectively introduces a coupling between the
two modes of the positively charged particles with respect to
the center-of-mass frame, resulting in the loss of the coherent
superposition of coherent states, thus preventing the formation
of catlike states. This indicates that achieving catlike states is
possible only for a specific class of potentials, which should
be attached to either the positively charged particle or the
negatively charged particle in a single direction, rather than
applying potentials to both charged particles in both direc-
tions. For more details, see Appendix C.

V. COLLAPSE AND REVIVAL OF ENTANGLEMENT
OF THE SCS

In this section we begin by investigating the degree of
entanglement of the SCS |ψ〉NC. In order to do so, we first
write the corresponding density matrix given by

ρ̂NC =
(√

σ√
π

)2 ∫ +∞

−∞

∫ +∞

−∞
[|α(k2)〉A〈α(k′

2)|]

⊗ [|k2〉B〈k′
2|]e(−σ 2/2)(k2−k0 )2

e(−σ 2/2)(k′
2−k0 )2

dk2dk′
2,

(43)

where the subscripts A and B denote two distinct subsections
of our bipartite system, one of which is associated with coher-
ent states and the other with momentum eigenstates, each of
which corresponds to two distinct degrees of freedom in the
noncommutative plane. Since |ψ〉NC is a composite pure state,
the entanglement between the coherent states and free-particle
states can be quantified in terms of the von Neumann entropy
given by

S = −TrA[ρ̂redln(ρ̂red)], (44)

where the reduced density matrix is defined as

ρ̂red = TrB(ρ̂NC)

= σ√
π

∫ +∞

−∞
[|α(k2)〉A〈α(k2)|]e−σ 2(k2−k0 )2

dk2, (45)

with

Tr(ρ̂red) = σ√
π

∫ +∞

−∞
e−σ 2(k2−k0 )2

dk2 = 1. (46)
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For the present purpose, it suffices to compute the purity function [84], given by

P(α) = Tr
(
ρ̂2

red

) =
∑

n

〈n|ρ̂2
red|n〉 =

∑
m

∑
n

〈n|ρ̂red|m〉〈m|ρ̂red|n〉. (47)

After a little algebra, we obtain

〈n|ρ̂red|m〉 = σ√
ξ 2l2

B + σ 2

1√
n!

√
m!

e−σ 2k2
0

(
ξ lB
2σ 2

)n+m
∂n+m

∂kn+m
0

eσ 4k2
0/(ξ 2l2

B+σ 2 ). (48)

By inserting Eq. (48) into (47) it follows that

P(ξ0; lB) =
(

1

1 + ξ 2
0

)
e−2σ 2k2

0

[
exp

(
σ 2k2

0

1 + ξ 2
0

)
exp

(
ξ 2

0

2σ 2

←
∂

∂k0

→
∂

∂k0

)
exp

(
σ 2k2

0

1 + ξ 2
0

)]
, (49)

where ξ0 = ξ lB
σ

and ξ = 1
2 ( K

4K0
)1/4 as defined in Eq. (38). The

expression (49) can be rewritten (see Appendix B) as

P(ξ0; lB) = 1√
1 + 2ξ 2

0

. (50)

In Fig. 2 we plot the purity function versus the parameter ξ0.
It can be observed that the purity function reduces from unit
value (separable or disentangled state) with an increase of the
parameter ξ0, indicating the increment of entanglement in the
system for higher values of ξ0 (or lower values of the width
of the wave packet σ ). We consider the quantum length scale
lB = 1.483 × 10−8 m and vary the width of the wave packet in
the range of O(10−11–10−6). Different lB values displayed in
the figure may originate due to the variation of the magnetic
length scale with different accessible magnetic fields in the
laboratory.

It may be noted that if we just assume ξ0 � 1 with ξ ∼ 1,
which implies that lB � σ , i.e., the width of the Gaussian
packet σ is large enough compared to the magnetic quantum
length scale such that we can ignore ξ0, then it leads to the unit
value of the purity function or, in other words, the collapse

FIG. 2. Purity function plotted against the dimensionless factor
ξ0, which varies inversely with the width of the wave packet σ .
Several choices of the quantum length scale are plotted and the
direction of the arrow suggests the direction of increment of magnetic
fields, which is inversely proportional to the l2

B.

of the entanglement in the state. On the other hand, we can
make the states entangled by choosing σ comparable to the
magnetic length scale lB where P(ξ0; B) becomes less than
unity. More interestingly, the revival of the entanglement state
can occur if one considers a time-dependent regime. Let us
recall from the definition of ξ that it basically depends on the
coupling strength K of the impurity interaction.

The dynamic behavior of impurities in materials is known
to lead to time-varying spring interaction [85,86]. Such a dy-
namic nature of the coupling has been studied in the literature
in the context of several physical systems such as in optical
lattices [87] and extensively in the domain of quantum elec-
tronic transport [88–90]. Let us now consider that the spring
constant K is a slowly varying periodic function of time due
to some external effects, with the time variation given by

K → K (t ) = K cos4ωdt = K cos4θ (t ), (51)

which clearly indicates ξ (t ) = 1
2 ( Kcos4ωd t

4K0
)(1/4) and ξ0(t ) =

ξ (t )lB
σ

. Hence, the purity function gets modified to

P(ξ0; lB) = 1√
1 + 2ξ 2

0 (t )
. (52)

Before we proceed further, the following comments are in
order. It may be noted that the expression above ensures that
the purity function (52) remains real at any arbitrary instant
t within the time period. Considering a simple form K (t ) =
K cosn(ωdt ) with ξ (t = 0) ∼ 1 to highlight the main features,
we observe that ξ0(t ) ∼ cosn/4(ωdt ). The reality condition of
the purity function is satisfied only when we limit ourselves to
n/2 being an even integer. For the purpose of highlighting the
main features of the dynamical behavior of entanglement, we
choose the smallest integer n = 4. The periodic behavior of
the purity function gives rise to the phenomenon of collapse
and revival of entanglement, as we now show.

It should be noted that even when σ is comparable to the
magnetic length scale lB, disentanglement occurs in specific
instances such as td = π

2ωd
, 3π

2ωd
, 5π

2ωd
, 7π

2ωd
, . . . with a separation

of the time period π
ωd

between two successive collapses. For
the rest of the time interval, the states are entangled. This
distinguishing feature is known as the collapse and revival
of entanglement in the literature [91]. In Fig. 3 we plot the
purity function versus the periodic parameter θ (t ) for several
different values of the width of the wave packet σ . It is clearly
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FIG. 3. Time evolution of the purity function plotted against the
parameter θ (t ) for various widths of the wave packets σ .

seen that the magnitude of entanglement revival increases
more for narrower wave packets.

Here it needs to be mentioned that in order to ob-
serve entanglement revival of the states, we are required to
choose σ of an order comparable to that of the magnetic
length scale lB or less, as −1 � cos ωdt � +1. On the other
hand, if we choose σ to be much larger than lB, then the
additional term in the denominator of Eq. (52) can be
completely negligible, which will take us back again to the
situation of the entanglement collapse, viz., P(ξ0; B) ∼ 1.
Instances of the phenomenon of entanglement collapse and
revival have been pointed out earlier in the literature pre-
dominantly in the context of the Jaynes-Cummings model for
optical systems [53,91]. Here we furnish a striking example
of entanglement collapse and revival in the context of an
excitonic dipole in a condensed-matter system.

To illustrate the collapse and revival of entanglement in
cat states with moving free-particle states, we use a time-
dependent spring constant K (t ) within our dipole system. The
effective masses of electrons and holes, denoted by m, are
taken to be of the same order of magnitude, which allows the
c.m. coordinates to be treated as commutative with respect to
the positively charged particle coordinates [92]. Though the
effective masses of electrons and holes generally differ due to
the unequal curvature of the valence and conduction bands,
it is possible for them to be approximately equal if there
exists electron-hole symmetry manifested by the valence-band
maxima aligning with the conduction-band minima at the
same point. The experimental realization of our model may
be feasible in systems involving certain specific direct band-
gap semiconductors [93–95], where the minimum conduction
band for electrons and the maximum valence band for holes
are located at the same point of the Brillouin zone. In these
materials, the effective masses of electrons and holes can
be quite similar in magnitude, typically arising from specific
band structures and symmetries.

A possible realization of our model is illustrated in Fig. 4,
involving a time-varying electric field �E = f (cos ωdt )e−α0x �E0

applied along the x axis, perpendicular to the surface layer
where the holes are located [96]. In fact, the holes and elec-

x

y

z (Magnetic field B)

p-type particles (red)

n-type particles (blue)

�E = f(cos ωdt)e−α0x �E0

�B

FIG. 4. Three-dimensional view of a semiconductor layer with
p-type and n-type particles. The axes are labeled x, y, and z. The
semiconductor layer is shown with different colors: green for the left
face, cyan for the right face, yellow for the bottom face, orange for
the top face, and magenta for the front face. The p-type particles are
shown as red circles on the front layer and the n-type particles are
shown as blue circles inside the bulk. The electric field is represented
by dashed and dotted arrows pointing in the x direction, while the
magnetic field is shown by a solid arrow along the z axis. The electric
field is given by �E = f (cos ωdt )e−α0x �E0 and the magnetic field is
denoted by �B.

trons, which are confined in the bulk, reside in a plane parallel
to the x-y plane, while a magnetic field is applied along the
z axis. This setup is ideal for a heavily doped p-type semi-
conductor, where an accumulation layer of holes is formed
near the surface [93,97]. The ac electric field varies slowly
(to avoid abrupt changes to the initial state, specifically the
ground state of the oscillator trap, which is crucial for demon-
strating catlike states), with e−α0x ensuring that its primary
effect is near the surface. Here, due to the high conduc-
tivity of heavily doped p-type semiconductors, α−1

0 can be

approximated by α−1
0 ∼

√
2

σμωd
(using the approximations of

a good conducting medium), where σ , nh, and μ denote con-
ductivity, hole doping concentration, and permeability of the
conducting medium, respectively. For this good conductivity
of the p-type sample, even low-frequency fields will have a
limited penetration depth α−1

0 , thus restricting their effect on
the bulk material. This limited penetration depth ensures that
the field primarily influences surface-localized holes, which
aligns with our toy version of the excitonic dipole model. The
electric field introduces a time-dependent potential that mim-
ics a time-dependent spring constant K (t ) in the Hamiltonian,
under suitable attenuation and approximations. By employing
cos4(ωdt ), we ensure that the purity function remains real, as
discussed after Eq. (52). In fact, any periodic time-dependent
function that maintains an oscillatory nature at t = 0 (i.e., has
a nonzero value at t = 0) and satisfies the reality condition
of the purity function can serve as the time-dependent spring
constant K (t ). This allows us to explore phenomena such as
the variation of the purity function, the revival and collapse of
entanglement, and other related effects.

Before concluding, it may be noted that we have consid-
ered a periodic function of time with a slow variation, charac-
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terized by a time period td = 2π
ωd

. The degree of adiabaticity,
which quantifies the slowness of the process, can be defined as

ε = h̄
|〈m(t )| ∂Ĥ (t )

∂t |n(t )〉|
(Em − En)2

∣∣∣∣ ∼ ωd

ωmn
, (53)

where the transitional angular frequency ωmn = Em−En
h̄ is

introduced. Here ε � 1 signifies that the variation of the
Hamiltonian (in terms of matrix elements) over the timescale
2π
ωnm

is small compared to the energy separation Em − En.
The adiabatic approximation is valid when this condition is
satisfied, serving as a measure of the slowness required for
its applicability [98]. The dynamical periodic behavior of
the purity function is a natural consequence of a harmonic-
oscillator system with a periodically time-varying spring
constant in an adiabatic process. In this context, the system
can adjust or adopt itself to stay in its initial eigenstates,
preserving the real forms of the purity function. Though the
adiabatic approach has been invoked here to simplify the
technical complexities and extract the essential features of the
dynamic nature of entanglement, nonadiabatic time variation
may also lead to collapse and revival behavior [99].

VI. CONCLUSION

To summarize, in this work we have considered a com-
posite two-particle planar dipole system in the presence of
a strong constant and uniform magnetic field, in which two
oppositely charged particles interact via harmonic interaction,
in addition to an impurity interaction experienced by the pos-
itively charged particle. Our system may be regarded as a toy
version of excitonic dipole models that can be realized in some
specific direct band-gap semiconductors [93–95] having the
conduction-band minimum for electrons and the valence-band
maximum for holes both located at the same point of the
Brillouin zone, where the effective mass of electrons and holes
can be quite similar in magnitude. This typically arises due
to specific band structures and symmetries of materials. The
additional interaction could arise from intrinsic features such
as defects or impurities, as well as from external influences
like an external electric field or strain in the material [100].

In our analysis, we first addressed the classical picture in
the context of our system’s Lagrangian formulation, which is
the most natural in a strong-magnetic-field limit. Using sym-
plectic analysis of this first-order Lagrangian, we specified
the canonical or Weyl-Moyal-type deformed noncommutative
classical phase space to be an intrinsic part of our model.
Next we explored the quantum-mechanical description of our
model by elevating all the phase-space variables to the level
of Hermitian operators. The spatial and momentum sectors of
individual charged particles obey a noncommutative deformed
algebra. Here the noncommutativity emerges as a natural
consequence of placing two oppositely charged particles in a
strong constant background magnetic field. The square of the
magnetic length scale acts as the effective noncommutative
parameter.

We have presented a physical interpretation of the mapping
from the deformed phase space to the usual commutative
phase space. The noncommutative phase space represents
the system Hamiltonian written in terms of the positively

charged particle coordinates, while the standard quantum-
mechanical phase space is more suitable for describing our
system in terms of the composite system’s center-of mass co-
ordinates. The dynamics can therefore be analyzed in terms of
noncommuting variables or, alternatively, using phase-space
transformations, in terms of commuting variables. In the lit-
erature, noncommutativity has been often introduced by hand
for a single point particle, thus ruling out any physicality of
commutative phase-space variables in such cases. However, in
the present case, noncommutativity emerges naturally, thereby
giving a physical meaning to the commutative phase-space
variables. Determining the Hamiltonian’s ground state in the
commutative phase space allows us to express the quantum
state in the noncommutative phase space as a superposition
of two diametrically opposite coherent states, entangled with
momentum eigenstates. This reveals the emergence of entan-
gled and two-component states as well as multicomponent
Schrödinger cat states in our system.

Furthermore, we have estimated the magnitude of entan-
glement in the system of multicomponent entangled cat states.
By utilizing the purity function, we demonstrated that the
effective noncommutative parameter l2

B is responsible for the
entanglement. We showed that when the width of the Gaus-
sian wave packet σ significantly exceeds the minimal length
scale lB, the entangled cat states undergo collapse. Conversely,
when σ is comparable to the nonzero magnetic length scale
lB, the entanglement can be observed. Moreover, we showed
that if the time-dependent impurity potential is chosen, entan-
glement revival and collapse occurs periodically. So notably,
within the same formalism, we observed the phenomenon of
collapse and revival of entanglement in the noncommutative
plane in the time-dependent regime with a suitable choice of
the σ parameter for the revival case, while the collapse is
completely controlled by the nodes of the periodic function
involved in the impurity interaction.

Our study explores the natural emergence of Schrödinger
cat states in excitonic models, where these states can be
conceptualized as qubits [101]. Specifically, the states are
represented as superpositions |+α(k2)〉 ⊗ |+k2〉 ≡ |1〉k2 and
|−α(k2)〉 ⊗ |−k2〉 ≡ |0〉k2 , where the momentum eigenstates
are distinct and isolated, i.e., having zero overlap between
| + k2〉 and | − k2〉. Our approach indicates that multiple com-
ponents of cat states, which represent superpositions of large
qubit collections with fixed momentum eigenvalues, could
be used to encode qubits for constructing extensive quantum
registers [102]. Many-body effects in excitonic Bose-Einstein
condensates can lead to Schrödinger cat states, potentially
resulting in new phases of matter at critical temperatures.
Additionally, our system has potential applications in quan-
tum error correction by encoding each logical qubit using
multimode cat states [18,19]. Experimentation of our model
proposing the generation of excitonic cat states can pave a
new path for studying the emerging field of optoelectronics
exploring fundamental physics of quantum entanglement.

Finally, it may be noted that spin-orbit interactions in solid-
state systems introduce electronic band curvature, leading to
the emergence of Berry curvature in momentum space. Such
Berry curvature modifies the usual phase-space symplectic
structure of Bloch electrons [103,104]. In light of noncom-
mutative quantum mechanics, our present analysis can be
extended to include investigations on the possible emergence
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of Schrödinger cat states in solid-state systems involving the
2D excitonic Coulomb problem with the Berry curvature of
the electron’s and the hole’s Bloch states [57,105,106]. This
extension opens a gateway to a new frontier, promising fresh
insights and potentially paving the way for the experimental
exploration of the macroscopic quantum state of excitons
[102].
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APPENDIX A

Here we present a manifestation of the noncommutativity
of the center-of mass coordinates arising in the case of two
oppositely charged particles with different masses m+ and m−
representing the masses of positively and negatively charged
particles, respectively. The corresponding c.m. coordinates of
the above-discussed system are

R̂i = m+x̂i + m−ŷi

m+ + m−
,

P̂i = P̂xi + P̂yi = eB

c
εi j (x̂ j − ŷ j ), i, j = 1, 2. (A1)

Now, utilizing the results obtained from Eq. (10), the commu-
tation brackets between the c.m. coordinates can be obtained
in the form

[R̂i, R̂ j] = m2
+ − m2

−
(m+ + m−)2

il2
Bεi j, i, j = 1, 2, (A2)

clearly indicating the noncommutativity between the c.m. po-

sition coordinates with θ = m2
+−m2

−
(m++m− )2 il2

Bεi j being the effective
noncommutativity parameter. However, it is straightforward
to check that the other two commutation brackets remain
preserved:

[P̂i, P̂j] = 0, [R̂i, P̂j] = ih̄δi j . (A3)

It may be noted that the order of magnitude of the noncommu-
tativity between the c.m. position coordinates is much lower
compared to that of the position coordinates of the individual
constituent particles. This is simply because l2

B itself is very
small due to the strong-magnetic-field limit; the presence of
the additional mass factor reduces the whole effective non-
commutativity parameter θ to a much smaller value.

Now let us introduce the relative coordinate system

r̂i = ŷi − x̂i,
ˆ̃Pi = m+

m+ + m−
P̂yi −

m−
m+ + m−

P̂xi , i = 1, 2.

(A4)

The commutation relations satisfied by the relative coordi-
nates are given by

[r̂i, r̂ j] = 0, [ ˆ̃Pi,
ˆ̃Pj] = m2

− − m2
+

(m+ + m−)2
i
h̄2

l2
B

εi j,

[r̂i,
ˆ̃Pj] = ih̄δi j, i, j = 1, 2. (A5)

It is evident that the relative position coordinates commute
as we have considered two oppositely charged particles in a
noncommutative space (it has been shown earlier [107] that
the noncommutativity of a charged particle differs from its
antiparticle and also from any other particle of opposite charge
by the sign). On the other hand, the coordinates of relative
momenta give rise to a nontrivial commutation algebra with
a reduced order of magnitude from that of the individual
constituent particle’s momentum coordinates.

It may be further noted that the position coordinates of
the center-of-mass and the position coordinates of the relative
motion are not independent; rather they obey the relation
given by

[R̂i, r̂ j] = −il2
Bεi j, i, j = 1, 2. (A6)

So clearly there is a connection between the motion of the cen-
ter of mass and the relative motion of the composite system in
the noncommutative space. This helps us reduce the two-body
problem completely to a one-body problem for the internal
motion in noncommutative space using the c.m. coordinates of
the composite system where the information of the negatively
charged particle is solely hidden or encoded within the c.m.
momenta giving rise to a standard commutative algebra.

APPENDIX B

Here we provide a derivation for the expression of the
purity function. We begin with the expression of the reduced
density matrix of Eq. (45) and the expression of the coher-
ent state |α(k2)〉 and definition of the purity function from
Eq. (47),

P(α) =
∑

l

∑
s

〈l|ρ̂red|s〉〈s|ρ̂red|l〉,

〈l|ρ̂red|s〉 = σ√
π

∫ +∞

−∞
〈l||α(k2)〉〈α(k2)||s〉e−σ 2(k2−k0 )2

dk2.

(B1)

The coherent state can be expressed as

|α(k2)〉 = e−α2/2eαâ†
1 e−αâ1 |0〉 = e−α2/2eαâ†

1 |0〉,

〈l||α(k2)〉 = 〈l|e−α2/2
∞∑

n=0

αn

√
n!

|n〉 = e−α2/2 αl

√
l!

. (B2)

Similarly, 〈α(k2)||s〉 = e−α2/2 αs√
s!

. Plugging this into Eq. (A6),
we get

〈l|ρ̂red|s〉 = σ√
π

∫ +∞

−∞
e−α2 (α)l+s

√
l!

√
s!

e−σ 2(k2−k0 )2
dk2. (B3)
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Now substituting α(k2) = βk2, where β = ξ lB, we get

〈l|ρ̂red|s〉 = σ√
π

β l+s

√
l!

√
s!

e−σ 2k2
0

∫ +∞

−∞
e−(β2+σ 2 )k2

2+2σ 2k0k2 kl+s
2 dk2 (B4)

= σ√
π

β l+s

√
l!

√
s!

e−σ 2k2
0

1

(2σ 2)l+s

∂ l+s

∂kl+s
0

(∫ +∞

−∞
e−(β2+σ 2 )k2

2+2σ 2k2k0 dk2

)
(B5)

= σ√
π

β l+s

√
l!

√
s!

e−σ 2k2
0

1

(2σ 2)l+s

∂ l+s

∂kl+s
0

(√
π

β2 + σ 2
eσ 4k2

0/(β2+σ 2 )

)
. (B6)

Using the above expressions in the purity function, we get

P(α) = σ 2

β2 + σ 2
e(−2σ 2k2

0 )
∑

l

∑
s

1

l!s!

(
β2

4σ 4

)l+s
(

eσ 4k2
0/(β2+σ 2 )

←
∂ l+s

∂kl+s
0

→
∂ l+s

∂kl+s
0

eσ 4k2
0/(β2+σ 2 )

)
. (B7)

Performing the summations, we are led to

P(α(k2)) = σ 2

β2 + σ 2
e(−2σ 2k2

0 )

[
eσ 4k2

0/(β2+σ 2 ) exp

(
β2

2σ 4

←
∂

∂k0

→
∂

∂k0

)
eσ 4k2

0/(β2+σ 2 )

]
. (B8)

Now, replacing ξ0 = ξ lB
σ

, we arrive at

P(ξ0; lB) =
(

1

1 + ξ 2
0

)
e−2σ 2k2

0

[
eσ 2k2

0/(1+ξ 2
0 ) exp

(
ξ 2

0

2σ 2

←
∂

∂k0

→
∂

∂k0

)
eσ 2k2

0/(1+ξ 2
0 )

]
. (B9)

Subsequently, we express eσ 2k2
0/(1+ξ 2

0 ) exp( ξ 2
0

2σ 2

←
∂

∂k0

→
∂

∂k0
)eσ 2k2

0/(1+ξ 2
0 ) in a more concise form, where

→
∂

∂k0
f = ∂ f

∂k0
and f

←
∂

∂k0
= ∂ f

∂k0
. For

that, let us consider the following integral:∫ +∞

−∞
e−bs2+2sk0 ds = ek2

0 /b
∫ +∞

−∞
e−b(s+k0/b)2

ds = ek2
0 /b

√
π

b
. (B10)

From the expression of eσ 2k2
0/(1+ξ 2

0 ) it follows that

eσ 2k2
0/(1+ξ 2

0 ) =
√

1 + ξ 2
0

σ 2π

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s2+2sk0 ds. (B11)

Therefore, using the relation ea∂/∂k0 ebk0 = eabebk0 , we have

eσ 2k2
0/(1+ξ 2

0 ) exp

(
ξ 2

0

2σ 2

←
∂

∂k0

→
∂

∂k0

)
eσ 2k2

0/(1+ξ 2
0 ) = 1 + ξ 2

0

σ 2π

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s2+2sk0 ds exp

(
ξ 2

0

2σ 2

←
∂

∂k0

→
∂

∂k0

)∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s′2+2s′k0 ds′

= 1 + ξ 2
0

σ 2π

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s2+2sk0 ds e2ξ 2
0 ss′/σ 2

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s′2+2s′k0 ds′

= 1 + ξ 2
0

σ 2π

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s2+2sk0 ds
∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s′2+2(k0+ξ 2
0 s/σ 2 )s′

ds′

=
√

1 + ξ 2
0

σ 2π

∫ +∞

−∞
e−[(1+ξ 2

0 )/σ 2]s2+2sk0 e(σ 2k0+ξ 2
0 s)2/σ 2(1+ξ 2

0 )ds

=
√

1 + ξ 2
0

σ 2π
eσ 2k2

0/(1+ξ 2
0 )

∫ +∞

−∞
e−[(1+2ξ 2

0 )/σ 2(1+ξ 2
0 )]s2+2k0[(1+2ξ 2

0 )/(1+ξ 2
0 )]sds.

After performing some suitable steps, we get the final simplified form

eσ 2k2
0/(1+ξ 2

0 ) exp

(
ξ 2

0

2σ 2

←
∂

∂k0

→
∂

∂k0

)
eσ 2k2

0/(1+ξ 2
0 ) = 1 + ξ 2

0√
1 + 2ξ 2

0

e2σ 2k2
0 . (B12)

Now, after plugging the above result (B12) in Eq. (B9), the expression of the purity function reduces to Eq. (50).
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APPENDIX C

Here we discuss how cat-state-like behavior will be af-
fected by generalizing the notion of impurity potential. To see
this, we consider the system Hamiltonian in the presence of
an impurity potential (a 2D oscillatory potential) attached to a
positively charged particle

ĤNC = P̂2
1

2mB
+ P̂2

2

2mB
+ V (x̂1, x̂2), (C1)

where V (x̂1, x̂2) = 1
2 K (x̂2

1 + x̂2
2 ) and mB = e2B2

c2K0
.

It may be noted that ĤNC = Û Ĥc.m.Û †, where

Ĥc.m. = P̂2
1

2mB
+ P̂2

2

2mB
+ 1

2
KR̂2

1 + 1

2
K

(
R̂2 + c

eB
P̂1

)2
. (C2)

Here Ĥc.m. indicates that the two modes are no longer
independent, as the system Hamiltonian still retains its non-
commutative effect through the explicit coupling between R̂2

and P̂1 when realized in terms of center-of-mass phase-space
variables. However, this system can be diagonalized by a
suitable phase-space transformation [108]. An important point
is whether we can still achieve catlike states. We can consider
the specific states of Ĥc.m., such as the ground state |
g〉c.m.,
which satisfies Ĥc.m.|
g〉 = Eg|
g〉. The ground state |
g〉 can
be written as a linear combination of the eigenstates of the
Hamiltonian (23) as

|
g〉c.m. =
∑

n

∫ ∞

−∞
dk2〈n, k2|
g〉c.m.|n, k2〉, (C3)

where we have used the completeness relation for the eigen-
states (|n, k2〉 = |n〉 ⊗ |k2〉) of the Hamiltonian (23) for the
system without potential along x̂2.

When we transform the ground state |
g〉c.m. using the
unitary operator Û , the operator Û introduces a superposition
of displaced number states [109,110]. Specifically, this can be
expressed as |α, n〉 = Û |n, k〉 = eα(â†

1−â1 )|n〉 ⊗ |k2〉, where α

is a parameter associated with displacement [as discussed in

(36) for n = 0]. This transformation indicates that including
a potential in the x2 direction generally disrupts the coherent
superposition of classical (coherent) states. However, to real-
ize catlike states, it is essential to have a superposition of two
diametrically opposite coherent states. Thus, to demonstrate
the natural emergence of these catlike states, we consider the
harmonic potential to depend solely on x̂1.

Furthermore, if we consider the situation where the neg-
atively charged particle is also attached to a harmonic trap
potential in the y1 direction, the system Hamiltonian can be
expressed as

˜̂HNC = P̂2
1

2mB
+ P̂2

2

2mB
+ V1(x̂1) + V2(ŷ1), (C4)

where V1(x̂1) and V2(ŷ1) are oscillatory potentials. To focus on
the basic situation, we do not write them explicitly.

Using the fact of (13), we can eliminate the degrees of
freedom of the second charged particle in terms of the phase-
space variables of the first charged particle as ŷ1 = x̂1 + c

eB P̂2,
and the above Hamiltonian can be rewritten as

˜̂HNC = Û ˜̂Hc.m.Û
†, (C5)

with

˜̂Hc.m. = P̂2
1

2mB
+ P̂2

2

2mB
+ V1(R̂1) + V2

(
R̂1 + c

eB
P̂2

)
. (C6)

The structure of the Hamiltonian (C6) clearly indicates that
the introduction of a potential associated with the second
charged particle in the ŷ1 direction effectively induces a cou-
pling between P̂2 and R̂1. This is quite similar to the case of
Hamiltonian (C2). Following the same logic applied to the
case for the positively charged particle also trapped by the
potential in the x̂2 direction, we can immediately conclude
that the feature of the catlike state will not be exhibited if we
allow the potential for the second negatively charged particle
in the ŷ1 direction along with the potential attached to the first
positively charged particle in the x̂1 direction. Therefore, for
simplicity and clarity in our analysis focused on the positively
charged particle, we restrict the harmonic potential V to de-
pend solely on x1.
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